ICS87339AM-01 [IDT]

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, MS-013, SOIC-20;
ICS87339AM-01
型号: ICS87339AM-01
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, MS-013, SOIC-20

光电二极管
文件: 总16页 (文件大小:214K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS87339-01  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
GENERAL DESCRIPTION  
FEATURES  
The ICS87339-01 is a low skew, high performance Two divide by 2/4 differential 3.3V LVPECL outputs;  
Differential-to-3.3V LVPECL / ECL Clock Generator/Divider.  
The ICS87339-01 has one differential clock input pair. The  
CLK, nCLK pair can accept most standard differential input  
levels. The clock enable isinternally synchronized to  
eliminate runt pulses on theoutputs during asynchronous  
assertion/deassertion of the clock enable pin.  
two divide by 4/6 differential 3.3V LVPECL outputs  
One differential CLK, nCLK input pair  
CLK, nCLK pair can accept the following differential  
input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
Maximum input frequency: 1GHz  
Guaranteed output and part-to-part skew characteristics  
make the ICS87339-01 ideal for clock distribution applications  
demanding well defined performance and repeatability.  
Translates any single ended input signal (LVCMOS, LVTTL,  
GTL) to LVPECL levels with resistor bias on nCLK input  
Output skew: 35ps (maximum)  
Part-to-part skew: 385ps (maximum)  
Bank skew: Bank A - 30ps (maximum)  
Bank B - 25ps (maximum)  
Propagation delay: 2.1ns (maximum)  
LVPECL mode operating voltage supply range:  
VCC = 3V to 3.6V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3.6V to -3V  
0°C to 70°C ambient operating temperature  
Industrial temperature information available upon request  
Available in both standard and lead-free RoHS compliant  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
DIV_SELA  
VCC  
nCLK_EN  
DIV_SELB  
CLK  
nCLK  
RESERVED  
MR  
VCC  
nc  
DIV_SELA  
VCC  
1
2
3
4
5
6
7
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
QA0  
nQA0  
QA0  
nQA0  
QA1  
nQA1  
QB0  
nQB0  
QB1  
nQB1  
VEE  
D
nCLK_EN  
÷2, ÷4  
R
QA1  
nQA1  
Q
LE  
CLK  
nCLK  
9
10  
QB0  
nQB0  
ICS87339-01  
20-Lead SOIC, M Package  
7.5mm x 12.8mm x 2.25  
package body  
÷4, ÷6  
QB1  
nQB1  
R
MR  
Top View  
DIV_SELB  
87339AM-01  
www.idt.com  
REV. B AUGUST 2, 2010  
1
ICS87339-01  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 8, 20  
2
Name  
VCC  
Type  
Description  
Power  
Input  
Positive supply pins.  
nCLK_EN  
Pulldown Clock enable.  
Selects divide value for Bank B outputs as described in Table 3.  
3
DIV_SELB  
Input  
Pulldown  
LVCMOS / LVTTL interface levels.  
4
5
6
CLK  
Input  
Input  
Pulldown Non-inverting differential clock input.  
nCLK  
Pullup  
Inverting differential clock input.  
Reserve pin.  
RESERVED Reserve  
Active High Master Reset. When logic HIGH, the internal dividers  
are reset causing the true outputs (Qx) to go low, and the inverted outputs  
(nQX) to go high. When logic LOW, the internal dividers and the outputs  
are enabled. LVCMOS / LVTTL interface levels.  
7
MR  
Input  
Pulldown  
9
nc  
Unused  
Input  
No connect.  
Selects divide value for Bank A outputs as described in Table 3.  
LVCMOS / LVTTL interface levels.  
10  
DIV_SELA  
Pulldown  
11  
VEE  
Power  
Output  
Output  
Output  
Output  
Negative supply pin.  
12, 13  
14, 15  
16, 17  
18, 19  
nQB1, QB1  
nQB0, QB0  
nQA1, QA1  
nQA0, QA0  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CIN  
Input Capacitance  
Input Pullup Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
TABLE 3. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
nQA0, nQA1  
MR nCLK_EN DIV_SELA  
DIV_SELB  
QA0, QA1  
QB0, QB1  
nQB0, nQB1  
1
0
0
0
0
0
X
1
0
0
0
0
X
X
0
0
1
1
X
X
0
1
0
1
LOW  
HIGH  
LOW  
HIGH  
Not Switching  
Not Switching  
Not Switching  
Not Switching  
÷2  
÷2  
÷4  
÷4  
÷2  
÷2  
÷4  
÷4  
÷4  
÷6  
÷4  
÷6  
÷4  
÷6  
÷4  
÷6  
NOTE: After nCLK_EN switches, the clock outputs stop switching following a rising and falling input clock edge.  
87339AM-01  
www.idt.com  
REV. B AUGUST 2, 2010  
2
ICS87339-01  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
CLK  
MR  
tRR  
Q (÷n)  
FIGURE 1A. MR TIMING DIAGRAM  
Enabled  
Disabled  
CLK  
nCLK  
nCLK_EN  
QAx, QBx  
nQAx, nQBx  
FIGURE 1B. NCLK_EN TIMING DIAGRAM  
87339AM-01  
www.idt.com  
REV. B AUGUST 2, 2010  
3
ICS87339-01  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCC  
4.6V (LVPECL mode, VEE = 0) NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
Negative Supply Voltage, VEE  
Inputs, VI (LVPECL mode)  
Inputs, VI (ECL mode)  
-4.6V (ECL mode, VCC = 0)  
-0.5V to VCC + 0.5 V  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
VBB Sink/Source, IBB  
0.5mA  
Operating Temperature Range, TA -40°C to +85°C  
Storage Temperature, TSTG -65°C to 150°C  
Package Thermal Impedance, θJA 46.2°C/W (0 lfpm)  
(Junction-to-Ambient)  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V 0.3V, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
3.0  
3.3  
3.6  
V
105  
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V 0.3V, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VCC + 0.3  
0.8  
V
V
Input Low Voltage  
-0.3  
nCLK_EN, MR,  
DIV_SELA, DIV_SELB  
nCLK_EN, MR,  
DIV_SELA, DIV_SELB  
IIH  
IIL  
Input High Current  
VIN = VCC = 3.6V  
150  
µA  
µA  
Input Low Current  
VIN = 0V, VCC = 3.6V  
-5  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = 3.3V 0.3V, TA = 0°C TO 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VIN = VCC = 3.6V  
Minimum Typical Maximum Units  
nCLK  
CLK  
5
µA  
µA  
µA  
µA  
V
VIN = VCC = 3.6V  
150  
nCLK  
CLK  
VIN = 0V, VCC = 3.6V  
VIN = 0V, VCC = 3.6V  
-150  
-5  
IIL  
Input Low Current  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: For single ended applications, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
87339AM-01  
www.idt.com  
REV. B AUGUST 2, 2010  
4
ICS87339-01  
LOW SKEW,  
÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 3.3V 0.3V, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions  
Minimum Typical  
VCC - 1.4  
Maximum Units  
VOH  
Output High Voltage; NOTE1  
VCC - 0.9  
VCC - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VCC - 2.0  
VSWING  
Peak-to-Peak Output Voltage Swing  
0.6  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC = 3.3V 0.3V, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions  
fMAX Output Frequency  
tPD  
Minimum Typical Maximum Units  
1
2.1  
35  
GHz  
ns  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
%
Propagation Delay to Output; NOTE 1  
Output Skew; NOTE 2, 5  
CLK to Q (Diff)  
1.6  
tsk(o)  
20  
20  
12  
Bank A  
Bank Skew; NOTE 3, 5  
Bank B  
30  
tsk(b)  
25  
tsk(pp)  
tS  
Part-to-Part Skew; NOTE 4, 5  
385  
Setup Time  
nCLK_EN to CLK  
350  
100  
tH  
Hold Time  
CLK to nCLK_EN  
CLK  
tRR  
Reset Recovery Time  
Minimum Pulse Width  
Output Rise/Fall Time  
Output Duty Cycle  
400  
tPW  
550  
100  
48  
tR / tF  
20% to 80%  
600  
52  
odc  
All data taken with outputs ÷4.  
All parameters measured up to 1GHz unless noted otherwise.  
This device does not add measureable jitter.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew within a bank of outputs at the same voltages and with equal load conditions.  
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages and with equal  
load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
87339AM-01  
www.idt.com  
REV. B AUGUST 2, 2010  
5
ICS87339-01  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nCLK  
VPP  
VCMR  
Cross Points  
LVPECL  
VEE  
CLK  
VEE  
nQx  
-1.3V 0.3V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
PART 1  
nQx  
nQx  
Qx  
Qx  
PART 2  
nQy  
nQy  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nQAx  
QAx  
80%  
tF  
80%  
VSWING  
Clock  
20%  
20%  
nQBx  
Outputs  
tR  
QBx  
tsk(pp)  
OUTPUT RISE/FALL TIME  
BANK SKEW  
nCLK  
nQAx, nQBx  
QAx, QBx  
CLK  
tPW  
nQAx,  
nQBx  
tPERIOD  
QAx,  
QBx  
tPW  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
www.idt.com  
tPD  
odc =  
x 100%  
PROPAGATION DELAY  
87339AM-01  
REV. B AUGUST 2, 2010  
6
ICS87339-01  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio  
of R1 and R2 might need to be adjusted to position the V_REF  
in the center of the input voltage swing. For example, if the  
input clock swing is only 2.5V and VCC = 3.3V, V_REF should be  
1.25V and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLK  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
LVCMOS CONTROL PINS:  
LVPECL OUTPUT  
All control pins have internal pull-ups or pull-downs; additional All unused LVPECL outputs can be left floating. We  
resistance is not required but can be added for additional recommend that there is no trace attached. Both sides of the  
protection. A 1kΩ resistor can be used.  
differential output pair should either be left floating or  
terminated.  
87339AM-01  
www.idt.com  
REV. B AUGUST 2, 2010  
7
ICS87339-01  
LOW SKEW,  
÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, consult with the vendor of the driver component to confirm  
HCSL and other differential signals. Both VSWING and VOH the driver termination requirements. For example in Figure  
must meet the VPP and VCMR input requirements. Figures 3A 3A, the input termination applies for LVHSTL drivers. If you  
to 3E show interface examples for the CLK/nCLK input are using an LVHSTL driver from another vendor, use their  
driven by the most common driver types. The input termination recommendation.  
interfaces suggested here are examples only. Please  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 3A. CLK/NCLK INPUT DRIVEN BY  
LVHSTL DRIVER  
FIGURE 3B. CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 3C. CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 3D. CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
C2  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 3E. CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
87339AM-01  
www.idt.com  
REV. B AUGUST 2, 2010  
8
ICS87339-01  
LOW SKEW,  
÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termi-  
nation for LVPECL outputs. The two different layouts men-  
tioned are recommended only as guidelines.  
ance techniques should be used to maximize operating  
frequency and minimize signal distortion. Figures 4A and  
4B show two different layouts which are recommended only  
as guidelines. Other suitable clock layouts may exist and it  
would be recommended that the board designers simulate  
to guarantee compatibility across all printed circuit and clock  
component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, ter-  
minating resistors (DC current path to ground) or current  
sources must be used for functionality. These outputs are  
designed to drive 50Ω transmission lines. Matched imped-  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 4A. LVPECL OUTPUT TERMINATION  
FIGURE 4B. LVPECL OUTPUT TERMINATION  
87339AM-01  
www.idt.com  
REV. B AUGUST 2, 2010  
9
ICS87339-01  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS87339-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS87339-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 0.3V = 3.6V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * ICC_MAX = 3.6V * 105mA = 378  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 4 * 30mW = 120mW  
Total Power_MAX (3.6V, with all outputs switching) = 378mW + 120mW = 498mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for the devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA =Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 39.7°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.498W * 39.7°C/W = 89.8°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 20-PIN SOIC, FORCED CONVECTION  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
65.7°C/W  
39.7°C/W  
500  
57.5°C/W  
36.8°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
46.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
87339AM-01  
www.idt.com  
REV. B AUGUST 2, 2010  
10  
ICS87339-01  
LOW SKEW,  
÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 5.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 5. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 0.9V  
OH_MAX  
CC_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
87339AM-01  
www.idt.com  
REV. B AUGUST 2, 2010  
11  
ICS87339-01  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
RELIABILITY INFORMATION  
TABLE 7. θJA VS. AIR FLOW TABLE FOR 20 LEAD SOIC  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
65.7°C/W  
39.7°C/W  
500  
57.5°C/W  
36.8°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
46.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS87339-01 is: 1745  
87339AM-01  
www.idt.com  
REV. B AUGUST 2, 2010  
12  
ICS87339-01  
LOW SKEW,  
÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
PACKAGE OUTLINE - M SUFFIX FOR 20 LEAD SOIC  
TABLE 8 PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Minimum  
Maximum  
N
A
20  
--  
2.65  
--  
A1  
A2  
B
0.10  
2.05  
0.33  
0.18  
12.60  
7.40  
2.55  
0.51  
0.32  
13.00  
7.60  
C
D
E
e
1.27 BASIC  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-013, MO-119  
87339AM-01  
www.idt.com  
REV. B AUGUST 2, 2010  
13  
ICS87339-01  
LOW SKEW,  
÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
87339AM-01  
Marking  
Package  
Shipping Packaging Temperature  
ICS87339AM01  
ICS87339AM01  
ICS87339A01L  
ICS87339A01L  
20 lead SOIC  
Tube  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
87339AM-01T  
20 lead SOIC  
1000 Tape & Reel  
Tube  
87339AM-01LF  
87339AM-01LFT  
20 lead "Lead-Free" SOIC  
20 lead "Lead-Free" SOIC  
1000 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Inc. (IDT) assumes no responsibility for either its use or for infringement of  
any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial  
applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves  
the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
87339AM-01  
www.idt.com  
REV. B AUGUST 2, 2010  
14  
ICS87339-01  
LOW SKEW, ÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
Updated datasheet's header/footer with IDT from ICS.  
Removed ICS prefix from Part/Order Number column.  
Added Contact Page.  
B
T9  
14  
16  
8/2/10  
87339AM-01  
www.idt.com  
REV. B AUGUST 2, 2010  
15  
ICS87339-01  
LOW SKEW,  
÷2/4,÷4/6,  
DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK GENERATOR  
We’ve Got Your Timing Solution.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
netcom@idt.com  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
© 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks of Integrated Device Technology, Inc.  
Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of  
their respective owners.  
Printed in USA  
87339AM-01  
www.idt.com  
REV. B AUGUST 2, 2010  
16  

相关型号:

ICS87339AM-01LF

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, ROHS COMPLIANT, CMS-013, SOIC-20
IDT

ICS87339AM-01LFT

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, ROHS COMPLIANT, CMS-013, SOIC-20
IDT

ICS87339AM-11

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, MS-013, SOIC-20
IDT

ICS87339AM-11LF

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, MS-013, SOIC-20
IDT

ICS87339AM-11LFT

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, MS-013, SOIC-20
IDT

ICS87339AMI-11LF

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, ROHS COMPLIANT, MO-119, MS-013, SOIC-20
IDT

ICS87339AMI-11LFT

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, ROHS COMPLIANT, MO-119, MS-013, SOIC-20
IDT

ICS8733BY-01

PLL Based Clock Driver, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8733BY-01LFT

PLL Based Clock Driver, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8733BY-01T

PLL Based Clock Driver, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8733Y-01

PLL Based Clock Driver, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8733YT-01

PLL Based Clock Driver, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT