ICS8432AY-51LFT [IDT]

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32;
ICS8432AY-51LFT
型号: ICS8432AY-51LFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32

时钟 外围集成电路 晶体
文件: 总16页 (文件大小:166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
ICS8432-51  
Integrated  
Circuit  
Systems, Incꢀ  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
GENERAL DESCRIPTION  
FEATURES  
The ICS8432-51 is a general purpose, dual output Dual differential 3.3V LVPECLoutput  
Crystal-to-3.3V Differential LVPECLHigh Frequency  
Synthesizer and a member of the HiPerClockS™  
family of High Performance Clocks Solutions from  
ICS. The ICS8432-51 has a selectable TEST_CLK  
Selectable crystal oscillator interface or LVCMOS  
TEST_CLK  
HiPerClockS™  
TEST_CLK can accept the following input levels:  
or crystal inputs. The TEST_CLK input accepts LVCMOS or  
LVTTLinput levels and translates them to 3.3V LVPECL levels.  
The VCO operates at a frequency range of 200MHz to  
700MHz. The VCO frequency is programmed in steps equal  
to the value of the input reference or crystal frequency.  
The VCO and output frequency can be programmed using  
the serial or parallel interfaces to the configuration logic.  
The low phase noise characteristics of the ICS8432-51 makes  
it an ideal clock source for Gigabit Ethernet, Fiber Channel 1 and  
2, and Infiniband applications.  
LVCMOS or LVTTL  
Maximum output frequency up to 700MHz  
Maximum crystal or TEST_CLK input frequency up to  
25MHz  
VCO range: 200MHz to 700MHz  
Parallel or serial interface for programming counter and  
output dividers  
RMS period jitter: TBDps (typical)  
Cycle-to-cycle jitter: 30ps (typical)  
3.3V supply voltage  
0°C to 70°C ambient operating temperature  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
VCO_SEL  
XTAL_SEL  
TEST_CLK  
0
32 31 30 29 28 27 26 25  
XTAL1  
1
M5  
OSC  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
XTAL1  
XTAL2  
M6  
M7  
M8  
N0  
N1  
nc  
TEST_CLK  
XTAL_SEL  
VCCA  
ICS8432-51  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
PLL  
PHASE DETECTOR  
MR  
0
1
VEE  
VCO  
FOUT0  
nFOUT0  
FOUT1  
nFOUT1  
÷ N  
9
10 11 12 13 14 15 16  
÷ M  
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
CONFIGURATION  
INTERFACE  
LOGIC  
TEST  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
M0:M8  
N0:N1  
Y Package  
Top View  
The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial  
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.  
8432AY-51  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 20, 2001  
1
PRELIMINARY  
ICS8432-51  
Integrated  
Circuit  
Systems, Incꢀ  
700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
FUNCTIONAL DESCRIPTION  
NOTE: The functional description that follows describes operation using a 25MHz crystal. Valid PLL loop divider values for  
different crystal or input frequencies are defined in the Input Frequency Characteristics, Table 6, NOTE 1.  
The ICS8432-51 features a fully integrated PLL and therefore requires no external components for setting the loop bandwidth.  
A fundamental crystal is used as the input to the on-chip oscillator. The output of the oscillator is fed into the phase detector.  
A 25MHz crystal provides a 25MHz phase detector reference frequency. The VCO of the PLL operates over a range of  
200MHz to 700MHz. The output of the loop divider is also applied to the phase detector.  
The phase detector and the loop filter divider force the VCO output frequency to be M times the reference frequency by  
adjusting the VCO control voltage. Note that for some values of M (either too high or too low) the PLL will not achieve lock. The  
output of the VCO is scaled by a divider prior to being sent to each of the LVPECL output buffers. The divider provides a 50%  
output duty cycle.  
The programmable features of the ICS8432-51 support two input modes and programmable PLL loop divider and output  
divider. The two input operational modes are parallel and serial. Figure 1 shows the timing diagram for each mode. In parallel  
mode the nP_LOAD input is initially LOW. The data on inputs M0 through M8 and N0 and N1 is passed directly to the ripple  
counter. On the LOW-to-HIGH transition of the nP_LOAD input the data is latched and the ripple counter remains loaded until  
the next LOW transition on nP_LOAD or until a serial event occurs. As a result the M and N bits can be hardwired to set the  
ripple counter to a specific default state that will automatically occur during power-up. The TEST output is LOW when operat-  
ing in the parallel input mode. The relationship between the VCO frequency, the crystal frequency and the loop divider is  
defined as follows:  
fVCO = fxtal x M  
The M count and the required values of M0 through M8 are shown in Table 4B, Programmable VCO Frequency Function.  
Valid M values for which the PLL will achieve lock for a 25MHz reference are defined as 8 M 28. The frequency out is  
defined as follows:  
FOUT = fVCO = fxtal x M  
N
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD is LOW. The shift register is loaded by sampling the  
S_DATA bits with the rising edge of S_CLOCK. The contents of the shift register are loaded into the ripple counter when  
S_LOAD transitions from LOW-to-HIGH. The ripple counter divide values are latched on the HIGH-to-LOW transition of  
S_LOAD. If S_LOAD is held HIGH data at the S_DATA input is passed directly to the ripple counter on each rising edge of  
S_CLOCK. The serial mode can be used to program the M and N bits and test bits T1 and T0. The internal registers T0 and T1  
determine the state of the TEST output as follows:  
T1 T0  
TEST Output  
LOW  
0
0
1
1
0
1
0
1
S_Data  
Output of M divider  
CMOS Fout  
T1  
T0  
*NULL  
N1  
N0  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
M0  
S_DATA  
S_CLOCK  
S_LOAD  
M0:M8, N0:N1  
nP_LOAD  
Time  
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
*NOTE: The NULL timing slot must be observed.  
8432AY-51  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 20, 2001  
2
PRELIMINARY  
ICS8432-51  
Integrated  
Circuit  
Systems, Incꢀ  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Pullup  
Description  
1
M5  
Input  
Input  
M counter/divider inputs. Data latched on LOW-to-HIGH transistion  
of nP_LOAD input. LVCMOS / LVTTL interface levels.  
2, 3, 4,  
28, 29,  
30, 31, 32  
M6, M7, M8,  
M0, M1,  
M2, M3, M4  
Pulldown  
Pulldown  
Determines output divider value as defined in Table 4C Function  
table. LVCMOS / LVTTL interface levels.  
5, 6  
N0, N1  
Input  
7
nc  
Unused  
Power  
No connect.  
8, 16  
VEE  
Negative supply pins. Connect to ground.  
Test output which is ACTIVE in the serial mode of operation.  
Output driven LOW in parallel mode. LVCMOS interface levels.  
9
TEST  
VCC  
Output  
Power  
Output  
Power  
Output  
10  
Positive supply pin.  
Differential output for the synthesizer.  
3.3V LVPECL interface levels.  
11, 12  
13  
FOUT1, nFOUT1  
VCCO  
Output supply pin. Connect to 3.3V.  
Differential output for the synthesizer.  
3.3V LVPECL interface levels.  
14, 15  
FOUT0, nFOUT0  
Forces outputs LOW, but does not effect loaded M, N, and T  
values. LVCMOS / LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift register  
on the rising edge of S_CLK.  
Shift register serial input. Data sampled on the rising edge of  
S_CLK.  
17  
18  
19  
MR  
Input  
Input  
Input  
Pulldown  
Pulldown  
Pulldown  
Pulldown  
S_CLOCK  
S_DATA  
Controls transition of data from shift register into the ripple counter.  
LVCMOS / LVTTL interface levels.  
20  
21  
S_LOAD  
VCCA  
Input  
Power  
Analog supply pin. Connect to 3.3V.  
Selects between crystal or test inputs as the PLL reference  
source. LVCMOS / LVTTL interface levels. Selects XTAL inputs  
when HIGH. Selects TEST_CLK when LOW.  
22  
XTAL_SEL  
Input  
Pullup  
23  
TEST_CLK  
Input  
Input  
Pulldown Test clock input. LVCMOS / LVTTL interface levels.  
Crystal oscillator inputs.  
24, 25  
XTAL1, XTAL2  
Parallel load input. Determines when data present at M8:M0 is  
Pulldown loaded into ripple counter, and when data present at N1:N0 sets  
the output divide value. LVCMOS / LVTTL interface levels.  
26  
27  
nP_LOAD  
VCO_SEL  
Input  
Input  
Determines whether synthesizer is in PLL or bypass mode.  
Pullup  
LVCMOS / LVTTL interface levels.  
NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
8432AY-51  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 20, 2001  
3
PRELIMINARY  
ICS8432-51  
Integrated  
Circuit  
Systems, Incꢀ  
700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
KΩ  
KΩ  
RPULLUP  
RPULLDOWN  
51  
51  
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
Reset. M and N counters reset.  
MR nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
H
X
X
X
X
X
X
Data on M and N inputs passed directly to the  
ripple counter and output divider.  
TEST output forced LOW.  
Data is latched into input registers and remains  
loaded until next LOW transition or until a serial  
event occurs.  
L
L
Data Data  
Data Data  
X
X
X
L
L
X
X
Serial input mode. Shift register is loaded with  
data on S_DATA on each rising edge of  
S_CLOCK.  
Contents of the shift register are passed to the  
ripple counter and output divider.  
Ripple counter and output divide values are  
latched.  
L
L
H
H
X
X
X
X
L
Data  
Data  
L
L
L
H
H
X
X
X
X
L
Data  
X
L
X
Parallel or serial input do not affect shift registers.  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE  
256  
M8  
0
128  
M7  
0
64  
M6  
0
32  
M5  
0
16  
M4  
0
8
M3  
1
4
M2  
0
2
M1  
0
1
M0  
0
VCO Frequency  
(MHz)  
M Count  
200  
225  
250  
275  
8
9
0
0
0
0
0
1
0
0
1
10  
11  
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
1
650  
675  
700  
26  
27  
28  
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
1
0
0
0
0
1
1
1
0
0
NOTE 1: These M count values and the resulting frequency correspond to crystal or test clock input frequency of 25MHz.  
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Inputs  
Output Frequency (MHz)  
N Divider Value  
N1  
0
N0  
0
Minimum  
Maximum  
700  
1
2
4
8
200  
100  
50  
0
1
350  
1
0
175  
1
1
25  
87.5  
8432AY-51  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 20, 2001  
4
PRELIMINARY  
ICS8432-51  
Integrated  
Circuit  
Systems, Incꢀ  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCCX  
Inputs, VCC  
Outputs, VCCO  
4.6V  
-0.5V to VCC + 0.5 V  
-0.5V to VCCO + 0.5V  
Package Thermal Impedance, θJA 47.9°C/W (0 lfpm)  
Storage Temperature, TSTG -65°C to 150°C  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are  
stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC  
Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may  
affect product reliability.  
TABLE 5A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
Positive Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
3.465  
3.465  
3.465  
110  
V
V
VCCA  
VCCO  
IEE  
3.135  
3.3  
3.135  
3.3  
V
mA  
TABLE 5B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input  
VIH  
All input pins, except for  
High Voltage XTAL1 and XTAL2  
2
VCC + 0.3  
0.8  
V
V
Input  
Low Voltage XTAL1 and XTAL2  
M0-M4, M6-M8, N0, N1, MR,  
All input pins, except for  
VIL  
-0.3  
S_CLOCK, TEST_CLK,  
S_DATA, S_LOAD, nP_LOAD  
*VCCx = VIN = 3.465V  
150  
5
µA  
µA  
µA  
Input  
High Current  
IIH  
M5, XTAL_SEL, VCO_SEL  
VCCx = VIN = 3.465V  
M0-M4, M6-M8, N0, N1, MR,  
S_CLOCK, TEST_CLK,  
S_DATA, S_LOAD, nP_LOAD  
VCCx = 3.465V,  
-5  
VIN = 0V  
Input  
Low Current  
IIL  
VCCx = 3.465V,  
VIN = 0V  
M5, XTAL_SEL, VCO_SEL  
-150  
2.6  
µA  
V
VCCx = 3.135V,  
IOH = -36mA  
Output  
High Voltage  
VOH  
VOL  
TEST  
TEST  
VCCx = 3.135V,  
IOL = 36mA  
Output  
Low Voltage  
0.5  
V
*NOTE 1: VCCx denotes VCC, VCCA, and VCCO  
.
8432AY-51  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 20, 2001  
5
PRELIMINARY  
ICS8432-51  
Integrated  
Circuit  
Systems, Incꢀ  
700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
TABLE 5C. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 2.1  
VCCO - 2.0  
0.6  
VCCO - 1.0  
VCCO -1.6  
0.85  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50 to VCCO - 2V.  
TABLE 6. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
TEST_CLK; NOTE 1  
XTAL1, XTAL2; NOTE 1  
S_CLOCK  
12  
12  
25  
25  
50  
MHz  
MHz  
MHz  
Maximum  
fIN  
Input Frequency  
NOTE 1: For the input crystal and TEST_CLK frequency range the M value must be set for the VCO to operate within the  
200MHz to 700MHz range. Using the minimum input frequency of 12MHz valid values of M are 17 M 58. Using the  
maximum frequency of 25MHz valid values of M are 8 M 28.  
TABLE 7. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Fundamental  
Frequency  
12  
50  
25  
80  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
nH  
°C  
Series Pin Inductance  
Operating Temperature Range  
3
0
7
70  
TABLE 8. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FOUT  
tjit(cc)  
tjit(per)  
tsk(o)  
tR  
Maximum Output Frequency  
25  
700  
MHz  
ps  
Cycle-to-Cycle Jitter, RMS; NOTE 1, 3  
Period Jitter, RMS; NOTE 1, 3  
Output Skew; NOTE 2, 3  
Output Rise Time  
30  
ps  
10  
700  
700  
5
ps  
20% to 80% @ 50MHz  
20% to 80% @ 50MHz  
300  
300  
ps  
tF  
Output Fall Time  
ps  
M, N to nP_LOAD  
ns  
tS  
Setup Time  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
5
5
5
ns  
tH  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
5
odc  
Output Duty Cycle  
PLL Lock Time  
47  
53  
10  
%
tLOCK  
ms  
All parameters measured at 500MHz unless noted otherwise.  
NOTE 1: Jitter performance using Xtal inputs.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
8432AY-51  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 20, 2001  
6
PRELIMINARY  
ICS8432-51  
Integrated  
Circuit  
Systems, Incꢀ  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
PARAMETER MEASUREMENT INFORMATION  
VCC, VCCA, VCCO  
SCOPE  
Qx  
LVPECL  
VCC, VCCA, VCCO = 2.0V  
nQx  
VEE = -1.3V ± 0.135V  
FIGURE 1 - 3.3V OUTPUT LOAD TEST CIRCUIT  
nFOUTx  
FOUTx  
nFOUTy  
FOUTy  
tsk(o)  
FIGURE 2 - OUTPUT SKEW  
80%  
80%  
VSWING  
20%  
20%  
Clock Inputs  
and Outputs  
tR  
tF  
FIGURE 3 - INPUT AND OUTPUT RISE AND FALL TIME  
8432AY-51  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 20, 2001  
7
PRELIMINARY  
ICS8432-51  
Integrated  
Circuit  
Systems, Incꢀ  
700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
nFOUTx  
TEST, FOUTx  
Pulse Width  
tPERIOD  
tPW  
tPERIOD  
odc =  
FIGURE 4 - odc & tPERIOD  
IDEAL OUTPUT  
VOH  
V
ref  
VOL  
1
fo  
ACTUALOUTPUT  
VOH  
V
ref  
VOL  
tcycle n  
where fo is the nominal output frequency and  
tcycle n is any cycle within the sample measured  
on controlled edges  
tjit(per) = tcycle n - 1  
fo  
FIGURE 5 - Period Jitter  
nFOUTx  
FOUTx  
tcycle n+1  
tcycle n  
tjit(cc) = tcycle n tcycle n+1  
FIGURE 6 - Cycle-to-Cycle Jitter  
8432AY-51  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 20, 2001  
8
PRELIMINARY  
ICS8432-51  
Integrated  
Circuit  
Systems, Incꢀ  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
APPLICATIONS  
STORAGE AREA NETWORKS  
Avariety of technologies are used for interconnection of the elements within a SAN. The tables below lists the common frequencies  
used as well as the settings for the ICS8432-51 to generate the appropriate frequency.  
Table 9. Common SANs Applications Frequencies  
Reference Freq. to SERDES  
(MHz)  
Crystal Frequency  
(MHz)  
Interconnect Technology  
Gigabit Ethernet  
Fibre Channel  
Clock Rate  
1.25 GHz  
125, 250, 156.25  
106.25, 53.125, 132.81  
125, 250  
25, 25, 19.53  
16.6, 25, 26.563  
25, 25  
FC1 1.0625 GHz  
FC2 2.1250 GHz  
Infiniband  
2.5 GHz  
Table 10. Configuration Details for SANs Applications  
ICS8432-01  
ICS8432-51  
Interconnect  
Technology  
Crystal Frequency  
(MHz)  
Output Frequency  
to SERDES  
(MHz)  
M & N Settings  
M8 M7 M6 M5 M4 M3 M2 M1 M0 N1 N0  
25  
25  
125  
250  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
1
1
0
0
0
1
0
1
1
1
0
0
0
0
0
0
1
0
1
1
0
Gigabit Ethernet  
19.53  
25  
156.25  
53.125  
106.25  
132.81  
125  
Fiber Channel 1  
Fiber Channel 2  
Infiniband  
25  
16.6  
25  
25  
250  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS8432-51 provides  
separate power supplies to isolate any high switching noise  
from the outputs to the internal PLL. VCC, VCCA, and VCCO should  
be individually connected to the power supply plane through  
vias, and bypass capacitors should be used for each pin. To  
achieve optimum jitter performance, better power supply  
isolation is required. Figure 7 illustrates how a 10along with  
a 10µF and a .01µF bypass capacitor should be connected to  
each power supply pin.  
3.3V  
VCC  
.01µF  
.01µF  
10Ω  
VCCA  
10 µF  
FIGURE 7. POWER SUPPLY FILTERING  
www.icst.com/products/hiperclocks.html REV. A AUGUST 20, 2001  
8432AY-51  
9
PRELIMINARY  
ICS8432-51  
Integrated  
Circuit  
Systems, Incꢀ  
700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
TERMINATION FOR LVPECL OUTPUTS  
drive 50transmission lines. Matched impedance techniques  
should be used to maximize operating frequency and mini-  
mize signal distortion. There are a few simple termination  
schemes. Figures 8A and 8B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs. The two different layouts mentioned  
are recommended only as guidelines.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, termi-  
nating resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
Zo = 50Ω  
5
2
5
Zo  
Zo  
2
FIN  
FOUT  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
Zo = 50Ω  
VCC - 2V  
Zo = 50Ω  
RTT  
1
3
2
3
Zo  
RTT =  
Zo  
Zo  
2
(VOH + VOL / VCC 2) 2  
FIGURE 8A. LVPECL OUTPUT TERMINATION  
FIGURE 8B. LVPECL OUTPUT TERMINATION  
LAYOUT GUIDELINE  
The schematic of the ICS8432-51 layout example used in this layout guideline is shown in Figure 9A. The ICS8432-51 recommended  
PCB board layout for this example is shown in Figure 9B. This layout example is used as a general guideline. The layout in the actual  
system will depend on the selected component types, the density of the components, the density of the traces, and the stacking of  
the P.C. board.  
X1  
R7  
VCC  
U1  
10  
C11  
1
24  
23  
22  
21  
20  
19  
18  
17  
0.01u  
C16  
10u  
M5  
M6  
M7  
M8  
N0  
N1  
nc  
XTAL1  
REF_IN  
nXTAL_SEL  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
REF_IN  
XTAL_SEL  
2
3
4
5
6
7
8
S_LOAD  
S_DATA  
S_CLOCK  
MR  
VEE  
Termination A  
Termination  
B (Not shown  
in the layout)  
VCC  
8432-01  
IN+  
R1  
R3  
125  
125  
Zo = 50 Ohm  
IN+  
IN-  
IN-  
TL1  
Zo = 50 Ohm  
R2  
50  
R1  
50  
C14  
0.1u  
C15  
0.1u  
TL2  
R2  
84  
R4  
84  
R3  
50  
FIGURE 9A. RECOMMENDED SCHEMATIC LAYOUT  
www.icst.com/products/hiperclocks.html  
8432AY-51  
REV. A AUGUST 20, 2001  
10  
PRELIMINARY  
ICS8432-51  
Integrated  
Circuit  
Systems, Incꢀ  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
The following component footprints are used in this layout  
example: All the resistors and capacitors are size 0603.  
traces should be routed first and should be locked prior to routing  
other signals traces.  
The traces with 50transmission lines TL1 and TL2 at  
FOUT and nFOUT should have equal delay and run ad-  
jacent to each other.Avoid sharp angles on the clock trace.  
Sharp angle turns cause the characteristic impedance to  
change on the transmission lines.  
POWER AND GROUNDING  
Place the decoupling capacitors C14 and C15 as close as pos-  
sible to the power pins. If space allows, placing the decoupling  
capacitor at the component side is preferred. This can reduce  
unwanted inductance between the decoupling capacitor and the  
power pin generated by the via.  
Keep the clock trace on same layer. Whenever possible,  
avoid any vias on the clock traces. Any via on the trace  
can affect the trace characteristic impedance and hence  
degrade signal quality.  
Maximize the pad size of the power (ground) at the decoupling  
capacitor. Maximize the number of vias between power (ground)  
and the pads. This can reduce the inductance between the power  
(ground) plane and the component power (ground) pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow more space between the clock trace  
and the other signal trace.  
If VCCA shares the same power supply with VCC, insert the RC  
filter R7, C11, and C16 in between. Place this RC filter as close  
to the VCCA as possible.  
Make sure no other signal trace is routed between the  
clock trace pair.  
CLOCK TRACES AND TERMINATION  
The matching termination resistors R1, R2, R3 and R4 should be  
located as close to the receiver input pins as possible. Other termi-  
nation scheme can also be used but is not shown in this example.  
The component placements, locations and orientations should  
be arranged to achieve the best clock signal quality. Poor clock  
signal quality can degrade the system performance or cause  
system failure. In the synchronous high-speed digital system,  
the clock signal is less tolerable to poor signal quality than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The trace shape and the trace  
delay might be restricted by the available space on the board and  
the component location. While routing the traces, the clock signal  
CRYSTAL  
The crystal X1 should be located as close as possible to the pins  
24 (XTAL1) and 25 (XTAL2). The trace length between the X1  
and U1 should be kept to a minimum to avoid unwanted parasitic  
inductance and capacitance. Other signal traces should not be  
routed near the crystal traces.  
X1  
GND  
VCC  
VIA  
U1  
PIN 1  
C11  
C16  
VCCA  
R7  
Close to the input  
pins of the  
receiver  
R4  
R3  
TL1N  
C15  
C14  
TL1  
R2  
R1  
TL1, TL2 are 50 Ohm traces and  
equal length  
FIGURE 9B. PCB BOARD LAYOUT FOR ICS8432-51  
www.icst.com/products/hiperclocks.html  
8432AY-51  
REV. A AUGUST 20, 2001  
11  
PRELIMINARY  
ICS8432-51  
Integrated  
Circuit  
Systems, Incꢀ  
700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8432-51.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8432-51 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 110mA = 381.2mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30.2mW = 60.4mW  
Total Power_MAX (3.465V, with all outputs switching) = 381.2mW + 60.4mW = 441.6mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = junction-to-ambient thermal resistance  
Pd_total = Total device power dissipation (example calculation is in section 1 above)  
TA =Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 11 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.441W * 42.1°C/W = 88.6°C. This is well below the limit of 125°C  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
Table 11. Thermal Resistance qJA for 32-pin LQFP, Forced Convection  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
8432AY-51  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 20, 2001  
12  
PRELIMINARY  
ICS8432-51  
Integrated  
Circuit  
Systems, Incꢀ  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 10.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 10 - LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CC  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(V  
Pd_L = [(V  
(V  
- 2V))/R ] * (V  
- V  
)
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
L
(V  
- 2V))/R ] * (V  
- V  
)
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
L
For logic high, V = V  
= V  
– 1.0V  
OUT  
OH_MAX  
CCO_MAX  
Using V  
= 3.465, this results in V  
= 2.465V  
= 1.765V  
CCO_MAX  
OH_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
Using V  
= 3.465, this results in V  
OL_MAX  
CCO_MAX  
Pd_H =[(2.465V - (3.465V - 2V))/50] * (3.465V - 2.465V) = 20mW  
Pd_L =[(1.765V - (3.465V - 2V))/50] * (3.465V - 1.765V) = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
8432AY-51  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 20, 2001  
13  
PRELIMINARY  
ICS8432-51  
Integrated  
Circuit  
Systems, Incꢀ  
700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
RELIABILITY INFORMATION  
TABLE 12. θJAVS. AIR FLOW TABLE  
qJA by Velocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8432-51 is: 3703  
8432AY-51  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 20, 2001  
14  
PRELIMINARY  
ICS8432-51  
Integrated  
Circuit  
Systems, Incꢀ  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
PACKAGE OUTLINE -Y SUFFIX  
TABLE 13. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
q
--  
0
°
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
8432AY-51  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 20, 2001  
15  
PRELIMINARY  
ICS8432-51  
Integrated  
Circuit  
Systems, Incꢀ  
700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
TABLE 14. ORDERING INFORMATION  
Part/Order Number  
ICS8432AY-51  
Marking  
Package  
32 Lead LQFP  
Count  
250 per tray  
1000  
Temperature  
0°C to 70°C  
0°C to 70°C  
ICS8432AY-51  
ICS8432AY-51  
ICS8432AY-51T  
32 Lead LQFP on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
8432AY-51  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 20, 2001  
16  

相关型号:

ICS8432BI-51L

700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432BI51

700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432BK-51

700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8432BK-51LFT

Clock Generator, 700MHz, 5 X 5 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220, VFQFN-32
IDT

ICS8432BK-51T

700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8432BK-51T

Clock Generator, 700MHz, 5 X 5 MM, 0.95 MM PITCH, VFQFN-32
IDT

ICS8432BKI-51

700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432BKI-51LF

700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432BKI-51LFT

700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432BKI-51T

700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432BY-01LFT

PLL Frequency Synthesizer, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8432BY-01T

PLL Frequency Synthesizer, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT