ICS8533AGI-31T [IDT]

Clock Generator, 650MHz, PDSO20, 6.50 X 4.40 MM, 0.925 MM HEIGHT, MO-153, TSSOP-20;
ICS8533AGI-31T
型号: ICS8533AGI-31T
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 650MHz, PDSO20, 6.50 X 4.40 MM, 0.925 MM HEIGHT, MO-153, TSSOP-20

光电二极管
文件: 总16页 (文件大小:966K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/  
ICS8533I-31  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
General Description  
Features  
The ICS8533I-31 is a low skew, high performance  
Four differential LVPECL output pairs  
S
IC  
1-to-4 Crystal Oscillator/Differential-to-3.3V  
LVPECL Fanout Buffer and a member of the  
HiPerClockS™ family of High Performance Clock  
Solutions from IDT. The ICS8533I-31 has selectable  
Selectable differential CLK/nCLK or crystal oscillator interface  
Maximum output frequency: 650MHz  
HiPerClockS™  
Translates any single-ended input signal to 3.3V LVPECL levels  
with resistor bias on nCLK input  
differential clock or crystal inputs. The CLK, nCLK pair can accept  
most standard differential input levels. The clock enable is  
internally synchronized to eliminate runt pulses on the outputs  
during asynchronous assertion/deassertion of the clock enable  
pin.  
Additive phase jitter, RMS: TBD  
Output skew: 25ps (typical)  
Part-to-part skew: 150ps (typical)  
Propagation delay: 1.5ns (typical)  
Full 3.3V supply mode  
Guaranteed output and part-to-part skew characteristics make the  
ICS8533I-31 ideal for those applications demanding well defined  
performance and repeatability.  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Pin Assignment  
Block Diagram  
Pullup  
CLK_EN  
D
VEE  
CLK_EN  
CLK_SEL  
CLK  
1
2
20 Q0  
Q
19  
nQ0  
LE  
3
4
18  
17  
VCC  
Q1  
Pulludown  
CLK  
0
1
Q0  
Pullup  
nCLK  
nCLK  
XTAL_IN  
XTAL_OUT  
5
6
7
8
9
16 nQ1  
nQ0  
15  
14  
13  
Q2  
nQ2  
VCC  
XTAL_IN  
Q1  
nc  
nc  
VCC 10  
OSC  
nQ1  
12 Q3  
11  
nQ3  
XTAL_OUT  
CLK_SEL  
Q2  
Pulludown  
nQ2  
ICS8533I-31  
20-Lead TSSOP  
Q3  
6.5mm x 4.4mm x 0.925mm  
package body  
nQ3  
G Package  
Top View  
The Preliminary Information presented herein represents a product in pre-production. The noted characteristics are based on initial product characterization and/or qualification.  
Integrated Device Technology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
1
ICS8533AGI-31 REV. A DECEMBER 13, 2007  
ICS8533I-31  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/DIFFERENTIAL-TO- 3.3V LVPECL FANOUT BUFFER  
PRELIMINARY  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1
VEE  
Power  
Input  
Negative supply pin.  
Synchronizing clock enable. When HIGH, clock outputs follows clock input.  
When LOW, Q outputs are forced low, nQ outputs are forced high. LVCMOS /  
LVTTL interface levels.  
2
CLK_EN  
Pullup  
Clock select input. When LOW, selects CLK, nCLK input.  
When HIGH, selects XTAL input. LVCMOS / LVTTL interface levels.  
3
CLK_SEL  
Input  
Pulldown  
4
5
CLK  
Input  
Input  
Pulldown Non-inverting differential clock input.  
nCLK  
Pullup  
Inverting differential clock input.  
6,  
7
XTAL_IN  
XTAL_OUT  
Input  
Crystal oscillator interface XTAL_IN is the input, XTAL_OUT is the output.  
8, 9  
10, 13, 18  
11, 12  
nc  
Unused  
Power  
No connect.  
VCC  
Power supply pins.  
nQ3, Q3  
nQ2, Q2  
nQ1, Q1  
nQ0, Q0  
Output  
Output  
Output  
Output  
Differential clock output pair. LVPECL interface levels.  
Differential clock output pair. LVPECL interface levels.  
Differential clock output pair. LVPECL interface levels.  
Differential clock output pair. LVPECL interface levels.  
14, 15  
16, 17  
19, 20  
NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
k  
RPULLDOWN Input Pulldown Resistor  
kΩ  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
2
ICS8533AGI-31 REV. A DECEMBER 13, 2007  
ICS8533I-31  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/DIFFERENTIAL-TO- 3.3V LVPECL FANOUT BUFFER  
PRELIMINARY  
Function Tables  
Table 3A. Control Input Function Table  
Inputs  
Outputs  
CLK_EN  
CLK_SEL  
Selected Source  
CLK, nCLK  
Q0:Q3  
Disabled; Low  
Disabled; Low  
Enabled  
nQ0:nQ3  
Disabled; High  
Disabled; High  
Enabled  
0
0
1
1
0
1
0
1
XTAL_IN, XTAL_OUT  
CLK, nCLK  
XTAL_IN, XTAL_OUT  
Enabled  
Enabled  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock or crystal oscillator edge as  
shown in Figure 1. In the active mode, the state of the outputs are a function of the CLK, nCLK and XTAL inputs as described in Table 3B.  
Enabled  
Disabled  
nCLK  
CLK  
CLK_EN  
nQ0:nQ3  
Q0:Q3  
Figure 1. CLK_EN Timing Diagram  
Table 3B. Clock Input Function Table  
Inputs  
Outputs  
nQ0:nQ3  
CLK  
nCLK  
Q0:Q3  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
Input to Output Mode  
Differential to Differential  
Differential to Differential  
Single-ended to Differential  
Single-ended to Differential  
Single-ended to Differential  
Single-ended to Differential  
Polarity  
Non inverting  
Non inverting  
Non inverting  
Non inverting  
Inverting  
0
1
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
1
0
0
Biased; NOTE 1  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
Inverting  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
3
ICS8533AGI-31 REV. A DECEMBER 13, 2007  
ICS8533I-31  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/DIFFERENTIAL-TO- 3.3V LVPECL FANOUT BUFFER  
PRELIMINARY  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC + 0.5V  
Outputs, IO  
Continuos Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA  
91.12°C/W (0 mps)  
-65°C to 150°C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VEE = 3.3V 5ꢀ, VCC = 0V, TA = -40°C to 85°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
3.3  
Maximum  
Units  
V
Power Supply Voltage  
Power Supply Current  
3.135  
3.465  
IEE  
40  
mA  
Table 4B. LVCMOS/LVTTL DC Characteristics, VEE = 3.3V 5ꢀ, VCC = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
V
VIH  
VIL  
Input High Voltage  
2
VCC + 0.3  
Input Low Voltage  
-0.3  
0.8  
5
V
CLK_EN  
CLK_SEL  
CLK_EN  
CLK_SEL  
V
CC = VIN = 3.465V  
VCC = VIN = 3.465V  
CC = 3.465V, VIN = 0V  
µA  
µA  
µA  
µA  
IIH  
Input High Current  
150  
V
-150  
-5  
IIL  
Input Low Current  
VCC = 3.465V, VIN = 0V  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
4
ICS8533AGI-31 REV. A DECEMBER 13, 2007  
ICS8533I-31  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/DIFFERENTIAL-TO- 3.3V LVPECL FANOUT BUFFER  
PRELIMINARY  
Table 4C. Differential DC Characteristics, VCC = 3.3V 5ꢀ, VEE = 0V, TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
µA  
nCLK  
CLK  
V
CC = VIN = 3.465V  
5
IIH  
Input High Current  
VCC = VIN = 3.465V  
150  
µA  
VCC = 3.465V,  
VIN = 0V  
nCLK  
CLK  
-150  
-5  
µA  
µA  
IIL  
Input Low Current  
V
CC = 3.465V,  
VIN = 0V  
VPP  
Peak-to-Peak Voltage; NOTE 1  
0.15  
1.3  
V
V
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC – 0.85  
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode input voltage is defined as VIH.  
Table 4D. LVPECL DC Characteristics, VCC = 3.3V 5ꢀ, VEE = 0V, TA = -40°C to 85°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCC – 1.4  
VCC – 2.0  
0.6  
Typical  
Maximum  
VCC – 0.9  
VCC – 1.7  
1.0  
Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
V
V
V
VOL  
VSWING  
NOTE 1: Output termination with 50to VCC – 2V.  
Table 5. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
14  
25  
50  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
pF  
1
mW  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
5
ICS8533AGI-31 REV. A DECEMBER 13, 2007  
ICS8533I-31  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/DIFFERENTIAL-TO- 3.3V LVPECL FANOUT BUFFER  
PRELIMINARY  
AC Electrical Characteristics  
Table 6. AC Characteristics, VCC = 3.3V 5ꢀ, VEE = 0V, TA = -40°C to 85°C  
Parameter  
fMAX  
Symbol  
Test Conditions  
Minimum  
Typical  
Maximum  
650  
Units  
MHz  
ns  
Output Frequency  
Propagation Delay; NOTE 1  
tPD  
ƒ650MHz  
1.5  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter  
Section  
650MHz, (Integration Range:  
1.875MHz – 20MHz)  
tjit  
TBD  
ps  
tsk(o)  
tsk(pp)  
tR / tF  
odc  
Output Skew; NOTE 2, 5  
Part-to-Part Skew; NOTE 3, 5  
Output Rise/Fall Time  
Output Duty Cycle  
25  
ps  
ps  
ps  
150  
20ꢀ to 80ꢀ @ 50MHz  
300  
700  
50  
All parameters measured at 500MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions.  
Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 4: Measured using CLK. For XTAL input, refer to Application Note.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
6
ICS8533AGI-31 REV. A DECEMBER 13, 2007  
ICS8533I-31  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/DIFFERENTIAL-TO- 3.3V LVPECL FANOUT BUFFER  
PRELIMINARY  
Parameter Measurement Information  
2V  
V
CC  
SCOPE  
nCLK  
V
Qx  
CC  
VPP  
VCMR  
Cross Points  
CLK  
LVPECL  
nQx  
V
EE  
VEE  
-1.3V 0.165V  
3.3V LVPECL Output Load AC Test Circuit  
Differential Input Level  
nQx  
Qx  
nCLK  
CLK  
nQy  
nQ0:nQ3  
Qy  
Q0:Q3  
tPD  
tsk(o)  
Output Skew  
Propagation Delay  
nQ0:nQ3  
80ꢀ  
80ꢀ  
Q0:Q3  
tPW  
VSWING  
20ꢀ  
tPERIOD  
Clock  
20ꢀ  
Outputs  
tF  
tR  
tPW  
tPERIOD  
odc =  
x 100ꢀ  
Output Duty Cycle/Pulse Width/Period  
Output Rise/Fall Time  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
7
ICS8533AGI-31 REV. A DECEMBER 13, 2007  
ICS8533I-31  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/DIFFERENTIAL-TO- 3.3V LVPECL FANOUT BUFFER  
PRELIMINARY  
Application Information  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
LVPECL OUTPUTS  
All control pins have internal pull-ups; additional resistance is not  
required but can be added for additional protection. A 1kresistor  
can be used.  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
CLK/nCLK Inputs  
For applications not requiring the use of the differential input, both  
CLK and nCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to  
ground.  
Crystal Inputs  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kresistor can be tied  
from XTAL_IN to ground.  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 2 shows how the differential input can be wired to accept  
single-ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the  
center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V and  
VDD  
R1  
1K  
Single Ended Clock Input  
R2/R1 = 0.609.  
CLK  
V_REF  
nCLK  
C1  
0.1u  
R2  
1K  
Figure 2. Single-Ended Signal Driving Differential Input  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
8
ICS8533AGI-31 REV. A DECEMBER 13, 2007  
ICS8533I-31  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/DIFFERENTIAL-TO- 3.3V LVPECL FANOUT BUFFER  
PRELIMINARY  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both VSWING and VOH must meet the  
VPP and VCMR input requirements. Figures 3A to 3F show interface  
examples for the HiPerClockS CLK/nCLK input driven by the most  
common driver types. The input interfaces suggested here are  
examples only. Please consult with the vendor of the driver  
component to confirm the driver termination requirements. For  
example, in Figure 3A, the input termination applies for IDT  
HiPerClockS open emitter LVHSTL drivers. If you are using an  
LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
Zo = 50Ω  
HiPerClockS  
Input  
nCLK  
LVPECL  
HiPerClockS  
LVHSTL  
R1  
50  
R2  
50  
Input  
R1  
50  
R2  
50  
IDT  
HiPerClockS  
LVHSTL Driver  
R2  
50  
Figure 3A. HiPerClockS CLK/nCLK Input  
Driven by an IDT Open Emitter  
HiPerClockS LVHSTL Driver  
Figure 3B. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
3.3V  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100  
nCLK  
nCLK  
Zo = 50Ω  
HiPerClockS  
Input  
LVPECL  
Receiver  
LVDS  
R1  
84  
R2  
84  
Figure 3C. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
Figure 3D. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVDS Driver  
2.5V  
2.5V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120  
120  
Zo = 50Ω  
*R3  
*R4  
33  
33  
Zo = 60Ω  
Zo = 60Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
nCLK  
HiPerClockS  
HiPerClockS  
Input  
SSTL  
HCSL  
R1  
50  
R2  
50  
R1  
120  
R2  
120  
*Optional – R3 and R4 can be 0Ω  
Figure 3E. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V HCSL Driver  
Figure 3F. HiPerClockS CLK/nCLK Input  
Driven by a 2.5V SSTL Driver  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
9
ICS8533AGI-31 REV. A DECEMBER 13, 2007  
ICS8533I-31  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/DIFFERENTIAL-TO- 3.3V LVPECL FANOUT BUFFER  
PRELIMINARY  
Crystal Input Interface  
A crystal can be characterized for either series or parallel mode  
operation. The ICS8533I-31 fanout buffer has a built-in crystal  
oscillator circuit. This interface can accept either a series or parallel  
crystal without additional components as shown in Figure 4. The  
physical location of the crystal should be located as close as  
possible to the XTAL_IN and XTAL_OUT pins. The experiments  
show that using a 19.44MHz crystal results in an output frequency  
of 19.4404746MHz and approximately 44ꢀ of duty cycle.  
XTAL_IN  
C1  
22p  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
22p  
Figure 4. Crystal Input Interface  
LVCMOS to XTAL Interface  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 5. The XTAL_OUT pin can be left floating. The  
input edge rate can be as slow as 10ns. For LVCMOS inputs, it is  
recommended that the amplitude be reduced from full swing to half  
swing in order to prevent signal interference with the power rail and  
to reduce noise. This configuration requires that the output  
impedance of the driver (Ro) plus the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination  
at the crystal input will attenuate the signal in half. This can be  
done in one of two ways. First, R1 and R2 in parallel should equal  
the transmission line impedance. For most 50applications, R1  
and R2 can be 100. This can also be accomplished by removing  
R1 and making R2 50.  
VCC  
VCC  
R1  
0.1µf  
50  
Ro  
Rs  
XTAL_IN  
R2  
Zo = Ro + Rs  
XTAL_OUT  
Figure 5. General Diagram for LVCMOS Driver to XTAL Input Interface  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
10  
ICS8533AGI-31 REV. A DECEMBER 13, 2007  
ICS8533I-31  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/DIFFERENTIAL-TO- 3.3V LVPECL FANOUT BUFFER  
PRELIMINARY  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be  
used to maximize operating frequency and minimize signal  
distortion. Figures 6A and 6B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and  
clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
Figure 6A. 3.3V LVPECL Output Termination  
Figure 6B. 3.3V LVPECL Output Termination  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
11  
ICS8533AGI-31 REV. A DECEMBER 13, 2007  
ICS8533I-31  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/DIFFERENTIAL-TO- 3.3V LVPECL FANOUT BUFFER  
PRELIMINARY  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS8533I-31.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8533I-31 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 40mA = 138.6mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 4 * 30mW = 120mW  
Total Power_MAX (3.3V, with all outputs switching) = 138.6mW + 60mW = 258.6mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device.  
The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow  
and a multi-layer board, the appropriate value is 91.1°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.259W * 91.1°C/W = 108.6°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type  
of board (single layer or multi-layer).  
Table 7. Thermal Resistance θJA for 16 Lead TSSOP, Forced Convection  
θJA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
91.1°C/W  
86.7°C/W  
84.6°C/W  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
12  
ICS8533AGI-31 REV. A DECEMBER 13, 2007  
ICS8533I-31  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/DIFFERENTIAL-TO- 3.3V LVPECL FANOUT BUFFER  
PRELIMINARY  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCCO  
Q1  
VOUT  
RL  
50Ω  
VCCO - 2V  
Figure 7. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage  
of VCC – 2V.  
For logic high, VOUT = VOH_MAX = VCC_MAX – 0.9V  
(VCC_MAX – VOH_MAX) = 0.9V  
For logic low, VOUT = VOL_MAX = VCC_MAX – 1.7V  
(VCC_MAX – VOL_MAX) = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOH_MAX) = [(2V – (VCC_MAX – VOH_MAX))/RL] * (VCC_MAX – VOH_MAX) =  
[(2V – 0.9V)/50] * 0.9V = 19.8mW  
Pd_L = [(VOL_MAX – (VCCO_MAX – 2V))/RL] * (VCC_MAX – VOL_MAX) = [(2V – (VCC_MAX – VOL_MAX))/RL] * (VCC_MAX – VOL_MAX) =  
[(2V – 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
13  
ICS8533AGI-31 REV. A DECEMBER 13, 2007  
ICS8533I-31  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/DIFFERENTIAL-TO- 3.3V LVPECL FANOUT BUFFER  
PRELIMINARY  
Reliability Information  
Table 8. θJA vs. Air Flow Table for a 20 Lead TSSOP  
θJA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
91.1°C/W  
86.7°C/W  
84.6°C/W  
Transistor Count  
The transistor count for ICS8533I-31 is: TBD  
Package Outline and Package Dimensions  
Package Outline - G Suffix for 20-Lead TSSOP  
Table 9. Package Dimensions for 20 Lead TSSOP  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
20  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 Basic  
E1  
e
4.30  
4.50  
0.65 Basic  
L
0.45  
0°  
0.75  
8°  
α
aaa  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
14  
ICS8533AGI-31 REV. A DECEMBER 13, 2007  
ICS8533I-31  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/DIFFERENTIAL-TO- 3.3V LVPECL FANOUT BUFFER  
PRELIMINARY  
Ordering Information  
Table 10. Ordering Information  
Part/Order Number  
8533AGI-31  
8533AGI-31T  
8533AGI-31LF  
8533AGI-31LFT  
Marking  
ICS8533AGI31  
ICS8533AGI31  
TBD  
Package  
20 Lead TSSOP  
20 Lead TSSOP  
Shipping Packaging  
Tube  
2500 Tape & Reel  
Tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
“Lead-Free” 20 Lead TSSOP  
“Lead-Free” 20 Lead TSSOP  
TBD  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for  
the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements  
are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any  
IDT product for use in life support devices or critical medical instruments.  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
15  
ICS8533AGI-31 REV. A DECEMBER 13, 2007  
ICS8533I-31  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/DIFFERENTIAL-TO- 3.3V LVPECL FANOUT BUFFER  
PRELIMINARY  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
+408 284 8200 (outside U.S.)  
#20-03 Wisma Atria  
Singapore 238877  
+65 6 887 5505  
England  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
Printed in USA  
www.IDT.com  

相关型号:

ICS8533I-01

DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER 3.3V operating supply
IDT

ICS8534-01

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8534-01

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
IDT

ICS8534AY-01

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8534AY-01

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
IDT

ICS8534AY-01LF

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
IDT

ICS8534AY-01LFT

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
IDT

ICS8534AY-01T

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8534AY-01T

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
IDT

ICS8534BMI-13LF

Clock Generator, 266MHz, PDSO16, 3.90 X 9.90 MM, 1.375 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-16
IDT

ICS8534BMI-13LFT

Clock Generator, 266MHz, PDSO16, 3.90 X 9.90 MM, 1.375 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-16
IDT

ICS8535-01

LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
ICSI