ICS83940DYILF [IDT]

Low Skew Clock Driver, 83940 Series, 18 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, LQFP-32;
ICS83940DYILF
型号: ICS83940DYILF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 83940 Series, 18 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, LQFP-32

驱动 逻辑集成电路
文件: 总19页 (文件大小:717K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Skew, 1-to18  
LVPECL-to-LVCMOS/LVTTL Fanout Buffer  
ICS83940DI  
DATA SHEET  
General Description  
Features  
The ICS83940DI is a low skew, 1-to-18 LVPECL- to-LVCMOS/LVTTL  
Fanout Buffer. The ICS83940DI has two selectable clock inputs. The  
PCLK, nPCLK pair can accept LVPECL, CML, or SSTL input levels.  
The LVCMOS_CLK can accept LVCMOS or LVTTL input levels. The  
low impedance LVCMOS/LVTTL outputs are designed to drive 50  
series or parallel terminated transmission lines.  
Eighteen LVCMOS/LVTTL outputs  
Selectable LVCMOS_CLK or LVPECL clock inputs  
PCLK, nPCLK pair can accept the following differential input  
levels: LVPECL, CML, SSTL  
LVCMOS_CLK supports the following input types: LVCMOS or  
LVTTL  
The ICS83940DI is characterized at full 3.3V and 2.5V or mixed 3.3V  
core, 2.5V output operating supply modes. Guaranteed output and  
part-to-part skew characteristics make the ICS83940DI ideal for  
those clock distribution applications demanding well defined  
performance and repeatability.  
Maximum output frequency: 250MHz  
Output skew: 150ps (maximum)  
Part-to-part skew: 750ps (maximum)  
Operating supply modes:  
Core/Output  
3.3V/3.3V  
3.3V/2.5V  
2.5V/2.5V  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Block Diagram  
Pulldown  
CLK_SEL  
Pulldown  
PCLK  
0
Pullup/Pulldown  
nPCLK  
18  
Q0:Q17  
Pulldown  
LVCMOS_CLK  
1
Pin Assignments  
32 31 30 29 28 27 26 25  
32 31 30 29 28 27 26 25  
1
2
3
4
5
7
8
GND  
Q6  
Q7  
Q8  
24  
23  
22  
21  
20  
GND  
GND  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
Q6  
GND  
Q7  
LVCMOS_CLK  
LVCMOS_CLK  
CLK_SEL  
PCLK  
Q8  
ICS3940DI  
ICS83940DI  
VDD  
Q9  
CLK_SEL  
PCLK  
VDD  
Q9  
nPCLK  
Q10  
Q11  
GND  
nPCLK  
Q10  
Q11  
GND  
19  
18  
17  
VDD  
VDDO  
VDO  
9
10 11 12 13 14 15 16  
9
10 11 12 13 14 15 16  
32 Lead VFQFN  
32-Lead LQFP  
5mm x 5mm x 0.925mm package body  
7mm x 7mm x 1.4mm package body  
Y Package  
Top View  
K Package  
Top View  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
1
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Table 1. Pin Descriptions  
Number  
1, 2, 12, 17, 25  
3
Name  
GND  
Type  
Description  
Power supply ground.  
Power  
Input  
LVCMOS_CLK  
Pulldown Single-ended clock input. LVCMOS/LVTTL interface levels.  
Clock select input. When HIGH, selects LVCMOS_CLK input.  
Pulldown When LOW, selects PCLK, nPCLK inputs.  
LVCMOS / LVTTL interface levels.  
4
CLK_SEL  
Input  
5
6
PCLK  
Input  
Input  
Pulldown Non-inverting differential LVPECL clock input.  
Pullup/  
nPCLK  
Inverting differential LVPECL clock input. VDD/2 default when left floating.  
Pulldown  
7, 21  
VDD  
Power  
Power  
Power supply pin.  
Output supply pins.  
8, 16, 29  
VDDO  
9, 10, 11,  
13, 14, 15,  
18, 19, 20,  
22, 23, 24,  
26, 27, 28,  
30, 31, 32  
Q17, Q16, Q15,  
Q14, Q13, Q12,  
Q11, Q10, Q9,  
Q8, Q7, Q6,  
Q5, Q4, Q3,  
Q2, Q1, Q0  
Output  
Single-ended clock outputs. LVCMOS/LVTTL interface levels.  
NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
k  
RPULLDOWN Input Pulldown Resistor  
kΩ  
Power Dissipation Capacitance  
(per output)  
CPD  
6
pF  
ROUT  
Output Impedance  
18  
28  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
2
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Function Tables  
Table 3A. Clock Select Function Table  
Control Input  
Clock  
CLK_SEL  
PCLK, nPCLK  
Selected  
LVCMOS_CLK  
De-selected  
Selected  
0
1
De-selected  
Table 3B. Clock Input Function Table  
Inputs  
Outputs  
CLK_SEL  
LVCMOS_CLK  
PCLK  
nPCLK  
Q[0:17]  
LOW  
Input to Output Mode  
Polarity  
0
0
0
0
0
0
1
1
0
1
0
1
Differential to Single-Ended  
Differential to Single-Ended  
Single-Ended to Single-Ended  
Single-Ended to Single-Ended  
Single-Ended to Single-Ended  
Single-Ended to Single-Ended  
Single-Ended to Single-Ended  
Single-Ended to Single-Ended  
Non-Inverting  
Non-Inverting  
Non-Inverting  
Non-Inverting  
Inverting  
1
0
HIGH  
LOW  
0
Biased; NOTE 1  
1
Biased; NOTE 1  
HIGH  
HIGH  
LOW  
Biased; NOTE 1  
0
1
Biased; NOTE 1  
Inverting  
LOW  
Non-Inverting  
Non-Inverting  
HIGH  
NOTE 1: Please refer to the Application Information Section, Wiring the Differential Input to Accept Single-ended Levels.  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
3
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
3.6V  
-0.3V to VDD + 0.3V  
-0.3V to VDDO + 0.3V  
20mA  
Outputs, VO  
Input Current, IIN  
Storage Temperature, TSTG  
-65°C to 150°C  
DC Electrical Characteristics  
Table 4A. DC Characteristics, VDD = VDDO = 3.3V 5ꢀ, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VDD  
Units  
V
VIH  
VIL  
Input High Voltage  
LVCMOS_CLK  
LVCMOS_CLK  
2.4  
Input Low Voltage  
Input Current  
0.8  
V
IIN  
200  
µA  
V
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
IOH = -20mA  
IOL = 20mA  
2.4  
0.5  
V
Peak-to-Peak Input Voltage;  
NOTE 1  
VPP  
PCLK, nPCLK  
500  
1000  
mV  
Common Mode Input Voltage; PCLK, nPCLK  
NOTE 1, 2  
VCMR  
IDD  
VDD – 1.45  
VDD – 0.6  
25  
V
Power Supply Current  
mA  
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
Table 4B. DC Characteristics, VDD = 3.3V 5ꢀ, VDDO = 2.5V 5ꢀ, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VDD  
Units  
V
VIH  
VIL  
Input High Voltage  
LVCMOS_CLK  
LVCMOS_CLK  
2.4  
Input Low Voltage  
Input Current  
0.8  
V
IIN  
200  
µA  
V
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
IOH = -20mA  
IOL = 20mA  
1.8  
0.5  
V
Peak-to-Peak Input Voltage;  
NOTE 1  
VPP  
PCLK, nPCLK  
300  
1000  
mV  
Common Mode Input Voltage; PCLK, nPCLK  
NOTE 1, 2  
VCMR  
IDD  
VDD – 1.4  
VDD – 0.6  
25  
V
Power Supply Current  
mA  
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
4
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Table 4C. DC Characteristics, VDD = VDDO = 2.5V 5ꢀ, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VDD  
Units  
V
VIH  
VIL  
Input High Voltage  
LVCMOS_CLK  
LVCMOS_CLK  
2
Input Low Voltage  
Input Current  
0.8  
V
IIN  
200  
µA  
V
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
IOH = -12mA  
IOL = 12mA  
1.8  
0.5  
V
Peak-to-Peak Input Voltage;  
NOTE 1  
VPP  
PCLK, nPCLK  
300  
1000  
mV  
Common Mode Input Voltage; PCLK, nPCLK  
NOTE 1, 2  
VCMR  
IDD  
VDD – 1.4  
VDD – 0.6  
25  
V
Power Supply Current  
mA  
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
5
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
AC Electrical Characteristics  
Table 5A. AC Characteristics, VDD = VDDO = 3.3V 5ꢀ, TA = -40°C to 85°C  
Symbol Parameter  
fMAX Output Frequency  
Test Conditions  
Minimum Typical Maximum Units  
250  
3.0  
3.0  
3.3  
3.2  
150  
150  
1.4  
1.2  
1.7  
1.4  
850  
750  
1.1  
55  
MHz  
ns  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
ps  
ps  
ns  
PCLK, nPCLK; NOTE 1, 5  
LVCMOS_CLK; NOTE 2, 5  
PCLK, nPCLK; NOTE 1, 5  
LVCMOS_CLK; NOTE 2, 5  
PCLK, nPCLK  
ƒ 150MHz  
ƒ 150MHz  
ƒ > 150MHz  
ƒ > 150MHz  
1.6  
1.8  
1.6  
1.8  
Propagation  
Delay  
tPLH  
Propagation  
Delay  
Output Skew;  
NOTE 3, 5  
Measured on the Rising Edge  
@ VDDO/2  
tsk(o)  
LVCMOS_CLK  
PCLK, nPCLK  
ƒ 150MHz  
ƒ 150MHz  
ƒ > 150MHz  
ƒ > 150MHz  
Part-to-PartSkew;  
NOTE 6  
LVCMOS_CLK  
PCLK, nPCLK  
Part-to-PartSkew;  
NOTE 6  
tsk(pp)  
LVCMOS_CLK  
PCLK, nPCLK  
Part-to-PartSkew;  
NOTE 4, 5  
Measured on the Rising Edge  
@ VDDO/2  
LVCMOS_CLK  
tR / tF  
odc  
Output Rise/Fall Time  
0.5V to 2.4V  
ƒ < 134MHz  
0.3  
45  
40  
50  
50  
Output Duty Cycle  
134MHz ƒ 250MHz  
60  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE: All parameters measured at 200MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the output VDDO/2.  
NOTE 2: Measured from VDD/2 to VDDO/2.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO/2.  
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at VDDO/2.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 6: Defined as skew between outputs on different devices, across temperature and voltage ranges, and with equal load conditions. Using  
the same type of inputs on each device, the outputs are measured at VDDO/2.  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
6
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Table 5B. AC Characteristics, VDD = 3.3V 5ꢀ, VDDO = 2.5V 5ꢀ, TA = -40°C to 85°C  
Symbol Parameter  
fMAX Output Frequency  
Test Conditions  
Minimum Typical Maximum Units  
250  
3.2  
3.0  
3.4  
3.3  
150  
150  
1.5  
1.3  
1.8  
1.5  
850  
750  
1.2  
55  
MHz  
ns  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
ps  
ps  
ns  
PCLK, nPCLK; NOTE 1, 5  
LVCMOS_CLK; NOTE 2, 5  
PCLK, nPCLK; NOTE 1, 5  
LVCMOS_CLK; NOTE 2, 5  
PCLK, nPCLK  
ƒ 150MHz  
ƒ 150MHz  
ƒ > 150MHz  
ƒ > 150MHz  
1.7  
1.7  
1.6  
1.8  
Propagation  
Delay  
tPLH  
Propagation  
Delay  
Output Skew;  
NOTE 3, 5  
Measured on the Rising Edge  
@ VDDO/2  
tsk(o)  
LVCMOS_CLK  
PCLK, nPCLK  
ƒ 150MHz  
ƒ 150MHz  
ƒ > 150MHz  
ƒ > 150MHz  
Part-to-PartSkew;  
NOTE 6  
LVCMOS_CLK  
PCLK, nPCLK  
Part-to-PartSkew;  
NOTE 6  
tsk(pp)  
LVCMOS_CLK  
PCLK, nPCLK  
Part-to-PartSkew;  
NOTE 4, 5  
Measured on the Rising Edge  
@ VDDO/2  
LVCMOS_CLK  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
0.5V to 1.8V  
ƒ < 134MHz  
0.3  
45  
50  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE: All parameters measured at 200MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the output VDDO/2.  
NOTE 2: Measured from VDD/2 to VDDO/2.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO/2.  
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at VDDO/2.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 6: Defined as skew between outputs on different devices, across temperature and voltage ranges, and with equal load conditions. Using  
the same type of inputs on each device, the outputs are measured at VDDO/2.  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
7
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Table 5C. AC Characteristics, VDD = VDDO = 2.5V 5ꢀ, TA = -40°C to 85°C  
Symbol Parameter  
fMAX Output Frequency  
Test Conditions  
Minimum Typical Maximum Units  
200  
3.8  
3.2  
3.7  
3.6  
200  
200  
2.6  
1.7  
2.2  
1.7  
1.2  
1.0  
1.2  
55  
MHz  
ns  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PCLK, nPCLK; NOTE 1, 5  
LVCMOS_CLK; NOTE 2, 5  
PCLK, nPCLK; NOTE 1, 5  
LVCMOS_CLK; NOTE 2, 5  
PCLK, nPCLK  
ƒ 150MHz  
ƒ 150MHz  
ƒ > 150MHz  
ƒ > 150MHz  
1.2  
1.5  
1.5  
2.0  
Propagation  
Delay  
tPLH  
Propagation  
Delay  
Output Skew;  
NOTE 3, 5  
Measured on the Rising Edge  
@ VDDO/2  
tsk(o)  
LVCMOS_CLK  
PCLK, nPCLK  
ƒ 150MHz  
ƒ 150MHz  
ƒ > 150MHz  
ƒ > 150MHz  
Part-to-PartSkew;  
NOTE 6  
LVCMOS_CLK  
PCLK, nPCLK  
Part-to-PartSkew;  
NOTE 6  
tsk(pp)  
LVCMOS_CLK  
PCLK, nPCLK  
Part-to-PartSkew;  
NOTE 4, 5  
Measured on the Rising Edge  
@ VDDO/2  
LVCMOS_CLK  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
0.5V to 1.8V  
ƒ < 134MHz  
0.3  
45  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE: All parameters measured at 200MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the output VDDO/2.  
NOTE 2: Measured from VDD/2 to VDDO/2.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO/2.  
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at VDDO/2.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 6: Defined as skew between outputs on different devices, across temperature and voltage ranges, and with equal load conditions. Using  
the same type of inputs on each device, the outputs are measured at VDDO/2.  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
8
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Parameter Measurement Information  
1.65V 5ꢀ  
1.25V 5ꢀ  
SCOPE  
SCOPE  
V
DD,  
V
V
DD,  
V
DDO  
DDO  
Qx  
Qx  
LVCMOS  
LVCMOS  
GND  
GND  
-1.65V 5ꢀ  
-1.25V 5ꢀ  
3.3V Core/3.3V LVCMOS Output Load AC Test Circuit  
2.5V Core/2.5V LVCMOS Output Load AC Test Circuit  
2.05V 5ꢀ  
1.25V 5ꢀ  
V
DD  
SCOPE  
V
DD  
nPCLK  
VPP  
VCMR  
Cross Points  
V
DDO  
Qx  
PCLK  
GND  
GND  
LVCMOS  
-1.25V 5ꢀ  
3.3V Core/2.5V LVCMOS Output Load AC Test Circuit  
Differential Input Level  
Part 1  
VDDO  
VDDO  
Qx  
Qy  
2
Qx  
Qy  
2
Part 2  
VDDO  
2
VDDO  
2
tsk(o)  
tsk(pp)  
Part-to-Part Skew  
Output Skew  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
9
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Parameter Measurement Information, continued  
1.8V  
tF  
2.4V  
tF  
1.8V  
tR  
2.4V  
tR  
0.5V  
0.5V  
0.5V  
0.5V  
Q0:Q17  
Q0:Q17  
3.3V Output Rise/Fall Time  
2.5V Output Rise/Fall Time  
nPCLK  
PCLK  
VDD  
VDDO  
2
Q0:Q17  
tPW  
tPERIOD  
2
LVCMOS_CLK  
VDDO  
2
tPW  
Q0:Q17  
x 100ꢀ  
odc =  
tpLH  
tPERIOD  
Output Duty Cycle/Pulse Width/Period  
Propagation Delay  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
10  
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Application Information  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 1 shows how a differential input can be wired to accept single  
ended levels. The reference voltage VREF = VDD/2 is generated by  
the bias resistors R1 and R2. The bypass capacitor (C1) is used to  
help filter noise on the DC bias. This bias circuit should be located as  
close to the input pin as possible. The ratio of R1 and R2 might need  
to be adjusted to position the VREF in the center of the input voltage  
swing. For example, if the input clock swing is 2.5V and VDD = 3.3V,  
R1 and R2 value should be adjusted to set VREF at 1.25V. The values  
below are for when both the single ended swing and VDD are at the  
same voltage. This configuration requires that the sum of the output  
impedance of the driver (Ro) and the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination at  
the input will attenuate the signal in half. This can be done in one of  
two ways. First, R3 and R4 in parallel should equal the transmission  
line impedance. For most 50applications, R3 and R4 can be 100.  
The values of the resistors can be increased to reduce the loading for  
slower and weaker LVCMOS driver. When using single-ended  
signaling, the noise rejection benefits of differential signaling are  
reduced. Even though the differential input can handle full rail  
LVCMOS signaling, it is recommended that the amplitude be  
reduced. The datasheet specifies a lower differential amplitude,  
however this only applies to differential signals. For single-ended  
applications, the swing can be larger, however VIL cannot be less  
than -0.3V and VIH cannot be more than VDD + 0.3V. Though some  
of the recommended components might not be used, the pads  
should be placed in the layout. They can be utilized for debugging  
purposes. The datasheet specifications are characterized and  
guaranteed by using a differential signal.  
Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
11  
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
LVPECL Clock Input Interface  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other  
differential signals. Both differential signals must meet the VPP and  
VCMR input requirements. Figures 2A to 2E show interface examples  
for the PCLK/nPCLK input driven by the most common driver types.  
The input interfaces suggested here are examples only. If the driver  
is from another vendor, use their termination recommendation.  
Please consult with the vendor of the driver component to confirm the  
driver termination requirements.  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50  
3.3V  
R1  
R2  
50  
50Ω  
Zo = 50Ω  
Zo = 50Ω  
PCLK  
PCLK  
R1  
100Ω  
nPCLK  
Zo = 50Ω  
nPCLK  
LVPECL  
LVPECL  
Input  
CML Built-In Pullup  
CML  
Input  
Figure 2A. PCLK/nPCLK Input  
Figure 2B. PCLK/nPCLK Input  
Driven by a CML Driver  
Driven by a Built-In Pullup CML Driver  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125Ω  
R4  
125Ω  
3.3V  
R3  
84  
R4  
84  
Zo = 50Ω  
Zo = 50Ω  
C1  
C2  
Zo = 50Ω  
Zo = 50Ω  
3.3V LVPECL  
PCLK  
PCLK  
nPCLK  
nPCLK  
LVPECL  
Input  
LVPECL  
Input  
LVPECL  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
R1  
84Ω  
R2  
84Ω  
Figure 2C. PCLK/nPCLK Input  
Figure 2D. PCLK/nPCLK Input Driven by  
a 3.3V LVPECL Driver with AC Couple  
Driven by a 3.3V LVPECL Driver  
2.5V  
3.3V  
2.5V  
R3  
R4  
120  
120  
Zo = 60Ω  
Zo = 60Ω  
PCLK  
nPCLK  
LVPECL  
Input  
SSTL  
R1  
120  
R2  
120  
Figure 2E. PCLK/nPCLK Input  
Driven by an SSTL Driver  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
12  
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
VFQFN EPAD Thermal Release Path  
In order to maximize both the removal of heat from the package and  
the electrical performance, a land pattern must be incorporated on  
the Printed Circuit Board (PCB) within the footprint of the package  
corresponding to the exposed metal pad or exposed heat slug on the  
package, as shown in Figure 3. The solderable area on the PCB, as  
defined by the solder mask, should be at least the same size/shape  
as the exposed pad/slug area on the package to maximize the  
thermal/electrical performance. Sufficient clearance should be  
designed on the PCB between the outer edges of the land pattern  
and the inner edges of pad pattern for the leads to avoid any shorts.  
and dependent upon the package power dissipation as well as  
electrical conductivity requirements. Thus, thermal and electrical  
analysis and/or testing are recommended to determine the minimum  
number needed. Maximum thermal and electrical performance is  
achieved when an array of vias is incorporated in the land pattern. It  
is recommended to use as many vias connected to ground as  
possible. It is also recommended that the via diameter should be 12  
to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is  
desirable to avoid any solder wicking inside the via during the  
soldering process which may result in voids in solder between the  
exposed pad/slug and the thermal land. Precautions should be taken  
to eliminate any solder voids between the exposed heat slug and the  
land pattern. Note: These recommendations are to be used as a  
guideline only. For further information, please refer to the Application  
Note on the Surface Mount Assembly of Amkor’s Thermally/  
Electrically Enhance Leadframe Base Package, Amkor Technology.  
While the land pattern on the PCB provides a means of heat transfer  
and electrical grounding from the package to the board through a  
solder joint, thermal vias are necessary to effectively conduct from  
the surface of the PCB to the ground plane(s). The land pattern must  
be connected to ground through these vias. The vias act as “heat  
pipes”. The number of vias (i.e. “heat pipes”) are application specific  
SOLDER  
SOLDER  
PIN  
PIN  
EXPOSED HEAT SLUG  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
Figure 3. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
PCLK/nPCLK Inputs  
LVCMOS Outputs  
For applications not requiring the use of the differential input, both  
PCLK and nPCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from PCLK to  
ground.  
All unused LVCMOS output can be left floating. There should be no  
trace attached.  
LVCMOS_CLK Input  
For applications not requiring the use of a clock input, it can be left  
floating. Though not required, but for additional protection, a 1kΩ  
resistor can be tied from the LVCMOS_CLK input to ground.  
LVCMOS Control Pins  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
13  
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Reliability Information  
Table 6A. θJA vs. Air Flow Table for a 32 Lead LQFP  
θJA vs. Air Flow  
Linear Feet per Minute  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
47.9°C/W  
42.1°C/W  
39.4°C/W  
Table 6B. θJA vs. Air Flow Table for a 32 Lead VFQFN  
θJA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
40.2°C/W  
35.1°C/W  
31.5°C/W  
Transistor Count  
The transistor count for ICS83940DI is: 820  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
14  
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Package Outline and Package Dimensions  
Package Outline - Y Suffix for 32 Lead LQFP  
Table 7A. Package Dimensions for 32 Lead LQFP  
JEDEC Variation: ABC - HD  
All Dimensions in Millimeters  
Symbol  
Minimum  
Nominal  
Maximum  
N
32  
A
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
0.05  
1.35  
0.30  
0.09  
0.10  
1.40  
0.37  
A2  
b
c
D & E  
D1 & E1  
D2 & E2  
e
9.00 Basic  
7.00 Basic  
5.60 Ref.  
0.80 Basic  
0.60  
L
0.45  
0°  
0.75  
7°  
θ
ccc  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
15  
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Package Outline and Package Dimensions  
Package Outline - K Suffix for 32 Lead VFQFN  
(Ref.)  
N & N  
Even  
Seating Plane  
(N -1)x e  
(Ref.)  
A1  
IndexArea  
L
A3  
E2  
e
2
N
N
(Ty p.)  
If N & N  
are Even  
Anvil  
1
Singulation  
2
(N -1)x e  
(Re f.)  
E2  
2
TopView  
D
b
(Ref.)e  
N &N  
Odd  
Thermal  
Base  
A
D2  
2
0. 08  
C
Chamfer 4x  
0.6 x 0.6 max  
OPTIONAL  
D2  
C
Bottom View w/Type A ID  
Bottom View TypB ID  
Bottom View w/Type C ID  
4
2
1
2
1
2
1
CHAMFER  
RADIUS  
N N-1  
4
N N-1  
DD  
N N-1  
4
4
There are 3 methods of indicating pin 1 corner  
at the back of the VFQFN package are:  
1. Type A: Chamfer on the paddle (near pin 1)  
2. Type B: Dummy pad between pin 1 and N.  
4
AA  
4
3. Type C: Mouse bite on the paddle (near pin 1)  
NOTE: The following package mechanical drawing is a generic  
drawing that applies to any pin count VFQFN package. This drawing  
is not intended to convey the actual pin count or pin layout of this  
device. The pin count and pinout are shown on the front page. The  
package dimensions are in Table 7B.  
Table 7B. Package Dimensions  
JEDEC Variation: VHHD-2/-4  
All Dimensions in Millimeters  
Symbol  
Minimum  
Nominal  
Maximum  
N
32  
A
0.80  
0
1.00  
0.05  
A1  
A3  
0.25 Ref.  
0.25  
b
ND & NE  
D & E  
D2 & E2  
e
0.18  
0.30  
8
5.00 Basic  
3.0  
3.3  
0.50 Basic  
0.40  
L
0.30  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
16  
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Ordering Information  
Table 8. Ordering Information  
Part/Order Number  
83940DYI  
Marking  
Package  
32 Lead LQFP  
32 Lead LQFP  
Shipping Packaging  
Tray  
1000 Tape & Reel  
Tray  
1000 Tape & Reel  
Tray  
2500 Tape & Reel  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS83940DYI  
ICS83940DYI  
ICS83940DYIL  
ICS83940DYIL  
ICS83940DIL  
ICS83940DIL  
83940DYIT  
83940DYILF  
83940DYILFT  
83940DKILF  
83940DKILFT  
“Lead-Free” 32 Lead LQFP  
“Lead-Free” 32 Lead LQFP  
LP  
“LeeaaRdd--FFree” 32 Lead VFQFN  
O
ree  
P
” 32  
O
Le  
S
ad  
E
VF  
D
QFN  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without  
additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support  
devices or critical medical instruments.  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
17  
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
T2  
2
Pin Characteristics table - changed ROUT 25maximum to 28maximum.  
Delete RPULLUP row.  
7
3.3V Output Load AC Test Circuit diagram - corrected GND equation to read  
A
12/12/02  
-1.65V... from -1.165V...  
Added LVTTL to title.  
Updated format.  
1
9
Features Section - added Lead-Free bullet.  
Application Information Section - added Recommendations for Unused Input and  
Output Pins.  
A
A
B
11/27/06  
2/21/07  
8/13/09  
10  
13  
Application Information Section - added LVPECL Clock Input Interface.  
Ordering Information Table - added Lead-Free part number, marking, and note.  
Updated datasheet format.  
T8  
3
Absolute Maximum Ratings - corrected Storage Temperature from  
"-40°C to 125°C" to "-65°C to 150°C".  
1
Added 32 Lead VFQFN Pin Assignment.  
Added VFQFN Thermal Release Path section.  
Added 32 VFQFN Thermal Table.  
Added 32 Lead VFQFN Package and Dimensions Table.  
Ordering Information Table - added 32 Lead VFQFN ordering information.  
Converted datasheet format.  
13  
14  
16  
17  
T6B  
T7B  
T8  
T2  
2
11  
16  
Pin Characteristics Table - ROUT error, typical spec deleted.  
Updated Wiring the Differential Input to Accept Single-Ended Levels.  
Updated 32 VFQFN Package Outline.  
C
9/7/10  
ICS83940DYI REVISION C SEPTEMBER 7, 2010  
18  
©2010 Integrated Device Technology, Inc.  
ICS83940DI Data Sheet  
LOW SKEW, 1-TO-18 LVPECL-TO-LVCMOS/LVTTL FANOUT BUFFER  
We’ve Got Your Timing Solution  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
San Jose, California 95138  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2010. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY