9FGL6251 [IDT]

Intelligent PCIe Clock Buffer/Generator for SSD;
9FGL6251
型号: 9FGL6251
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Intelligent PCIe Clock Buffer/Generator for SSD

PC
文件: 总28页 (文件大小:536K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intelligent PCIe Clock  
Buffer/Generator for SSD  
9FGL6241 / 9FGL6251  
Datasheet  
Description  
Features  
Supports single or dual-ported nVME drives  
The 9FGL6241 / 9FGL6251 are intelligent buffer/clock generators  
tailored for single and dual-ported nVME SSDs. They support  
Common (CC) and Independent Reference (IR) clocking  
architectures and are ideal for U.2 and M.2 form factors. The  
devices are also useful in PCIe master/slave and clock  
multiplexing applications, with an internal clock generator as a  
third input channel.  
Automatically detects presence or absence of input clocks  
Integrated terminations on LP-HCSL outputs save 8 resistors  
Choice of spread off (0% SRnS) or spread on (-0.5% SRIS)  
default  
Choice of 25MHz or 33 1/3MHz reference clock  
REF clock output; saves external XO  
2.5V to 3.3V operating voltage  
Typical Applications  
1.8V compatible, 3.3V tolerant single-ended I/O signaling  
Open-drain CC_IR output; maximum system flexibility  
4 × 4 mm 28-VQFP-N package with external crystal  
4 × 4 mm 28-LGA package with optional internal crystal  
1 × 4 and 2 × 2 nVME SSDs  
3:2 PCIe clock multiplexing  
Output Features  
Two 100MHz Low-Power HCSL (LP-HCSL) outputs with Zo =  
100or 85Ω  
Key Specifications  
DIF cycle-to-cycle jitter < 50ps  
One 33 1/3MHz or 25MHz 1.8V LVCMOS REF output  
One open drain CC_IR output indicates PCIe clock mode  
PCIe Gen1–4 (CC) compliant; Gen2–3 (IR) compliant  
Block Diagram  
VDDIN[A:B]  
OSC  
VDDDIG VDDA  
VDDO1 VDDREF_1p8  
XIN/CLKIN  
XO  
REFOUT  
PLL  
DIF0#  
DIF0  
DIF_INA  
DIF_INA#  
DIF1#  
DIF1  
DIF_INB  
DIF_INB#  
Input  
Detect  
Logic  
vePERst0#  
vePERst1#  
CC_IR  
SCLK_3.3  
SMBus Engine  
Logic  
POR  
SDATA_3.3  
Factory Configuration  
GNDIN[A:B] GNDDIG  
EPAD  
GNDREF GNDO[0:1]  
©2018 Integrated Device Technology, Inc.  
1
October 11, 2018  
 
 
 
 
 
 
9FGL6241 / 9FGL6251 Datasheet  
Contents  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Output Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Alternate Terminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Crystal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Spread Spectrum Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
General SMBus Serial Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
How to Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
How to Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Package Outline Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Marking Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
©2018 Integrated Device Technology, Inc.  
2
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
Pin Assignments  
Figure 1. Pin Assignments for 4 × 4 mm NDG28 28-VQFP-N Package – Top View  
28 27 26 25 24 23 22  
GNDINA 1  
DIF_INA 2  
DIF_INA# 3  
VDDINA 4  
VDDA  
DIF0#  
DIF0  
21  
20  
19  
18  
17  
9FGL6241  
9FGL6251  
GNDO0  
GNDO1  
5
6
7
VDDINB  
DIF_INB  
16 DIF1#  
15 DIF1  
DIF_INB#  
8
9 10 11 12 13 14  
28-VQFP-N, 4 × 4 mm, 0.4mm pitch  
^ prefix indicates internal 120kohm pull-up resistor  
v prefix indicates internal 120kohm pull-down resistor  
Figure 2. Pin Assignments for 4 × 4 mm LTG28 28-LGA Package – Top View  
28 27 26 25 24 23 22  
GNDINA 1  
DIF_INA 2  
DIF_INA# 3  
VDDINA 4  
VDDA  
DIF0#  
DIF0  
21  
20  
19  
18  
17  
9FGL6241Q  
9FGL6251Q  
GNDO0  
GNDO1  
5
6
7
VDDINB  
DIF_INB  
16 DIF1#  
15 DIF1  
DIF_INB#  
8
9 10 11 12 13 14  
28-LGA, 4 × 4 mm, 0.4mm pitch  
^ prefix indicates internal 120kohm pull-up resistor  
v prefix indicates internal 120kohm pull-down resistor  
©2018 Integrated Device Technology, Inc.  
3
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
Pin Descriptions  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1
2
GNDINA  
DIF_INA  
DIF_INA#  
VDDINA  
GND  
Input  
Input  
Ground pin for input A.  
True input of differential clock.  
Complement input of differential clock.  
3
4
Power Power supply for input A.  
Power Power supply for input B.  
5
VDDINB  
6
DIF_INB  
DIF_INB#  
GNDINB  
GNDDIG  
VDDDIG  
SCLK_3.3  
SDATA_3.3  
Input  
Input  
GND  
GND  
True input of differential clock.  
Complement input of differential clock.  
Ground pin for input B.  
7
8
9
Ground pin for digital circuitry.  
10  
11  
12  
Power Digital power.  
Input  
I/O  
Clock pin of SMBus circuitry, 3.3V tolerant.  
Data pin for SMBus circuitry, 3.3V tolerant.  
Enterprise PCIe Reset for Port B eSSD drives configured as 2 x 2. This active low signal  
indicates when the power supply is within specified voltage limits and is used to reset  
internal circuitry. The rising edge is used to determine the clocking mode. It is logically  
equivalent to PERST# reset signal. See the PCIe CEM specification for additional details.  
13  
vePERst1#  
Input  
14  
15  
16  
17  
18  
VDDO1  
DIF1  
Power Power supply for output 1.  
Output Differential true clock output.  
Output Differential complementary clock output.  
DIF1#  
GNDO1  
GNDO0  
GND  
GND  
Ground pin for output 1.  
Ground pin for output 0.  
19  
DIF0  
Output Differential true clock output.  
20  
21  
DIF0#  
VDDA  
Output Differential complementary clock output.  
Power Power supply for PLL core. See Power Connections table for additional information.  
Output indicating which mode (CC or IR) is active. Input clocks are present and are being  
Open  
Drain  
directed to the outputs in CC mode. Input clocks are absent and internally generated clocks  
are being directed to the outputs in IR mode. This pin is an open drain output and requires  
22  
23  
CC_IR  
Output an external pull up resistor for proper functionality. The polarity of this pin is programmable.  
Consult the General SMBus Serial Interface Information registers for details.  
Enterprise PCIe Reset for Port A eSSD drives configured as 1x4 or 2x2. This active low  
signal indicates when the power supply is within specified voltage limits and is used to  
reset internal circuitry. The rising edge is used to determine the clocking mode. It is  
logically equivalent to PERST# reset signal. See the PCIe CEM specification for additional  
details.  
vePERst0#  
Input  
24  
25  
26  
VDDREF_1p8  
REFOUT  
Power Power supply for XTAL and REF clocks, nominally 1.8V.  
Output Reference clock output.  
GNDREF  
GND  
Ground pin for the REF outputs.  
©2018 Integrated Device Technology, Inc.  
4
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
Table 1. Pin Descriptions (Cont.)  
Number  
Name  
Type  
Description  
[a]  
27  
XIN/CLKIN  
XO  
Input  
Crystal input or reference clock input.  
[a]  
28  
Output Crystal output.  
GND Connect to ground.  
29  
EPAD  
[a] These pins are no connect (NC) on devices with integrated crystal (9FGL6241Q and 9FGL6251Q).  
Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the  
device. Functional operation of the 9FGL6241 / 9FGL6251 at absolute maximum ratings is not implied. Exposure to absolute maximum  
rating conditions may affect device reliability.  
Table 2. Absolute Maximum Ratings  
Parameter  
Symbol  
Conditions  
Minimum Maximum Units Notes  
Supply Voltage  
Input Voltage  
V
4.6  
+0.5  
V
V
1,2  
1,3  
1
DDx  
V
-0.5  
-65  
V
IN  
DD  
Input High Voltage, SMBus  
Storage Temperature  
Junction Temperature  
Input ESD Protection  
V
SMBus clock and data pins.  
Human Body Model.  
3.9  
150  
125  
V
IHSMB  
Ts  
°C  
°C  
V
1
Tj  
1
ESD prot  
2500  
1
1 Guaranteed by design and characterization, not 100% tested in production.  
2 Operation under these conditions is neither implied nor guaranteed.  
3 Not to exceed 4.6V.  
Thermal Characteristics  
Table 3. Thermal Characteristics  
Symbol  
Parameter  
Package  
Typical Values  
Units  
Notes  
θ
Junction to case.  
51.4  
26.9  
68.6  
63.5  
58.6  
56.2  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
1
1
JC  
θ
Junction to base.  
Jb  
θ
θ
θ
θ
Junction to air, still air.  
JA0  
JA1  
JA3  
JA5  
LTG28  
Junction to air, 1 m/s air flow.  
Junction to air, 3 m/s air flow.  
Junction to air, 5 m/s air flow.  
©2018 Integrated Device Technology, Inc.  
5
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
Table 3. Thermal Characteristics (Cont.)  
Symbol Parameter  
Package  
Typical Values  
Units  
Notes  
θ
Junction to case.  
42  
2.4  
39  
33  
28  
27  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
1
1
JC  
θ
Junction to base.  
Jb  
θ
θ
θ
θ
Junction to air, still air.  
JA0  
JA1  
JA3  
JA5  
NDG28  
Junction to air, 1 m/s air flow.  
Junction to air, 3 m/s air flow.  
Junction to air, 5 m/s air flow.  
1 EPAD soldered to board.  
Electrical Characteristics  
TA = TAMB. Supply voltages per normal operation conditions; see Test Loads for loading conditions.  
Table 4. SMBus Parameters  
Parameter  
Symbol  
Conditions  
Minimum Typical  
Maximum Units Notes  
SMBus Input Low Voltage  
SMBus Input High Voltage  
SMBus Output Low Voltage  
SMBus Sink Current  
V
0.63  
3.6  
V
V
ILSMB  
V
1.17  
IHSMB  
V
At I  
0.4  
V
OLSMB  
PULLUP  
PULLUP.  
I
At V  
4
mA  
V
OL.  
Nominal Bus Voltage  
V
1.8  
3.6  
1000  
300  
DDSMB  
SCLK/SDATA Rise Time  
SCLK/SDATA Fall Time  
SMBus Operating Frequency  
t
(Max. V - 0.15V) to (Min. V + 0.15V).  
ns  
ns  
kHz  
1
1
2
RSMB  
IL  
IH  
t
(Min. V + 0.15V) to (Max. V - 0.15V).  
FSMB  
IH  
IL  
f
SMBus operating frequency.  
400  
SMB  
1 Guaranteed by design and characterization, not 100% tested in production.  
2 The device must be powered up for the SMBus to function.  
Table 5. Input/Supply/Common Parameters – Normal Operating Conditions  
Parameter  
Symbol  
Conditions  
2.5V supply voltage for all V pins  
Minimum  
Typical  
Maximum  
Units Notes  
DD  
V
V
V
2.375  
2.5  
3.465  
V
DDx2.5  
DDx3.3  
DDREF  
except V  
DDREF  
3.3V supply voltage for all V pins  
DD  
Supply Voltage  
3.135  
1.71  
-40  
3.3  
1.8  
3.465  
1.89  
85  
V
V
except V  
DDREF  
Supply voltage for crystal oscillator and  
REFOUT.  
Ambient Operating  
Temperature  
T
Industrial range.  
25  
°C  
AMB  
Input High Voltage  
Input Low Voltage  
V
0.65 x V  
-0.3  
1.6  
V + 0.3  
DDx  
V
V
4
4
IH  
DDx  
Single-ended inputs, except SMBus and  
XIN/CLKIN.  
V
0.35 x V  
DDx  
IL  
©2018 Integrated Device Technology, Inc.  
6
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
Table 5. Input/Supply/Common Parameters – Normal Operating Conditions (Cont.)  
Parameter  
Symbol  
Conditions  
Minimum  
0.65 x V  
Typical  
Maximum  
V + 0.3  
DDREF  
Units Notes  
Input High Voltage  
Input Low Voltage  
V
1.6  
V
V
6
IHCLKIN  
DDREF  
XIN/CLKIN.  
V
-0.3  
0.35 x V  
6
5
ILCLKIN  
DDREF  
Output High Voltage  
Output Low Voltage  
V
CC_IR at default polarity.  
CC_IR at default polarity.  
V
V
V
V
OHCC_IR  
DDPU  
DDPU  
V
0.45  
OLCC_IR  
Single-ended inputs, V = GND,  
IN  
I
-5  
5
μA  
IN  
V
= V  
IN  
DD.  
Single-ended inputs.  
= 0V; inputs with internal pull-up  
Input Current  
V
IN  
I
resistors.  
-50  
50  
μA  
INP  
V = V ; inputs with internal pull-down  
IN  
DD  
resistors.  
Differential inputs (DIF_IN).  
Crystal input or clock input, 3xx devices.  
Crystal input or clock input, 2xx devices.  
100  
33 1/3  
25  
MHz  
MHz  
MHz  
nH  
Input Frequency  
Pin Inductance  
Capacitance  
F
IN  
L
7
5
1
1
1
1
pin  
C
Logic inputs, except DIF_IN.  
DIF_IN differential clock inputs.  
Output pin capacitance.  
1.5  
1.5  
pF  
IN  
INDIF_IN  
C
2.7  
6
pF  
C
pF  
OUT  
From V power-up and after input  
DD  
Clk Stabilization  
t
clock stabilization or deassertion of PD#  
to 1st clock.  
1
ms  
1,2  
STAB  
Output SS  
Modulation  
Frequency  
Modulation frequency (triangular  
modulation).  
f
30  
31.6  
33  
kHz  
MOD  
DIF output enable after PD#  
de-assertion.  
Tdrive_PD#  
t
300  
μs  
1,3  
DRVPD  
Tfall  
t
Fall time of single-ended control inputs.  
Rise time of single-ended control inputs.  
5
5
ns  
ns  
2
2
F
Trise  
t
R
1 Guaranteed by design and characterization, not 100% tested in production.  
2 Control input must be monotonic from 20% to 80% of input swing.  
3 Time from deassertion until outputs are > 200mV.  
4 The single-ended control inputs are 1.8V compatible and 3.3V tolerant.  
5 The VOH of CC_IR is determined by the external pull-up voltage, since this is an open drain output.  
6 When driven by an external clock or XO, it must be AC coupled to the CLKIN pin.  
©2018 Integrated Device Technology, Inc.  
7
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
Table 6. Differential Clock Input Parameters  
Parameter  
Symbol  
Conditions  
Cross over voltage.  
Minimum  
Typical  
Maximum Units Notes  
Input Crossover Voltage – DIF_IN  
Input Swing – DIF_IN  
V
150  
300  
0.4  
-5  
900  
mV  
mV  
V/ns  
μA  
1
1
CROSS  
V
Differential value.  
SWING  
Input Slew Rate – DIF_IN  
Input Leakage Current  
dv/dt  
Measured differentially.  
8
5
1,2  
I
V
= V  
V = GND.  
DD , IN  
IN  
IN  
Measurement from differential  
waveform.  
Input Duty Cycle  
d
45  
0
55  
%
1
1
tin  
Input Jitter –Cycle to Cycle  
J
Differential measurement.  
125  
ps  
DIFIn  
1 Guaranteed by design and characterization, not 100% tested in production.  
2 Slew rate measured through ±75mV window centered around differential zero.  
Table 7. Current Consumption  
Parameter  
Symbol  
Conditions  
Minimum Typical Maximum Units Notes  
I
V
at 1.8V  
DDREF  
1.7  
37  
40  
23  
25  
2.6  
47  
50  
28  
31  
mA  
mA  
mA  
mA  
mA  
DD_REF  
I
I
I
I
2.5V operation in IR mode, V  
3.3V operation in IR mode, V  
at 1.8V.  
at 1.8V.  
DD_VDD2.5  
DD_VDD3.3  
DD_VDD2.5  
DD_VDD3.3  
DDREF  
DDREF  
Operating Supply  
Current  
2.5V operation in CC mode, V  
3.3V operation in CC mode, V  
at1.8V.  
at 1.8V.  
DDREF  
DDREF  
Table 8. Output Duty Cycle, Jitter, Skew and PLL Characteristics  
Parameter  
Symbol  
Conditions  
Minimum Typical Maximum Units Notes  
Duty Cycle  
t
Measured differentially, IR Mode.  
Measured differentially, CC Mode.  
45  
49  
-0.3  
3962  
17  
55  
0.7  
4600  
50  
%
%
1
DC  
Duty Cycle Distortion  
Skew, Input to Output  
Skew, Output to Output  
t
-1.5  
3300  
1,3  
1
DCD  
t
Fanout Mode, V = 50%.  
ps  
ps  
ps  
ps  
pdBYP  
T
t
IR Mode, V = 50%.  
1,4  
1,2  
1,2  
sk3  
T
IR Mode.  
20  
50  
Jitter, Cycle to Cycle  
t
jcyc-cyc  
Additive jitter in CC Mode.  
0.3  
10  
1 Guaranteed by design and characterization, not 100% tested in production.  
2 Measured from differential waveform.  
3 Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operating in Common Clock Mode.  
4 All outputs at default slew rate.  
©2018 Integrated Device Technology, Inc.  
8
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
Table 9. DIF Low -Pow er HCSL Outputs  
Parameter  
Symbol  
Conditions  
Minimum Typical Maximum Units Notes  
dV/dt  
dV/dt  
Scope averaging on, fast setting.  
Scope averaging on, slow setting.  
Slew rate matching.  
1.3  
0.7  
2.2  
1.5  
9
3.2  
2.5  
20  
V/ns 1,2,3  
V/ns 1,2,3  
Slew Rate  
Slew Rate Matching  
Voltage High  
ΔdV/dt  
%
1,4  
7
V
Statistical measurement on single-ended  
signal using oscilloscope math function  
(scope averaging on).  
660  
778  
850  
mV  
HIGH  
Voltage Low  
V
-150  
-4  
150  
7
LOW  
Max Voltage  
Min Voltage  
Vmax  
Vmin  
799  
-35  
412  
29  
1150  
mV  
7
7
Measurement on single-ended signal using  
absolute value (scope averaging off).  
-300  
250  
Crossing Voltage (abs)  
Crossing Voltage (var)  
Vcross_abs Scope averaging off.  
Δ-Vcross Scope averaging off.  
550  
140  
mV  
mV  
1,5  
1,6  
1 Guaranteed by design and characterization, not 100% tested in production.  
2 Measured from differential waveform.  
3 Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a ±150mV window around differential 0V.  
4 Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a ±75mV window centered on the average cross  
point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the  
edge rate calculations.  
5 Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock  
rising and Clock# falling).  
6 The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed.  
The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.  
7 At default SMBus settings.  
Table 10. PCIe Filtered Additive Phase Jitter ParametersCommon Clocked (CC) Architectures, 3.3V  
Fanout Mode  
Industry  
Limits  
Parameter  
Symbol  
Conditions  
Minimum Typical Maximum  
Units Notes  
ps  
t
t
PCIe Gen1.  
0.0  
4.5  
1,2,5  
(p-p)  
jphPCIeG1-CC  
PCIe Gen2 Low Band  
10kHz < f < 1.5MHz  
ps  
0.01  
0.02  
1,2,4,5  
(rms)  
(PLL BW of 5–16MHz or 8–16MHz,  
CDR = 5MHz).  
Additive Phase  
Jitter, CC (fanout  
buffer) Mode  
jphPCIeG2-CC  
PCIe Gen2 High Band  
ps  
1.5MHz < f < Nyquist (50MHz)  
0.2  
0.31  
N/A  
1,2,4,5  
(rms)  
V
= 1.8V  
(PLL BW of 5–16MHz or 8–16MHz,  
CDR = 5MHz).  
DDREF  
Other V s =  
DD  
3.3V  
PCIe Gen3  
ps  
t
t
0.10  
0.10  
0.19  
0.19  
1,2,4,5  
(rms)  
(PLL BW of 2–4MHz or 2–5MHz,  
CDR = 10MHz).  
jphPCIeG3-CC  
jphPCIeG4-CC  
PCIe Gen4  
ps  
1,2,4,5  
(rms)  
(PLL BW of 2–4MHz or 2–5MHz,  
CDR = 10MHz).  
©2018 Integrated Device Technology, Inc.  
9
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
Table 11. PCIe Filtered Additive Phase Jitter ParametersCommon Clocked (CC) Architectures, 2.5V  
Fanout Mode  
Industry  
Limits  
Parameter  
Symbol  
Conditions  
Minimum Typical Maximum  
Units Notes  
ps  
t
t
PCIe Gen1.  
0.7  
3.9  
1,2,5  
(p-p)  
jphPCIeG1-CC  
PCIe Gen2 Low Band  
10kHz < f < 1.5MHz  
ps  
0.01  
0.02  
1,2,4,5  
(rms)  
(PLL BW of 5–16MHz or 8–16MHz,  
CDR = 5MHz).  
Additive Phase  
Jitter, CC (fanout  
buffer) Mode  
jphPCIeG2-CC  
PCIe Gen2 High Band  
ps  
1.5MHz < f < Nyquist (50MHz)  
0.2  
0.33  
N/A  
1,2,4,5  
(rms)  
V
= 1.8V  
(PLL BW of 5–16MHz or 8–16MHz,  
CDR = 5MHz).  
DDREF  
Other V s =  
DD  
2.5V  
PCIe Gen3  
ps  
t
t
0.12  
0.12  
0.20  
0.20  
1,2,4,5  
(rms)  
(PLL BW of 2–4MHz or 2–5MHz,  
CDR = 10MHz).  
jphPCIeG3-CC  
jphPCIeG4-CC  
PCIe Gen4  
ps  
1,2,4,5  
(rms)  
(PLL BW of 2–4MHz or 2–5MHz,  
CDR = 10MHz).  
1 Applies to all outputs.  
2 Based on PCIe Base Specification Rev 4.0 version 1.0. See http://www.pcisig.com for latest specifications.  
3 Sample size of at least 100K cycles. This figure extrapolates to 108ps pk-pk at 1M cycles for a BER of 1-12  
.
4 For RMS values additive jitter is calculated by solving the following equation for b [a^2 + b^2 = c^2] where “a” is rms input jitter and “c” is rms total  
jitter.  
5 Driven by 9FGL0841 or equivalent.  
©2018 Integrated Device Technology, Inc.  
10  
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
4,5  
Table 12. PCIe Filtered Phase Jitter Parameters3.3V Clock Generator Mode  
Industry  
Limits  
Parameter  
Symbol  
Conditions  
Minimum Typical Maximum  
Units Notes  
ps  
PCIe Gen1 (Common Clock)  
t
t
16  
28  
86  
1,2,5  
(p-p)  
jphPCIeG1-CC  
PCIe Gen2 Lo Band (Common Clock)  
10kHz < f < 1.5MHz  
ps  
0.43  
0.55  
3
1,2,4,5  
(rms)  
(PLL BW of 516MHz or 8–5MHz,  
CDR = 5MHz)  
jphPCIeG2-CC  
PCIe Gen2 High Band (Common Clock)  
1.5MHz < f < Nyquist (50MHz)  
SSC on or off,  
ps  
V
V
= 3.3V,  
0.9  
1.37  
0.38  
3.1  
1
1,2,4,5  
(rms)  
DDx  
DDREF  
(PLL BW of 5–16MHz or 8–5MHz,  
CDR = 5MHz)  
= 1.8V  
PCIe Gen3 (Common Clock)  
ps  
t
t
0.25  
1,2,4,5  
(rms)  
(PLL BW of 2–4MHz or 2–5MHz,  
CDR = 10MHz)  
jphPCIeG3-CC  
jphPCIeG4-CC  
PCIe Gen4 (Common Clock)  
ps  
0.25  
0.7  
0.6  
0.7  
0.4  
0.38  
0.81  
0.67  
0.75  
0.44  
0.5  
2
1,2,4,5  
(rms)  
(PLL BW of 2–4MHz or 2–5MHz,  
CDR = 10MHz)  
PCIe Gen2 (SRIS)  
ps  
1,2  
t
jphPCIeG2-IR  
jphPCIeG3-IR  
jphPCIeG2-IR  
jphPCIeG3-IR  
(PLL BW of 16MHz, CDR = 5MHz)  
(rms)  
-0.5% spread,  
V
V
= 3.3V,  
DDx  
DDREF  
PCIe Gen3 (SRIS)  
ps  
1,2  
= 1.8V  
t
0.7  
2
(PLL BW of 24MHz or 2–5MHz,  
(rms)  
CDR = 10MHz)  
PCIe Gen2 (SRIS)  
ps  
1,2  
t
t
(PLL BW of 16MHz, CDR = 5MHz)  
(rms)  
-0.25% spread,  
V
V
= 3.3V,  
DDx  
DDREF  
PCIe Gen3 (SRIS)  
ps  
1,2  
= 1.8V  
0.7  
(PLL BW of 24MHz or 2–5MHz,  
(rms)  
CDR = 10MHz)  
©2018 Integrated Device Technology, Inc.  
11  
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
4,5  
Table 13. PCIe Filtered Phase Jitter Parameters2.5V Clock Generator Mode  
Industry  
Limits  
Parameter  
Symbol  
Conditions  
Minimum Typical Maximum  
Units Notes  
ps  
PCIe Gen1 (Common Clock)  
t
t
17  
29  
86  
1,2,5  
(p-p)  
jphPCIeG1-CC  
PCIe Gen2 Lo Band (Common Clock)  
10kHz < f < 1.5MHz  
ps  
0.44  
0.56  
3
1,2,4,5  
(rms)  
(PLL BW of 516MHz or 8–5MHz,  
CDR = 5MHz)  
jphPCIeG2-CC  
PCIe Gen2 High Band (Common Clock)  
1.5MHz < f < Nyquist (50MHz)  
SSC on or off,  
ps  
V
V
= 2.5V,  
1.0  
1.5  
3.1  
1
1,2,4,5  
(rms)  
DDx  
DDREF  
(PLL BW of 5–16MHz or 8–5MHz,  
CDR = 5MHz)  
= 1.8V  
PCIe Gen3 (Common Clock)  
ps  
t
t
0.29  
0.41  
1,2,4,5  
(rms)  
(PLL BW of 2–4MHz or 2–5MHz,  
CDR = 10MHz)  
jphPCIeG3-CC  
jphPCIeG4-CC  
PCIe Gen4 (Common Clock)  
ps  
0.29  
0.9  
0.41  
1.1  
0.5  
2
1,2,4,5  
(rms)  
(PLL BW of 2–4MHz or 2–5MHz,  
CDR = 10MHz)  
PCIe Gen2 (SRIS)  
ps  
1,2  
t
jphPCIeG2-IR  
jphPCIeG3-IR  
jphPCIeG2-IR  
jphPCIeG3-IR  
(PLL BW of 16MHz, CDR = 5MHz)  
(rms)  
-0.5% spread,  
V
V
= 2.5V,  
DDx  
DDREF  
PCIe Gen3 (SRIS)  
ps  
1,2  
= 1.8V  
t
0.62  
0.80  
0.42  
0.70  
1.01  
0.49  
0.7  
2
(PLL BW of 24MHz or 2–5MHz,  
(rms)  
CDR = 10MHz)  
PCIe Gen2 (SRIS)  
ps  
1,2  
t
t
(PLL BW of 16MHz, CDR = 5MHz)  
(rms)  
-0.25% spread,  
V
V
= 2.5V,  
DDx  
DDREF  
PCIe Gen3 (SRIS)  
ps  
1,2  
= 1.8V  
0.7  
(PLL BW of 24MHz or 2–5MHz,  
(rms)  
CDR = 10MHz)  
1 Applies to all outputs.  
2 Based on PCIe Base Specification Rev3.1a. These filters are different than common clock filters. See http://www.pcisig.com for latest specifications.  
3 Sample size of at least 100K cycles. This figure extrapolates to 108ps pk-pk at 1M cycles for a BER of 1-12  
.
4 As of PCIe Base Specification Rev4.0 version 1.0, IR is the new name for Separate Reference Independent Spread (SRIS) and Separate Reference  
no Spread (SRnS). Industry limits for IR clocking are not specified in the Base Specification; limits are commonly agreed upon with major customers.  
5 All outputs at default slew rate (fast).  
©2018 Integrated Device Technology, Inc.  
12  
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
Table 14. REF Output  
Parameter  
Symbol  
Conditions  
Minimum Typical Maximum Units Notes  
Long Accuracy  
Long Accuracy  
ppm  
ppm  
Independent Reference Mode.  
Common Clock Mode.  
-100  
0
100  
ppm  
ppm  
ns  
1,2  
1,2  
2
0
T
25MHz reference input.  
40  
30  
period25M  
period33M  
Clock Period  
T
33 1/3MHz reference input.  
Slowest slew rate, 20% to 80% of V  
ns  
2
t
t
0.5  
0.8  
0.89  
1.5  
1.5  
1.7  
48.2  
0.00  
52  
1.6  
2.3  
2.3  
2.4  
55  
V/ns  
V/ns  
V/ns  
V/ns  
%
1
rf1  
rf2  
rf3  
rf4  
t1X  
DDREF.  
DDREF.  
Slow slew rate, 20% to 80% of V  
Fast slew rate, 20% to 80% of V  
1,3  
1
Rise/Fall Slew Rate  
t
0.8  
DDREF.  
t
Fastest slew rate, 20% to 80% of V  
1.0  
1
DDREF.  
Duty Cycle  
d
V = V /2 V.  
45  
1,4  
1,5  
1,4  
T
DD  
Duty Cycle Distortion  
Jitter, Cycle to Cycle  
d
V = V /2 V.  
-0.75  
0
%
tcd  
T
DD  
t
V = V /2 V.  
250  
ps  
jcyc-cyc  
T
DD  
1 Guaranteed by design and characterization, not 100% tested in production.  
2 Internal crystal, external crystal may be tuned to 0ppm.  
3 Default SMBus value.  
4 When driven by a crystal.  
5 When driven by an external oscillator via the XIN/CLKIN pin, XO should be floating.  
Pow er Management  
Table 15. Operating Configuration Table (Byte0, bit 5 = 0)  
1,2  
ePERst0#  
DIF_INA  
ePERst1#  
DIF_INB  
DIF0  
DIF1  
CC_IR  
No clock present  
0
X
From PLL  
Input A  
From PLL  
Input B  
IR Mode  
Clock present  
0
X
CC Mode  
0
0
X
X
No clock present  
Clock present  
From PLL  
Input A  
From PLL  
Input B  
IR Mode  
CC Mode  
1 Polarity of CC_IR is determined by Byte3[3].  
2 CC_IR Mode is determined by the status of the input clock associated with the first ePERstn# to deassert.  
3 Rising arrow indicates first ePERst# to deassert. Once an ePERst# has gone high, the other ePERst# is ignored.  
Table 16. Operating Configuration Table (Byte0, bit 5 = 1)  
1,2  
ePERst0#  
DIF_INA  
ePERst1#  
DIF_INB  
DIF0  
DIF1  
CC_IR  
No clock present  
Clock present  
X
X
X
X
From PLL  
Input A  
From PLL  
Input A  
IR Mode  
CC Mode  
1 Polarity of CC_IR is determined by Byte3[3].  
2 When set to 1, the device only responds to DIF_INA and ePERst0#. ePERst1# must remain low and never deassert.  
©2018 Integrated Device Technology, Inc.  
13  
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
X
Table 17. SMBus Address  
Address  
+ Read/Write Bit  
1101000  
X
Table 18. Pow er Connections  
Pin Number  
V
GND  
Description  
DD  
4
1
8
DIF_INA  
DIF_INB  
5
10  
14  
21  
24  
9
Digital Power, SMBus  
DIF1  
17  
18  
25  
DIF0, PLL analog  
XTAL, REF  
Timing Diagrams  
Figure 3. Independent Reference Clock Mode from ePERst0# Deassertion  
©2018 Integrated Device Technology, Inc.  
14  
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
Figure 4. Common Clock Mode from ePERst0# Deassertion  
Clocking Mode set here  
Common (pass through) or IR (clocks from internal PLL).  
Here we are in Common ModeDIF_INA present  
VDD  
REFOUT  
ePERst0#  
DIF0  
<< 1.8ms  
= 100ms  
= 100us  
< 1.8ms  
Sourced from PLL  
2-3 clks  
2-3 clks  
Input Clock from Port A  
Sourced from PLL  
DIF_INA  
DIF1  
DIF1 follows DIF_INB  
ePERst1# never presents rising edge  
No Input Clock from Port B  
Which is not running in this case  
ePERst1#  
DIF_INB  
CC_IR1  
1. CC_IR at default polarity  
Figure 5. Common Clock Mode from ePERst1# Deassertion  
Clocking Mode set here, first rising edge of ePERst0# OR ePERst1#  
Common(pass through) or IR (clocks from internal PLL).  
Here we are in Common clock mode – DIF_INB present  
VDD  
REFOUT  
ePERst0#  
DIF0  
<< 1.8ms  
ePERst0# occurs AFTER ePERst1#, so clock mode  
determination is made on rising edge of ePERst1#  
< 1.8ms  
Sourced from PLL  
2-3 clks  
2-3 clks  
Input Clock from Port A  
Sourced from PLL  
DIF_INA  
DIF1  
ePERst1# rising edge occurs before  
ePERst0# rising edge.  
DIF1 now follows DIF_INB and DIF0  
now follows DIF_INA. The PLL is  
powered down after the switchover  
= 100ms  
= 100us  
ePERst1#  
DIF_INB  
Input Clock from Port B  
1
CC_IR  
1. CC_IR at default polarity  
©2018 Integrated Device Technology, Inc.  
15  
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
Test Loads  
Figure 6. LVCMOS AC/DC Test Load  
Test  
Point  
L
Zo  
Rs  
CL  
Figure 7. LP-HCSL AC/DC Test Load (standard PCIe source-terminated test load)  
Rs  
CL  
L
Test  
Points  
Differential Zo  
CL  
Rs  
Figure 8. Test Setup for PCIe Jitter Measurements  
Real Time Scope (20Gs/sec)  
SMA  
Connectors  
Rs  
Coax  
Cables  
L
Differential Zo  
0.1µF  
50  
50  
Rs  
Table 19. Terminations  
Device  
L (inches)  
Zo ()  
Rs ()  
LVCMOS C (pF) LP-HCSL C (pF)  
L L  
9FGL6241  
9FGL6251  
9FGL6251  
10  
10  
10  
100  
100  
85  
None needed  
7.5  
4.7  
2
None needed  
Alternate Terminations  
The 9FGL family can easily drive LVPECL, LVDS, and CML logic. See “AN-891 Driving LVPECL, LVDS, and CML Logic with IDT's  
“Universal” Low-Power HCSL Outputs” for details.  
©2018 Integrated Device Technology, Inc.  
16  
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
Crystal Characteristics  
Table 20. Recommended Crystal Characteristics  
Parameter  
Value  
Units  
Frequency  
Resonance Mode  
25MHz or 33 1/3MHz  
MHz  
Fundamental  
Frequency Tolerance @ 25°C  
Frequency Stability, reference at 25°C over operating temperature range  
Temperature Range (industrial)  
Equivalent Series Resistance (ESR)  
Shunt Capacitance (CO)  
±20  
±20  
-4085  
50  
ppm maximum  
ppm maximum  
°C  
maximum  
pF maximum  
pF maximum  
mW maximum  
ppm maximum  
7
Load Capacitance (CL)  
6
Drive Level  
0.3  
±5  
Aging per year  
Spread Spectrum Selection  
Table 21. Spread Spectrum Selection for 201 and 301 Configurations  
Byte 1[4:3]  
Description  
Spread Amount  
Notes  
00  
01  
10  
11  
SRnS Mode  
CC Mode  
0
Default configuration at power up.  
Accessible via SMBus.  
0
CC/SRIS Mode  
CC/SRIS Mode  
-0.25%  
-0.50%  
Accessible via SMBus.  
Accessible via SMBus.  
The 201/301 devices are designed for Separate Reference clock No Spread applications. They power up in a special mode for this  
application (configuration 00). Using the SMBus to change to one of the other configurations will require a system reset. Transitioning  
back to configuration 00 from one of the other configurations will also require a system reset. Contact the factory if a different default  
configuration set is desired.  
Table 22. Spread Spectrum Selection for 202 and 302 Configurations  
Byte 1[4:3]  
Description  
Spread Amount  
Notes  
00  
01  
10  
11  
Reserved  
CC Mode  
0
Reserved.  
0
Accessible via SMBus.  
CC/SRIS Mode  
CC/SRIS Mode  
-0.25%  
-0.50%  
Accessible via SMBus.  
Default configuration at power up.  
The 202/302 devices are configured for Common Clock/Separate Reference clock Independent Spread applications. They power up in  
configuration 11. The SMBus may be used to change cleanly between configuration 01 or 10 without requiring a system reset. Contact  
the factory if a different default configuration set is desired.  
©2018 Integrated Device Technology, Inc.  
17  
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
General SMBus Serial Interface Information  
How to Write  
How to Read  
Controller (host) sends a start bit  
Controller (host) will send a start bit  
Controller (host) sends the write address  
IDT clock will acknowledge  
Controller (host) sends the write address  
IDT clock will acknowledge  
Controller (host) sends the beginning byte location = N  
IDT clock will acknowledge  
Controller (host) sends the beginning byte location = N  
IDT clock will acknowledge  
Controller (host) sends the byte count = X  
IDT clock will acknowledge  
Controller (host) will send a separate start bit  
Controller (host) sends the read address  
IDT clock will acknowledge  
Controller (host) starts sending Byte N through Byte N+X-1  
IDT clock will acknowledge each byte one at a time  
Controller (host) sends a stop bit  
IDT clock will send the data byte count = X  
IDT clock sends Byte N+X-1  
IDT clock sends Byte 0 through Byte X (if X(H) was written to  
Index Block Write Operation  
Byte 8)  
Controller (Host)  
starT bit  
IDT (Slave/Receiver)  
Controller (host) will need to acknowledge each byte  
Controller (host) will send a not acknowledge bit  
Controller (host) will send a stop bit  
T
Slave Address  
WR WRite  
ACK  
ACK  
ACK  
ACK  
Index Block Read Operation  
Beginning Byte = N  
Data Byte Count = X  
Beginning Byte N  
Controller (Host)  
starT bit  
IDT (Slave/Receiver)  
T
Slave Address  
WRite  
WR  
ACK  
ACK  
Beginning Byte = N  
O
O
O
O
O
O
RT  
RD  
Repeat starT  
Slave Address  
ReaD  
Byte N + X - 1  
ACK  
ACK  
P
stoP bit  
Data Byte Count=X  
Beginning Byte N  
ACK  
ACK  
Note: See Ordering Information for additional details on bits  
labeled “OTP Configured”.  
O
O
O
O
O
O
Byte N + X - 1  
N
P
Not acknowledge  
stoP bit  
©2018 Integrated Device Technology, Inc.  
18  
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
SMBus Table: Output Enable and Status Readback Register  
Byte 0  
Name  
Control Function  
Type  
0
1
Default  
DIF_INA not  
running  
Bit 7  
DIF_INA Status  
Presence of DIF_INA  
R
DIF_INA running  
Real Time2  
DIF_INB not  
running  
Bit 6  
Bit 5  
DIF_INB Status  
Presence of DIF_INB  
R
DIF_INB running  
Real Time2  
0
DIFN_INA only  
RW drives DIF0 in CC  
Mode  
DIF_INA drives  
both DIF[1:0] in  
CC Mode  
1x4 CC Mode  
Configuration3  
Allows DIF_INA to drive both DIF0  
and DIF1 in CC mode  
Pull-down  
disabled  
Pull-down  
enabled  
Bit 4  
Bit 3  
Bit 2  
ePERst1# PD_ EN  
ePERst0# PD_EN  
Enable pull-down on ePERst1#  
Enable pull-down on ePERst0#  
Specifies input frequency  
RW  
1
1
Pull-down  
disabled  
Pull-down  
enabled  
RW  
Part Number  
Dependent  
Reference Frequency  
RW  
25MHz  
33 1/3MHz  
Bit 1  
Bit 0  
DIF1 OE  
DIF0 OE  
Output Enable  
Output Enable  
RW  
RW  
Disabled1  
Disabled1  
Enabled  
Enabled  
1
1
1 The disabled state depends on Byte2[3:2]. '00' = Low, '01' = HiZ, '10' = Low, '11' = High.  
2 The state of both of these inputs at the time of the first rising edge of ePERst0# or ePERst1# determines the operating mode of the device.  
3 Setting this bit to ‘1’, allows the device to drive both DIF0 and DIF1 from DIF_INA in Common Clock mode. When set to ‘1’, the device only responds  
to DIF_INA and ePERst0#. ePERst1# must remain low and never deassert.  
SMBus Table: Spread Spectrum and VHIGH Control Register  
Byte 1  
Name  
Control Function  
Type  
0
1
Default  
Common Clock  
Mode  
Independent  
RefClk Mode  
Bit 7  
CC_IR Status1  
CC-IR Readback  
R
Latched  
Common Clock  
Mode  
Independent  
RefClk Mode  
Bit 6  
Bit 5  
CC_IR_Mode Override2  
CC_IR_Override_Enable  
Forces desired CC_IR Mode  
RW  
RW  
0
0
Byte1, bit 6  
controls CC_IR  
Mode  
Enable SW override of CC_IR  
Mode  
CC_IR controlled  
by ePERst logic  
Spread Spectrum  
Default[1]3  
Bit 4  
Bit 3  
Spread Spectrum default  
RW  
RW  
00' = SS Off, '01' = -0.25% SS,  
'10' = Reserved, '11' = -0.5% SS  
Part Number  
Dependent  
Spread Spectrum  
Default[0]3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
X
1
0
DIF Amplitude[1]  
DIF Amplitude[0]  
RW  
RW  
00 = 0.6V  
01 = 0.68V  
11 = 0.85V  
Controls output amplitude  
10 = 0.75V  
1 This bit is indicates the state of the input clock (operating mode) associated with the first ePERst# signal to deassert and is latched upon its  
deassertion.  
2 Byte 1, bit 5 must be set to '1' for this bit to control operation of the part.  
3 Setting this bit to ‘1’, allows the device to drive both DIF0 and DIF1 from DIF_INA in Common Clock mode. When set to ‘1’, the device only responds  
to DIF_INA and ePERst0#. ePERst1# must remain low and never de-assert.  
©2018 Integrated Device Technology, Inc.  
19  
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
SMBus Table: Slew Rate and Output Configuration Register  
Byte 2  
Name  
Control Function  
Type  
0
1
Default  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DIF[1]_IMP_1  
DIF[1]_IMP_0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ZOUT: 00 = 33ZOUT: 10 = 100Ω  
ZOUT: 01 = 8511 = Reserved  
ZOUT: 00 = 33ZOUT: 10 = 100Ω  
Differential output 1 impedance[a]  
Part Number  
Dependent  
DIF[0]_IMP_1  
Differential output 0 impedance[a]  
DIF[0]_IMP_0  
ZOUT: 01 = 85Ω  
00 = Low/Low  
01 = HiZ/HiZ  
Slow setting  
11 = Reserved  
10 = High/Low  
11 = Low/High  
Fast setting  
STOP_STOP[1]  
STOP_STATE[0]  
DIF1 SLEW RATE SEL  
DIF0 SLEW RATE SEL  
Output stop state  
00  
(True/Complement)  
Adjust slew rate of DIF1  
Adjust slew rate of DIF0  
1
1
Slow setting  
Fast setting  
[a] 9FGL624x devices default to '10' (100). 9FGL625x devices default to '01' (85).  
SMBus Table: REF and Polarity Control Register  
Byte 3  
Name  
Control Function  
Type  
0
1
Default  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
RW  
RW  
00 = Slowest  
01 = Slow  
0
1
X
1
REF Slew Rate  
Slew rate control  
10 = Fast  
11 = Fastest  
Reserved  
RW  
REF OE  
REF output enable  
Disabled[a]  
Enabled  
Low when input detected  
(Common Mode)  
Low when Input is NOT  
detected (IR Mode)  
Bit 3  
CC_IR POLARITY  
Determines CC_IR polarity  
RW  
1
Bit 2  
Bit 1  
Bit 0  
Reserved  
Reserved  
Reserved  
X
X
X
[a] The disabled state depends on Byte2[3:2]. '00' = Low, '01' = HiZ, '10' = Low, '11' = High.  
SMBus Table: Reserved Register  
Byte 4  
Name  
Control Function  
Reserved  
Type  
0
1
Default  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
1
1
1
1
1
1
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Note: Byte 4 is reserved and reads back 'hFF'.  
©2018 Integrated Device Technology, Inc.  
20  
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
SMBus Table: Revision and Vendor ID Register  
Byte 5  
Name  
Control Function  
Type  
0
1
Default  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RID3  
RID2  
RID1  
RID0  
VID3  
VID2  
VID1  
VID0  
R
R
R
R
R
R
R
R
0
0
0
1
0
0
0
1
1st silicon = 0000  
A revision = 0001  
Revision ID  
VENDOR ID  
0001 = IDT  
SMBus Table: Device Type/Device ID  
Byte 6  
Name  
Control Function  
Type  
0
1
Default  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Device ID7  
Device ID6  
Device ID5  
Device ID4  
Device ID3  
Device ID2  
Device ID1  
Device ID0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
1
1
x
0
0
Device with external crystal in NDG28 = 1C hex  
Device with internal crystal in LTG28 = 18 hex  
Device ID  
SMBus Table: Byte Count Register  
Byte 7  
Name  
Control Function  
Type  
0
1
Default  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
0
0
0
0
1
0
0
0
Reserved  
Reserved  
BC4  
BC3  
BC2  
BC1  
BC0  
RW  
RW  
RW  
RW  
RW  
Writing to this register will configure  
how many bytes will be read back,  
default is = 8 bytes.  
Byte count programming  
©2018 Integrated Device Technology, Inc.  
21  
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
Package Outline Draw ings  
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information  
is the most current data available.  
www.idt.com/document/psc/ndndg28-package-outline-40-x-40-x-09-mm-body-vqpf-n-04-mm-ball-pitch  
www.idt.com/document/psc/ltg28-package-outline-40-x-40-mm-body-04-mm-pitch-lga  
Marking Diagrams  
Line 1 and 2 (Line 1 only on VQFP-N devices) is the truncated part  
number.  
L6241  
“xxx” denotes dash code (201, 202, 301, 302)  
4AxxxI  
AQxxx  
“YWW” or “YYWW” is the last digit(s) of the year and work-week that the  
YYWW$  
YWW**$  
part was assembled.  
**” denotes sequential lot number.  
“$” denotes mark code.  
(for 9FGL6241  
(for 9FGL6241  
28-LGA devices)  
28-VQFP-N devices)  
L6251  
AQxxx  
YWW**$  
5AxxxI  
YYWW$  
(for 9FGL6251  
(for 9FGL6251  
28-LGA devices)  
28-VQFP-N devices)  
©2018 Integrated Device Technology, Inc.  
22  
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
Ordering Information  
Table 23. Ordering Information  
Orderable Part Number  
Crystal/XO  
IR Spread Mode  
DIF ZOUT  
Package  
Carrier Type  
Temperature  
9FGL6241AQ201LTGI  
9FGL6241AQ201LTGI8  
9FGL6241AQ202LTGI  
9FGL6241AQ202LTGI8  
9FGL6241AP201NDGI  
9FGL6241AP201NDGI8  
9FGL6241AP202NDGI  
9FGL6241AP202NDGI8  
9FGL6241AQ301LTGI  
9FGL6241AQ301LTGI8  
9FGL6241AQ302LTGI  
9FGL6241AQ302LTGI8  
9FGL6241AP301NDGI  
9FGL6241AP301NDGI8  
9FGL6241AP302NDGI  
9FGL6241AP302NDGI8  
9FGL6251AQ201LTGI  
9FGL6251AQ201LTGI8  
9FGL6251AQ202LTGI  
9FGL6251AQ202LTGI8  
9FGL6251AP201NDGI  
9FGL6251AP201NDGI8  
9FGL6251AP202NDGI  
9FGL6251AP202NDGI8  
9FGL6251AQ301LTGI  
9FGL6251AQ301LTGI8  
9FGL6251AQ302LTGI  
9FGL6251AQ302LTGI8  
9FGL6251AP301NDGI  
9FGL6251AP301NDGI8  
9FGL6251AP302NDGI  
9FGL6251AP302NDGI8  
Trays  
Tape and Reel  
Trays  
SSC off (SRNS)  
25MHz  
internal  
28-LGA  
SSC on (SRIS)  
SSC off (SRNS)  
SSC on (SRIS)  
SSC off (SRNS)  
SSC on (SRIS)  
SSC off (SRNS)  
SSC on (SRIS)  
SSC off (SRNS)  
SSC on (SRIS)  
SSC off (SRNS)  
SSC on (SRIS)  
SSC off (SRNS)  
SSC on (SRIS)  
SSC off (SRNS)  
SSC on (SRIS)  
Tape and Reel  
Trays  
Tape and Reel  
Trays  
25MHz  
external  
28-VQFP-N  
28-LGA  
Tape and Reel  
Trays  
100Ω  
Tape and Reel  
Trays  
33 1/3MHz  
internal  
Tape and Reel  
Trays  
Tape and Reel  
Trays  
33 1/3MHz  
external  
28-VQFP-N  
28-LGA  
Tape and Reel  
Trays  
-40° to +85°C  
Tape and Reel  
Trays  
25MHz  
internal  
Tape and Reel  
Trays  
Tape and Reel  
Trays  
25MHz  
external  
28-VQFP-N  
28-LGA  
Tape and Reel  
Trays  
85Ω  
Tape and Reel  
Trays  
33 1/3MHz  
internal  
Tape and Reel  
Trays  
Tape and Reel  
Trays  
33 1/3MHz  
external  
28-VQFP-N  
Tape and Reel  
“G” indicates RoHS 6 of 6 compliant.  
©2018 Integrated Device Technology, Inc.  
23  
October 11, 2018  
9FGL6241 / 9FGL6251 Datasheet  
Revision History  
Revision Date  
Description of Change  
October 11, 2018  
Initial release.  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
www.IDT.com  
Sales  
Tech Support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
www.IDT.com/go/support  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as “IDT”) reserve the right to modify the products and/or specifications described herein at any time,  
without notice, at IDT’s sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same  
way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability  
of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not  
convey any license under intellectual property rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be rea-  
sonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property  
of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc. All rights reserved.  
©2018 Integrated Device Technology, Inc.  
24  
October 11, 2018  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY