ICS87002AG-02LFT [IDT]

PLL Based Clock Driver, 87002 Series, 2 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, PLASTIC, MO-153, TSS0P20;
ICS87002AG-02LFT
型号: ICS87002AG-02LFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PLL Based Clock Driver, 87002 Series, 2 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, PLASTIC, MO-153, TSS0P20

驱动 光电二极管 逻辑集成电路
文件: 总16页 (文件大小:709K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1:2, Differential-to-LVCMOS/LVTTL  
Zero Delay Clock Generator  
ICS87002-02  
DATA SHEET  
General Description  
Features  
The ICS87002-02 is a highly versatile 1:2 Differential-to-  
Two LVCMOS/LVTTL outputs, 7typical output impedance  
LVCMOS/LVTTL Clock Generator. The ICS87002-02 has a  
differential clock input. The CLK, nCLK pair can accept most  
standard differential input levels. Internal bias on the nCLK input  
allows the CLK input to accept LVCMOS/LVTTL. The ICS87002-02  
has a fully integrated PLL and can be configured as zero delay  
buffer, multiplier or divider and has an input and output frequency  
range of 15.625MHz to 250MHz. The reference divider, feedback  
divider and output divider are each programmable, thereby allowing  
for the following output-to-input frequency ratios: 8:1, 4:1, 2:1, 1:1,  
1:2, 1:4, 1:8. The external feedback allows the device to achieve  
“zero delay” between the input clock and the output clocks. The  
PLL_SEL pin can be used to bypass the PLL for system test and  
debug purposes. In bypass mode, the reference clock is routed  
around the PLL and into the internal output dividers.  
CLK, nCLK pair can accept the following differential  
input levels: LVPECL, LVDS, HSTL, HCSL, SSTL  
Internal bias on nCLK to support LVCMOS/LVTTL levels on CLK  
input  
Output frequency range: 15.625MHz to 250MHz  
Input frequency range: 15.625MHz to 250MHz  
VCO range: 250MHz to 500MHz  
External feedback for “zero delay” clock regeneration  
with configurable frequencies  
Programmable dividers allow for the following output-to-input  
frequency ratios: 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8  
Fully integrated PLL  
Cycle-to-cycle jitter: 45ps (maximum)  
Output skew: 35ps (maximum)  
Static phase offset: -10ps 150ps (3.3V 5ꢀ)  
Full 3.3V or 2.5V operating supply  
5V tolerant inputs  
0°C to 70°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Industrial temperature information available upon request  
Block Diagram  
Pin Assignment  
Pullup  
PLL_SEL  
GND  
Q0  
1
2
20  
19  
VDDO  
Q1  
÷2, ÷4, ÷8, ÷16  
Q0  
VDDO  
SEL0  
3
4
18  
17  
GND  
VDDO  
0
÷32, ÷64, ÷128  
SEL1  
SEL2  
SEL3  
VDD  
CLK  
nCLK 10  
5
6
7
8
9
16 nc  
Pulldown  
Pullup/Pulldown  
CLK  
nCLK  
15  
MR  
Q1  
1
14 FB_IN  
13 PLL_SEL  
PLL  
12  
11  
VDDA  
GND  
8:1, 4:1, 2:1, 1:1,  
1:2, 1:4, 1:8  
Pulldown  
FB_IN  
ICS87002-02  
20-Lead TSSOP  
6.50mm x 4.40mm x 0.925mm package body  
G Package  
Top View  
Pulldown  
SEL0  
SEL1  
SEL2  
SEL3  
MR  
Pulldown  
Pulldown  
Pulldown  
Pulldown  
ICS87002AG-02 REVISION C AUGUST 9, 2010  
1
©2010 Integrated Device Technology, Inc.  
ICS87002-02 Data Sheet  
1:2, DIFFERENTIAL-TO-LVCMOS/LVTTL ZERO DELAY CLOCK GENERATOR  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1, 11, 18  
GND  
Power  
Output  
Power  
Input  
Power supply ground.  
Single-ended clock outputs. 7typical output impedance.  
LVCMOS/LVTTL interface levels.  
2, 19  
Q0, Q1  
VDDO  
3, 17, 20  
Output supply pins.  
4, 5,  
6, 7  
SEL0, SEL1,  
SEL2, SEL3  
Pulldown  
Determines output divider values in Table 3. LVCMOS / LVTTL interface levels.  
8
9
VDD  
CLK  
Power  
Input  
Core supply pin.  
Pulldown  
Non-inverting differential clock input.  
Pullup/  
Pulldown  
10  
12  
nCLK  
VDDA  
Input  
Inverting differential clock input. VDD/2 default when left floating.  
Analog supply pin.  
Power  
PLL select. Selects between the PLL and reference clock as the input to the  
dividers. When LOW, selects reference clock (PLL Bypass). When HIGH, selects  
PLL (PLL enabled). LVCMOS/LVTTL interface levels.  
13  
14  
PLL_SEL  
FB_IN  
Input  
Input  
Pullup  
Feedback input to phase detector for regenerating clocks with “Zero Delay.”  
Connect to one of the outputs. LVCMOS/LVTTL interface levels.  
Pulldown  
Pulldown  
Active HIGH Master Reset. When logic HIGH, the internal dividers are reset causing  
the outputs to go low. When logic LOW, the internal dividers and the outputs are  
enabled. LVCMOS / LVTTL interface levels.  
15  
16  
MR  
nc  
Input  
Unused  
No connect.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
kΩ  
kΩ  
pF  
RPULLDOWN Input Pulldown Resistor  
VDD, VDDA, VDDO = 3.465V  
23  
17  
12  
Power Dissipation  
CPD  
Capacitance (per output)  
V
DD, VDDA, VDDO = 2.625V  
pF  
ROUT  
Output Impedance  
5
7
ICS87002AG-02 REVISION C AUGUST 9, 2010  
2
©2010 Integrated Device Technology, Inc.  
ICS87002-02 Data Sheet  
1:2, DIFFERENTIAL-TO-LVCMOS/LVTTL ZERO DELAY CLOCK GENERATOR  
Function Tables  
Table 3A. PLL Enable Function Table  
Outputs  
PLL_SEL = 1  
Inputs  
SEL0  
PLL Enable Mode  
SEL3  
SEL2  
SEL1  
Reference Frequency Range (MHz)  
Q0, Q1  
÷1  
÷1  
÷1  
÷1  
÷2  
÷2  
÷2  
÷4  
÷4  
÷8  
x2  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
125 - 250  
62.5 - 125  
31.25 - 62.5  
15.625 - 31.25  
125 - 250  
62.5 - 125  
31.25 - 62.5  
125 - 250  
62.5 - 125  
125 - 250  
62.5 - 125  
31.25 - 62.5  
15.625 - 31.25  
31.25 - 62.5  
15.625 - 31.25  
15.625 - 31.25  
x2  
x2  
x4  
x4  
x8  
ICS87002AG-02 REVISION C AUGUST 9, 2010  
3
©2010 Integrated Device Technology, Inc.  
ICS87002-02 Data Sheet  
1:2, DIFFERENTIAL-TO-LVCMOS/LVTTL ZERO DELAY CLOCK GENERATOR  
Table 3B. PLL Bypass Function Table  
Inputs  
Outputs  
PLL_SEL = 0  
PLL Bypass Mode  
SEL3  
SEL2  
SEL1  
SEL0  
Q0, Q1  
÷8  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
÷8  
÷8  
÷16  
÷16  
÷16  
÷32  
÷32  
÷64  
÷128  
÷4  
÷4  
÷8  
÷2  
÷4  
÷2  
ICS87002AG-02 REVISION C AUGUST 9, 2010  
4
©2010 Integrated Device Technology, Inc.  
ICS87002-02 Data Sheet  
1:2, DIFFERENTIAL-TO-LVCMOS/LVTTL ZERO DELAY CLOCK GENERATOR  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
-0.5V to VDDO + 0.5V  
73.2°C/W (0 lfpm)  
-65°C to 150°C  
Outputs, VO  
Package Thermal Impedance, θJA  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = 0°C to 70°C  
Symbol  
VDD  
Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
3.465  
3.465  
100  
Units  
V
Core Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
VDDA  
VDDO  
IDD  
3.135  
3.3  
V
3.135  
3.3  
V
mA  
mA  
mA  
IDDA  
16  
IDDO  
6
Table 4B. Power Supply DC Characteristics, VDD = VDDA = VDDO = 2.5V 5ꢀ, TA = 0°C to 70°C  
Symbol  
VDD  
Parameter  
Test Conditions  
Minimum  
2.375  
Typical  
2.5  
Maximum  
2.625  
2.625  
2.625  
96  
Units  
V
Core Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
VDDA  
VDDO  
IDD  
2.375  
2.5  
V
2.375  
2.5  
V
mA  
mA  
mA  
IDDA  
15  
IDDO  
6
ICS87002AG-02 REVISION C AUGUST 9, 2010  
5
©2010 Integrated Device Technology, Inc.  
ICS87002-02 Data Sheet  
1:2, DIFFERENTIAL-TO-LVCMOS/LVTTL ZERO DELAY CLOCK GENERATOR  
Table 4C. LVCMOS/LVTTL DC Characteristics, VDD = VDDA = VDDO = 3.3V 5ꢀ or 2.5V 5ꢀ, TA = 0°C to 70°C  
Symbol  
Parameter  
Test Conditions  
DD = 3.3V  
VDD = 2.5V  
DD = 3.3V  
Minimum  
Typical  
Maximum  
VDD + 0.3  
VDD + 0.3  
0.8  
Units  
V
2
V
V
V
V
VIH  
Input High Voltage  
1.7  
-0.3  
-0.3  
V
VIL  
Input Low Voltage  
Input High Current  
VDD = 2.5V  
0.7  
FB_IN,  
SEL[0:3], MR  
VDD = VIN = 3.465V or 2.625V  
VDD = VIN = 3.465V or 2.625V  
150  
5
µA  
µA  
µA  
IIH  
PLL_SEL  
FB_IN,  
SEL[0:3], MR  
V
DD = 3.465V or 2.625V,  
-5  
VIN = 0V  
IIL  
Input Low Current  
VDD = 3.465V or 2.625V,  
VIN = 0V  
PLL_SEL  
-150  
µA  
V
DDO = 3.465V  
2.6  
1.8  
V
V
V
VOH  
VOL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
VDDO = 2.625V  
VDDO = 3.465V or 2.625V  
0.5  
NOTE 1: Outputs terminated with 50to VDDO/2. In the Parameter Measurement Information Section, see Output Load Test Circuit Diagrams.  
Table 4D. Differential DC Characteristics, VDD = VDDA = VDDO = 3.3V 5ꢀ or 2.5V 5ꢀ, TA = 0°C to 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
150  
Units  
µA  
µA  
µA  
µA  
V
CLK  
VDD = VIN = 3.465V or 2.625V  
VDD = VIN = 3.465V or 2.625V  
DD = 3.465V or 2.625V, VIN = 0V  
DD = 3.465V or 2.625V, VIN = 0V  
IIH  
Input High Current  
nCLK  
CLK  
150  
V
V
-5  
IIL  
Input Low Current  
nCLK  
-150  
0.15  
VPP  
Peak-to-Peak Voltage; NOTE 1  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
GND + 0.5  
VDD – 0.85  
V
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode input voltage is defined as VIH.  
ICS87002AG-02 REVISION C AUGUST 9, 2010  
6
©2010 Integrated Device Technology, Inc.  
ICS87002-02 Data Sheet  
1:2, DIFFERENTIAL-TO-LVCMOS/LVTTL ZERO DELAY CLOCK GENERATOR  
AC Electrical Characteristics  
Table 5A. AC Characteristics, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = 0°C to 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
fMAX  
Output Frequency  
15.625  
250  
MHz  
PLL_SEL = 0V, f 250MHz,  
tPD  
Propagation Delay; NOTE 1  
4.8  
5.8  
ns  
ps  
Qx ÷ 2  
PLL_SEL = 3.3V,  
t(Ø)  
Static Phase Offset; NOTE 2, 4  
-160  
-10  
140  
f
REF 167MHz, Qx ÷ 1  
tsk(o)  
tjit(cc)  
tL  
Output Skew; NOTE 3, 4  
Cycle-to-Cycle Jitter; NOTE 4  
PLL Lock Time  
PLL_SEL = 0V  
40  
45  
1
ps  
ps  
ms  
ps  
fOUT > 40MHz  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
400  
40  
800  
60  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE 1: Measured from the differential input crossing point to the output at VDDO/2.  
NOTE 2: Defined as the time difference between the input reference clock and the average feedback input signal, when the PLL is locked and  
the input reference frequency is stable.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO/2.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
Table 5B. AC Characteristics, VDD = VDDA = VDDO = 2.5V 5ꢀ, TA = 0°C to 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
fMAX  
Output Frequency  
15.625  
250  
MHz  
PLL_SEL = 0V, f 250MHz,  
tPD  
Propagation Delay; NOTE 1  
4.9  
6.7  
ns  
ps  
Qx ÷ 2  
PLL_SEL = 2.5V,  
t(Ø)  
Static Phase Offset; NOTE 2, 4  
-240  
-65  
110  
f
REF 167MHz, Qx ÷ 1  
tsk(o)  
tjit(cc)  
tL  
Output Skew; NOTE 3, 4  
Cycle-to-Cycle Jitter; NOTE 4  
PLL Lock Time  
PLL_SEL = 0V  
35  
45  
1
ps  
ps  
ms  
ps  
fOUT > 40MHz  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
400  
44  
700  
56  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE 1: Measured from the differential input crossing point to the output at VDDO/2.  
NOTE 2: Defined as the time difference between the input reference clock and the average feedback input signal, when the PLL is locked and  
the input reference frequency is stable.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO/2.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
ICS87002AG-02 REVISION C AUGUST 9, 2010  
7
©2010 Integrated Device Technology, Inc.  
ICS87002-02 Data Sheet  
1:2, DIFFERENTIAL-TO-LVCMOS/LVTTL ZERO DELAY CLOCK GENERATOR  
Parameter Measurement Information  
1.65V 5ꢀ  
1.25V 5ꢀ  
SCOPE  
SCOPE  
V
V
DD,  
DD,  
V
DDA,  
V
DDA,  
V
V
DDO  
Qx  
DDO  
Qx  
LVCMOS  
LVCMOS  
GND  
GND  
-1.65V 5ꢀ  
-1.25V 5ꢀ  
3.3V Output Load AC Test Circuit  
2.5V Output Load AC Test Circuit  
V
DD  
VDDO  
Qx  
Qy  
2
nCLK  
VPP  
VCMR  
Cross Points  
VDDO  
2
CLK  
tsk(o)  
GND  
Differential Input Level  
Output Skew  
nCLK  
CLK  
VOH  
VOL  
VDDO  
2
VDDO  
VDDO  
2
2
Q0, Q1  
VOH  
VDDO  
VO2L  
tcycle n  
tcycle n+1  
FB_IN  
tjit(cc) = tcycle n – tcycle n+1  
|
|
t(Ø)  
1000 Cycles  
t(Ø) mean = Static Phase Offset  
Where t(Ø) is any random sample, and t(Ø) mean is the average  
of the sampled cycles measured on the controlled edges.  
Cycle-to-Cycle Jitter  
Static Phase Offset  
ICS87002AG-02 REVISION C AUGUST 9, 2010  
8
©2010 Integrated Device Technology, Inc.  
ICS87002-02 Data Sheet  
1:2, DIFFERENTIAL-TO-LVCMOS/LVTTL ZERO DELAY CLOCK GENERATOR  
Parameter Measurement Information, continued  
nCLK  
80ꢀ  
tF  
80ꢀ  
tR  
CLK  
20ꢀ  
20ꢀ  
Q0, Q1  
VDDO  
2
Q0, Q1  
t
PD  
Propagation Delay  
Output Rise/Fall Time  
VDDO  
2
Q0, Q1  
tPW  
tPERIOD  
tPW  
x 100ꢀ  
odc =  
tPERIOD  
Output Duty Cycle/Pulse Width/Period  
ICS87002AG-02 REVISION C AUGUST 9, 2010  
9
©2010 Integrated Device Technology, Inc.  
ICS87002-02 Data Sheet  
1:2, DIFFERENTIAL-TO-LVCMOS/LVTTL ZERO DELAY CLOCK GENERATOR  
Applications Information  
Power Supply Filtering Technique  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter performance,  
power supply isolation is required. The ICS87002-02 provides  
separate power supplies to isolate any high switching noise from the  
outputs to the internal PLL. VDD, VDDA and VDDO should be  
individually connected to the power supply plane through vias, and  
0.01µF bypass capacitors should be used for each pin. Figure 1  
illustrates this for a generic VDD pin and also shows that VDDA  
requires that an additional 10resistor along with a 10µF bypass  
capacitor be connected to the VDDA pin. The 10resistor can also be  
replaced by a ferrite bead.  
3.3V or 2.5V  
VDD  
.01µF  
10  
VDDA  
.01µF  
10µF  
Figure 1. Power Supply Filtering  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 2 shows how a differential input can be wired to accept single  
ended levels. The reference voltage VREF = VCC/2 is generated by  
the bias resistors R1 and R2. The bypass capacitor (C1) is used to  
help filter noise on the DC bias. This bias circuit should be located as  
close to the input pin as possible. The ratio of R1 and R2 might need  
to be adjusted to position the VREF in the center of the input voltage  
swing. For example, if the input clock swing is 2.5V and VCC = 3.3V,  
R1 and R2 value should be adjusted to set VREF at 1.25V. The values  
below are for when both the single ended swing and VCC are at the  
same voltage. This configuration requires that the sum of the output  
impedance of the driver (Ro) and the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination at  
the input will attenuate the signal in half. This can be done in one of  
two ways. First, R3 and R4 in parallel should equal the transmission  
line impedance. For most 50applications, R3 and R4 can be 100.  
The values of the resistors can be increased to reduce the loading for  
slower and weaker LVCMOS driver. When using single-ended  
signaling, the noise rejection benefits of differential signaling are  
reduced. Even though the differential input can handle full rail  
LVCMOS signaling, it is recommended that the amplitude be  
reduced. The datasheet specifies a lower differential amplitude,  
however this only applies to differential signals. For single-ended  
applications, the swing can be larger, however VIL cannot be less  
than -0.3V and VIH cannot be more than VCC + 0.3V. Though some  
of the recommended components might not be used, the pads  
should be placed in the layout. They can be utilized for debugging  
purposes. The datasheet specifications are characterized and  
guaranteed by using a differential signal.  
Figure 2. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels  
ICS87002AG-02 REVISION C AUGUST 9, 2010 10 ©2010 Integrated Device Technology, Inc.  
ICS87002-02 Data Sheet  
1:2, DIFFERENTIAL-TO-LVCMOS/LVTTL ZERO DELAY CLOCK GENERATOR  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and  
other differential signals. Both differential signals must meet the VPP  
and VCMR input requirements. Figures 3A to 3F show interface  
examples for the CLK/nCLK input driven by the most common driver  
types. The input interfaces suggested here are examples only.  
Please consult with the vendor of the driver component to confirm the  
driver termination requirements. For example, in Figure 3A, the input  
termination applies for IDT open emitter LVHSTL drivers. If you are  
using an LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
Zo = 50Ω  
nCLK  
Differential  
Input  
nCLK  
LVPECL  
Differential  
Input  
R1  
50Ω  
R2  
50Ω  
LVHSTL  
R1  
50Ω  
R2  
50Ω  
IDT  
LVHSTL Driver  
R2  
50Ω  
Figure 3A. CLK/nCLK Input Driven by an  
IDT Open Emitter LVHSTL Driver  
Figure 3B. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
R4  
3.3V  
125Ω  
125Ω  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100Ω  
nCLK  
nCLK  
Differential  
Input  
Zo = 50Ω  
LVPECL  
Receiver  
R1  
84Ω  
R2  
84Ω  
LVDS  
Figure 3C. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 3D. CLK/nCLK Input Driven by a  
3.3V LVDS Driver  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120Ω  
120Ω  
Zo = 50Ω  
Zo = 60Ω  
Zo = 60Ω  
*R3  
*R4  
33Ω  
33Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
nCLK  
Differential  
Input  
SSTL  
Differential  
Input  
HCSL  
R1  
50Ω  
R2  
50Ω  
R1  
120Ω  
R2  
120Ω  
*Optional – R3 and R4 can be 0Ω  
Figure 3E. CLK/nCLK Input Driven by a  
3.3V HCSL Driver  
Figure 3F. CLK/nCLK Input Driven by a  
2.5V SSTL Driver  
ICS87002AG-02 REVISION C AUGUST 9, 2010  
11  
©2010 Integrated Device Technology, Inc.  
ICS87002-02 Data Sheet  
1:2, DIFFERENTIAL-TO-LVCMOS/LVTTL ZERO DELAY CLOCK GENERATOR  
Schematic Example  
Figure 4 shows an example of ICS87002-02 application schematic.  
In this example, the device is operated at VDD = 3.3V. The decoupling  
capacitors should be located as close as possible to the power pin.  
The input is driven by a 3.3V LVPECL driver.  
Figure 4. ICS87002-02 Schematic Example  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
LVCMOS Outputs  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
All unused LVCMOS output can be left floating. There should be no  
trace attached.  
ICS87002AG-02 REVISION C AUGUST 9, 2010  
12  
©2010 Integrated Device Technology, Inc.  
ICS87002-02 Data Sheet  
1:2, DIFFERENTIAL-TO-LVCMOS/LVTTL ZERO DELAY CLOCK GENERATOR  
Reliability Information  
Table 6. θJA vs. Air Flow Table for a 20 Lead TSSOP  
θJA vs. Air Flow  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
98.0°C/W  
66.6°C/W  
88.0°C/W  
63.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
Transistor Count  
The transistor count for ICS87002-02 is: 2578  
Package Outline and Package Dimensions  
Package Outline - G Suffix for 20 Lead TSSOP  
Table 7. Package Dimensions  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
20  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 Basic  
E1  
e
4.30  
4.50  
0.65 Basic  
L
α
0.45  
0°  
0.75  
8°  
aaa  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
ICS87002AG-02 REVISION C AUGUST 9, 2010  
13  
©2010 Integrated Device Technology, Inc.  
ICS87002-02 Data Sheet  
1:2, DIFFERENTIAL-TO-LVCMOS/LVTTL ZERO DELAY CLOCK GENERATOR  
Ordering Information  
Table 8. Ordering Information  
Part/Order Number  
87002AG-02  
87002AG-02T  
87002AG-02LF  
87002AG-02LFT  
Marking  
Package  
20 Lead TSSOP  
20 Lead TSSOP  
Shipping Packaging  
Tube  
2500 Tape & Reel  
Tube  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS87002AG02  
ICS87002AG02  
ICS87002A02L  
ICS87002A02L  
“Lead-Free” 20 Lead TSSOP  
“Lead-Free” 20 Lead TSSOP  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product  
for use in life support devices or critical medical instruments.  
ICS87002AG-02 REVISION C AUGUST 9, 2010  
14  
©2010 Integrated Device Technology, Inc.  
ICS87002-02 Data Sheet  
1:2, DIFFERENTIAL-TO-LVCMOS/LVTTL ZERO DELAY CLOCK GENERATOR  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
T2  
2
Pin Characteristics Table - added CPD specs.  
Added Recommendations for Unused Input and Output Pins section.  
Updated Differential Clock Input Interface section.  
Added Schematic Layout  
10  
11  
12  
14  
B
4/29/08  
T8  
Ordering Information Table - added Lead-Free marking.  
T5A, T5B  
T5B  
7
7
Added thermal note.  
2.5V AC Characteristics Table - due to datasheet conversion on April 29, 2008, corrected  
typo for static phase offset spec from -650 to -65.  
C
8/9/10  
10  
14  
Updated Wiring the Differential Levels to Accept Single-ended Levels section.  
Ordering Information Table - deleted “ICS” prefix from the Part/Order Number column.  
Updated header/footer of datasheet.  
T8  
ICS87002AG-02 REVISION C AUGUST 9, 2010  
15  
©2010 Integrated Device Technology, Inc.  
ICS87002-02 Data Sheet  
1:2, DIFFERENTIAL-TO-LVCMOS/LVTTL ZERO DELAY CLOCK GENERATOR  
We’ve Got Your Timing Solution  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
San Jose, California 95138  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2010. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY