ICS843241I-04 [IDT]

FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR; FEMTOCLOCKSâ ?? ¢ CRYSTAL - TO- 3.3V , 2.5V LVPECL时钟发生器
ICS843241I-04
型号: ICS843241I-04
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR
FEMTOCLOCKSâ ?? ¢ CRYSTAL - TO- 3.3V , 2.5V LVPECL时钟发生器

时钟发生器
文件: 总14页 (文件大小:283K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V,  
2.5V LVPECL CLOCK GENERATOR  
ICS843241I-04  
GENERAL DESCRIPTION  
FEATURES  
The ICS843241I-04 is a Serial ATA (SATA)/Serial  
One differential LVPECL output  
ICS  
HiPerClockS™  
Attached SCSI (SAS) Clock Generator and a  
Crystal oscillator interface, 18pF parallel resonant crystal  
(20.833MHz - 28.3MHz)  
member of the HiPerClocksTM family of high  
performance devices from IDT. For SATA/SAS  
applications, a 25MHz crystal is used to produce  
150MHz.The ICS843241I-04 is packaged in a small 8-pin TSSOP,  
making it ideal for use in systems with limited board space.  
Maximum output frequency: 150MHz  
VCO range: 500MHz - 680MHz  
RMS phase jitter @ 150MHz, using a 25MHz crystal  
(12kHz - 20MHz): 1.2ps (typical)  
3.3V or 2.5V operating supply  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
N Divider  
XTAL_IN  
VCCA  
XTAL_OUT  
XTAL_IN  
VEE  
VCC  
Q
1
2
3
4
8
7
6
5
Q
nQ  
VCO  
Phase  
÷4  
OSC  
500MHz - 680MHz  
Detector  
nQ  
nc  
XTAL_OUT  
ICS843241I-04  
M = ÷24 (fixed)  
8-Lead TSSOP  
4.4mm x 3.0mm x 0.925mm  
package body  
G Package  
Top View  
The Preliminary Information presented herein represents a product in pre-production.The noted characteristics are based on initial product characterization  
and/or qualification.Integrated DeviceTechnology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.  
IDT/ ICS150MHZ, 3.3V, 2.5V LVPECLCLOCK GENERATOR  
1
ICS843241AGI-04 REV. A MAY 1, 2008  
ICS843241I-04  
FEMTOCLOCKS™ CRYSTAL-TO- 3.3V, 2.5V LVPECL CLOCK GENERATOR  
PRELIMINARY  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
VCCA  
Power  
Input  
Analog supply pin.  
2,  
3
XTAL_OUT,  
XTAL_IN  
Crystal oscillator interface. XTAL_IN is the input,  
XTAL_OUT is the output.  
4
5
VEE  
nc  
Power  
Input  
Negative supply pin.  
No connect.  
6, 7  
8
nQ, Q  
VCC  
Output  
Power  
Differential clock outputs. LVPECL interface levels.  
Core supply pin.  
IDT/ ICS150MHZ, 3.3V, 2.5V LVPECLCLOCK GENERATOR  
2
ICS843241AGI-04 REV. A MAY 1, 2008  
ICS843241I-04  
FEMTOCLOCKS™ CRYSTAL-TO- 3.3V, 2.5V LVPECL CLOCK GENERATOR  
PRELIMINARY  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
DD  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
50mA  
Surge Current  
100mA  
Package Thermal Impedance, θJA 129.5°C/W (0 mps)  
Storage Temperature, T -65°C to 150°C  
STG  
TABLE 2A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VCC  
VCCA  
ICC  
Core Supply Voltage  
3.135  
3.3  
3.3  
60  
3.465  
VCC  
V
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
VCC – 0.10  
V
mA  
mA  
ICCA  
10  
TABLE 2B. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
2.375  
Typical Maximum Units  
VCC  
VCCA  
ICC  
Core Supply Voltage  
2.5  
2.5  
60  
2.625  
VCC  
V
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
VCC – 0.10  
V
mA  
mA  
ICCA  
10  
TABLE 2C. LVCMOS/LVTTL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ OR 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC = 3.3V  
2
VCC + 0.3  
VCC + 0.3  
0.8  
V
V
V
V
VIH  
VIL  
Input High Voltage  
V
CC = 2.5V  
VCC = 3.3V  
CC = 2.5V  
1.7  
-0.3  
-0.3  
Input Low Voltage  
V
0.7  
IDT/ ICS150MHZ, 3.3V, 2.5V LVPECLCLOCK GENERATOR  
3
ICS843241AGI-04 REV. A MAY 1, 2008  
ICS843241I-04  
FEMTOCLOCKS™ CRYSTAL-TO- 3.3V, 2.5V LVPECL CLOCK GENERATOR  
PRELIMINARY  
TABLE 2D. LVPECL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCC - 1.4  
VCC - 2.0  
0.6  
Typical  
Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCC - 0.9  
VCC - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
TABLE 2E. LVPECL DC CHARACTERISTICS, VCC = 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCC - 1.4  
VCC - 2.0  
0.4  
Typical  
Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCC - 0.9  
VCC - 1.5  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
TABLE 3. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum  
20.833  
Typical Maximum Units  
Fundamental  
Mode of Oscillation  
Frequency  
28.3  
50  
7
MHz  
Ω
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
pF  
1
mW  
TABLE 4A. AC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fOUT  
Output Frequency  
150  
MHz  
RMS Phase Jitter ( Random);  
NOTE 1  
150MHz @ Integration Range:  
12kHz - 20MHz  
tjit(Ø)  
1.2  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
400  
50  
ps  
NOTE 1: Please refer to the Phase Noise Plot following this section.  
TABLE 4B. AC CHARACTERISTICS, VCC = 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fOUT  
Output Frequency  
150  
MHz  
RMS Phase Jitter ( Random);  
NOTE 1  
150MHz @ Integration Range:  
12kHz - 20MHz  
tjit(Ø)  
1.42  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
400  
50  
ps  
NOTE 1: Please refer to the Phase Noise Plot following this section.  
IDT/ ICS150MHZ, 3.3V, 2.5V LVPECLCLOCK GENERATOR  
4
ICS843241AGI-04 REV. A MAY 1, 2008  
ICS843241I-04  
FEMTOCLOCKS™ CRYSTAL-TO- 3.3V, 2.5V LVPECL CLOCK GENERATOR  
PRELIMINARY  
TYPICAL PHASE NOISE AT 150MHZ (3.3V)  
SATA/SAS Jitter Filter  
150MHz  
RMS Phase Jitter (Random)  
12kHz to 20MHz = 1.2ps (typical)  
Raw Phase Noise Data  
Phase Noise Result by adding a  
SATA/SAS Filter to raw data  
OFFSET FREQUENCY (HZ)  
TYPICAL PHASE NOISE AT 150MHZ (2.5V)  
SATA/SAS Jitter Filter  
150MHz  
RMS Phase Jitter (Random)  
12kHz to 20MHz = 1.42ps (typical)  
Raw Phase Noise Data  
Phase Noise Result by adding a  
SATA/SAS Filter to raw data  
OFFSET FREQUENCY (HZ)  
IDT/ ICS150MHZ, 3.3V, 2.5V LVPECLCLOCK GENERATOR  
5
ICS843241AGI-04 REV. A MAY 1, 2008  
ICS843241I-04  
FEMTOCLOCKS™ CRYSTAL-TO- 3.3V, 2.5V LVPECL CLOCK GENERATOR  
PRELIMINARY  
PARAMETER MEASUREMENT INFORMATION  
2V  
2V  
2V  
2V  
SCOPE  
SCOPE  
VCC  
VCC  
Qx  
Qx  
VCCA  
VCCA  
LVPECL  
LVPECL  
nQx  
nQx  
VEE  
VEE  
-0.5V 0.125V  
-1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
2.5V OUTPUT LOAD AC TEST CIRCUIT  
nQ  
nQ  
80ꢀ  
tF  
80ꢀ  
Q
VSWING  
20ꢀ  
tPW  
tPERIOD  
20ꢀ  
Q
tR  
tPW  
odc =  
x 100ꢀ  
tPERIOD  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
Phase Noise Plot  
Phase Noise Mask  
Offset Frequency  
f1  
f2  
RMS Jitter = Area Under the Masked Phase Noise Plot  
RMS PHASE JITTER  
IDT/ ICS150MHZ, 3.3V, 2.5V LVPECLCLOCK GENERATOR  
6
ICS843241AGI-04 REV. A MAY 1, 2008  
ICS843241I-04  
FEMTOCLOCKS™ CRYSTAL-TO- 3.3V, 2.5V LVPECL CLOCK GENERATOR  
PRELIMINARY  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter perfor-  
mance, power supply isolation is required. The ICS843241I-04  
provides separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC and VCCA should  
be individually connected to the power supply plane through vias,  
and 0.01µF bypass capacitors should be used for each pin. Fig-  
ure 1 illustrates this for a generic V pin and also shows that  
VCCA requires that an additional10Ω CrCesistor along with a 10µF  
bypass capacitor be connected to the VCCA pin.  
3.3V or 2.5V  
VCC  
.01μF  
10Ω  
VCCA  
.01μF  
10μF  
FIGURE 1. POWER SUPPLY FILTERING  
CRYSTAL INPUT INTERFACE  
The ICS843241I-04 has been characterized with 18pF parallel  
resonant crystals. The capacitor values, C1 and C2, shown in  
Figure 2 below were determined using a 25MHz, 18pF parallel  
resonant crystal and were chosen to minimize the ppm error. The  
optimum C1 and C2 values can be slightly adjusted for different  
board layouts.  
XTAL_IN  
C1  
33p  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
33p  
FIGURE 2. CRYSTAL INPUt INTERFACE  
IDT/ ICS150MHZ, 3.3V, 2.5V LVPECLCLOCK GENERATOR  
7
ICS843241AGI-04 REV. A MAY 1, 2008  
ICS843241I-04  
FEMTOCLOCKS™ CRYSTAL-TO- 3.3V, 2.5V LVPECL CLOCK GENERATOR  
PRELIMINARY  
LVCMOS TO XTAL INTERFACE  
impedance of the driver (Ro) plus the series resistance (Rs) equals  
the transmission line impedance.In addition, matched termination  
at the crystal input will attenuate the signal in half. This can be  
done in one of two ways. First, R1 and R2 in parallel should equal  
the transmission line impedance. For most 50Ω applications, R1  
and R2 can be 100Ω.This can also be accomplished by removing  
R1 and making R2 50Ω.  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 3. The XTAL_OUT pin can be left floating. The  
input edge rate can be as slow as 10ns. For LVCMOS inputs, it is  
recommended that the amplitude be reduced from full swing to  
half swing in order to prevent signal interference with the power  
rail and to reduce noise.This configuration requires that the output  
VDD  
VDD  
R1  
.1uf  
Ro  
Rs  
Zo = 50  
XTAL_I N  
R2  
Zo = Ro + Rs  
XTAL_OUT  
FIGURE 3. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termination  
for LVPECL outputs. The two different layouts mentioned are rec-  
ommended only as guidelines.  
transmission lines. Matched impedance techniques should be  
used to maximize operating frequency and minimize signal dis-  
tortion. Figures 4A and 4B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts  
may exist and it would be recommended that the board design-  
ers simulate to guarantee compatibility across all printed circuit  
and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 4A. LVPECL OUTPUT TERMINATION  
FIGURE 4B. LVPECL OUTPUT TERMINATION  
IDT/ ICS150MHZ, 3.3V, 2.5V LVPECLCLOCK GENERATOR  
8
ICS843241AGI-04 REV. A MAY 1, 2008  
ICS843241I-04  
FEMTOCLOCKS™ CRYSTAL-TO- 3.3V, 2.5V LVPECL CLOCK GENERATOR  
PRELIMINARY  
TERMINATION FOR 2.5V LVPECL OUTPUTS  
Figure 5A and Figure 5B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating  
50Ω to V - 2V. For V = 2.5V, the V - 2V is very close to ground  
level. The R3 in Figure 5B can be eliminated and the termination  
is shown in Figure 5C.  
CC  
CC  
CC  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
R1  
R3  
250  
250  
+
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 5A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 5B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 5C. 2.5V LVPECL TERMINATION EXAMPLE  
IDT/ ICS150MHZ, 3.3V, 2.5V LVPECLCLOCK GENERATOR  
9
ICS843241AGI-04 REV. A MAY 1, 2008  
ICS843241I-04  
FEMTOCLOCKS™ CRYSTAL-TO- 3.3V, 2.5V LVPECL CLOCK GENERATOR  
PRELIMINARY  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS843241I-04.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS843241I-04 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core) = V  
* I  
= 3.465V * 60mA = 207.9mW  
MAX  
CC_MAX  
EE_MAX  
Power (outputs) = 30mW/Loaded Output pair  
MAX  
Total Power  
(3.465V, with all outputs switching) = 207.9mW + 30mW = 237.9mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θ
= Junction-to-Ambient Thermal Resistance  
JA  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ must be used. Assuming no  
JA  
air flow and a multi-layer board, the appropriate value is 129.5°C/W per Table 5 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.238W * 129.5°C/W = 115.8°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 5. THERMAL RESISTANCE θ FOR 8-PIN TSSOP, FORCED CONVECTION  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
129.5°C/W  
125.5°C/W  
123.5°C/W  
IDT/ ICS150MHZ, 3.3V, 2.5V LVPECLCLOCK GENERATOR  
10  
ICS843241AGI-04 REV. A MAY 1, 2008  
ICS843241I-04  
FEMTOCLOCKS™ CRYSTAL-TO- 3.3V, 2.5V LVPECL CLOCK GENERATOR  
PRELIMINARY  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V – 2V.  
CC  
For logic high, V = V  
= V  
– 0.9V  
OUT  
OH_MAX  
CC_MAX  
)
= 0.9V  
OH_MAX  
(V  
– V  
CC_MAX  
For logic low, V = V  
= V  
– 1.7V  
CC_MAX  
OUT  
OL_MAX  
)
= 1.7V  
OL_MAX  
(V  
– V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
– 2V))/R ] * (V  
– V  
) = [(2V - (V  
– V  
– V  
/R ] * (V  
– V  
) =  
OH_MAX  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
L
L
[(2V – 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
– 2V))/R ] * (V  
– V  
) = [(2V – (V  
/R ] * (V  
– V ) =  
OL_MAX  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
L
L
[(2V – 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT/ ICS150MHZ, 3.3V, 2.5V LVPECLCLOCK GENERATOR  
11  
ICS843241AGI-04 REV. A MAY 1, 2008  
ICS843241I-04  
FEMTOCLOCKS™ CRYSTAL-TO- 3.3V, 2.5V LVPECL CLOCK GENERATOR  
PRELIMINARY  
RELIABILITY INFORMATION  
TABLE 6. θ VS. AIR FLOW TABLE FOR 8 LEAD TSSOP  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
123.5°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
129.5°C/W  
125.5°C/W  
TRANSISTOR COUNT  
The transistor count for ICS843241I-04 is: 1732  
PACKAGE OUTLINE AND DIMENSIONS  
PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP  
TABLE 7. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Minimum  
Maximum  
N
A
8
--  
1.20  
0.15  
1.05  
0.30  
0.20  
3.10  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
2.90  
c
D
E
6.40 BASIC  
E1  
e
4.30  
4.50  
0.65 BASIC  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
IDT/ ICS150MHZ, 3.3V, 2.5V LVPECLCLOCK GENERATOR  
12  
ICS843241AGI-04 REV. A MAY 1, 2008  
ICS843241I-04  
FEMTOCLOCKS™ CRYSTAL-TO- 3.3V, 2.5V LVPECL CLOCK GENERATOR  
PRELIMINARY  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
ICS843241AGI-04  
Marking  
1AI04  
1AI04  
TBD  
Package  
Shipping Packaging  
tube  
Temperature  
8 Lead TSSOP  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS843241AGI-04T  
ICS843241AGI-04LF  
ICS843241AGI-04LFT  
8 Lead TSSOP  
2500 tape & reel  
tube  
8 Lead "Lead-Free" TSSOP  
8 Lead "Lead-Free" TSSOP  
TBD  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICS150MHZ, 3.3V, 2.5V LVPECLCLOCK GENERATOR  
13  
ICS843241AGI-04 REV. A MAY 1, 2008  
ICS843241I-04  
FEMTOCLOCKS™ CRYSTAL-TO- 3.3V, 2.5V LVPECL CLOCK GENERATOR  
PRELIMINARY  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
For Tech Support  
netcom@idt.com  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
+480-763-2056  
www.IDT.com/go/contactIDT  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY