9ZXL0852EKILFT [IDT]

8-Output DB800ZL Derivative PCIe Gen1–4 and UPI;
9ZXL0852EKILFT
型号: 9ZXL0852EKILFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

8-Output DB800ZL Derivative PCIe Gen1–4 and UPI

PC
文件: 总18页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Output DB800ZL Derivative for  
PCIe Gen14 and UPI with Write  
Lock  
9ZXL0832E / 9ZXL0852E  
Datasheet  
Description  
Features  
SMBus write lock feature; increases system security  
The 9ZXL0832E / 9ZXL0852E are second-generation, enhanced  
performance DB800ZL differential buffers. The parts are  
pin-compatible to the 9ZXL0831A and 9ZXL0851A while offering a  
much improved phase jitter performance. A fixed external feedback  
maintains low drift for critical QPI/UPI applications. The 9ZXL0832E  
and 9ZXL0852E have an SMBus Write Lockout pin for increased  
device and system security.  
LP-HCSL outputs; eliminate 16 resistors, save 27mm2 of area  
(0832E)  
LP-HCSL outputs with 85Zout; eliminate 32 resistors, save  
64mm2 of area (0852E)  
8 OE# pins; hardware control of each output  
Selectable PLL BW; minimizes jitter peaking in cascaded PLL  
topologies  
PCIe Clocking Architectures  
Supported  
Common Clocked (CC)  
Hardware/SMBus control of PLL bandwidth and bypass; change  
mode without power cycle  
Spread spectrum compatible; tracks spreading input clock for EMI  
Independent Reference (IR) with and without spread spectrum  
reduction  
100MHz & 133.33MHz PLL Mode; UPI and legacy QPI support  
6 × 6 mm 48-VFQFPN package; small board footprint  
Typical Application  
Servers  
Storage  
Key Specifications  
Cycle-to-cycle jitter < 50ps  
Networking  
SSDs  
Output-to-output skew < 50ps  
Input-to-output delay: Fixed at 0ps  
Input-to-output delay variation < 50ps  
Phase jitter: PCIe Gen4 < 0.5ps rms  
Phase jitter: QPI/UPI > = 9.6GB/s < 0.2ps rms  
Phase jitter: IF-UPI < 1.0ps rms  
Output Features  
8 Low-Power (LP) HCSL output pairs (0832E)  
8 Low-Power (LP) HCSL output pairs with 85Zout (0852E)  
Block Diagram  
VDDR  
VDDA  
VDD x7  
FBOUT_NC#  
FBOUT_NC  
PLL  
DIFIN#  
DIFIN  
DIF7#  
DIF7  
^100M_133M#  
vSMB_WRTLOCK  
SMBCLK  
8 outputs  
SMBus  
Engine Configuration  
Factory  
SMBDAT  
DIF0#  
DIF0  
^vHIBW_BYPM-LOBW#  
^CKPWRGD_PD#  
vOE[7:0]#  
Control Logic  
Resistors are integrated on 9ZXL085x devices and  
external on 9ZXL083x devices  
GNDR  
EPAD/GND  
©2018 Integrated Device Technology, Inc  
1
August 14, 2018  
9ZXL0832E / 9ZXL0852E Datasheet  
Pin Assignments  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
3
4
5
6
7
8
9
^CKPWRGD_PD#  
GND  
36 DIF6#  
35 DIF6  
34 VDD  
VDDR  
DIF_IN  
33 DIF5#  
32 DIF5  
31 vOE5#  
30 vOE4#  
29 DIF4#  
28 DIF4  
27 VDD  
9ZXL0832  
9ZXL0852  
EPAD is  
pin 49  
Connect to GND  
DIF_IN#  
SMBDAT  
SMBCLK  
FBOUT_NC#  
FBOUT_NC  
VDD 10  
vOE0# 11  
NC 12  
26 DIF3#  
25 DIF3  
13 14 15 16 17 18 19 20 21 22 23 24  
48-VFQFPN, 6 x 6 mm, 0.4mm pitch  
Pow er Management Table  
SMBus  
PLL State if not  
CKPWRGD_PD#  
DIF_IN  
EN bit  
OE[x]#  
DIF[x]  
in Bypass Mode  
0
X
X
0
0
1
1
X
0
1
0
1
Low/Low  
Low/Low  
Low/Low  
Running  
Low/Low  
OFF  
ON  
ON  
ON  
ON  
1
Running  
PLL Operating Mode Table  
Pow er Connections  
HiBW_BypM_LoBW#  
MODE  
Pin Number  
Description  
Low  
PLL Lo BW  
VDD  
44  
3
GND  
49  
Mid  
High  
Bypass  
PLL Hi BW  
Analog PLL  
Analog input  
2
NOTE: PLL is OFF in Bypass Mode  
10,15,19,  
27,34,38,42  
49  
DIF clocks  
PLL Operating Mode Readback Table  
Functionality at Pow er Up (PLL Mode)  
HiBW_BypM_LoBW# Byte0, bit 7 Byte 0, bit 6  
Low (Low BW)  
Mid (Bypass)  
High (High BW)  
0
0
1
0
1
1
DIF_IN  
MHz  
100.00  
133.33  
100M_133M#  
DIF[x]  
DIF_IN  
DIF_IN  
1
0
SMBus Address  
Address  
+
Read/Write bit  
1101100  
x
©2018 Integrated Device Technology, Inc  
2
August 14, 2018  
9ZXL0832E / 9ZXL0852E Datasheet  
Pin Descriptions  
Pin #  
Pin Name  
^CKPWRGD_PD#  
GND  
Type  
IN  
Description  
Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent  
high assertions exit Power Down Mode. This pin has internal pull-up resistor.  
Ground pin.  
1
2
3
GND  
PWR  
Power supply for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered  
appropriately. Nominally 3.3V.  
VDDR  
4
5
6
7
DIF_IN  
IN  
IN  
HCSL true input.  
DIF_IN#  
SMBDAT  
SMBCLK  
HCSL complementary input.  
I/O  
IN  
Data pin of SMBUS circuitry  
Clock pin of SMBUS circuitry  
Complementary half of differential feedback output. This pin should NOT be connected to anything outside the chip. It exists to  
provide delay path matching to get 0 propagation delay.  
True half of differential feedback output. This pin should NOT be connected to anything outside the chip. It ex ists to provide delay  
path matching to get 0 propagation delay.  
8
9
FBOUT_NC#  
FBOUT_NC  
OUT  
OUT  
PWR  
IN  
10 VDD  
Power supply, nominally 3.3V.  
Active low input for enabling output 0. This pin has an internal pull-down.  
1 = disable outputs, 0 = enable outputs.  
11 vOE0#  
12 NC  
N/A  
No connection.  
13 DIF0  
14 DIF0#  
15 VDD  
16 DIF1  
17 DIF1#  
OUT  
OUT  
PWR  
OUT  
OUT  
Differential true clock output.  
Differential complementary clock output.  
Power supply, nominally 3.3V.  
Differential true clock output.  
Differential complementary clock output.  
Active low input for enabling output 1. This pin has an internal pull-down.  
1 = disable outputs, 0 = enable outputs.  
18 vOE1#  
IN  
19 VDD  
20 NC  
PWR  
N/A  
Power supply, nominally 3.3V.  
No connection.  
21 DIF2  
22 DIF2#  
OUT  
OUT  
Differential true clock output.  
Differential complementary clock output.  
Active low input for enabling output 2. This pin has an internal pull-down.  
1 = disable outputs, 0 = enable outputs.  
23 vOE2#  
24 vOE3#  
IN  
IN  
Active low input for enabling output 3. This pin has an internal pull-down.  
1 = disable outputs, 0 = enable outputs.  
25 DIF3  
26 DIF3#  
27 VDD  
28 DIF4  
29 DIF4#  
OUT  
OUT  
PWR  
OUT  
OUT  
Differential true clock output.  
Differential complementary clock output.  
Power supply, nominally 3.3V.  
Differential true clock output.  
Differential complementary clock output.  
Active low input for enabling output 4. This pin has an internal pull-down.  
1 = disable outputs, 0 = enable outputs.  
30 vOE4#  
31 vOE5#  
IN  
IN  
Active low input for enabling output 5. This pin has an internal pull-down.  
1 = disable outputs, 0 = enable outputs.  
32 DIF5  
33 DIF5#  
34 VDD  
35 DIF6  
36 DIF6#  
OUT  
OUT  
PWR  
OUT  
OUT  
Differential true clock output.  
Differential complementary clock output.  
Power supply, nominally 3.3V.  
Differential true clock output.  
Differential complementary clock output.  
Active low input for enabling output 6. This pin has an internal pull-down.  
1 = disable outputs, 0 = enable outputs.  
37 vOE6#  
38 VDD  
IN  
PWR  
Power supply, nominally 3.3V.  
©2018 Integrated Device Technology, Inc  
3
August 14, 2018  
9ZXL0832E / 9ZXL0852E Datasheet  
Pin Descriptions (cont.)  
Pin #  
39 DIF7  
Pin Name  
Type  
OUT  
OUT  
Description  
Differential true clock output.  
40 DIF7#  
Differential complementary clock output.  
Active low input for enabling output 7. This pin has an internal 120kohm pull-down.  
1 = disable outputs, 0 = enable outputs.  
Power supply, nominally 3.3V.  
41 vOE7#  
IN  
42 VDD  
43 NC  
PWR  
N/A  
No connection.  
44 VDDA  
45 NC  
PWR  
N/A  
Power supply for PLL core.  
No connection.  
This pin prevents SMBus writes when asserted. SMBus reads are not affected. This pin has an internal 120kohm pull down.  
0 = SMBus writes allows, 1 = SMBus writes blocked.  
46 vSMB_WRTLOCK  
IN  
LATCHED  
IN  
47 ^100M_133M#  
3.3V Input to select operating frequency. This pin has an internal 120kohm pull-up resistor. See Functionality Table for definition.  
LATCHED Tri-level input to select High BW, Bypass or Low BW Mode. Has an internal 120kohm pull up resistor. See PLL Operating  
48 ^HIBW_BYPM_LOBW#  
IN  
Mode Table for details.  
Ground  
49  
PWR  
EPAD  
Test Loads  
Low-Power HCSL Output Test Load  
(standard PCIe source-terminated test load)  
Rs  
CL  
L
Test  
Points  
Differential Zo  
CL  
Rs  
Parameters for Low -Pow er HCSL Output Test Load  
Device  
Rs ()  
27  
33  
Internal  
7.5  
Zo () L (Inches) CL (pF)  
85  
100  
85  
10  
10  
10  
10  
2
2
2
2
9ZXL083x  
9ZXL085x*  
100  
*Contact factory for versions of this device with Zo=100.  
Alternate Terminations  
The LP-HCSL output can easily drive other logic families. See “AN-891 Driving LVPECL, LVDS, and CML Logic with IDT's  
“Universal” Low-Power HCSL Outputs” for termination schemes for LVPECL, LVDS, CML and SSTL.  
©2018 Integrated Device Technology, Inc  
4
August 14, 2018  
9ZXL0832E / 9ZXL0852E Datasheet  
Absolute Maximum Ratings  
Stresses above the ratings listed below can cause permanent damage to the 9ZXL0832E / 9ZXL0852E. These ratings, which are standard  
values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above  
those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.  
Parameter  
Supply Voltage  
Input Low Voltage  
Symbol  
VDDx  
VIL  
Conditions  
Minimum  
Typical Maximum Units Notes  
3.9  
V
V
1,2  
1
GND-0.5  
Input High Voltage  
Input High Voltage  
VIH  
Except for SMBus interface  
SMBus clock and data pins  
VDD+0.5  
V
V
1,3  
1
VIHSMB  
3.9  
150  
125  
Storage Temperature  
Junction Temperature  
Input ESD Protection  
Ts  
Tj  
ESD prot  
-65  
°C  
°C  
V
1
1
1
Human Body Model  
2500  
1 Guaranteed by design and characterization, not 100% tested in production.  
2 Operation under these conditions is neither implied nor guaranteed.  
3 Not to exceed 3.9V.  
Electrical CharacteristicsDIF_IN Clock Input Parameters  
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions  
Parameter  
Symbol  
Conditions  
Minimum  
Typical Maximum Units Notes  
Input Crossover Voltage - DIF_IN VCROSS  
Cross over voltage  
150  
900  
mV  
1
Input Swing - DIF_IN  
Input Slew Rate - DIF_IN  
Input Leakage Current  
Input Duty Cycle  
VSWING  
dv/dt  
IIN  
Differential value  
Measured differentially  
300  
0.4  
-5  
mV  
V/ns  
μA  
1
8
5
1,2  
VIN = VDD , VIN =GND  
dtin  
Measurement from differential waveform  
45  
0
55  
125  
%
1
1
Input Jitter - Cycle to Cycle  
JDIFIn  
Differential measurement  
ps  
1 Guaranteed by design and characterization, not 100% tested in production.  
2Slew rate measured through +/-75mV window centered around differential zero  
Electrical CharacteristicsSMBus  
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions  
Parameter  
Symbol  
VILSMB  
VIHSMB  
VOLSMB  
IPULLUP  
VDDSMB  
tRSMB  
Conditions  
Minimum  
Typical Maximum Units Notes  
SMBus Input Low Voltage  
SMBus Input High Voltage  
SMBus Output Low Voltage  
SMBus Sink Current  
0.8  
VDDSMB  
0.4  
V
V
2.1  
at IPULLUP  
at VOL  
V
4
mA  
V
Nominal Bus Voltage  
2.7  
3.6  
1000  
300  
1
1
1
5
SCLK/SDATA Rise Time  
SCLK/SDATA Fall Time  
SMBus Operating Frequency  
(Max VIL - 0.15V) to (Min VIH + 0.15V)  
(Min VIH + 0.15V) to (Max VIL - 0.15V)  
Maximum SMBus operating frequency  
ns  
ns  
kHz  
tFSMB  
fMAXSMB  
500  
1 Guaranteed by design and characterization, not 100% tested in production.  
2 Control input must be monotonic from 20% to 80% of input swing.  
3 Time from deassertion until outputs are > 200mV.  
4 DIF_IN input.  
5 The differential input clock must be running for the SMBus to be active.  
©2018 Integrated Device Technology, Inc  
5
August 14, 2018  
9ZXL0832E / 9ZXL0852E Datasheet  
Electrical CharacteristicsInput/Supply/Common Output Parameters  
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions  
Symbol  
VDDx  
VDDIO  
Parameter  
Supply Voltage  
Output Supply Voltage  
Ambient Operating  
Temperature  
Conditions  
Supply voltage for core and analog  
Supply voltage for DIF outputs, if present  
Minimum Typical Maximum  
Units Notes  
V
V
3.135  
0.9975  
3.3  
1.05  
3.465  
3.465  
TAMB  
Industrial range (TIND  
)
-40  
25  
85  
°C  
VIH  
VIL  
VIH  
VIL  
VIL  
IIN  
Input High Voltage  
Input Low Voltage  
Input High Voltage  
Input Mid Voltage  
Input Low Voltage  
Single-ended inputs, except SMBus, tri-level inputs  
2
VDD + 0.3  
0.8  
V
V
Single-ended inputs, except SMBus, tri-level inputs GND - 0.3  
Tri-level inputs  
Tri-level inputs  
Tri-level inputs  
2.2  
1.2  
VDD + 0.3  
1.8  
V
VDD/2  
V
GND - 0.3  
-5  
0.8  
V
Single-ended inputs, VIN = GND, VIN = VDD  
Single-ended inputs  
5
μA  
Input Current  
VIN = 0 V; inputs with internal pull-up resistors  
IINP  
-50  
50  
μA  
VIN = VDD; inputs with internal pull-down resistors  
VDD = 3.3 V, Bypass Mode  
Fibyp  
Fipll  
1
400  
102.5  
135  
7
MHz  
MHz  
MHz  
Input Frequency  
Pin Inductance  
Capacitance  
VDD = 3.3 V, 100MHz PLL Mode  
98.5  
132  
100.00  
133.33  
Fipll  
VDD = 3.3 V, 133.33MHz PLL Mode  
Lpin  
nH  
pF  
pF  
pF  
1
1
CIN  
Logic inputs, except DIF_IN  
DIF_IN differential clock inputs  
1.5  
1.5  
5
CINDIF_IN  
COUT  
2.7  
6
1,4  
1
Output pin capacitance  
From VDD power-up and after input clock stabilization  
TSTAB  
Clk Stabilization  
1.0  
1.8  
ms  
1,2  
or de-assertion of PD# to 1st clock  
Allowable frequency for PCIe applications  
(Triangular modulation)  
Input SS Modulation  
Frequency PCIe  
fMODINPCIe  
tLATOE#  
tDRVPD  
30  
4
33  
10  
kHz  
clocks  
μs  
DIF start after OE# assertion  
DIF stop after OE# deassertion  
DIF output enable after  
OE# Latency  
Tdrive_PD#  
5
1,2,3  
1,3  
49  
300  
PD# de-assertion  
tF  
Tfall  
Fall time of control inputs  
5
5
ns  
ns  
2
2
tR  
Trise  
Rise time of control inputs  
1 Guaranteed by design and characterization, not 100% tested in production.  
2 Control input must be monotonic from 20% to 80% of input swing.  
3 Time from deassertion until outputs are > 200mV.  
4 DIF_IN input.  
©2018 Integrated Device Technology, Inc  
6
August 14, 2018  
9ZXL0832E / 9ZXL0852E Datasheet  
Electrical CharacteristicsCurrent Consumption  
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions  
Symbol  
Parameter  
Conditions  
Minimum  
Typical Maximum Units  
Notes  
IDDA  
Operating Supply Current  
VDDA, PLL Mode at 100MHz  
37  
55  
3
45  
68  
4
mA  
mA  
mA  
mA  
1
IDD  
Operating Supply Current  
Powerdown Current  
Powerdown Current  
All other VDD pins at 100MHz  
VDDA, CKPWRGD_PD# = 0  
IDDAPD  
IDDPD  
1
All other VDD pins, CKPWRGD_PD# = 0  
1
2
1. Includes VDDR if applicable.  
Electrical CharacteristicsHCSL/LP-HCSL Outputs  
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions  
Specification  
Limit  
Symbol  
Parameter  
Conditions  
Minimum Typical Maximum  
Units Notes  
dV/dt  
ΔdV/dt  
Vmax  
Vmin  
Vcross_abs  
Δ-Vcross  
Slew Rate  
Slew Rate Matching  
Max Voltage  
Min Voltage  
Crossing Voltage (abs)  
Crossing Voltage (var)  
Scope averaging on.  
Single-ended measurement.  
Measurement on single-ended signal using  
absolute value (scope averaging off).  
Scope averaging off.  
2
2.9  
7.1  
792  
-35  
372  
15  
4
20  
850  
150  
550  
140  
1
4
V/ns  
%
1, 2, 3  
1, 4, 7  
7
20  
660  
-150  
250  
1150  
-300  
250 – 550  
140  
mV  
7
mV  
mV  
1, 5, 7  
1, 6, 7  
Scope averaging off.  
1Guaranteed by design and characterization, not 100% tested in production.  
2 Measured from differential waveform.  
3 Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.  
4 Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point  
where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.  
5 Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and  
Clock# falling).  
6 The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to  
limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.  
7 At default SMBus settings.  
©2018 Integrated Device Technology, Inc  
7
August 14, 2018  
9ZXL0832E / 9ZXL0852E Datasheet  
Electrical CharacteristicsSkew and Differential Jitter Parameters  
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions  
Symbol  
Parameter  
Conditions  
Minimum Typical Maximum Units  
Notes  
Input-to-output skew in PLL Mode  
tSPO_PLL  
CLK_IN, DIF[x:0]  
-100  
2
-21.3  
2.6  
100  
4
ps  
ns  
ps  
1,2,4,5,8  
at 100MHz, nominal temperature and voltage  
Input-to-output skew in Bypass Mode  
at 100MHz, nominal temperature and voltage  
Input-to-output skew variation in PLL Mode  
at 100MHz, across voltage and temperature  
tPD_BYP  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
1,2,3,5,8  
1,2,3,5,8  
tDSPO_PLL  
-50  
0.0  
50  
Input-to-output skew variation in Bypass Mode  
at 100MHz, across voltage and temperature,  
TAMB = 0 to 70°C  
-250  
-350  
250  
350  
ps  
ps  
1,2,3,5,8  
1,2,3,5,8  
tDSPO_BYP  
CLK_IN, DIF[x:0]  
Input-to-output skew variation in Bypass Mode  
at 100MHz, across voltage and temperature,  
TAMB = -40°C to 105°C  
Random differential tracking error between two 9ZX  
devices in Hi BW Mode  
Random differential spread spectrum tracking error  
between two 9ZX devices in Hi BW Mode  
Output-to-output skew across all outputs, common to  
PLL and Bypass Mode, at 100MHz  
ps  
(rms)  
tDTE  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
DIF[x:0]  
3
5
1,2,3,5,8  
1,2,3,5,8  
1,2,3,8  
tDSSTE  
23  
50  
50  
ps  
ps  
tSKEW_ALL  
jpeak-hibw  
jpeak-lobw  
pllHIBW  
pllLOBW  
tDC  
PLL Jitter Peaking  
PLL Jitter Peaking  
PLL Bandwidth  
PLL Bandwidth  
Duty Cycle  
LOBW#_BYPASS_HIBW = 1  
LOBW#_BYPASS_HIBW = 0  
LOBW#_BYPASS_HIBW = 1  
LOBW#_BYPASS_HIBW = 0  
Measured differentially, PLL Mode  
Measured differentially, Bypass Mode at 100MHz  
PLL Mode  
0
0
1.3  
1.3  
2.6  
1.0  
50.3  
0
2.5  
2
dB  
dB  
7,8  
7,8  
8,9  
8,9  
1
2
4
MHz  
MHz  
%
0.7  
45  
-1  
1.4  
55  
1
tDCD  
Duty Cycle Distortion  
%
1,10  
1,11  
1,11  
14  
50  
5
ps  
t
Jitter, Cycle to Cycle  
jcyc-cyc  
Additive jitter in Bypass Mode  
0.1  
ps  
Notes for preceding table:  
1
Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.  
2
Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.  
3
All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.  
4 This parameter is deterministic for a given device.  
5
Measured with scope averaging on to find mean value.  
6 t is the period of the input clock.  
7 Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.  
8. Guaranteed by design and characterization, not 100% tested in production.  
9
Measured at 3 db down or half power point.  
10 Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.  
11 Measured from differential waveform.  
©2018 Integrated Device Technology, Inc  
8
August 14, 2018  
9ZXL0832E / 9ZXL0852E Datasheet  
Electrical CharacteristicsFiltered Phase Jitter Parameters - PCIe Common  
Clocked (CC) Architectures  
TAMB = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
Specification  
Symbol  
Parameter  
Conditions  
Minimum Typical Maximum  
Units  
Notes  
Limit  
t
PCIe Gen 1  
13.4  
0.2  
30  
86  
ps (p-p) 1, 2, 3  
jphPCIeG1-CC  
PCIe Gen 2 Low Band  
10kHz < f < 1.5MHz  
(PLL BW of 5-16MHz, 8-16MHz, CDR = 5MHz)  
PCIe Gen 2 High Band  
1.5MHz < f < Nyquist (50MHz)  
(PLL BW of 5-16MHz, 8-16MHz, CDR = 5MHz)  
PCIe Gen 3  
(PLL BW of 2-4MHz, 2-5MHz, CDR = 10MHz)  
PCIe Gen 4  
ps  
(rms)  
0.7  
3
1, 2  
t
jphPCIeG2-CC  
Phase Jitter,  
PLL Mode  
ps  
(rms)  
1.0  
0.2  
1.5  
0.4  
3.1  
1, 2  
ps  
(rms)  
t
1
1, 2  
jphPCIeG3-CC  
ps  
(rms)  
t
0.2  
0.4  
0.5  
1, 2  
jphPCIeG4-CC  
(PLL BW of 2-4MHz, 2-5MHz, CDR = 10MHz)  
t
PCIe Gen 1  
0.01  
0.06  
ps (p-p) 1, 2, 3, 4  
jphPCIeG1-CC  
PCIe Gen 2 Low Band  
10kHz < f < 1.5MHz  
(PLL BW of 5-16MHz, 8-16MHz, CDR = 5MHz)  
PCIe Gen 2 High Band  
1.5MHz < f < Nyquist (50MHz)  
(PLL BW of 5-16MHz, 8-16MHz, CDR = 5MHz)  
PCIe Gen 3  
(PLL BW of 2-4MHz, 2-5MHz, CDR = 10MHz)  
PCIe Gen 4  
ps  
0.01  
0.01  
0.06  
0.06  
1, 2, 3, 4  
(rms)  
t
jphPCIeG2-CC  
Additive Phase  
Jitter, Bypass  
mode  
ps  
Not Applicable  
1, 2, 3, 4  
(rms)  
ps  
t
0.01  
0.01  
0.06  
0.06  
1, 2, 3, 4  
(rms)  
jphPCIeG3-CC  
ps  
t
1, 2, 3, 4  
(rms)  
jphPCIeG4-CC  
(PLL BW of 2-4MHz, 2-5MHz, CDR = 10MHz)  
Electrical CharacteristicsFiltered Phase Jitter Parameters - PCIe  
Independent Reference (IR) Architectures  
TAMB = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
Symbol  
Parameter  
Conditions  
PCIe Gen 2  
(PLL BW of 16MHz , CDR = 5MHz)  
PCIe Gen 3  
(PLL BW of 2-4MHz, CDR = 10MHz)  
PCIe Gen 2  
(PLL BW of 16MHz , CDR = 5MHz)  
PCIe Gen 3  
Minimum Typical Maximum Industry Limit Units  
Notes  
ps  
(rms)  
ps  
t
0.9  
0.6  
1.1  
2
1, 2, 5  
jphPCIeG2-SRIS  
Phase Jitter, PLL  
Mode  
t
0.65  
0.05  
0.05  
0.7  
1, 2, 5  
2, 4, 5  
2, 4, 5  
jphPCIeG3-SRIS  
(rms)  
ps  
(rms)  
ps  
t
Additive Phase  
Jitter, Bypass  
mode  
0.01  
0.01  
jphPCIeG2-SRIS  
Not Applicable  
t
jphPCIeG3-SRIS  
(PLL BW of 2-4MHz, CDR = 10MHz)  
(rms)  
Notes for PCIe Filtered Phase Jitter tables (CC) and (IR)  
1 Applies to all differential outputs, guaranteed by design and characterization.  
2 Calculated from Intel-supplied Clock Jitter Tool, when driven by 9SQL495x or equivalent with spread on and off.  
3 Sample size of at least 100K cycles. This figure extrapolates to 108ps pk-pk at 1M cycles for a BER of 1-12  
.
4 For RMS values, additive jitter is calculated by solving for b [b = sqrt(c2 - a 2 ) ], where "a" is rms input jitter and "c" is rms total jitter.  
5
IR is the new name for Separate Reference Independent Spread (SRIS) and Separate Reference no Spread (SRNS) PCIe clock  
architectures. According to the PCIe Base Specification Rev 4.0 version 0.7 draft, the jitter transfer functions and corresponding jitter limits are  
not defined for the IR clock architecture. Widely accepted industry limits using widely accepted industry filters are used to populate this table.  
There are no accepted filters or limits for IR clock architectures at PCIe Gen1 or Gen4 data rates.  
©2018 Integrated Device Technology, Inc  
9
August 14, 2018  
9ZXL0832E / 9ZXL0852E Datasheet  
Electrical CharacteristicsFiltered Phase Jitter Parameters - QPI/UPI  
TAMB = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
Specification  
Limit  
Symbol  
Parameter  
Conditions  
Minimum Typical Maximum  
Units  
Notes  
1, 2  
QPI & UPI  
(100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)  
QPI & UPI  
ps  
(rms)  
ps  
(rms)  
ps  
(rms)  
ps  
(rms)  
ps  
(rms)  
ps  
(rms)  
ps  
(rms)  
ps  
(rms)  
0.14  
0.07  
0.06  
0.30  
0.13  
0.1  
0.5  
0.3  
0.2  
1
t
1, 2  
jphQPI_UPI  
Phase Jitter, PLL  
Mode  
(100MHz, 8.0Gb/s, 12UI)  
QPI & UPI  
(100MHz, ?9.6Gb/s, 12UI)  
1, 2  
0.1  
0.17  
0.14  
0.2  
t
IF-UPI  
1, 4, 5  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 4  
jphIF-UPI  
QPI & UPI  
(100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)  
QPI & UPI  
0.0  
0.0  
0.01  
0.01  
0.01  
0.07  
t
Additive Phase  
Jitter, Bypass  
mode  
jphQPI_UPI  
(100MHz, 8.0Gb/s, 12UI)  
QPI & UPI  
(100MHz, ?9.6Gb/s, 12UI)  
Not Applicable  
0.0  
t
IF-UPI  
0.06  
jphIF-UPI  
1 Applies to all differential outputs, guaranteed by design and characterization.  
2 Calculated from Intel-supplied Clock Jitter Tool, when driven by 9SQL495x or equivalent with spread on and off.  
3 For RMS values, additive jitter is calculated by solving for b [b = sqrt(c2 - a 2 ) ], where "a" is rms input jitter and "c" is rms total jitter.  
4 Calculated from phase noise analyzer when driven by Wenzel Associates source with Intel-specified brick-wall filter applied.  
5 Top number is when the buffer is in Low BW mode, bottom number is when the buffer is in High BW mode.  
Electrical CharacteristicsUnfiltered Phase Jitter Parameters - 12kHz to  
20MHz  
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions  
Symbol  
Parameter  
Conditions  
Minimum Typical Maximum Industry Limit Units  
Notes  
1, 2  
Phase Jitter, PLL  
Mode  
Phase Jitter, PLL  
Mode  
fs  
t
PLL High BW, SSC OFF, 100MHz  
PLL Low BW, SSC OFF, 100MHz  
171  
184  
225  
225  
jph12k-20MHi  
(rms)  
fs  
(rms)  
t
1, 2  
jph12k-20MLo  
Not Applicable  
Additive Phase  
Jitter, Bypass  
Mode  
fs  
(rms)  
t
Bypass Mode, SSC OFF, 100MHz  
107  
125  
1, 2, 3  
jph12k-20MByp  
1 Applies to all outputs when driven by Wenzel Associates source.  
2 12kHz to 20MHz brick wall filter.  
3 For RMS values, additive jitter is calculated by solving for b [b = sqrt(c2 - a 2 )], where "a" is rms input jitter and "c" is rms total jitter.  
©2018 Integrated Device Technology, Inc  
10  
August 14, 2018  
9ZXL0832E / 9ZXL0852E Datasheet  
Clock PeriodsDifferential Outputs with Spread Spectrum Disabled  
Measurement Window  
0.1s  
1 Clock  
SSC OFF Frequency -c2c jitter  
1μs  
-SSC  
0.1s  
- ppm  
0.1s  
+ ppm  
1μs  
+SSC  
Short-Term  
Average  
Maximum  
1 Clock  
Center  
+c2c jitter Units Notes  
AbsPer  
Maximum  
Short-Term Long-Term 0 ppm Period  
Long-Term  
Average  
Maximum  
10.00100  
7.50075  
MHz  
AbsPer  
Average  
Minimum  
Average  
Minimum  
9.99900  
7.49925  
Nominal  
Minimum  
100.00  
133.33  
9.94900  
7.44925  
10.00000  
7.50000  
10.05100  
7.55075  
ns  
ns  
1,2,3  
1,2,4  
DIF  
Clock PeriodsDifferential Outputs with Spread Spectrum Enabled  
Measurement Window  
1 Clock  
SSC ON Frequency -c2c jitter  
1μs  
-SSC  
0.1s  
- ppm  
0.1s  
0.1s  
+ ppm  
1μs  
+SSC  
1 Clock  
Center  
+c2c jitter Units Notes  
AbsPer  
Maximum  
Short-Term Long-Term 0 ppm Period  
Long-Term  
Average  
Maximum  
10.02607  
7.51955  
Short-Term  
Average  
Maximum  
10.05107  
7.53830  
MHz  
AbsPer  
Average  
Minimum  
9.99906  
7.49930  
Average  
Minimum  
10.02406  
7.51805  
Nominal  
Minimum  
99.75  
133.00  
9.94906  
7.44930  
10.02506  
7.51880  
10.10107  
7.58830  
ns  
ns  
1,2,3  
1,2,4  
DIF  
Notes:  
1 Guaranteed by design and characterization, not 100% tested in production.  
2 All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ accuracy requirements (+/-100ppm).  
The buffer itself does not contribute to ppm error.  
3
Driven by SRC output of main clock, 100MHz PLL Mode or Bypass Mode.  
4
Driven by CPU output of main clock, 133MHz PLL Mode or Bypass Mode.  
©2018 Integrated Device Technology, Inc  
11  
August 14, 2018  
9ZXL0832E / 9ZXL0852E Datasheet  
General SMBus Serial Interface Information  
How to Write  
How to Read  
Controller (host) will send a start bit  
Controller (host) sends a start bit  
Controller (host) sends the write address  
IDT clock will acknowledge  
Controller (host) sends the write address  
IDT clock will acknowledge  
Controller (host) sends the beginning byte location = N  
IDT clock will acknowledge  
Controller (host) sends the beginning byte location = N  
IDT clock will acknowledge  
Controller (host) sends the byte count = X  
IDT clock will acknowledge  
Controller (host) will send a separate start bit  
Controller (host) sends the read address  
IDT clock will acknowledge  
Controller (host) starts sending Byte N through Byte N+X-1  
IDT clock will acknowledge each byte one at a time  
Controller (host) sends a stop bit  
IDT clock will send the data byte count = X  
IDT clock sends Byte N+X-1  
IDT clock sends Byte 0 through Byte X (if X(H) was written to  
Index Block Write Operation  
Byte 8)  
Controller (Host)  
IDT (Slave/Receiver)  
Controller (host) will need to acknowledge each byte  
Controller (host) will send a not acknowledge bit  
Controller (host) will send a stop bit  
T
starT bit  
Slave Address  
WR  
WRite  
Index Block Read Operation  
ACK  
ACK  
ACK  
ACK  
Controller (Host)  
starT bit  
IDT (Slave/Receiver)  
Beginning Byte = N  
Data Byte Count = X  
Beginning Byte N  
T
Slave Address  
WR  
WRite  
ACK  
ACK  
Beginning Byte = N  
O
O
O
RT  
Repeat starT  
Slave Address  
ReaD  
O
O
O
RD  
Byte N + X - 1  
ACK  
ACK  
P
stoP bit  
Data Byte Count=X  
Beginning Byte N  
ACK  
ACK  
O
O
O
O
O
O
Byte N + X - 1  
N
P
Not acknowledge  
stoP bit  
©2018 Integrated Device Technology, Inc  
12  
August 14, 2018  
9ZXL0832E / 9ZXL0852E Datasheet  
SMBus Table: PLL Mode and Frequency Select Register  
Pin #  
48  
48  
Byte 0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
PLL Mode 1  
PLL Mode 0  
Control Function  
PLL Operating Mode Rd back 1  
PLL Operating Mode Rd back 0  
Reserved  
Reserved  
Enable S/W control of PLL BW  
PLL Operating Mode 1  
PLL Operating Mode 1  
Frequency Select Readback  
Type  
R
R
0
1
Default  
Latch  
Latch  
0
See PLL Operating Mode Readback  
Table  
0
0
1
PLL_SW_EN  
PLL Mode 1  
PLL Mode 0  
100M_133M#  
RW  
RW  
RW  
R
HW Latch  
See PLL Operating Mode Readback  
SMBus Control  
Table  
1
47  
133MHz  
100MHz  
Latch  
Note: Setting bit 3 to '1' allows the user to override the latch value from pin 5 via use of bits 2 and 1. Use the values from the PLL Operating Mode Readback  
Table. Note that Bits 7 and 6 will keep the value originally latched on pin 5. If the user changes these bits, a warm reset of the system will have to be accomplished.  
SMBus Table: Output Control Register  
Pin #  
32/33  
28/29  
25/26  
21/22  
Byte 1  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
Output Enable  
Output Enable  
Output Enable  
Output Enable  
Type  
RW  
RW  
RW  
RW  
0
1
Default  
DIF_5_En  
DIF_4_En  
DIF_3_En  
DIF_2_En  
1
1
1
1
0
1
1
0
Low/Low  
OE# Pin Control  
Reserved  
16/17  
13/14  
DIF_1_En  
DIF_0_En  
Output Enable  
Output Enable  
RW  
RW  
Low/Low  
OE# Pin Control  
Reserved  
SMBus Table: Output Control Register  
Pin #  
Byte 2  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
Type  
0
1
Default  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
1
0
1
39/40  
35/36  
OE# Pin Control  
OE# Pin Control  
DIF_7_En  
DIF_6_En  
Output Enable  
Output Enable  
RW  
RW  
Low/Low  
Low/Low  
Reserved  
SMBus Table: Reserved Register  
Pin #  
Byte 3  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
Type  
0
1
Default  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
0
©2018 Integrated Device Technology, Inc  
13  
August 14, 2018  
9ZXL0832E / 9ZXL0852E Datasheet  
SMBus Table: Reserved Register  
Byte 4  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Pin #  
Name  
Control Function  
Type  
0
1
Default  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
0
SMBus Table: Vendor & Revision ID Register  
Byte 5  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Pin #  
Name  
RID3  
RID2  
RID1  
RID0  
VID3  
VID2  
VID1  
VID0  
Control Function  
Type  
R
R
R
R
R
R
R
R
0
1
Default  
-
-
-
-
-
-
-
-
0
1
0
0
0
0
0
1
REVISION ID  
E rev = 0100  
-
-
-
-
-
-
-
-
VENDOR ID  
SMBus Table: DEVICE ID  
Byte 6  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Pin #  
Name  
Control Function  
Device ID 7 (MSB)  
Type  
R
R
R
R
R
R
R
R
0
1
Default  
-
-
-
-
-
-
-
-
1
1
1
x
x
x
x
x
Device ID 6  
Device ID 5  
Device ID 4  
Device ID 3  
Device ID 2  
Device ID 1  
Device ID 0  
0832 is E6 Hex  
0852 is F6 Hex  
SMBus Table: Byte Count Register  
Byte 7  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Pin #  
Name  
Control Function  
Type  
0
1
Default  
Reserved  
Reserved  
Reserved  
0
0
0
0
1
0
0
0
-
-
-
-
-
BC4  
BC3  
BC2  
BC1  
BC0  
RW  
RW  
RW  
RW  
RW  
Writing to this register configures how many  
bytes will be read back.  
Default value is 8 hex, so 9 bytes (0 to  
8) will be read back by default.  
SMBus Table: Reserved Register  
Byte 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Pin #  
Name  
Control Function  
Reserved  
Type  
0
1
Default  
0
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
©2018 Integrated Device Technology, Inc  
14  
August 14, 2018  
9ZXL0832E / 9ZXL0852E Datasheet  
Package Outline Draw ings  
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is  
the most current data available.  
www.idt.com/document/psc/ndndg-48-package-outline-60-x-60-mm-body-040-mm-pitch-qfn-epad-size-420-x-420-mm  
Ordering Information  
Orderable Part Number  
Package  
Carrier Type  
Temperature  
9ZXL0832EKILF  
9ZXL0832EKILFT  
9ZXL0852EKILF  
9ZXL0852EKILFT  
6 x 6 mm, 0.4mm pitch 48-VFQFPN  
6 x 6 mm, 0.4mm pitch 48-VFQFPN  
6 x 6 mm, 0.4mm pitch 48-VFQFPN  
6 x 6 mm, 0.4mm pitch 48-VFQFPN  
Tray  
Reel  
Tray  
Reel  
-40° to +85°C  
-40° to +85°C  
-40° to +85°C  
-40° to +85°C  
“LF” designates PB-free configuration, RoHS compliant.  
“E” is the device revision designator (will not correlate with the datasheet revision).  
Marking Diagrams  
1. “I” denotes industrial temperature range  
2. “L” denotes RoHS compliant package.  
ICS  
XL0852EIL  
YYWW  
COO  
ICS  
XL0832EIL  
YYWW  
COO  
3. “YYWW” denotes the last two digits of the year and week the part was  
assembled.  
4. “COO” denotes country of origin.  
5. “LOT” denotes the lot number.  
LOT  
LOT  
Revision History  
Revision Date  
Description of Change  
August 14, 2018  
July 17, 2018  
Updated block diagram.  
Corrected typos in Byte 1, bits 1 and 2.  
April 13, 2018  
Updated absolute maximum supply voltage rating and VIHSMB to 3.9V.  
Removed “5V tolerant” reference in pins 6 and 7 descriptions.  
Initial release.  
December 1, 2017  
September 29, 2017  
©2018 Integrated Device Technology, Inc  
15  
August 14, 2018  
9ZXL0832E / 9ZXL0852E Datasheet  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
www.IDT.com  
Sales  
Tech Support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
www.IDT.com/go/support  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as “IDT”) reserve the right to modify the products and/or specifications described herein at any time, without  
notice, at IDT’s sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed  
in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any  
particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intel-  
lectual property rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably  
expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of  
IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc. All rights reserved.  
©2018 Integrated Device Technology, Inc  
16  
August 14, 2018  
48-VFQFPN Package Outline Drawing  
6.0 x 6.0 x 0.90 mm Body, Epad 4.2 x 4.2 mm, 0.40mm Pitch  
NDG48P2, PSC-4212-02, Rev 02, Page 1  
© Integrated Device Technology, Inc.  
48-VFQFPN Package Outline Drawing  
6.0 x 6.0 x 0.90 mm Body, Epad 4.2 x 4.2 mm, 0.40mm Pitch  
NDG48P2, PSC-4212-02, Rev 02, Page 2  
Package Revision History  
Description  
July 24, 2018 Rev 02 New Format Change QFN to VFQFPN, Recalculate Land Pattern  
Sept 9, 2014  
Rev 01 Add Chamfer  
Date Created Rev No.  
© Integrated Device Technology, Inc.  

相关型号:

9ZXL1231

12-output DB1200ZL
IDT

9ZXL1231AKILF

12-output DB1200ZL
IDT

9ZXL1231AKILFT

12-output DB1200ZL
IDT

9ZXL1231AKLF

12-output DB1200ZL
IDT

9ZXL1231AKLFT

12-output DB1200ZL
IDT

9ZXL1231E

12-Output DB1200ZL for PCIe Gen1–4 and UPI
IDT

9ZXL1231EKILF

12-Output DB1200ZL for PCIe Gen1–4 and UPI
IDT

9ZXL1231EKILF-1K/W

12-Output DB1200ZL for PCIe Gen1–4 and UPI
IDT

9ZXL1231EKILF/W

12-Output DB1200ZL for PCIe Gen1–4 and UPI
IDT

9ZXL1231EKILFT

12-Output DB1200ZL for PCIe Gen1–4 and UPI
IDT

9ZXL1231_16

12-output DB1200ZL
IDT

9ZXL1232E

12-Output DB1200ZL Derivative for PCIe Gen1–4 and UPI
IDT