ICS85314AMI-01LFT [IDT]

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, SOIC-20;
ICS85314AMI-01LFT
型号: ICS85314AMI-01LFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, SOIC-20

驱动 光电二极管 逻辑集成电路
文件: 总15页 (文件大小:138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
ICS85314I-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL FANOUT BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS85314I-01 is a low skew, high performance 5 differential 2.5V/3.3V LVPECL outputs  
1-to-5 Differential-to-3.3V LVPECL fanout buffer  
and a member of the HiPerClockS™ family of  
High Performance Clock Solutions from ICS.  
The ICS85314I-01 has two selectable clock inputs.  
Selectable differential CLK0, nCLK0 or LVCMOS inputs  
HiPerClockS™  
CLK0, nCLK0 pair can accept the following differential  
input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
The CLK0, nCLK0 pair can accept most standard differential  
input levels. The single-ended CLK1 can accept LVCMOS or  
LVTTL input levels. The clock enable is internally synchronized  
to eliminate runt clock pulses on the outputs during asynchro-  
nous assertion/deassertion of the clock enable pin.  
CLK1 can accept the following input levels:  
LVCMOS or LVTTL  
Maximum output frequency: 650MHz  
Translates any single-ended input signal to 3.3V  
LVPECL levels with resistor bias on nCLK input  
Guaranteed output and part-to-part skew characteristics make  
the ICS85314I-01 ideal for those applications demanding well  
defined performance and repeatability.  
Output skew: 50ps (maximum)  
Part-to-part skew: 400ps (maximum)  
Propagation delay: CLK0, nCLK0, 2.1ns (maximum)  
CLK1, 2.1ns (maximum)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.8V, VEE = 0V  
-40°C to 85°C ambient operating temperature  
Compatible to part number MC100LVEL14  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
Q1  
nQ1  
Q2  
nQ2  
Q3  
nQ3  
Q4  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VCC  
nCLK_EN  
VCC  
D
nCLK_EN  
Q
LE  
CLK0  
nCLK0  
nc  
0
Q0  
nQ0  
CLK1  
CLK0  
nCLK0  
nc  
1
CLK1  
Q1  
nQ1  
CLK_SEL  
VEE  
CLK_SEL  
nQ4  
Q2  
nQ2  
ICS85314I-01  
20-Lead TSSOP  
6.5mm x 4.4mm x 0.92mm Package Body  
G Package  
Q3  
nQ3  
Q4  
nQ4  
Top View  
ICS85314I-01  
20-Lead SOIC  
7.5mm x 12.8mm x 2.3mm Package Body  
M Package  
Top View  
The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial  
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.  
85314AGI-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 30, 2002  
1
PRELIMINARY  
ICS85314I-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL FANOUT BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 2  
Name  
Q0, nQ0  
Q1, nQ1  
Q2, nQ2  
Q3, nQ3  
Q4, nQ4  
VEE  
Type  
Description  
Output  
Output  
Output  
Output  
Output  
Power  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
3, 4  
5, 6  
7, 8  
9, 10  
11  
Negative supply pin.  
Clock select input. When HIGH, selects SCLK input.  
12  
CLK_SEL  
Input  
Pulldown When LOW, selects CLK, nCLK inputs.  
LVTTL / LVCMOS interface levels.  
13, 17  
14  
nc  
Unused  
Input  
No connect.  
nCLK0  
CLK0  
CLK1  
VCC  
Pullup  
Inverting differential clock input.  
15  
Input  
Pulldown Non-inverting differential clock input.  
Pulldown Clock input. LVTTL / LVCMOS interface levels.  
Positive supply pins.  
16  
Input  
18, 20  
Power  
Synchronizing clock enable. When LOW, clock outputs follow clock  
Pulldown input. When HIGH, Q outputs are forced low, nQ outputs are forced  
high. LVTTL / LVCMOS interface levels.  
19  
nCLK_EN  
Input  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
RPULLUP  
RPULLDOWN  
51  
51  
K  
KΩ  
85314AGI-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 30, 2002  
2
PRELIMINARY  
ICS85314I-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL FANOUT BUFFER  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
nCLK_EN  
CLK_SEL  
Selected Source  
CLK0, nCLK0  
CLK1  
Q0:Q4  
Enabled  
nQ0:nQ4  
Enabled  
0
0
1
1
0
1
0
1
Enabled  
Enabled  
CLK0, nCLK0  
CLK1  
Disabled; LOW  
Disabled; LOW  
Disabled; HIGH  
Disabled; HIGH  
After nCLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge  
as shown in Figure 1.  
In the active mode, the state of the outputs are a function of the CLK0, nCLK0 and CLK1 inputs as described  
in Table 3B.  
Enabled  
Disabled  
nCLK0  
CLK0, CLK1  
nCLK_EN  
nQ0:nQ4  
Q0:Q4  
FIGURE 1 - nCLK_EN TIMING DIAGRAM  
TABLE 3B. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
Input to Output Mode  
Polarity  
CLK0 or CLK1  
nCLK0  
Q0:Q4  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
nQ0:nQ4  
HIGH  
LOW  
0
1
Differential to Differential  
Differential to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Non Inverting  
Non Inverting  
Non Inverting  
Non Inverting  
Inverting  
1
0
0
Biased; NOTE 1  
HIGH  
LOW  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
LOW  
HIGH  
Inverting  
NOTE 1: Please refer to the Application Information, "Wiring the Differential Input to Accept Single Ended Levels".  
85314AGI-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 30, 2002  
3
PRELIMINARY  
ICS85314I-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL FANOUT BUFFER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCCx  
Inputs, VI  
4.6V  
-0.5V to VCC + 0.5V  
-0.5V to VCC + 0.5V  
Outputs, VO  
Package Thermal Impedance, θJA  
Storage Temperature, TSTG  
73.2°C/W (0 lfpm)  
-65°C to 150°C  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings  
are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the  
DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended peri-  
ods may affect product reliability.  
TABLE 4A. POWER SUPPLY CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0V, TA = -40°C TO 85°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
3.3  
Maximum Units  
Power Supply Voltage  
Power Supply Current  
2.375  
3.8  
V
IEE  
55  
mA  
TABLE 4B. LVCMOS / LVTTL CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
nCLK_EN, CLK_SEL  
CLK1  
2
VCC + 0.3  
VCC + 0.3  
0.8  
V
V
V
V
VIH  
VIL  
Input High Voltage  
2
nCLK_EN, CLK_SEL  
CLK1  
-0.3  
-0.3  
Input Low Voltage  
1.3  
CLK1,  
CLK_SEL, nCLK_EN  
CLK1,  
IIH  
IIL  
Input High Current  
Input Low Current  
VIN = VCC = 3.8V  
150  
µA  
µA  
VCC = 3.8V, VIN = 0V  
-5  
CLK_SEL, nCLK_EN  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VCC = VIN = 3.8V  
Minimum Typical Maximum Units  
nCLK0  
CLK0  
5
µA  
µA  
µA  
µA  
V
VCC = VIN = 3.8V  
150  
nCLK0  
CLK0  
VCC = 3.8V, VIN = 0V  
VCC = 3.8V, VIN = 0V  
-150  
-5  
IIL  
Input Low Current  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
0.5  
VCC - 0.85  
V
NOTE 1: For single ended applications the maximum input voltage for CLK0, nCLK0 is VCC + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
85314AGI-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 30, 2002  
4
PRELIMINARY  
ICS85314I-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL FANOUT BUFFER  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical  
VCC - 1.4  
Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCC - 1.0  
VCC - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VCC - 2.0  
VSWING  
Peak-to-Peak Output Voltage Swing  
0.6  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
fMAX Output Frequency  
Test Conditions  
Minimum Typical Maximum Units  
650  
2.1  
MHz  
ns  
CLK0, nCLK0;  
NOTE 1  
ƒ650MHz  
ƒ250MHz  
1.0  
1.0  
Propagation Delay,  
Low to High  
tpLH  
CLK1; NOTE 2  
2.1  
50  
ns  
ps  
ps  
ps  
ps  
%
tsk(o)  
tsk(pp)  
tR  
Output Skew; NOTE 3, 5  
Part-to-Part Skew; NOTE 4, 5  
Output Rise Time  
400  
700  
700  
55  
20% to 80% @ 50MHz  
20% to 80% @ 50MHz  
ƒ650MHz  
200  
200  
45  
tF  
Output Fall Time  
CLK0, nCLK0  
CLK1  
odc  
Output Duty Cycle  
ƒ250MHz  
45  
55  
%
All parameters measured at 250MHz unless noted otherwise.  
The cycle-to-cycle jitter on the input will equal the jitter on the output. The part does not add jitter  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Measured from VCC/2 input crossing point to the differential output crossing point.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
85314AGI-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 30, 2002  
5
PRELIMINARY  
ICS85314I-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION  
VCC  
SCOPE  
Qx  
LVPECL  
VCC = 2V  
nQx  
VEE =-1.8V to -0.375V  
OUTPUT LOAD TEST CIRCUIT  
VCC  
nCLK0  
VPP  
VCMR  
Cross Points  
CLK0  
VEE  
DIFFERENTIAL INPUT LEVEL  
85314AGI-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 30, 2002  
6
PRELIMINARY  
ICS85314I-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL FANOUT BUFFER  
nQx  
Qx  
nQy  
Qy  
tsk(o)  
OUTPUT SKEW  
nCLK0  
CLK0  
nQ0:nQ4  
Q0:Q4  
tPD  
PROPAGATION DELAY (DIFFERENTIAL INPUT)  
CLK1  
nQ0:nQ4  
Q0:Q4  
tPD  
PROPAGATION DELAY (LVCMOS INPUT)  
85314AGI-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 30, 2002  
7
PRELIMINARY  
ICS85314I-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL FANOUT BUFFER  
80%  
80%  
VSWING  
20%  
20%  
Clock Inputs  
and Outputs  
tR  
tF  
INPUT AND OUTPUT RISE AND FALL TIME  
nQ0:nQ4  
Q0:Q4  
Pulse Width  
tPERIOD  
tPW  
odc =  
tPERIOD  
odc & tPERIOD  
85314AGI-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 30, 2002  
8
PRELIMINARY  
ICS85314I-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL FANOUT BUFFER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF ~ VCC/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.  
VCC  
R1  
1K  
CLK_IN  
+
V_REF  
-
C1  
0.1uF  
R2  
1K  
FIGURE 2 - SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR LVPECL OUTPUTS  
50transmission lines. Matched impedance techniques should  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs. The two different layouts mentioned  
are recommended only as guidelines.  
be used to maximize operating frequency and minimize signal  
distortion. Figures 3A and 3B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECLcompatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50  
5
2
5
Zo  
Zo  
2
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
V
CC - 2V  
Zo = 50Ω  
RTT  
1
3
2
3
2
Zo  
RTT =  
Zo  
Zo  
(VOH + VOL / VCC 2) 2  
FIGURE 3A - LVPECL OUTPUT TERMINATION  
FIGURE 3B - LVPECL OUTPUT TERMINATION  
85314AGI-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 30, 2002  
9
PRELIMINARY  
ICS85314I-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL FANOUT BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS85314I-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85314I-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.8V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 55mA = 209mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 5 * 30.2mW = 151mW  
Total Power_MAX (3.465V, with all outputs switching) = 209mW + 151mW = 360mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA =Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W per Table 6Abelow.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.360W * 66.6°C/W = 109°C. This is well below the limit of 125°C  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6A. THERMAL RESISTANCE qJA FOR 20-PIN TSSOP, FORCED CONVECTION  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
98.0°C/W  
66.6°C/W  
88.0°C/W  
63.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TABLE 6B. THERMAL RESISTANCE qJA FOR 20-PIN SOIC, FORCED CONVECTION  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
65.7°C/W  
57.5°C/W  
46.2°C/W  
39.7°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
85314AGI-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 30, 2002  
10  
PRELIMINARY  
ICS85314I-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL FANOUT BUFFER  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 4.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 4 - LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CC  
For logic high, V = V  
= V  
– 1.0V  
OUT  
OH_MAX  
CC_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
/R ] * (V  
Pd_H = [(V  
(V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 1V)/50] * 1V = 20.0mW  
))  
/R ] * (V  
Pd_L = [(V  
(V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
85314AGI-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 30, 2002  
11  
PRELIMINARY  
ICS85314I-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL FANOUT BUFFER  
RELIABILITY INFORMATION  
TABLE 7A. θJAVS. AIR FLOW TABLE FOR TSSOP  
q by Velocity (Linear Feet per Minute)  
JA  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
98.0°C/W  
66.6°C/W  
88.0°C/W  
63.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TABLE 7B. θJAVS. AIR FLOW TABLE FOR SOIC  
q by Velocity (Linear Feet per Minute)  
JA  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
46.2°C/W  
65.7°C/W  
39.7°C/W  
57.5°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS85314I-01 is: 674  
85314AGI-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 30, 2002  
12  
PRELIMINARY  
ICS85314I-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL FANOUT BUFFER  
PACKAGE OUTLINE - G SUFFIX  
TABLE 8A. PACKAGE DIMENSIONS  
Millimeters  
Minimum Maximum  
SYMBOL  
N
A
20  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
85314AGI-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 30, 2002  
13  
PRELIMINARY  
ICS85314I-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL FANOUT BUFFER  
PACKAGE OUTLINE - M SUFFIX  
TABLE 8B. PACKAGE DIMENSIONS  
Millimeters  
Minimum Maximum  
SYMBOL  
N
A
20  
--  
2.65  
--  
A1  
A2  
B
0.10  
2.05  
0.33  
0.18  
12.60  
7.40  
2.55  
0.51  
0.32  
13.00  
7.60  
C
D
E
e
1.27 BASIC  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-013, MO-119  
85314AGI-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 30, 2002  
14  
PRELIMINARY  
ICS85314I-01  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL FANOUT BUFFER  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS85314AGI-01  
ICS85314AGI-01T  
ICS85314AMI-01  
ICS85314AMI-01T  
Marking  
Package  
20 lead TSSOP  
Count  
72 per tube  
2500  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS85314AI01  
ICS85314AI01  
ICS85314AI-01  
ICS85314AI-01  
20 lead TSSOP on Tape and Reel  
20 lead SOIC  
38 per tube  
1000  
20 lead SOIC on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
85314AGI-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 30, 2002  
15  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY