ICS8535AG-01LF [IDT]

Low Skew Clock Driver, 8535 Series, 4 True Output(s), 4 Inverted Output(s), PDSO20, ROHS COMPLIANT, 4.40 X 6.50 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20;
ICS8535AG-01LF
型号: ICS8535AG-01LF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 8535 Series, 4 True Output(s), 4 Inverted Output(s), PDSO20, ROHS COMPLIANT, 4.40 X 6.50 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20

驱动 光电二极管 逻辑集成电路
文件: 总17页 (文件大小:375K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-  
3.3V LVPECL FANOUT BUFFER  
ICS8535-01  
GENERAL DESCRIPTION  
FEATURES  
Four differential 3.3V LVPECL outputs  
The ICS8535-01 is a low skew, high performance  
ICS  
HiPerClockS™  
1-to-4 LVCMOS/LVTTL-to-3.3V LVPECL fanout  
Selectable CLK0 or CLK1 inputs for redundant  
and multiple frequency fanout applications  
buffer and a member of the HiPerClockS™ family  
of High Performance Clock Solutions from IDT. The  
ICS8535-01 has two single ended clock inputs. the  
single ended clock input accepts LVCMOS or LVTTL input lev-  
els and translate them to 3.3V LVPECL levels. The clock en-  
able is internally synchronized to eliminate runt clock pulses  
on the output during asynchronous assertion/deassertion of  
the clock enable pin.  
CLK0 or CLK1 can accept the following input levels: LVCMOS  
or LVTTL  
Maximum output frequency: 266MHz  
Translates LVCMOS and LVTTL levels to  
3.3V LVPECL levels  
Output skew: 30ps (maximum)  
Part-to-part skew: 250ps (maximum)  
Propagation delay: 1.9ns (maximum)  
Additve phase jitter, RMS: < 0.09ps (typical)  
3.3V operating supply  
Guaranteed output and part-to-part skew characteristics make  
the ICS8535-01 ideal for those applications demanding well  
defined performance and repeatability.  
0°C to 70°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VEE  
CLK_EN  
CLK_SEL  
CLK0  
nc  
Q0  
D
CLK_EN  
nQ0  
VCC  
Q1  
nQ1  
Q2  
nQ2  
VCC  
Q3  
Q
LE  
CLK0  
CLK1  
0
1
Q0  
nQ0  
CLK1  
nc  
Q1  
nQ1  
nc  
nc  
CLK_SEL  
VCC  
nQ3  
Q2  
nQ2  
ICS8535-01  
20-Lead TSSOP  
Q3  
4.4mm x 6.5mm x 0.92mm body package  
G Package  
nQ3  
Top View  
20 19 18 17 16  
VCC  
1
2
3
4
5
15  
14  
13  
12  
11  
VCC  
Q2  
nQ3  
Q3  
VEE  
nQ2  
VCC  
nc  
CLK_EN  
6
7
8
9
10  
ICS8535-01  
20-Lead VFQFN  
4mm x 4mm x 0.9mm body package  
K Package  
Top View  
IDT/ ICS3.3V LVPECL FANOUT BUFFER  
1
ICS8535AG-01 REV. F APRIL 12, 2007  
ICS8535-01  
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Name  
Type  
Description  
VEE  
Power  
Input  
Negative supply pin.  
Synchronizing clock enable. When HIGH, clock outputs follow clock input. When LOW,  
Q outputs are forced low, nQ outputs are forced high. LVCMOS / LVTTL interface levels.  
Clock select input. When HIGH, selects CLK1 input. When LOW, selects CLK0 input.  
LVCMOS / LVTTL interface levels.  
CLK_EN  
Pullup  
Pulldown  
CLK_SEL  
Input  
CLK0  
CLK1  
Input  
Input  
Pulldown LVCMOS / LVTTL clock input.  
Pulldown LVCMOS / LVTTL clock input.  
No connect.  
nc  
Unused  
Power  
Output  
Output  
Output  
Output  
VCC  
Positive supply pins.  
nQ3, Q3  
nQ2, Q2  
nQ1, Q1  
nQ0, Q0  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
RPULLUP  
RPULLDOWN  
51  
51  
kΩ  
kΩ  
IDT/ ICS3.3V LVPECL FANOUT BUFFER  
2
ICS8535AG-01 REV. F APRIL 12, 2007  
ICS8535-01  
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
CLK_EN  
CLK_SEL  
Selected Source  
CLK0  
Q0:Q3  
Disabled; LOW  
Disabled; LOW  
Enabled  
nQ0:nQ3  
Disabled; HIGH  
Disabled; HIGH  
Enabled  
0
0
1
1
0
1
0
1
CLK1  
CLK0  
CLK1  
Enabled  
Enabled  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge  
as show in Figure 1.  
In the active mode, the state of the outputs are a function of the CLK0 and CLK1 inputs as described in Table 3B.  
Enabled  
Disabled  
CLK0, CLK1  
CLK_EN  
nQ0:nQ3  
Q0:Q3  
FIGURE 1. CLK_EN TIMING DIAGRAM  
TABLE 3B. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
CLK0 or CLK1  
Q0:Q3  
LOW  
nQ0:nQ3  
HIGH  
0
1
HIGH  
LOW  
IDT/ ICS3.3V LVPECL FANOUT BUFFER  
3
ICS8535AG-01 REV. F APRIL 12, 2007  
ICS8535-01  
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCC  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θ  
20 Lead TSSOP  
20 Lead VFQFN  
JA  
73.2°C/W (0 lfpm)  
60.4°C/W (0 mps)  
Storage Temperature, T  
-65°C to 150°C  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
3.135  
3.3  
3.465  
50  
V
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
CLK0, CLK1  
2
V
CC + 0.3  
CC + 0.3  
1.3  
V
V
VIH  
VIL  
IIH  
Input High Voltage  
CLK_EN, CLK_SEL  
CLK0, CLK1  
2
V
-0.3  
-0.3  
V
Input Low Voltage  
Input High Current  
Input Low Current  
CLK_EN, CLK_SEL  
CLK0, CLK1, CLK_SEL  
CLK_EN  
0.8  
V
V
IN = VCC = 3.465V  
IN = VCC = 3.465V  
150  
µA  
µA  
µA  
µA  
V
5
CLK0, CLK1, CLK_SEL  
CLK_EN  
V
V
IN = 0V, VCC = 3.465V  
IN = 0V, VCC = 3.465V  
-5  
IIL  
-150  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCC - 1.4  
VCC - 2.0  
0.6  
VCC - 0.9  
VCC - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
IDT/ ICS3.3V LVPECL FANOUT BUFFER  
4
ICS8535AG-01 REV. F APRIL 12, 2007  
ICS8535-01  
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
TABLE 5. AC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical  
Maximum  
266  
Units  
MHz  
ns  
fMAX  
Output Frequency  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
ƒ266MHz  
1.0  
1.9  
tsk(o)  
tsk(pp)  
11  
30  
ps  
Part-to-Part Skew; NOTE 3, 4  
250  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter section,  
NOTE 5  
tjit  
0.09  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ @ 50MHz  
300  
48  
700  
52  
ps  
50  
All parameters measured at 266MHz unless noted otherwise.  
The cycle-to-cycle jitter on the input will equal the jitter on the output. The part does not add jitter.  
NOTE 1: Measured from the VCC/2 of the input to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 5: Driving only one input clock.  
IDT/ ICS3.3V LVPECL FANOUT BUFFER  
5
ICS8535AG-01 REV. F APRIL 12, 2007  
ICS8535-01  
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
ADDITIVE PHASE JITTER  
band to the power in the fundamental. When the required offset  
The spectral purity in a band at a specific offset from the  
fundamental compared to the power of the fundamental is called  
the dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications.Phase noise is defined as the ratio of the noise power  
present in a 1Hz band at a specified offset from the fundamental  
frequency to the power value of the fundamental. This ratio is  
expressed in decibels (dBm) or a ratio of the power in the 1Hz  
is specified, the phase noise is called a dBc value, which simply  
means dBm at a specified offset from the fundamental. By  
investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the  
entire time record of the signal. It is mathematically possible to  
calculate an expected bit error rate given a phase noise plot.  
0
-10  
-20  
-30  
-40  
Input/Output Additive Phase Jitter  
at 156.25MHz = 0.09ps (typical)  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
140  
-
-150  
160  
-
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements  
have issues. The primary issue relates to the limitations of the  
equipment. Often the noise floor of the equipment is higher than  
the noise floor of the device. This is illustrated above. The device  
meets the noise floor of what is shown, but can actually be lower.  
The phase noise is dependant on the input source and  
measurement equipment.  
IDT/ ICS3.3V LVPECL FANOUT BUFFER  
6
ICS8535AG-01 REV. F APRIL 12, 2007  
ICS8535-01  
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
PART 1  
nQx  
SCOPE  
VCC  
Qx  
Qx  
PART 2  
nQy  
LVPECL  
nQx  
VEE  
Qy  
tsk(pp)  
-1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
PART-TO-PART SKEW  
nQx  
Qx  
80ꢀ  
tF  
80ꢀ  
tR  
VSWING  
20ꢀ  
Clock  
20ꢀ  
nQy  
Outputs  
Qy  
tsk(o)  
OUTPUT RISE/FALL TIME  
OUTPUT SKEW  
nQ0:nQ3  
Q0:Q3  
CLK0,  
CLK1  
tPW  
tPERIOD  
nQ0:nQ3  
Q0:Q3  
tPW  
tPD  
odc =  
x 100ꢀ  
tPERIOD  
PROPAGATION DELAY  
OUTPUT DUTY CYCLE/ PULSE WIDTH/PERIOD  
IDT/ ICS3.3V LVPECL FANOUT BUFFER  
7
ICS8535AG-01 REV. F APRIL 12, 2007  
ICS8535-01  
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
APPLICATION INFORMATION  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
CLK INPUT:  
LVPECL OUTPUT  
For applications not requiring the use of a clock input, it can be  
left floating. Though not required, but for additional protection, a  
1kΩ resistor can be tied from the CLK input to ground.  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
LVCMOS CONTROL PINS:  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termination  
for LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be  
used to maximize operating frequency and minimize signal dis-  
tortion. Figures 2A and 2B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts  
may exist and it would be recommended that the board design-  
ers simulate to guarantee compatibility across all printed circuit  
and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
IDT/ ICS3.3V LVPECL FANOUT BUFFER  
8
ICS8535AG-01 REV. F APRIL 12, 2007  
ICS8535-01  
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
SCHEMATIC EXAMPLE  
Figure 3 shows a schematic example of the ICS8535-01. In this  
should be physically located near the power pin. For ICS8535-01,  
example, the CLK0 input is selected. The decoupling capacitors  
the unused clock outputs can be left floating.  
Zo = 50  
Zo = 50  
+
-
3.3V  
R2  
50  
R1  
50  
R12  
1K  
3.3V  
U1  
R3  
50  
Q1  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VEE  
Q0  
nQ0  
VCC  
Q1  
nQ1  
Q2  
nQ2  
VCC  
Q3  
CLK_EN  
CLK_SEL  
CLK0  
NC  
CLK1  
NC  
NC  
NC  
VCC  
Ro  
~
7
Ohm  
3.3V  
3.3V  
Zo = 50 Ohm  
R13 43  
R11  
1K  
LVCMOS  
3.3V  
C1  
10  
nQ3  
0.1u  
ICS8535-01  
3.3V  
Zo = 50  
Zo = 50  
+
-
C2  
0.1u  
C3  
0.1u  
R8  
50  
R7  
50  
R9  
50  
FIGURE 3. ICS8535-01 LVPECL BUFFER SCHEMATIC EXAMPLE  
IDT/ ICS3.3V LVPECL FANOUT BUFFER  
9
ICS8535AG-01 REV. F APRIL 12, 2007  
ICS8535-01  
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8535-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8535-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core) = V  
* I  
= 3.465V * 50mA = 173.25mW  
EE_MAX  
MAX  
CC_MAX  
Power (outputs) = 30mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 4 x 30mW = 120mW  
Total Power  
(3.465V, with all outputs switching) = 173.25mW + 120mW = 293.25mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air low of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W per Table 6A below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.293W * 66.6°C/W = 89.5°C. This is well below the limit of 125°C.  
This calculation is only an example, and the Tj will obviously vary depending on the number of outputs that are loaded, supply  
voltage, air flow, and the type of board (single layer or multi-layer).  
TABLE 6A. THERMAL RESISTANCE θ FOR 20-LEAD TSSOP, FORCED CONVECTION  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TABLE 6B. θ VS. AIR FLOW TABLE FOR 20 LEAD VFQFN  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
3
Multi-Layer PCB, JEDEC Standard Test Boards  
60.4°C/W  
52.8°C/W  
46.0°C/W  
IDT/ ICS3.3V LVPECL FANOUT BUFFER  
10  
ICS8535AG-01 REV. F APRIL 12, 2007  
ICS8535-01  
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 4.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 4. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CC  
For logic high, V = V  
= V  
– 0.9V  
CC_MAX  
OUT  
OH_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT/ ICS3.3V LVPECL FANOUT BUFFER  
11  
ICS8535AG-01 REV. F APRIL 12, 2007  
ICS8535-01  
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
RELIABILITY INFORMATION  
TABLE 7A. θ VS. AIR FLOW TABLE FOR 20 LEAD TSSOP  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TABLE 7B. θ VS. AIR FLOW TABLE FOR 20 LEAD VFQFN  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
3
Multi-Layer PCB, JEDEC Standard Test Boards  
60.4°C/W  
52.8°C/W  
46.0°C/W  
TRANSISTOR COUNT  
The transistor count for ICS8535-01 is: 412  
IDT/ ICS3.3V LVPECL FANOUT BUFFER  
12  
ICS8535AG-01 REV. F APRIL 12, 2007  
ICS8535-01  
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
PACKAGE OUTLINE - G SUFFIX FOR 20 LEAD TSSOP  
TABLE 8A. PACKAGE DIMENSIONS FOR TSSOP  
Millimeters  
SYMBOL  
Minimum  
Maximum  
N
A
20  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
REFERENCE DOCUMENT: JEDEC PUBLICATION 95, MO-153  
IDT/ ICS3.3V LVPECL FANOUT BUFFER  
13  
ICS8535AG-01 REV. F APRIL 12, 2007  
ICS8535-01  
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
PACKAGE OUTLINE - K SUFFIX FOR 20 LEAD VFQFN  
TABLE 8B. PACKAGE DIMENSIONS FOR 20 LEAD VFQFN  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
SYMBOL  
MINIMUM  
MAXIMUM  
N
A
20  
0.80  
0
1.0  
A1  
A3  
b
0.05  
0.25 Reference  
0.18  
0.30  
e
0.50 BASIC  
ND  
NE  
D
5
5
4.0  
D2  
E
0.75  
2.80  
4.0  
E2  
L
0.75  
0.35  
2.80  
0.75  
Reference Document: JEDEC Publication 95, MO-220  
IDT/ ICS3.3V LVPECL FANOUT BUFFER  
14  
ICS8535AG-01 REV. F APRIL 12, 2007  
ICS8535-01  
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS8535AG-01  
Marking  
ICS8535AG-01  
ICS8535AG-01  
ICS8535A01LF  
ICS8535A01LF  
535A01  
Package  
Shipping Packaging Temperature  
20 lead TSSOP  
tube  
2500 tape & reel  
tube  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS8535AG-01T  
ICS8535AG-01LF  
ICS8535AG-01LFT  
ICS8535AK-01  
20 lead TSSOP  
20 lead "Lead Free" TSSOP  
20 lead "Lead Free" TSSOP  
20 lead VFQFN  
2500 tape & reel  
tube  
ICS8535AK-01T  
ICS8535AK-01LF  
ICS8535AK-01LFT  
535A01  
20 lead VFQFN  
2500 tape & reel  
tube  
35A01L  
20 lead "Lead-Free" VFQFN  
20 lead "Lead-Free" VFQFN  
35A01L  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial  
applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves  
the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICS3.3V LVPECL FANOUT BUFFER  
15  
ICS8535AG-01 REV. F APRIL 12, 2007  
ICS8535-01  
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
REVISION HISTORY SHEET  
Rev  
B
Table  
Page  
Description of Change  
Updated Figure 1 - CLK_EN Timing Diagram.  
Date  
3
3
8
10/16/01  
10/29/01  
5/29/02  
B
Updated Figure 1 - CLK_EN Timing Diagram.  
Added Termination for LVPECL Outputs section.  
B
Output Load Test Circuit - corrected VEE equation to read  
"VEE = -0.5V 0.165V" from "VEE = -0.5V 0.135V".  
AC Characteristics table - changed tsk(pp) from 150ps max. to 250ps. max.  
Update format.  
B
C
6
5
10/4/02  
T5  
12/13/02  
8
4
4
8
Added Schematic layout in the Application Section.  
LVCMOS Table - changed VIH 3.765V Max. to VCC + 0.3V Max.  
LVPECL Table - changed VSWING 0.85V Max. to 1.0V Max.  
D
D
1/20/03  
4/1/03  
Schematic Example, changed sentence to read "In this example, the XTAL  
input is selected." to "..., The CLK1 input is selected."  
Corrected schematic example.  
1
2
Added RMS Jitter to Features section.  
T2  
T5  
Pin Characteristics Table - changed CIN from 4pF max. to 4pF typical.  
Revised Absolute Maximum Ratings Output.  
AC Characteritsics Table - added RMS Jitter.  
Added Additive Phase Jitter Section.  
4
E
9/19/03  
5
6
8
Revised LVPECL Output Termination diagrams.  
Added "Lead Free" Part/Order Number rows.  
E
E
14  
11/13/03  
12/4/03  
14  
1
Corrected "Lead Free" marking and order/part numbers.  
Added Lead Free bullet in the Features section.  
E
E
6/17/04  
9/17/04  
T5  
T9  
5
AC Characteristics table - added Note 5.  
14  
1
Corrected Lead Free marking in Ordering Information Table.  
Pin Assignment - added 20 Lead VFQFN package information.  
Added 20 Lead VFQFN Reliability Information.  
T7B  
T8B  
T9  
12  
14  
15  
15  
E
10/7/04  
Added 20 Lead VFQFN Package Outline and Dimensions.  
Ordering Information Table - added 20 Lead VFQFN ordering information.  
Ordering Information Table - added "Lead-Free/Annealed" part number.  
E
E
T9  
10/11/04  
11/22/04  
T9  
15  
Ordering Information Table - deleted "Lead-Free/Annealed" part number.  
Pin Assignment - corrected letter package for 20 Lead VFQFN from  
E
E
1
12/8/04  
5/24/05  
"G Package" to "K Package".  
Ordering Information Table - corrected marking on TSSOP Lead-Free package  
and added Lead-Free note.  
15  
T9  
8
Added Recommendations for Unused Input and Output Pins.  
Ordering Information Table - corrected 20 Lead VFQFN marking and added  
Lead-Free 20 Lead VFQFN part number.  
E
E
T9  
T9  
9/16/05  
3/21/06  
15  
15  
4
Ordering Information Table - corrected 20 Lead VFQFN Shipping Packaging.  
Absolute Maximum Ratings - corrected 20 lead VFQFN Package Thermal  
Impedance.  
E
F
10/02/06  
4/12/07  
T6B  
10  
Corrected 20 lead VFQFN Theta JA.  
T7B  
T4C  
12  
4
Corrected 20 lead VFQFN Theta JA.  
LVPECL DC Characteristics Table -corrected VOH max. from VCC - 1.0V to  
V
CC - 0.9V.  
10 - 11 Power Considerations - corrected power dissipation to reflect VOH max in Table  
4C.  
IDT/ ICS3.3V LVPECL FANOUT BUFFER  
16  
ICS8535AG-01 REV. F APRIL 12, 2007  
ICS8535-01  
LOW SKEW, 1-to-4 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
#20-03 Wisma Atria  
England  
+408 284 8200 (outside U.S.)  
Singapore 238877  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
+65 6 887 5505  
© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY