IDT7007L15GI [IDT]

HIGH-SPEED 32K x 8 DUAL-PORT STATIC RAM; 高速32K ×8双端口静态RAM
IDT7007L15GI
型号: IDT7007L15GI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH-SPEED 32K x 8 DUAL-PORT STATIC RAM
高速32K ×8双端口静态RAM

文件: 总21页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
IDT7007S/L  
32K x 8 DUAL-PORT  
STATIC RAM  
Features  
using the Master/Slave select when cascading more than  
one device  
M/S = H for BUSY output flag on Master,  
M/S = L for BUSY input on Slave  
Interrupt Flag  
On-chip port arbitration logic  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
– Military:25/35/55ns(max.)  
– Industrial: 55ns (max.)  
– Commercial:15/20/25/35/55ns(max.)  
Low-power operation  
Full on-chip hardware support of semaphore signaling  
between ports  
– IDT7007S  
Fully asynchronous operation from either port  
TTL-compatible, single 5V (±10%) power supply  
Available in 68-pin PGA and PLCC and a 80-pin TQFP  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
Active:850mW(typ.)  
Standby: 5mW (typ.)  
– IDT7007L  
Active:850mW(typ.)  
Standby: 1mW (typ.)  
IDT7007 easily expands data bus width to 16 bits or more  
FunctionalBlockDiagram  
OER  
OEL  
CE  
R/W  
L
CE  
R/W  
R
R
L
I/O0L- I/O7L  
I/O0R-I/O7R  
I/O  
I/O  
Control  
Control  
(1,2)  
R
BUSY (1,2)  
L
BUSY  
A
14R  
A
14L  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A
0L  
A0R  
15  
15  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE  
OE  
R/W  
L
CE  
OE  
R/W  
R
L
R
R
L
SEM  
INT  
R
R
SEM  
L
M/S  
INT (2)  
L
(2)  
2940 drw 01  
NOTES:  
1. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
2. BUSY and INT outputs are non-tri-stated push-pull.  
JUNE 1999  
1
DSC 2940/8  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Description  
The IDT7007 is a high-speed 32K x 8 Dual-Port Static RAM. The featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
IDT7007isdesignedtobeusedasastand-alone256K-bitDual-PortRAM a very LOW standby power mode.  
orasacombinationMASTER/SLAVEDual-PortRAMfor16-bit-or-more FabricatedusingIDT’sCMOShigh-performancetechnology,these  
wordsystems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproach devices typically operate on only 850mW of power.  
in16-bitorwidermemorysystemapplicationsresultsinfull-speed,error-  
freeoperationwithouttheneedforadditionaldiscretelogic.  
The IDT7007 is packaged in a 68-pin pin PGA, a 68-pin PLCC,  
and an 80-pin thin quad flatpack, TQFP. Military grade product is  
This device provides two independent ports with separate control, manufacturedincompliancewiththelatestrevisionofMIL-PRF-38535  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor QML,ClassB,makingitideallysuitedtomilitarytemperatureapplications  
reads or writes to any location in memory. An automatic power down demandingthehighestlevelofperformanceandreliability.  
PinConfigurations(1,2,3)  
INDEX  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
60  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
GND  
I/O6L  
I/O7L  
VCC  
GND  
I/O0R  
I/O1R  
I/O2R  
VCC  
A5L  
A4L  
A3L  
A2L  
A1L  
A0L  
INTL  
BUSYL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
59  
58  
57  
56  
55  
IDT7007J  
J68-1  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
(4)  
GND  
M/S  
BUSYR  
68-Pin PLCC  
(5)  
Top View  
INTR  
A0R  
A1R  
A2R  
A3R  
A4R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
2940 drw 02  
NOTES:  
1. All Vcc pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately .95 in x .95 in x .17 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part marking.  
2
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
INDEX  
1
2
N/C  
N/C  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
GND  
I/O6L  
I/O7L  
60  
A
A
A
A
A
A
5L  
4L  
3L  
2L  
1L  
0L  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
3
4
5
6
7
7007PF  
8
INTL  
PN80-1(4)  
9
BUSY  
GND  
M/S  
L
V
N/C  
GND  
CC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
80-Pin TQFP  
Top View(5)  
BUSY  
R
0R  
I/O  
,
INT  
R
I/O1R  
I/O2R  
A
A
A
A
A
0R  
1R  
2R  
3R  
4R  
V
CC  
I/O3R  
I/O4R  
5R  
I/O  
N/C  
N/C  
I/O6R  
N/C  
2940 drw 03  
NOTES:  
1. All Vcc pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part marking.  
3
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
51  
A5L  
52  
A6L  
54  
A8L  
56  
50  
A4L  
48  
A2L  
46  
A0L  
44  
BUSYL  
42  
M/S  
40  
INTR  
38  
A1R  
36  
A3R  
11  
10  
09  
08  
07  
53  
A7L  
49  
A3L  
47  
A1L  
45  
INTL  
43  
GND  
41  
BUSYR  
39  
37  
35  
A4R  
34  
A5R  
A0R A2R  
55  
A9L  
32  
A7R  
33  
A6R  
57  
A11L  
30  
A9R  
31  
A8R  
A10L  
58  
59  
VCC  
28  
A11R  
29  
A10R  
IDT7007G  
G68-1  
A12L  
60  
A13L  
62  
(4)  
61  
26  
GND  
27  
A12R  
06  
05  
04  
03  
02  
01  
A14L  
68-Pin PGA  
Top View  
63  
24  
25  
(5)  
SEML  
A14R A13R  
CEL  
65  
64  
22  
SEMR  
23  
CER  
OEL  
R/WL  
66  
67  
20  
OER  
21  
R/WR  
I/O0L  
N/C  
1
3
5
7
9
68  
11  
13  
VCC  
15  
18  
I/O7R  
19  
N/C  
GND  
GND  
I/O7L  
I/O1L  
I/O4L  
I/O2L  
I/O1R  
I/O4R  
2
4
6
8
10  
12  
14  
16  
17  
I/O5L  
I/O0R I/O2R I/O3R I/O5R I/O6R  
VCC  
E
I/O6L  
I/O3L  
K
A
B
C
D
F
G
H
J
L
INDEX  
2940 drw 04  
NOTES:  
1. All Vcc pins must be connected to power supply  
2. All GND pins must be connected to power supply  
3. Package body is approximately 1.8 in x 1.8 in x .16 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part marking.  
PinNames  
Left Port  
Right Port  
Names  
Chip Enables  
Read/Write Enable  
Output Enable  
Address  
CEL  
CER  
WL  
WR  
R/  
R/  
OEL  
OER  
0L  
14L  
0R  
14R  
A
- A  
A
- A  
0L  
7L  
0R  
7R  
I/O - I/O  
I/O - I/O  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
Busy Flag  
SEML  
SEMR  
INTR  
BUSYR  
S
INTL  
BUSYL  
M/  
Master or Slave Select  
Power  
CC  
V
GND  
Ground  
2940 tbl 01  
4
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
R/  
W
I/O0-7  
Mode  
CE  
H
L
OE  
X
SEM  
H
X
High-Z  
DATAIN  
Deselected: Power-Down  
Write to Memory  
L
H
X
X
H
L
L
H
DATAOUT Read Memory  
High-Z Outputs Disabled  
X
H
X
2940 tbl 02  
NOTE:  
1. A0L — A14L A0R — A14R  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
R/W  
I/O0-7  
Mode  
CE  
OE  
SEM  
H
H
L
L
DATAOUT  
Read Semaphore Flag Data Out (I/O0-I/O7)  
H
L
X
X
L
L
DATAIN  
Write I/O0 into Semaphore Flag  
Not Allowed  
______  
X
2940 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all I/O's. These eight semaphores are addressed by A0 - A2.  
AbsoluteMaximumRatings(1)  
MaximumOperatingTemperature  
andSupply Voltage(1,2)  
Symbol  
Rating  
Commercial  
& Industrial  
Military  
Unit  
Ambient  
(2)  
Grade  
Temperature  
-55OC to+125OC  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
Vcc  
VTERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +7.0  
-0.5 to +7.0  
V
Military  
5.0V + 10%  
5.0V + 10%  
5.0V + 10%  
Temperature  
Under Bias  
-55 to +125  
-55 to +120  
50  
-55 to +135  
-65 to +150  
50  
oC  
oC  
Commercial  
Industrial  
0V  
TBIAS  
TSTG  
IOUT  
0V  
Storage  
Temperature  
2940 tbl 05  
NOTES:  
1. This is the parameter TA.  
2. Industrial temperature: for other speeds, packages and powers contact your  
sales office.  
DC Output  
Current  
mA  
2940 tbl 04  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM  
RATINGS  
may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sec-tions of this specification is not implied. Exposure  
to absolute maxi-mum rating conditions for extended periods may affect  
reliability.  
RecommendedOperating  
Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max. Unit  
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > Vcc + 10%.  
VCC  
Supply Voltage  
4.5  
5.0  
5.5  
0
V
V
V
GND  
VIH  
Ground  
0
0
Input High Voltage  
Input Low Voltage  
2.2  
6.0(2)  
0.8  
____  
Capacitance(TA = +25°C, f = 1.0mhz)  
Parameter(1)  
Input Capacitance  
Output Capacitance  
Conditions(2)  
Max.  
Unit  
V
IL  
-0.5(1)  
V
____  
Symbol  
2940 tbl 06  
CIN  
VIN = 3dV  
9
pF  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
COUT  
VOUT = 3dV  
10  
pF  
2940 tbl 07  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested. TQFP package only.  
2. 3dV represents the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
5
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VCC = 5.0V ± 10%)  
7007S  
7007L  
Symbol  
|ILI|  
Parameter  
Input Leakage Current(1)  
Output Leakage Current  
Output Low Voltage  
Test Conditions  
VCC = 5.5V, VIN = 0V to VCC  
CE = VIH, VOUT = 0V to VCC  
IOL = 4mA  
Min.  
Max.  
10  
Min.  
Max.  
Unit  
µA  
µA  
V
___  
___  
5
5
___  
___  
___  
___  
|ILO|  
10  
VOL  
0.4  
0.4  
___  
___  
VOH  
Output High Voltage  
IOH = -4mA  
2.4  
2.4  
V
2940 tbl 08  
NOTE:  
1. At Vcc < 2.0V, input leakages are undefined.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1,6) (VCC = 5.0V ± 10%)  
7007X15  
Com'l Only  
7007X20  
Com'l Only  
7007X25  
Com'l &  
Military  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
CC  
I
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
190  
190  
325  
285  
180  
180  
315  
275  
170  
170  
305  
265  
mA  
IL, Outputs Open  
CE = V  
SEM = VIH  
(3)  
f = fMAX  
___  
___  
___  
___  
___  
___  
___  
___  
MIL &  
IND  
S
L
170  
170  
345  
305  
ISB1  
ISB2  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
S
L
35  
35  
85  
60  
30  
30  
85  
60  
25  
25  
85  
60  
mA  
mA  
L =  
R = VIH  
SEMR = SEML = VIH  
CE CE  
(3)  
MAX  
f = f  
___  
___  
___  
___  
___  
___  
___  
___  
MIL &  
IND  
S
L
25  
25  
100  
80  
(5)  
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
"A"  
IL  
"B"  
IH  
S
L
125  
125  
220  
190  
115  
115  
210  
180  
105  
105  
200  
170  
CE = V and CE = V  
Active Port Outputs Open,  
(3)  
MAX  
f=f  
___  
___  
___  
___  
___  
___  
___  
___  
MIL &  
IND  
S
L
105  
105  
230  
200  
SEMR = SEML = VIH  
ISB3  
ISB4  
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CEL and  
CER > VCC - 0.2V  
VIN > VCC - 0.2V or  
VIN < 0.2V, f = 0(4)  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
mA  
mA  
___  
___  
___  
___  
___  
___  
___  
___  
MIL &  
IND  
S
L
1.0  
02.  
30  
10  
R
L
CC  
SEM = SEM > V - 0.2V  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
COM'L  
S
L
120  
120  
190  
160  
110  
110  
185  
160  
100  
100  
175  
160  
CE"A" < 0.2V and  
CE"B" > VCC - 0.2V(5)  
SEMR = SEML > VCC - 0.2V  
___  
___  
___  
___  
___  
___  
___  
___  
MIL &  
IND  
S
L
100  
100  
200  
175  
VIN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Open  
(3)  
f = fMAX  
2940 tbl 09  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested. ICCDC = 120mA (Typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using “AC Test Conditions” of input  
levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6. Industrial temperature: for other speeds, packages and powers contact your sales office.  
6
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1,6) (con't.) (VCC = 5.0V ± 10%)  
7007X35  
Com'l &  
Military  
7007X55  
Com'l, Ind  
& Military  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating Current  
(Both Ports Active)  
S
L
160  
160  
295  
255  
150  
150  
270  
230  
mA  
CE = VIL, Outputs Open  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
MIL &  
IND  
S
L
335  
295  
150  
150  
310  
270  
I
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
S
L
20  
20  
85  
60  
20  
20  
85  
60  
mA  
mA  
mA  
mA  
SB1  
CEL = CER = VIH  
SEMR = SEML = VIH  
(3)  
f = fMAX  
____  
____  
MIL &  
IND  
S
L
100  
80  
13  
13  
100  
80  
(5)  
ISB2  
Standby Current  
(One Port - TTL Level Inputs)  
COM'L  
S
L
95  
95  
185  
155  
85  
85  
165  
135  
CE = V and CE = V  
IH  
"A"  
IL  
"B"  
Active Port Outputs Open,  
(3)  
f=fMAX  
____  
____  
MIL &  
IND  
S
L
215  
185  
85  
85  
195  
165  
SEMR = SEML = VIH  
I
Full Standby Current (Both  
Ports - All CMOS Level  
Inputs)  
Both Ports CE and  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
SB3  
L
CER > VCC - 0.2V  
VIN > VCC - 0.2V or  
VIN < 0.2V, f = 0(4)  
____  
____  
MIL &  
IND  
S
L
30  
10  
1.0  
0.2  
30  
10  
SEMR = SEML > VCC - 0.2V  
ISB4  
Full Standby Current  
(One Port - All CMOS Level  
Inputs)  
COM'L  
S
L
90  
90  
160  
135  
80  
80  
135  
110  
CE < 0.2V and  
"A"  
CE"B" > VCC - 0.2V(5)  
SEMR = SEML > VCC - 0.2V  
____  
____  
MIL &  
IND  
S
L
190  
165  
80  
80  
165  
140  
VIN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Open  
(3)  
f = fMAX  
2940 tbl 10  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested. ICCDC = 120mA (Typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using  
“AC Test Conditions” of input levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6. Industrial temperature: for other speeds, packages and powers contact your sales office.  
7
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
5V  
5V  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
5ns Max.  
1.5V  
893  
893  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
DATAOUT  
BUSY  
INT  
DATAOUT  
30pF  
5pF*  
347  
347  
1.5V  
Figures 1 and 2  
.
2940 tbl 11  
2940 drw 05  
2940 drw 06  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
Figure 1. AC Output Test Load  
* Including scope and jig.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4,5)  
7007X15  
Com'l Only  
7007X20  
Com'l Only  
7007X25 Com'l  
& Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
tRC  
tAA  
Read Cycle Time  
15  
20  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
Address Access Time  
15  
15  
20  
20  
25  
25  
Chip Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
tACE  
tAOE  
tOH  
tLZ  
____  
____  
____  
10  
12  
13  
____  
____  
____  
3
3
3
____  
____  
____  
3
3
3
Output High-Z Time(1,2)  
10  
12  
15  
____  
____  
____  
tHZ  
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
0
0
0
____  
____  
____  
tPU  
tPD  
tSOP  
tSAA  
____  
____  
____  
15  
20  
25  
____  
____  
____  
Semaphore Flag Update Pulse (OE or SEM  
)
10  
10  
12  
____  
____  
____  
Semaphore Address Access Time  
15  
20  
25  
ns  
2940 tbl 12a  
7007X35  
Com'l &  
Military  
7007X55  
Com'l, Ind  
& Military  
Symbol  
READ CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
tRC  
tAA  
Read Cycle Time  
35  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
Address Access Time  
35  
35  
55  
55  
Chip Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
tACE  
tAOE  
tOH  
____  
____  
20  
30  
____  
____  
3
3
____  
____  
tLZ  
3
3
Output High-Z Time(1,2)  
15  
25  
____  
____  
tHZ  
Chip Enable to Power Up Time (2)  
Chip Disable to Power Down Time (2)  
0
0
____  
____  
tPU  
____  
____  
tPD  
35  
50  
____  
____  
tSOP  
tSAA  
NOTES:  
Semaphore Flag Update Pulse (OE or SEM  
)
15  
15  
____  
____  
Semaphore Address Access Time  
35  
55  
ns  
2940 tbl 12b  
1. Transition is measured ±200mV from Low- or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL.  
4. 'X' in part numbers indicates power rating (S or L).  
5. Industrial temperature: for other speeds, packages and powers contact your sales office.  
8
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE  
OE  
(4)  
tAOE  
R/W  
(1)  
LZ  
t
OH  
(2)  
t
VALID DATA(4)  
DATAOUT  
t
HZ  
BUSYOUT  
(3,4)  
2940 drw 07  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
Timing of Power-Up Power-Down  
CE  
tPU  
tPD  
ICC  
ISB  
,
2940 drw 08  
9
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5,6)  
7007X15  
Com'l Only  
7007X20  
Com'l Only  
7007X25  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
tWP  
tWR  
tDW  
tHZ  
12  
0
15  
0
20  
0
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
10  
15  
15  
____  
____  
____  
10  
12  
15  
____  
____  
____  
tDH  
0
0
0
(1,2)  
____  
____  
____  
tWZ  
Write Enable to Output in High-Z  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
12  
15  
____  
____  
____  
tOW  
tSWRD  
tSPS  
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
ns  
2940 tbl 13a  
7007X35  
Com'l Only  
7007X55  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
tWP  
tWR  
tDW  
tHZ  
Write Pulse Width  
25  
0
40  
0
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
15  
30  
____  
____  
12  
25  
tDH  
Data Hold Time(4)  
0
0
____  
____  
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write (1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
12  
25  
____  
____  
tWZ  
____  
____  
tOW  
tSWRD  
tSPS  
0
5
5
0
5
5
____  
____  
____  
____  
ns  
2940 tbl 13b  
NOTES:  
1. Transition is measured ±200mV from Low- or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part numbers indicates power rating (S or L).  
6. Industrial temperature: for other speeds, packages and powrs contact your sales office.  
10  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM(9)  
(3)  
(2)  
(6)  
tWP  
tWR  
tAS  
R/W  
DATAOUT  
DATAIN  
(7)  
tWZ  
tOW  
(4)  
(4)  
tDW  
tDH  
2940 drw 09  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
tWC  
ADDRESS  
tAW  
CE or SEM(9)  
(6)  
tAS  
(3)  
(2)  
tWR  
tEW  
R/W  
tDW  
tDH  
DATAIN  
2940 drw 10  
NOTES:  
1. R/W or CE must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured +200mV from steady state with the Output Test Load  
(Figure 2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as  
the specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
11  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
t
SAA  
t
OH  
0 2  
A -A  
VALID ADDRESS  
VALID ADDRESS  
t
AW  
t
WR  
t
ACE  
t
EW  
SEM  
t
DW  
t
SOP  
DATAOUT  
VALID  
DATAIN VALID  
DATA  
0
t
AS  
t
WP  
t
DH  
R/  
W
t
SWRD  
t
AOE  
OE  
t
SOP  
Write Cycle  
Read Cycle  
2940 drw 11  
NOTE:  
1. CE = VIH for the duration of the above timing (both write and read cycle).  
Timing Waveform of Semaphore Write Contention(1,3,4)  
0"A" 2"A"  
A
-A  
MATCH  
SIDE(2) "A"  
W"A"  
R/  
SEM"A"  
SPS  
t
0"B" 2"B"  
A
-A  
MATCH  
SIDE(2)  
"B"  
W"B"  
R/  
SEM"B"  
2940 drw 12  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH.  
2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".  
3. This parameter is measured from R/WA or SEMA going HIGH to R/WB or SEMB going HIGH.  
4. If tSPS is not satisfied, the semaphore will fall positively to one side or the other, but there is no guarantee which side will obtain the flag.  
12  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6,7)  
7007X15  
Com'l Only  
7007X20  
Com'l Only  
7007X25  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/  
tBAA  
S=VIH)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
15  
15  
15  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
15  
17  
17  
____  
____  
____  
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
18  
30  
30  
(5)  
____  
____  
____  
Write Hold After BUSY  
12  
15  
17  
BUSY TIMING (M/S=VIL)  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY  
tWB  
0
0
0
ns  
ns  
(5)  
____  
____  
____  
tWH  
12  
15  
17  
PORT-TO-PORT DELAY TIMING  
tWDD  
Write Pulse to Data Delay(1)  
30  
25  
45  
30  
50  
35  
ns  
____  
____  
____  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
____  
____  
____  
2940 tbl 14a  
7007X35  
Com'l &  
Military  
7007X55  
Com'l, Ind  
& Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S=VIH)  
____  
____  
____  
____  
____  
____  
____  
____  
tBAA  
20  
20  
20  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
20  
35  
____  
____  
5
5
____  
____  
BUSY Disable to Valid Data(3)  
35  
40  
(5)  
____  
____  
Write Hold After BUSY  
25  
25  
BUSY TIMING (M/S=VIL)  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY  
tWB  
0
0
ns  
ns  
(5)  
____  
____  
tWH  
25  
25  
PORT-TO-PORT DELAY TIMING  
tWDD  
Write Pulse to Data Delay(1)  
60  
45  
80  
65  
ns  
____  
____  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
____  
____  
2940 tbl 14b  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
6. 'X' in part numbers indicates power rating (S or L).  
7. Industrial temperature: for other speeds, packages and powers contact your sales office.  
13  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with Port-to-Port Read and BUSY(2,5)  
(M/S = VIH)(4)  
tWC  
MATCH  
ADDR"A"  
t
WP  
W"A"  
R/  
t
DW  
t
DH  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
tBDA  
tBDD  
BUSY"B"  
tWDD  
VALID  
DATAOUT "B"  
(3)  
tDDD  
2940 drw 13  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL  
3. OE = VIL for the reading port.  
4. If M/S = VIL (SLAVE), then BUSY is an input (BUSY"A" = VIH and BUSY"B" = "don't care", for this example).  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY (M/S = VIL)  
WP  
t
"A"  
R/W  
WB  
t
BUSY"B"  
R/W"B"  
(1)  
WH  
t
(2)  
,
2940 drw 14  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
14  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
BUSY"B"  
2940 drw 15  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
ADDRESS "N"  
(2)  
t
APS  
MATCHING ADDRESS "N"  
t
BAA  
tBDA  
2940 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1,2)  
7007X15  
Com'l Only  
7007X20  
Com'l Only  
7007X25  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
tAS  
Address Set-up Time  
0
0
0
ns  
ns  
ns  
____  
____  
____  
tWR  
tINS  
tINR  
Write Recovery Time  
Interrupt Set Time  
0
0
0
____  
____  
____  
15  
15  
20  
20  
20  
20  
____  
____  
____  
Interrupt Reset Time  
ns  
2940 tbl 15a  
7007X35  
Com'l &  
Military  
7007X55  
Com'l, Ind  
& Military  
Symbol  
INTERRUPT TIMING  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
tAS  
Address Set-up Time  
0
0
ns  
ns  
ns  
____  
____  
tWR  
tINS  
tINR  
Write Recovery Time  
Interrupt Set Time  
0
0
____  
____  
25  
25  
40  
40  
____  
____  
Interrupt Reset Time  
ns  
2940 tbl 15b  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
2. Industrial temperature: for other speeds, packages and powers contact your sales office.  
15  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
t
WC  
INTERRUPT SET ADDRESS (2)  
ADDR"A"  
(4)  
(3)  
t
AS  
t
WR  
CE"A"  
R/  
W
"A"  
(3)  
t
INS  
INT"B"  
2940 drw 17  
t
RC  
ADDR"B"  
CE"B"  
INTERRUPT CLEAR ADDRESS (2)  
(3)  
t
AS  
OE"B"  
(3)  
t
INR  
INT"B"  
2940 drw 18  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. See Interrupt Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
Truth Table III — Interrupt Flag(1)  
Left Port  
Right Port  
R/  
W
L
A14L-A0L  
7FFF  
X
R/  
W
R
A14R-A0R  
X
Function  
CE  
L
OE  
L
INT  
L
CE  
R
OE  
R
INT  
R
L
X
X
X
L
X
X
L
X
X
X
X
X
L
X
L
X
L(2)  
H(3)  
X
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
X
L
7FFF  
7FFE  
X
X
X
L(3)  
H(2)  
L
X
L
7FFE  
X
X
X
X
Reset Left INTL Flag  
2940 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
16  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
AOL-A14L  
AOR-A14R  
(1)  
(1)  
Function  
Normal  
CEL  
X
CER  
X
BUSYL  
BUSYR  
NO MATCH  
MATCH  
H
H
H
H
H
X
Normal  
X
H
MATCH  
H
H
Normal  
L
L
MATCH  
(2)  
(2)  
Write Inhibit(3)  
2940 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT7007 are  
push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0 - D7 Left  
D0 - D7 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
2940 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7007.  
2. There are eight semaphore flags written to via I/O5(I/O0 - I/O7) and read from all I/O0. These eight semaphores are addressed by A0 - A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
when CER = OER = VIL, R/W is a "don't care". Likewise, the right port  
interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
7FFF(HEX)andtocleartheinterruptflag(INTR),therightportmustread  
thememorylocation7FFF. Themessage(8bits)at7FFEor7FFFisuser-  
definedsinceitisanaddressableSRAMlocation.Iftheinterruptfunction  
isnotused,addresslocations7FFEand7FFFarenotusedasmailboxes,  
butaspartoftherandomaccessmemory.RefertoTableIIIfortheinterrupt  
operation.  
TheIDT7007providestwoportswithseparatecontrol,addressand  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation  
inmemory.TheIDT7007hasanautomaticpowerdownfeaturecontrolled  
by CE. The CE controls on-chip power down circuitry that permits the  
respectiveporttogointoastandbymodewhennotselected(CEHIGH).  
Whenaportisenabled,accesstotheentirememoryarrayispermitted.  
INTERRUPTS  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
or message center) is assigned to each port. The left port interrupt flag  
(INTL) is asserted when the right port writes to memory location 7FFE  
(HEX), where a write is defined as CE = R/W= VIL per the Truth Table.  
Theleftportclearstheinterruptthroughaccessofaddresslocation7FFE  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime. Italsoallowsoneof  
the two accesses to proceed and signals the other side that the RAM is  
17  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
“busy”. The BUSY pin can then be used to stall the access until the  
operation on the other side is completed. If a write operation has been  
attemptedfromthesidethatreceivesaBUSYindication,thewritesignal  
isgatedinternallytopreventthewritefromproceeding.  
Semaphores  
TheIDT7007isanextremelyfastDual-Port 32Kx8CMOSStaticRAM  
withanadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesigner’ssoftware.Asanexample,thesemaphorecanbe  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
and use any BUSYindication as an interrupt source to flag the event of  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations  
can be prevented to a port by tying the BUSYpin for that port LOW.  
TheBUSYoutputsontheIDT7007RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate. Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
The Dual-Port RAM features a fast access time, and both ports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
left port in no way slows the access time of the right port. Both ports are  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chip power down circuitry that permits the respective port to go into  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table I where CE and SEM are both HIGH.  
Width Expansion with Busy Logic  
Master/SlaveArrays  
Systems which can best use the IDT7007 contain multiple proces-  
sors or controllers and are typically very high-speed systems which  
are software controlled or software intensive. These systems can  
benefit from a performance increase offered by the IDT7007 hardware  
semaphores, which provide a lockout mechanism without requiring  
complexprogramming.  
Software handshaking between processors offers the maximum in  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT7007doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
CE  
CE  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
(L)  
(R)  
(R)  
BUSY  
BUSY  
BUSY  
BUSY (L)  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
CE  
CE  
BUSY (R)  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
(L)  
BUSY  
,
2940 drw 19  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT7007 RAMs.  
WhenexpandinganIDT7007RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMsarraywill  
receiveaBUSYindication,andtooutputthatindication.Anynumberof  
slavestobeaddressedinthesameaddressrangeasthemaster,usethe  
BUSYsignalasawriteinhibitsignal.ThusontheIDT7007RAMtheBUSY  
pinisanoutputifthepartisusedasamaster(M/Spin=H),andtheBUSY  
pin is an input if the part used as a slave (M/S pin = L) as shown in  
Figure 3.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration, onamaster, isbasedonthechipenableand  
address signals only. It ignores whether an access is a read or write. In  
a master/slave array, both address and chip enable must be valid long  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwiththeR/Wsignal.Failuretoobservethistimingcan  
result in a glitched internal write inhibit signal and corrupted data in the  
slave.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
called“TokenPassingAllocation.”Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst,hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
thatsemaphore’sstatusorremoveitsrequestforthatsemaphoretoperform  
anothertaskandoccasionallyattemptagaintogaincontrolofthetokenvia  
thesetandtestsequence.Oncetherightsidehasrelinquishedthetoken,  
theleftsideshouldsucceedingainingcontrol.  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting  
18  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites overtotheothersideassoonasaoneiswrittenintothefirstside’srequest  
aonetothatlatch. latch.Thesecondside’sflagwillnowstaylowuntilitssemaphorerequest  
The eight semaphore flags reside within the IDT7007 in a separate latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed is requested and the processor which requested it no longer needs the  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe resource, the entire system can hang up until a one is written into that  
semaphore flags) and using the other control pins (Address, OE, and semaphorerequestlatch.  
R/W) as they would be used in accessing a standard Static RAM. Each  
The critical case of semaphore timing is when both sides request a  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside single token by attempting to write a zero into it at the same time. The  
throughaddresspinsA0–A2.Whenaccessingthesemaphores,noneof semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
theotheraddresspinshasanyeffect.  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel the token. If one side is earlier than the other in making the request, the  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero firstsidetomaketherequestwillreceivethetoken.Ifbothrequestsarrive  
on that side and a one on the other side (see Truth Table V). That at the same time, the assignment will be arbitrarily made to one port or  
semaphorecannowonlybemodifiedbythesideshowingthezero.When  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
L PORT  
R PORT  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
ispending)andthencanbewrittentobybothsides.Thefactthattheside  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
freedbythefirstside.  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
D
0
D
0
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
2940 drw 20  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintooneside’soutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableV).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation. Onasubsequentread, theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attempts to write a zero to the same semaphore flag it will fail, as will be  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
gap between the read and write cycles.  
Figure 4. IDT7007 Semaphore Logic  
theother.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
or misinterpreted, a software error can easily happen.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
Using Semaphores—Some Examples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
resourcemarkersfortheIDT7007’sDual-PortRAM. Saythe32Kx8RAM  
was to be divided into two 16K x 8 blocks which were to be dedicated at  
anyonetimetoservicingeithertheleftorrightport.Semaphore0could  
be used to indicate the side which would control the lower section of  
memory,andSemaphore1couldbedefinedastheindicatorfortheupper  
sectionofmemory.  
Totakearesource,inthisexamplethelower16KofDual-PortRAM,  
the processor on the left port could write and then read a zero in to  
Semaphore0.Ifthistaskweresuccessfullycompleted(azerowasread  
back rather than a one), the left processor would assume control of the  
lower16K.Meanwhiletherightprocessorwasattemptingtogaincontrol  
ofthe resourceaftertheleftprocessor,itwouldreadbackaoneinresponse  
to the zero it had attempted to write into Semaphore 0. At this point, the  
softwarecouldchoosetotryandgaincontrolofthesecond16Ksection  
bywriting,thenreadingazerointoSemaphore1.Ifitsucceededingaining  
control,itwouldlockouttheleftside.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation. The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH. Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Shouldtheotherside’ssemaphorerequestlatch  
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
19  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Once the left side was finished with its task, it would write a one to was“off-limits”totheCPU,boththeCPUandtheI/Odevicescouldaccess  
Semaphore 0 and may then try to gain access to Semaphore 1. If theirassignedportionsofmemorycontinuouslywithoutanywaitstates.  
Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
Semaphoresarealsousefulinapplicationswherenomemory“WAIT”  
itssemaphorerequestandperformothertasksuntilitwasabletowrite,then stateisavailableononeorbothsides.Onceasemaphorehandshakehas  
readazerointoSemaphore1.Iftherightprocessorperformsasimilartask been performed, both processors can access their assigned RAM  
withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap segmentsatfullspeed.  
16K blocks of Dual-Port RAM with each other.  
Anotherapplicationisintheareaofcomplexdatastructures. Inthis  
The blocks do not have to be any particular size and can even be case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
variable, depending upon the complexity of the software using the mayberesponsibleforbuildingandupdatingadatastructure.Theother  
semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual- processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
Port RAM or other shared resources into eight parts. Semaphores can processorreadsanincompletedatastructure,amajorerrorconditionmay  
evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
given a common meaning as was shown in the example above.  
differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
Semaphores are a useful form of arbitration in systems like disk itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring is completed, the data structure block is released. This allows the  
atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse interpretingprocessortocomebackandreadthecompletedatastructure,  
ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea therebyguaranteeingaconsistentdatastructure.  
20  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
OrderingInformation  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I(1)  
B
Commercial (0°C to +70°C)  
°
°
Industrial (-40 C to +85 C)  
°
°
Military (-55 C to +125 C)  
Compliant to MIL-PRF-38535 QML  
PF  
G
J
80-pin TQFP (PN80-1)  
68-pin PGA (G68-1)  
68-pin PLCC (J68-1)  
Commercial Only  
Commercial Only  
Commercial & Military  
Commercial & Military  
Commercial, Industrial & Military  
15  
20  
25  
35  
55  
Speed in nanoseconds  
S
L
Standard Power  
Low Power  
256K (32K x 8) Dual-Port RAM  
7007  
2940 drw 21  
NOTE:  
1. Industrial temperature range is available on selected packages.  
For other speeds, packages and powers contact your sales office.  
DatasheetDocumentHistory  
1/5/99:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Pages2, 3, 4Addedadditionalnotestopinconfigurations  
Changeddrawingformat  
6/3/99:  
CORPORATE HEADQUARTERS  
2975 Stender Way  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-5166  
fax: 408-492-8674  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
21  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY