IDT5T93GL161PFGI8 [IDT]

Low Skew Clock Driver, 5T Series, 16 True Output(s), 0 Inverted Output(s), CMOS, PQFP64, GREEN, TQFP-64;
IDT5T93GL161PFGI8
型号: IDT5T93GL161PFGI8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 5T Series, 16 True Output(s), 0 Inverted Output(s), CMOS, PQFP64, GREEN, TQFP-64

文件: 总20页 (文件大小:871K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5V LVDS, 1:16 GLITCHLESS CLOCK BUFFER  
TERABUFFER™ II  
IDT5T93GL161  
General Description  
Features  
The IDT5T93GL161 2.5V differential clock buffer is a  
Guaranteed low skew: <75ps (maximum)  
user-selectable differential input to sixteen LVDS outputs. The  
fanout from a differential input to sixteen LVDS outputs reduces  
loading on the preceding driver and provides an efficient clock  
distribution network. The IDT5T93GL161 can act as a translator  
from a differential HSTL, eHSTL, LVEPECL (2.5V), LVPECL  
(3.3V), CML, or LVDS input to LVDS outputs. A single-ended 3.3V  
/ 2.5V LVTTL input can also be used to translate to LVDS outputs.  
The redundant input capability allows for a glitchless change-over  
from a primary clock source to a secondary clock source.  
Selectable inputs are controlled by SEL. During the switchover,  
the output will disable LOW for up to three clock cycles of the  
previously-selected input clock. The outputs will remain LOW for  
up to three clock cycles of the newly-selected clock, after which  
the outputs will start from the newly-selected input. A FSEL pin  
has been implemented to control the switchover in cases where a  
clock source is absent or is driven to DC levels below the minimum  
specifications.  
Very low duty cycle distortion: <100ps (maximum)  
High speed propagation delay: <2.2ns (maximum)  
Up to 450MHz operation  
Selectable inputs  
Hot insertable and over-voltage tolerant inputs  
3.3V/2.5V LVTTL, HSTL, eHSTL, LVEPECL (2.5V), LVPECL  
(3.3V), CML or LVDS input interface  
Selectable differential inputs to sixteen LVDS outputs  
Power-down mode  
At power-up, FSEL should be LOW  
2.5V VDD  
-40°C to 85°C ambient operating temperature  
Available in TQFP package  
The IDT5T93GL161 outputs can be asynchronously  
enabled/disabled. When disabled, the outputs will drive to the  
value selected by the GL pin. Multiple power and grounds reduce  
noise.  
Applications  
Pin Assignment  
Clock distribution  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
3
4
5
6
7
8
9
G1  
GND  
GND  
48  
47  
46  
G2  
GND  
GND  
VDD  
VDD  
45  
44  
43  
Q1  
Q1  
Q12  
Q12  
Q11  
Q11  
Q10  
IDT5T93GL161  
64-Lead TQFP E-Pad  
10mm x 10mm x 1.0mm package body  
Y package  
Q2  
Q2  
Q3  
42  
41  
40  
Q3  
Q4  
Q4  
10  
11  
12  
Q10  
Q9  
39  
38  
37  
Top View  
Q9  
V
DD  
13  
V
DD  
36  
35  
34  
A1 14  
A1  
GND 16  
17 18 19 20 21  
A2  
A2  
15  
GND  
33  
23 24 25 26 27 28 29 30 31 32  
22  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
1
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Block Diagram  
GL  
G1  
Q1  
Q1  
OUTPUT  
CONTROL  
Q2  
Q2  
OUTPUT  
CONTROL  
Q3  
Q3  
OUTPUT  
CONTROL  
PD  
Q4  
Q4  
OUTPUT  
CONTROL  
Q5  
Q5  
OUTPUT  
CONTROL  
A1  
A1  
1
0
Q6  
Q6  
OUTPUT  
CONTROL  
A2  
A2  
Q7  
Q7  
OUTPUT  
CONTROL  
SEL  
Q8  
Q8  
OUTPUT  
CONTROL  
FSEL  
G2  
Q9  
Q9  
OUTPUT  
CONTROL  
Q10  
Q10  
OUTPUT  
CONTROL  
Q11  
Q11  
OUTPUT  
CONTROL  
Q12  
Q12  
OUTPUT  
CONTROL  
Q13  
Q13  
OUTPUT  
CONTROL  
Q14  
Q14  
OUTPUT  
CONTROL  
Q15  
Q15  
OUTPUT  
CONTROL  
Q16  
Q16  
OUTPUT  
CONTROL  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
2
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Table 1. Pin Descriptions  
Name  
Type  
Description  
A[1:2]  
Input  
Input  
Adjustable (1, 4) Clock input. A[1:2] is the "true" side of the differential clock input.  
Complementary clock inputs. A[1:2] is the complementary side of A[1:2].  
For LVTTL single-ended operation, A[1:2] should be set to the desired toggle  
Adjustable (1, 4) voltage for A[1:2]:  
A[1:2]  
3.3V LVTTL VREF = 1650mV  
2.5V LVTTL VREF = 1250mV  
Gate control for differential outputs Q1 and Q1 through Q8 and Q8. When G1 is  
G1  
G2  
GL  
Input  
Input  
Input  
LVTTL  
LVTTL  
LVTTL  
LOW, the differential outputs are active. When G1 is HIGH, the differential  
outputs are asynchronously driven to the level designated by GL(2)  
.
Gate control for differential outputs Q9 and Q9 through Q16 and Q16. When G2  
is LOW, the differential outputs are active. When G2 is HIGH, the differential  
outputs are asynchronously driven to the level designated by GL(2)  
.
Specifies output disable level. If HIGH, "true" outputs disable HIGH and  
"complementary" outputs disable LOW. If LOW, "true" outputs disable LOW  
and "complementary" outputs disable HIGH.  
Q[1:16]  
Q{1:16}  
Output  
Output  
LVDS  
LVDS  
Clock outputs.  
Complementary clock outputs.  
Reference clock select. When LOW, selects A2 and A2.  
When HIGH, selects A1 and A1.  
SEL  
PD  
Input  
Input  
Input  
LVTTL  
LVTTL  
LVTTL  
Power-down control. Shuts off entire chip. If LOW, the device goes into LOW  
power mode. Inputs and outputs are disabled. Both "true" and "complementary"  
outputs will pull to VDD. Set HIGH for normal operation.(3)  
At a rising edge, FSEL forces select to the input designated by SEL.  
Set LOW for normal operation. At power-up, FSEL should be LOW.  
FSEL  
VDD  
Power  
Power  
Power supply for the device core and inputs.  
Ground.  
GND  
NOTES:  
1.  
Inputs are capable of translating the following interface standards:  
Single-ended 3.3V and 2.5V LVTTL levels  
Differential HSTL and eHSTL levels  
Differential LVEPECL (2.5V) and LVPECL (3.3V) levels  
Differential LVDS levels  
Differential CML levels  
2.  
3.  
4.  
Because the gate controls are asynchronous, runt pulses are possible. It is the user's responsibility to either time the gate control  
signals to minimize the possibility of runt pulses or be able to tolerate them in down stream circuitry.  
It is recommended that the outputs be disabled before entering power-down mode. It is also recommended that the outputs remain  
disabled until the device completes power-up after asserting PD.  
The user must take precautions with any differential input interface standard being used in order to prevent instability when there is  
no input signal.  
Table 2. Pin Characteristics (TA = +25°C, F = 1.0MHz)  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
CIN  
Input Capacitance  
3
pF  
NOTE: This parameter is measured at characterization but not tested.  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
3
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Function Tables  
Table 3A. Gate Control Output Table  
Control Outputs  
Outputs  
GL  
0
G
0
1
0
1
Q[1:16]  
Toggling  
LOW  
Q[1:16]  
Toggling  
HIGH  
0
1
Toggling  
HIGH  
Toggling  
LOW  
1
Table 3B. Input Selection Table  
Selection SEL pin  
Inputs  
A2/A2  
A1/A1  
0
1
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
4
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are  
stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC  
Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
product reliability.  
Item  
Rating  
Power Supply Voltage, VDD  
Input Voltage, VI  
-0.5V to +3.6V  
-0.5V to +3.6V  
Output Voltage, VO  
Not to exceed 3.6V  
-0.5 to VDD +0.5V  
Storage Temperature, TSTG  
Junction Temperature, TJ  
-65°C to +150°C  
150°C  
Recommended Operating Range  
Symbol  
TA  
Description  
Minimum  
Typical  
+25  
Maximum  
+85  
Units  
°C  
Ambient Operating Temperature  
Internal Power Supply Voltage  
-40  
2.3  
VDD  
2.5  
2.7  
V
DC Electrical Characteristics  
Table 4A. LVDS Power Supply DC Characteristics(1), TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical(2)  
Maximum  
Units  
Quiescent VDD  
Power Supply Current  
VDD = Max.,  
IDDQ  
ITOT  
IPD  
350  
mA  
All Input Clocks = LOW(2); Outputs enabled  
Total Power  
VDD Supply Current  
VDD = 2.7V;  
FREFERENCE Clock = 450MHz  
360  
5
mA  
mA  
Total Power Down  
Supply Current  
PD = LOW  
NOTE 1: These power consumption characteristics are for all the valid input interfaces and cover the worst case conditions.  
NOTE 2: The true input is held LOW and the complementary input is held HIGH.  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
5
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Table 4B. LVTTL DC Characteristics(1), TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
VDD = 2.7V  
Minimum  
Typical(2)  
Maximum  
Units  
µA  
µA  
V
IIH  
Input High Current  
5
5
IIL  
Input Low Current  
VDD = 2.7V  
VIK  
VIN  
VIH  
VIL  
VTHI  
Clamp Diode Voltage  
DC Input Voltage  
VDD = 2.3V, IIN = -18mA  
-0.7  
-1.2  
3.6  
-0.3  
1.7  
V
DC Input High Voltage  
DC Input Low Voltage  
DC Input Threshold Crossing Voltage  
V
0.7  
V
VDD/2  
1.65  
V
3.3V LVTTL  
2.5V LVTTL  
V
VREF  
Single-Ended Reference Voltage (3)  
1.25  
V
NOTE 1: See Recommended Operating Range table.  
NOTE 2: Typical values are at VDD = 2.5V, +25°C ambient.  
NOTE 3: For A[1:2] single-ended operation, A[1:2] is tied to a DC reference voltage.  
Table 4C. Differential DC Characteristics(1), TA = -40°C to 85°C  
Symbol  
IIH  
Parameter  
Test Conditions  
VDD = = 2.7V  
Minimum  
Typical(2)  
Maximum  
Units  
µA  
µA  
V
Input High Current  
5
5
IIL  
Input Low Current  
VDD = = 2.7V  
VIK  
Clamp Diode Voltage  
DC Input Voltage  
DC Differential Voltage(3)  
VDD = 2.3V, IIN = -18mA  
-0.7  
-1.2  
3.6  
VIN  
-0.3  
0.1  
V
VDIF  
VCM  
V
DC Common Mode Input Voltage  
0.05  
VDD  
V
NOTE 1: See Recommended Operating Range table.  
NOTE 2: VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and  
VCP is the "complement" input level. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW  
input. The AC differential voltage must be achieved to guarantee switching to a new state.  
NOTE 3: VCM specifies the maximum allowable range of (VTR + VCP) /2.  
NOTE 4: Typical values are at VDD = 2.5V, +25°C ambient.  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
6
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Table 4D. LVDS DC Characteristics(1), TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical(2)  
Maximum  
Units  
Differential Output Voltage for the  
True Binary State  
VOT(+)  
VOT(–)  
VOT  
VOS  
247  
454  
mV  
Differential Output Voltage for the  
False Binary State  
247  
454  
50  
mV  
mV  
V
Change in VOT Between Complementary  
Output States  
Output Common Mode Voltage  
(Offset Voltage)  
1.125  
1.2  
1.375  
50  
Change in VOS Between Complementary  
Output States  
VOS  
mV  
IOS  
Outputs Short Circuit Current  
VOUT+ and VOUT– = 0V  
VOUT+ = VOUT–  
12  
6
24  
12  
mA  
mA  
IOSD  
Differential Outputs Short Circuit Current  
NOTE 1: See Recommended Operating Range table.  
NOTE 2: Typical values are at VDD = 2.5V, +25°C ambient.  
AC Electrical Characteristics  
Table 5A. HSTL Differential Input AC Characteristics, TA = -40°C to 85°C  
Symbol Parameter  
Value  
Units  
VDIF  
VX  
Input Signal Swing(1)  
Differential Input Signal Crossing Point(2)  
1
V
mV  
%
750  
DH  
Duty Cycle  
50  
VTHI  
tR / tF  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
Crossing Point  
2
V
V/ns  
NOTE 1.The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE)  
environment. This device meets the VDIF (AC) specification under actual use conditions.  
NOTE 2.A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE)  
environment. This device meets the VX specification under actual use conditions.  
NOTE 3.In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
NOTE 4.The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
7
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Table 5B. eHSTL AC Differential Input Characteristics, TA = -40°C to 85°C  
Symbol  
VDIF  
VX  
Parameter  
Input Signal Swing(1)  
Differential Input Signal Crossing Point(2)  
Value  
Units  
V
1
900  
mV  
%
DH  
Duty Cycle  
50  
VTHI  
tR / tF  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
Crossing Point  
2
V
V/ns  
NOTE 1.The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE)  
environment. This device meets the VDIF (AC) specification under actual use conditions.  
NOTE 2.A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE)  
environment. This device meets the VX specification under actual use conditions.  
NOTE 3.In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
NOTE 4.The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
Table 5C. LVEPECL (2.5V) and LVPECL (3.3V) Differential Input AC Characteristics, TA = -40°C to 85°C  
Symbol  
Parameter  
Input Signal Swing(1)  
Maximum  
Units  
mV  
mV  
m
VDIF  
732  
LVEPECL  
LVPECL  
1082  
VX  
Differential Input Cross Point Voltage(2)  
1880  
DH  
Duty Cycle  
50  
%
VTHI  
tR / tF  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
Crossing Point  
2
V
V/ns  
NOTE 1.The 732mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment  
(ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.  
NOTE 2.A 1082mV LVEPECL (2.5V) and 1880mV LVPECL (3.3V) crossing point level is specified to allow consistent, repeatable results  
in an automatic test equipment (ATE) environment. This device meets the VX specification under actual use conditions.  
NOTE 3.In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
NOTE 4.The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
Table 5D. LVDS Differential Input AC Characteristics, TA = -40°C to 85°C  
Symbol  
VDIF  
VX  
Parameter  
Input Signal Swing(1)  
Differential Input Cross Point Voltage(2)  
Maximum  
Units  
mV  
V
400  
1.2  
DH  
Duty Cycle  
50  
%
VTHI  
tR / tF  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
Crossing Point  
2
V
V/ns  
NOTE 1.The 400mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment  
(ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.  
NOTE 2.A 1.2V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment.  
This device meets the VX specification under actual use conditions.  
NOTE 3.In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
NOTE 4.The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
8
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Table 5E. AC Differential Input Characteristics(1), TA = -40°C to 85°C  
Symbol  
VDIF  
VIX  
Parameter  
Minimum  
0.1  
Typical  
Maximum  
3.6  
Units  
AC Differential Voltage(2)  
Differential Input Cross Point Voltage  
Common Mode Input Voltage Range(3)  
Input Voltage  
V
V
V
V
0.05  
VDD  
VCM  
VIN  
0.05  
VDD  
-0.3  
3.6  
NOTE 1.The output will not change state until the inputs have crossed and the minimum differential voltage range defined by VDIF has  
been met or exceeded.  
NOTE 2.VDIF specifies the minimum input voltage (VTR – VCP) required for switching where VTR is the “true” input level and VCP is the  
“complement” input level. The AC differential voltage must be achieved to guarantee switching to a new state.  
NOTE 3.IVCM specified the maximum allowable range of (VTR + VCP) /2.  
Table 5F. AC Characteristics(1,5), TA = -40°C to 85°C  
Symbol  
tsk(o)  
tsk(p)  
tsk(pp)  
tpLH  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
75  
Units  
ps  
Same Device Output Pin-to-Pin Skew (2)  
Pulse Skew(3)  
Part-to-Part Skew(4)  
100  
ps  
300  
ps  
Propagation Delay, Low-to-High  
Propagation Delay, High-to-Low  
Frequency Range(6)  
1.5  
1.5  
2.2  
ns  
A/A Crosspoint to Qn/Qn  
Crosspoint  
tpHL  
2.2  
ns  
fo  
450  
MHz  
Output Gate Enable Crossing  
VTHI-to-Qn/Qn Crosspoint  
tPGE  
3.5  
3.5  
ns  
ns  
Output Gate Disable Crossing  
VTHI-to-Qn/Qn Crosspoint Driven to  
GL Designated Level  
tPGD  
tPWRDN  
tPWRUP  
PD Crossing VTHI-to-Qn = VDD, Qn = VDD  
100  
100  
µS  
µS  
Output Gate Disable Crossing VTHI to  
Qn/Qn Driven to GL Designated Level  
NOTE 1. AC propagation measurements should not be taken within the first 100 cycles of startup.  
NOTE 2. Skew measured between crosspoints of all differential output pairs under identical input and output interfaces, transitions and  
load conditions on any one device.  
NOTE 3. Skew measured is the difference between propagation delay times tpHL and tpLH of any single differential output pair under  
identical input and output interfaces, transitions and load conditions on any one device.  
NOTE 4. Skew measured is the magnitude of the difference in propagation times between any single differential output pair of two  
devices, given identical transitions and load conditions at identical VDD levels and temperature.  
NOTE 5. All parameters are tested with a 50% input duty cycle.  
NOTE 6. Guaranteed by design but not production tested.  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
9
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Differential AC Timing Waveforms  
Output Propagation and Skew Waveforms  
1/fo  
+ VDIF  
VDIF = 0  
- VDIF  
A[1:2] - A[1:2]  
tPHL  
tPLH  
+ VDIF  
VDIF = 0  
- VDIF  
Qn - Qn  
tSK(O)  
tSK(O)  
+ VDIF  
VDIF = 0  
- VDIF  
Qm - Qm  
NOTE 1: Pulse skew is calculated using the following expression:  
tsk(p) = |tpHL – tpLH|  
Note that the tpHL and tpLH shown above are not valid measurements for this calculation because they are not taken from the same pulse.  
NOTE 2: AC propagation measurements should not be taken within the first 100 cycles of startup.  
Differential Gate Disabled/Endable Showing Runt Pulse Generation  
+ VDIF  
V
DIF = 0  
A
[1:2] - A[1:2]  
- VDIF  
V
V
V
IH  
THI  
IL  
GL  
t
PLH  
V
V
V
IH  
THI  
IL  
Gx  
t
PGD  
tPGE  
+ VDIF  
DIF = 0  
V
- VDIF  
Qn - Qn  
NOTE 1: As shown, it is possible to generate runt pulses on gate disable and enable of the outputs. It is the user’s responsibility to time  
the G signal to avoid this problem.  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
10  
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Glitchless Output Operation with Switching Input Clock Selection  
+ VDIF  
VDIF = 0  
- VDIF  
A1 - A1  
+ VDIF  
VDIF = 0  
- VDIF  
A2 - A2  
SEL  
VIH  
VTHI  
VIL  
+ VDIF  
VDIF = 0  
- VDIF  
Qn - Qn  
1. When SEL changes, the output clock goes LOW on the falling edge of the output clock up to three cycles later. The output then stays  
LOW for up to three clock cycles of the new input clock. After this, the output starts with the rising edge of the new input clock.  
2. AC propagation measurements should not be taken within the first 100 cycles of startup.  
FSEL Operation for When Current Clock Dies  
1. When the differential on the selected clock goes below the minimum DC differential, the outputs clock goes to an unknown state. When  
this happens, the SEL pin should be toggled and FSEL asserted in order to force selection of the new input clock. The output clock will  
start up after a number of cycles of the newly-selected input clock.  
2. The FSEL pin should stay asserted until the problem with the dead clock can be fixed in the system.  
3. It is recommended that the FSEL be tied HIGH for systems that use only one input. If this is not possible, the user must guarantee that  
the unused input have a differential greater than or equal to the minimum DC differential specified in the datasheet.  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
11  
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
FSEL Operation for When Opposite Clock Dies  
1. When the differential on the non-selected clock goes below the minimum DC differential, the outputs clock goes to an unknown state.  
When this happens, the FSEL pin should be asserted in order to force selection of the new input clock. The output clock will start up after  
a number of cycles of the newly-selected input clock.  
2. The FSEL pin should stay asserted until the problem with the dead clock can be fixed in the system.  
3. It is recommended that the FSEL be tied HIGH for systems that use only one input. If this is not possible, the user must guarantee that  
the unused input have a differential greater than or equal to the minimum DC differential specified in the datasheet.  
Selection of Input While Protecting Against When Opposite Clock Dies  
+VDIF  
A1 - A1  
A2 - A2  
FSEL  
SEL  
VDIF=0  
-VDIF  
+VDIF  
VDIF=0  
-VDIF  
VIH  
VTHI  
VIL  
VIH  
VTHI  
VIL  
+VDIF  
VDIF=0  
-VDIF  
Qn - Qn  
1. If the user holds FSEL HIGH, the output will not be affected by the deselected input clock.  
2. The output will immediately be driven to LOW once FSEL is asserted. This may cause glitching on the output. The output will restart  
with the input clock selected by the SEL pin.  
3. If the user decides to switch input clocks, the user must de-assert FSEL, then assert FSEL after toggling the SEL input pin. The output  
will be driven LOW and will restart with the input clock selected by the SEL pin.  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
12  
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Power Down Timing  
+VDIF  
VDIF=0  
-VDIF  
A1 - A1  
+VDIF  
VDIF=0  
-VDIF  
A2 - A2  
VIH  
VTHI  
VIL  
Gx  
VIH  
VTHI  
VIL  
PD  
+VDIF  
VDIF=0  
-VDIF  
Qn - Qn  
NOTE 1: It is recommended that outputs be disabled before entering power-down mode. It is also recommended that the outputs remain  
disabled until the device completes power-up after asserting PD.  
NOTE 2: The Power Down Timing diagram assumes that GL is HIGH.  
NOTE 3: It should be noted that during power-down mode, the outputs are both pulled to VDD. In the Power Down Timing diagram this is  
shown when Qn/Qn goes to VDIF = 0.  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
13  
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Test Circuits and Conditions  
Test Circuit for Differential Input  
~50  
VIN  
Transmission Line  
VDD/2  
A
A
D.U.T.  
Pulse  
Generator  
~50  
VIN  
Transmission Line  
-VDD/2  
Scope  
50  
50  
Table 6A. Differential Input Test Conditions  
Symbol  
VDD = 2.5V 0.2V  
Unit  
VTHI  
Crossing of A and A  
V
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
14  
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Test Circuit for DC Outputs and Power Down Tests  
VDD  
A
A
Qn  
Qn  
Pulse  
Generator  
RL  
RL  
D.U.T.  
VOS  
VOD  
Test Circuit for Propagation, Skew, and Gate Enable/Disable Timing  
VDD/2  
SCOPE  
CL  
Z = 50  
A
A
Qn  
Qn  
Pulse  
Generator  
50  
50  
D.U.T.  
Z = 50  
CL  
-VDD/2  
Table 6B. Differential Input Test Conditions  
Symbol  
V
DD = 2.5V 0.2V  
Unit  
pF  
pF  
0(1)  
8(1,2)  
50  
CL  
RL  
NOTE 1: Specifications only apply to “Normal Operations” test condition. The TIA/EIA specification load is for reference only.  
NOTE 2: The scope inputs are assumed to have a 2pF load to ground. TIA/EIA – 644 specifies 5pF between the output pair.  
With CL = 8pF, this gives the test circuit appropriate 5pF equivalent load.  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
15  
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Package Outline  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
16  
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Package Dimensions  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
17  
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Ordering Information  
Table 7. Ordering Information  
XX  
X
XXXXX  
IDT  
Package Process  
Device Type  
I
-40 C to +85 C (Industrial)  
Thin Quad Flat Pack  
TQFP - Green  
PF  
PFG  
2.5V LVDS 1:16 Glitchless Clock Buffer  
Terabuffer II  
5T93GL161  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
18  
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
T3A  
T3B  
4
4
Added Gate Control Output Table.  
Added Selection Table.  
A
16  
17  
Added Package Outline.  
9/12/08  
Added Package Dimensions.  
Updated datasheet format.  
IDT™ LVDS GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
19  
IDT5T93GL161 REV. A SEPTEMBER 12, 2008  
IDT5T93GL161  
2.5V LVDS 1:16 GLITCHLESS CLOCK BUFFER TERABUFFER™ II  
Contact Information:  
www.IDT.com  
Corporate Headquarters  
Sales  
Technical Support  
Integrated Device Technology, Inc.  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
netcom@idt.com  
+480-763-2056  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
www.IDT.com/go/contactIDT  
© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
www.IDT.com  
Printed in USA  

相关型号:

IDT5T93GL161PFI

Low Skew Clock Driver, 5T Series, 16 True Output(s), 0 Inverted Output(s), CMOS, PQFP64, TQFP-64
IDT

IDT5T93GL16NLGI

Low Skew Clock Driver, 5T Series, 16 True Output(s), 0 Inverted Output(s), PQCC52, GREEN, PLASTIC, QFN-52
IDT

IDT5T940

PRECISION CLOCK GENERATOR OC-192 APPLICATIONS
IDT

IDT5T940-10NLI

PRECISION CLOCK GENERATOR OC-192 APPLICATIONS
IDT

IDT5T940-10NLI8

PLL Based Clock Driver, 5T Series, 2 True Output(s), 0 Inverted Output(s), PQCC28, PLASTIC, VFQFPN-28
IDT

IDT5T940-30NLGI8

PLL Based Clock Driver, 5T Series, 2 True Output(s), 0 Inverted Output(s), PQCC28, GREEN, PLASTIC, VFQFPN-28
IDT

IDT5T940-30NLI

PRECISION CLOCK GENERATOR OC-192 APPLICATIONS
IDT

IDT5T940-30NLI8

PLL Based Clock Driver, 5T Series, 2 True Output(s), 0 Inverted Output(s), PQCC28, PLASTIC, VFQFPN-28
IDT

IDT5T9820NLGI

PLL Based Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), GREEN, PLASTIC, VFQFPN-68
IDT

IDT5T9820NLI8

PLL Based Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), PQCC68, PLASTIC, VFQFPN-68
IDT

IDT5T9821NLGI8

PLL Based Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), GREEN, PLASTIC, VFQFPN-68
IDT

IDT5T9890NLGI

PLL Based Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), PQCC68, GREEN, PLASTIC, VFQFPN-68
IDT