ICS84329BV-01LF [IDT]

Clock Generator, 700MHz, PQCC28, 11.60 X 11.40 MM, 4.10 MM HEIGHT, PLASTIC, MS-018, LCC-28;
ICS84329BV-01LF
型号: ICS84329BV-01LF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 700MHz, PQCC28, 11.60 X 11.40 MM, 4.10 MM HEIGHT, PLASTIC, MS-018, LCC-28

时钟 外围集成电路 晶体
文件: 总21页 (文件大小:773K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
700MHZ, LOW JITTER, CRYSTAL-TO-  
ICS84329B-01  
3.3V LVPECL FREQUENCY SYNTHESIZER  
General Description  
Features  
The ICS84329B-01 is a general purpose, single  
Fully integrated PLL, no external loop filter requirements  
One differential 3.3V LVPECL output pair  
Crystal oscillator interface  
S
IC  
output high frequency synthesizer and a member of  
the HiPerClockS™ family of High Performance  
Clock Solutions from IDT. The VCO operates at a  
frequency range of 250MHz to 700MHz. The VCO  
HiPerClockS™  
Output frequency range: 31.25MHz – 700MHz  
VCO range: 250MHz – 700MHz  
frequency is programmed in steps equal to the value of the crystal  
frequency divided by 16. The VCO and output frequency can be  
programmed using the serial or parallel interfaces to the  
configuration logic. The output can be configured to divide the  
VCO frequency by 1, 2, 4, and 8. Output frequency steps as small  
as 125kHz to 1MHz can be achieved using a 16MHz crystal  
depending on the output dividers.  
Parallel interface for programming counter and output dividers  
during power-up  
Serial 3 wire interface  
RMS period jitter: 5.5ps (maximum)  
Cycle-to-cycle jitter: 35ps (maximum)  
3.3V supply voltage  
Pin Assignments  
0°C to 70°C ambient operating temperature  
ICS84329B-01  
28 Lead SOIC  
M0  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
N0  
N1  
VEE  
TEST  
1
2
3
4
5
6
7
8
28 nP_LOAD  
27  
VCC  
26 XTAL_OUT  
25 XTAL_IN  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
7.5mm x 18.05mm x 2.25mm  
package body  
M Package  
Top View  
nc  
nc  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
VCC  
FOUT  
nFOUT  
VEE  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
9
10  
11  
12  
13  
VCC 14  
Block Diagram  
25 24 23 22 21 20 19  
XTAL_IN  
OSC  
26  
27  
28  
1
N1  
17 N0  
S_CLOCK  
18  
XTAL_OUT  
S_DATA  
S_LOAD  
M8  
M7  
M6  
16  
15  
14  
13  
÷16  
VCCA  
nc  
2
PLL  
nc  
M5  
M4  
3
PHASEDETECTOR  
÷M  
÷1  
÷2  
÷4  
÷8  
XTAL_IN  
4
12  
5
6
7
8
9
10 11  
1
0
FOUT  
nFOUT  
VCO  
Pulldown  
Pulldown  
Pulldown  
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
ICS84329B-01  
28 Lead PLCC  
11.6mm x 11.4mm x 4.1mm  
package body  
V Package  
CONFIGURATION  
INTERFACE  
LOGIC  
TEST  
Pullup  
Pullup  
Pullup  
M0:M8  
N0:N1  
Top View  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
1
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Functional Description  
NOTE: The functional description that follows describes operation  
using a 16MHz crystal. Valid PLL loop divider values for different  
crystal or input frequencies are defined in the Input Frequency  
Characteristics, Table 6, NOTE 1.  
nP_LOAD input is LOW. The data on inputs M0 through M8 and N0  
through N1 is passed directly to the M divider and N output divider.  
On the LOW-to-HIGH transition of the nP_LOAD input, the data is  
latched and the M divider remains loaded until the next LOW  
transition on nP_LOAD or until a serial event occurs. The TEST  
output is Mode 000 (shift register out) when operating in the  
parallel input mode. The relationship between the VCO frequency,  
the crystal frequency and the M divider is defined as follows:  
fVCO = fXTAL x M  
The ICS84329B-01 features a fully integrated PLL and therefore  
requires no external components for setting the loop bandwidth. A  
parallel resonant, fundamental crystal is used as the input to the  
on-chip oscillator. The output of the oscillator is divided by 16 prior  
to the phase detector. With a 16MHz crystal this provides a 1MHz  
reference frequency. The VCO of the PLL operates over a range  
of 250MHz to 700MHz. The output of the M divider is also applied  
to the phase detector.  
16  
The M value and the required values of M0 through M8 are shown  
in Table 3B, Programmable VCO Frequency Function Table. Valid  
M values for which the PLL will achieve lock are defined as  
250 M 511. The frequency out is defined as follows:  
fout = fVCO = fXTAL x M  
The phase detector and the M divider force the VCO output  
frequency to be M times the reference frequency ÷ 16 by adjusting  
the VCO control voltage. Note that for some values of M (either too  
high or too low), the PLL will not achieve lock. The output of the  
VCO is scaled by a divider prior to being sent to each of the  
LVPECL output buffers. The divider provides a 50% output duty  
cycle.  
N
16  
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD is  
LOW. The shift register is loaded by sampling the S_DATA bits with  
the rising edge of S_CLOCK. The contents of the shift register are  
loaded into the M divider when S_LOAD transitions from  
LOW-to-HIGH. The M divide and N output divide values are  
latched on the HIGH-to-LOW transition of S_LOAD. If S_LOAD is  
held HIGH, data at the S_DATA input is passed directly to the M  
divider on each rising edge of S_CLOCK. The serial mode can be  
used to program the M and N bits and test bits T2:T0. The internal  
resistors T2:T0 determine the state of the TEST output as follows:  
The programmable features of the ICS84329B-01 support two  
input modes to program the M divider and N output divider.  
The two input operational modes are parallel and serial. Figure 1  
shows the timing diagram for each mode. In parallel mode the  
T2  
0
T1  
0
T0  
0
TEST Output  
fOUT  
fOUT  
fOUT  
fOUT  
Shift Register Out  
HIGH  
0
0
1
0
1
0
PLL Reference XTAL ÷16  
0
1
1
(VCO ÷ M) /2 (non 50% Duty Cycle M Divider)  
fOUT, LVCMOS Output Frequency < 200MHz  
LOW  
fOUT  
1
0
0
fOUT  
1
0
1
fOUT  
1
1
0
S_CLOCK ÷ M (non 50% Duty Cycle M Divider)  
fOUT ÷ 4  
S_CLOCK ÷ N Divider  
fOUT  
1
1
1
SERIAL LOADING  
S_CLOCK  
T2 T1 T0 N1 N0 M8 M7 M6 M5 M4 M3 M2 M1 M0  
S_DATA  
S_LOAD  
t
t
S
H
t
nP_LOAD  
S
PARALLEL LOADING  
M, N  
M0:M8, N0:N1  
nP_LOAD  
t
t
H
S
nP_LOAD  
Time  
Figure 1. Parallel & Serial Load Operations  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
2
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Table 1. Pin Descriptions  
Name  
Type  
Description  
M0, M1, M2, M3, M4,  
M5, M6, M7, M8  
M divider inputs. Data latched on LOW-to-HIGH transition of nP_LOAD input.  
LVCMOS/LVTTL interface levels.  
Input  
Pullup  
Pullup  
Determines N output divider value as defined in Table 3C, Function Table.  
LVCMOS/LVTTL interface levels.  
N0, N1  
VEE  
Input  
Power  
Output  
Negative supply pins.  
Test output which is used in the serial mode of operation.  
Single-ended LVPECL interface levels.  
TEST  
VCC  
FOUT, nFOUT  
nc  
Power  
Output  
Unused  
Core supply pins.  
Differential output pair for the synthesizer. LVPECL interface levels.  
No connect.  
Clocks the serial data present at S_DATA input into the shift register on the rising edge  
of S_CLOCK. LVCMOS/LVTTL interface levels.  
S_CLOCK  
S_DATA  
Input  
Input  
Pulldown  
Pulldown  
Pulldown  
Shift register serial input. Data sampled on the rising edge of S_CLOCK.  
LVCMOS/LVTTL interface levels.  
Controls transition of data from shift register into the M divider.  
LVCMOS/LVTTL interface levels.  
S_LOAD  
VCCA  
Input  
Power  
Input  
Analog supply pin.  
XTAL_IN  
XTAL_OUT  
Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.  
Parallel load input. Determines when data present at M8:M0 is loaded into M divider,  
and when data present at N1:N0 sets the N output divider value. LVCMOS/LVTTL  
interface levels.  
nP_LOAD  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
kΩ  
RPULLDOWN Input Pulldown Resistor  
kΩ  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
3
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Function Tables  
Table 3A. Parallel and Serial Mode Function Table  
Inputs  
nP_LOAD  
M
N
S_LOAD  
S_CLOCK  
S_DATA Conditions  
X
X
X
X
X
X
Reset. M and N bits are all set HIGH.  
Data on M and N inputs passed directly to the M divider and  
N output divider. TEST mode 000.  
L
Data  
Data  
X
Data  
Data  
X
X
L
L
X
X
L
X
Data is latched into input registers and remains loaded until  
next LOW transition or until a serial event occurs.  
X
Serial input mode. Shift register is loaded with data on S_DATA  
on each rising edge of S_CLOCK.  
H
H
Data  
Data  
Contents of the shift register are passed to the M divider and  
N output divider.  
X
X
H
H
X
X
X
X
L
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
L
X
NOTE:L = LOW  
H = HIGH  
X = Don’t care  
= Rising edge transition  
= Falling edge transition  
Table 3B. Programmable VCO Frequency Function Table  
256  
M8  
0
128  
M7  
1
64  
M6  
1
32  
M5  
1
16  
M4  
1
8
M3  
1
4
M2  
0
2
M1  
1
1
M0  
0
VCO Frequency  
(MHz)  
M Divide  
250  
251  
252  
253  
250  
251  
252  
253  
0
1
1
1
1
1
0
1
1
0
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
0
1
509  
510  
511  
509  
510  
511  
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
NOTE 1: These M divide values and the resulting frequencies correspond to a crystal frequency of 16MHz.  
Table 3C. Programmable Output DividerFunction Table  
Inputs  
Output Frequency (MHz)  
Minimum Maximum  
250 700  
N1  
0
N0  
0
N Divider Value  
1
2
4
8
0
1
125  
62.5  
350  
175  
87.5  
1
0
1
1
31.25  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
4
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC+ 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA  
28 Lead SOIC  
28 Lead PLCC  
46.2°C/W (0 lfpm)  
37.8°C/W (0 lfpm)  
Storage Temperature, TSTG  
-65°C to 150°C  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VCC = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
3.465  
125  
Units  
V
VCC  
VCCA  
ICC  
Core Supply Voltage  
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
V
mA  
mA  
ICCA  
15  
Table 4B. LVCMOS/LVTTL DC Characteristics, VCC = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VCC + 0.3  
0.8  
Units  
VIH  
VIL  
Input High Voltage  
2
V
V
Input Low Voltage  
-0.3  
S_CLOCK,  
S_DATA, S_LOAD  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
VCC = 3.465V, VIN = 0V  
150  
5
µA  
µA  
µA  
Input  
High Current  
IIH  
nP_LOAD,  
M0:M8, N0, N1  
S_CLOCK,  
S_DATA, S_LOAD  
-5  
Input  
Low Current  
IIL  
nP_LOAD,  
M0:M8, N0, N1  
VCC = 3.465V, VIN = 0V  
VCC = 3.3V 5%  
-150  
2.6  
µA  
V
VOH  
VOL  
Output High Voltage TEST; NOTE 1  
Output  
TEST; NOTE 1  
Low Voltage  
VCC = 3.3V 5%  
0.5  
V
NOTE 1: Outputs terminated with 50to VCC/2. See Parameter Measurement Information section. Load Test Circuit diagrams.  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
5
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Table 4C. LVPECL DC Characteristics, VCC = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCC – 1.4  
VCC– 2.0  
0.6  
Typical  
Maximum  
VCC – 0.9  
VCC – 1.7  
1.0  
Units  
µA  
Output High Current; NOTE 1  
Output Low Current; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VOL  
µA  
VSWING  
V
NOTE 1: Outputs terminated with 50to VCC – 2V.  
Table 5. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
10  
25  
50  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
pF  
1
mW  
Table 6. Input Frequency Characteristics, VCC = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
MHz  
MHz  
XTAL_IN, XTAL_OUT; NOTE 1  
S_CLOCK  
10  
25  
50  
Input  
fIN  
Frequency  
NOTE 1: For the crystal frequency range, the M value must be set to achieve the minimum or maximum VCO frequency range of 250MHz  
to 700MHz range. Using the minimum input frequency of 10MHz, valid values of M are 400 M 511. Using the maximum input  
frequency of 25MHz, valid values of M are 160 M 448.  
AC Electrical Characteristics  
Table 7. AC Characteristics, VVCC = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
700  
35  
Units  
MHz  
ps  
fOUT  
Output Frequency  
f
OUT 50MHz  
fOUT < 50MHz  
OUT 65MHz  
tjit(cc)  
Cycle-to-Cycle Jitter; NOTE 1, 2  
Period Jitter, RMS; NOTE 1, 2  
50  
ps  
f
5.5  
ps  
tjit(per)  
fOUT < 65MHz  
20% to 80%  
12  
ps  
tR / tF  
tS  
Output Rise/Fall Time  
Setup Time  
300  
5
800  
ps  
ns  
tH  
Hold Time  
5
ns  
odc  
tLOCK  
Output Duty Cycle  
PLL Lock Time  
45  
50  
55  
10  
%
ms  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the  
device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after  
thermal equilibrium has been reached under these conditions.  
See Parameter Measurement Information section.  
Characterized using XTAL inputs.  
NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 2: See Applications Section.  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
6
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Parameter Measurement Information  
2V  
VOH  
VREF  
SCOPE  
V
CC,  
Qx  
VOL  
V
CCA  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
LVPECL  
nQx  
Histogram  
Reference Point  
(Trigger Edge)  
VEE  
Mean Period  
(First edge after trigger)  
-1.3V 0.165V  
3.3 LVPECL Output Load AC Test Circuit  
Period Jitter  
nFOUT  
FOUT  
nFOUT  
FOUT  
80%  
80%  
tR  
VSWING  
20%  
tcycle n  
tcycle n+1  
20%  
tjit(cc) = tcycle n – tcycle n+1  
tF  
|
|
1000 Cycles  
Cycle-to-Cycle Jitter  
Output Rise/Fall Time  
S_DATA  
nFOUT  
FOUT  
tPW  
tHOLD  
S_CLOCK  
tSET-UP  
tPERIOD  
S_LOAD  
tPW  
odc =  
x 100%  
tPERIOD  
tSET-UP  
M0:M8  
N0:N1  
Output Duty Cycle/Pulse Width/Period  
tHOLD  
nP_LOAD  
tSET-UP  
Setup and Hold Time  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
7
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Application Information  
Power Supply Filtering Technique  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter perform-  
ance, power supply isolation is required. The ICS84329B-01  
provides separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC and VCCA should  
be individually connected to the power supply plane through vias,  
and 0.01µF bypass capacitors should be used for each pin. Figure  
2 illustrates this for a generic VCC pin and also shows that VCCA  
requires that an additional 10resistor along with a 10µF bypass  
capacitor be connected to the VCCA pin.  
3.3V  
VCC  
.01µF  
.01µF  
10  
VCCA  
10µF  
Figure 2. Power Supply Filtering  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
TEST Output  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional  
protection. A 1kresistor can be used.  
The unused TEST output can be left floating. There should be no  
trace attached.  
LVPECL Outputs  
The unused LVPECL output pair can be left floating. We  
recommend that there is no trace attached. Both sides of the  
differential output pair should either be left floating or terminated.  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
8
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Crystal Input Interface  
The ICS84329B-01 has been characterized for either series or  
parallel mode operation. The ICS84329B-01 has a built-in crystal  
oscillator circuit. This interface can accept either a series or parallel  
crystal without additional components and generate frequencies  
with accuracy suitable for most applications. Additional accuracy  
can be achieved by adding two small capacitors C1 and C2 as  
shown in Figure 3.  
XTAL_IN  
C1  
18p  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
22p  
Figure 3. Crystal Input Interface  
LVCMOS to XTAL Interface  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 4. The XTAL_OUT pin can be left floating. The  
input edge rate can be as slow as 10ns. For LVCMOS inputs, it is  
recommended that the amplitude be reduced from full swing to half  
swing in order to prevent signal interference with the power rail and  
to reduce noise. This configuration requires that the output  
impedance of the driver (Ro) plus the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination  
at the crystal input will attenuate the signal in half. This can be  
done in one of two ways. First, R1 and R2 in parallel should equal  
the transmission line impedance. For most 50applications, R1  
and R2 can be 100. This can also be accomplished by removing  
R1 and making R2 50.  
VCC  
VCC  
R1  
0.1µf  
50Ω  
Ro  
Rs  
XTAL_IN  
R2  
Zo = Ro + Rs  
XTAL_OUT  
Figure 4. General Diagram for LVCMOS Driver to XTAL Input Interface  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
9
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
60  
50  
40  
30  
20  
10  
0
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525  
Output Frequency (MHz)  
Figure 5A. Cycle-to-Cycle Jitter vs. fOUT (using a 16MHz crystal)  
14  
12  
10  
8
6
4
2
0
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525  
Output Frequency (MHz)  
Figure 5B. RMS Jitter vs. fOUT (using a 16MHz crystal)  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
10  
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be  
used to maximize operating frequency and minimize signal  
distortion. Figures 6A and 6B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and  
clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Z
o = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
Zo = 50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
Figure 6A. 3.3V LVPECL Output Termination  
Figure 6B. 3.3V LVPECL Output Termination  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
11  
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Layout Guideline  
The schematic of the ICS84329B-01 layout example used in this  
layout guideline is shown in Figure 7A. The ICS84329B-01  
recommended PCB board layout for this example is shown in  
Figure 7B. This layout example is used as a general guideline. The  
layout in the actual system will depend on the selected component  
types, the density of the components, the density of the traces, and  
the stack up of the P.C. board.  
C1  
0.1uF  
C3  
16MHz,18pF  
X1  
22p  
VCC  
VCC=3.3V  
C4  
R7  
10  
SP = Space (i.e. not intstalled)  
M4  
12  
13  
14  
15  
16  
17  
18  
4
22p  
M4  
M5  
M6  
M7  
M8  
N0  
N1  
XTALI N  
3
M5  
M6  
M7  
M8  
N2  
N1  
M[8:0]= 110010000 (400)  
nc  
2
N[1:0] =01 (Divide by 2)  
nc  
1
VCCA  
VCCA  
28  
S_LOAD  
27  
S_DATA  
26  
C11  
0.01u  
C16  
10u  
S_CLOCK  
U1  
84329BV_01  
C1  
VCC  
0.1uF  
Zo = 50 Ohm  
Fout = 200 MHz  
RU0  
SP  
RU1  
SP  
RU7  
RU8  
1K  
RU9  
SP  
RU10  
1K  
RU11  
SP  
C2  
0.1u  
1K  
Zo = 50 Ohm  
R2  
50  
R1  
50  
RD0  
1K  
RD1  
1K  
RD7  
SP  
RD8  
SP  
RD9  
1K  
RD10  
SP  
RD6  
1K  
R3  
50  
Figure 7A. ICS84329B-01 Schematic of Recommended Layout  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
12  
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
The following component footprints are used in this layout  
example: All the resistors and capacitors are size 0603.  
• The differential 50output traces should have the same  
length.  
• Avoid sharp angles on the clock trace. Sharp angle turns  
cause the characteristic impedance to change on the  
transmission lines.  
Power and Grounding  
Place the decoupling capacitors C1, C2 and C3, as close as  
possible to the power pins. If space allows, placement of the  
decoupling capacitor on the component side is preferred. This can  
reduce unwanted inductance between the decoupling capacitor  
and the power pin caused by the via.  
• Keep the clock traces on the same layer. Whenever  
possible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
Maximize the power and ground pad sizes and number of vias  
capacitors. This can reduce the inductance between the power and  
ground planes and the component power and ground pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
The RC filter consisting of R7, C11, and C16 should be placed as  
close to the VCCA pin as possible.  
Clock Traces and Termination  
• Make sure no other signal traces are routed between the  
clock trace pair.  
Poor signal integrity can degrade the system performance or cause  
system failure. In synchronous high-speed digital systems, the  
clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
trace delay might be restricted by the available space on the board  
and the component location. While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
• The matching termination resistors should be located as  
close to the receiver input pins as possible.  
Crystal  
The crystal X1 should be located as close as possible to the pins  
4 (XTAL_IN) and 5 (XTAL_OUT). The trace length between the X1  
and U1 should be kept to a minimum to avoid unwanted parasitic  
inductance and capacitance. Other signal traces should not be  
routed near the crystal traces.  
X1  
C3  
U1  
GND  
VCC  
PIN 2  
C16  
C11  
R7  
VCCA  
VIA  
PIN 1  
VCCA  
Signals  
Traces  
C1  
C2  
50 Ohm  
Traces  
Figure 7B. PCB Board Layout for ICS84314-02  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
13  
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS84329B-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS84329B-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 140mA = 485mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
Total Power_MAX (3.3V, with all outputs switching) = 485mW + 30mW = 515mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device.  
The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a moderate  
air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 31.1°C/W per Table 8A below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.515W * 31.1°C/W = 86°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type  
of board (multi-layer).  
Table 8A. Thermal Resistance θJA for 28 Lead PLCC, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.8°C/W  
31.1°C/W  
28.3°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
Table 8B. Thermal Resistance θJA for 28 Lead SOIC, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
76.2°C/W  
46.2°C/W  
60.8°C/W  
39.7°C/W  
53.2°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
14  
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 8.  
VCC  
Q1  
VOUT  
RL  
50Ω  
VCC - 2V  
Figure 8. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage  
of VCC – 2V.  
For logic high, VOUT = VOH_MAX = VCC_MAX – 0.9V  
(VCC_MAX – VOH_MAX) = 0.9V  
For logic low, VOUT = VOL_MAX = VCC_MAX 1.7V  
(VCC_MAX – VOL_MAX) = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOH_MAX) = [(2V – (VCC_MAX – VOH_MAX))/RL] * (VCC_MAX – VOH_MAX) =  
[(2V – 0.9V)/50] * 0.9V = 19.8mW  
Pd_L = [(VOL_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOL_MAX) = [(2V – (VCC_MAX – VOL_MAX))/RL] * (VCC_MAX – VOL_MAX) =  
[(2V – 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
15  
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Reliability Information  
Table 9A. θJA vs. Air Flow Table for a 28 Lead SOIC  
θJA vs. Air Flow  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
76.2°C/W  
46.2°C/W  
60.8°C/W  
39.7°C/W  
53.2°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
Table 9B. θJA vs. Air Flow Table for a 28 Lead PLCC  
Linear Feet per Minute  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.8°C/W  
31.1°C/W  
28.3°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
Transistor Count  
The transistor count for ICS84329B-01 is: 4408  
Pin compatible with the SY89429  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
16  
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Package Outline and Package Dimensions  
Package Outline - M Suffix for 28 Lead SOIC  
Table 10A. Package Dimensions for 28 Lead SOIC  
JEDEC: 300 MIL  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
A1  
A2  
B
C
D
E
28  
2.65  
0.10  
2.05  
0.33  
0.18  
17.70  
7.40  
2.55  
0.51  
0.32  
18.40  
7.60  
e
1.27 Basic  
10.00  
H
h
10.65  
0.75  
1.27  
8°  
0.25  
0.40  
0°  
L
α
Reference Document: JEDEC Publication 95, MS-013, MS-119  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
17  
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Package Outline - V Suffix for 28 Lead PLCC  
Table 10B. Package Dimensions for 28 Lead PLCC  
JEDEC  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
28  
4.19  
2.29  
1.57  
0.33  
0.19  
12.32  
11.43  
4.85  
4.57  
3.05  
2.11  
0.53  
0.32  
12.57  
11.58  
5.56  
A1  
A2  
b
c
D & E  
D1 & E1  
D2 & E2  
Reference Document: JEDEC Publication 95, MS-018  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
18  
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Ordering Information  
Table 11. Ordering Information  
Part/Order Number  
84329BV-01  
84329BV-01T  
84329BM-01  
84329BM-01T  
84329BM-01LF  
84329BM-01LFT  
Marking  
Package  
28 Lead PLCC  
28 Lead PLCC  
28 Lead SOIC  
28 Lead SOIC  
Shipping Packaging  
Tube  
500 Tape & Reel  
Tube  
1000 Tape & Reel  
Tube  
1000 Tape & Reel  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS84329BV-01  
ICS84329BV-01  
ICS84329BM-01  
ICS84329BM-01  
ICS84329BM-01LF  
ICS84329BM-01LF  
“Lead-Free” 28 Lead SOIC  
“Lead-Free” 28 Lead SOIC  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for  
the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements  
are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any  
IDT product for use in life support devices or critical medical instruments.  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
19  
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
2
Paragraph 2 changed series resonant crystal to parallel resonant crystal.  
Ordering Information Table - added ""ICS"" to the marking.  
A
11/1/04  
T11  
18  
1
2
Features Section - added Lead-Free bullet.  
Updated Parallel & Serial Load Operations diagram.  
T3A  
4
Parallel & Serial Mode Function Table - corrected S_LOAD column 3rd row, from X to  
L.  
A
5/23/05  
T5  
6
Crystal Table - added Drive Level.  
T11  
18  
Ordering Information Table - added Lead-Free part numbers and note.  
A
B
1
1
Features Section - corrected Output frequency range from 25MHz to 31.25MHz.  
6/10/05  
3/26/09  
PLCC Pin Assignment, corrected pin 5 typo from XTAL2_OUT to XTAL_OUT.  
Converted datasheet format.  
IDT™ / ICS™ LVPECL FREQUENCY SYNTHESIZER  
20  
ICS84329BM-01 REV. B MARCH 26, 2009  
ICS84329B-01  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Contact Information:  
www.IDT.com  
Corporate Headquarters  
Sales  
Technical Support  
Integrated Device Technology, Inc.  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
netcom@idt.com  
+480-763-2056  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
www.IDT.com/go/contactIDT  
© 2009 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
www.IDT.com  
Printed in USA  

相关型号:

ICS84329BV-01LFT

Clock Generator, 700MHz, PQCC28, 11.60 X 11.40 MM, 4.10 MM HEIGHT, PLASTIC, MS-018, LCC-28
IDT

ICS84329BV-01T

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84329BVLF

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84329BVLFT

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84329BVT

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84329BY

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84329BYLF

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84329BYLFT

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84329BYT

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8432AY-111

PLL Based Clock Driver, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8432AY-111LFT

PLL Based Clock Driver, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8432AY-51LF

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT