IDT7027L25GGB [IDT]

Dual-Port SRAM, 32KX16, 25ns, CMOS, CPGA108, CERAMIC, PGA-108;
IDT7027L25GGB
型号: IDT7027L25GGB
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 32KX16, 25ns, CMOS, CPGA108, CERAMIC, PGA-108

静态存储器
文件: 总19页 (文件大小:161K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
IDT7027S/L  
32K x 16 DUAL-PORT  
STATIC RAM  
Features  
external logic  
True Dual-Ported memory cells which allow simultaneous  
IDT7027 easily expands data bus width to 32 bits or more  
using the Master/Slave select when cascading more than  
one device  
M/S = VIH for BUSY output flag on Master,  
M/S = VIL for BUSY input on Slave  
access of the same memory location  
High-speed access  
Military: 25/35/55ns (max)  
Industrial: 25ns (max.)  
– Commercial:20/25/35/55ns (max.)  
Low-power operation  
Busy and Interrupt Flags  
On-chip port arbitration logic  
IDT7027S  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
TTL-compatible, single 5V (±10%) power supply  
Available in 100-pin Thin Quad Flatpack (TQFP) and 108-pin  
Ceramic PinGridArray(PGA)  
Active: 750mW (typ.)  
Standby: 5mW (typ.)  
IDT7027L  
Active: 750mW (typ.)  
Standby: 1mW (typ.)  
Separate upper-byte and lower-byte control for bus  
matching capability.  
Industrial temperature range (40°C to +85°C) is available  
for selected speeds  
Dual chip enables allow for depth expansion without  
FunctionalBlockDiagram  
R/WL  
UBL  
WR  
R/  
UBR  
CE0L  
CE0R  
CE1L  
CE1R  
OER  
LBR  
OEL  
LBL  
I/O8-15L  
I/O8-15R  
I/O  
Control  
I/O  
Control  
0-7L  
I/O  
I/O0-7R  
(1,2)  
(1,2)  
BUSYR  
BUSYL  
.
32Kx16  
A14R  
A0R  
A14L  
Address  
Decoder  
Address  
Decoder  
MEMORY  
ARRAY  
7027  
A0L  
A14L  
A14R  
A0R  
CE0R  
A0L  
CE0L  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE1L  
OEL  
CE1R  
OER  
WL  
R/  
R/WR  
SEML  
INTL  
SEMR  
(2)  
(2)  
INTR  
M/S(2)  
3199 drw 01  
NOTES:  
1. BUSY is an input as a Slave (M/S=VIL) and an output as a Master (M/S=VIH).  
2. BUSY and INT are non-tri-state totem-pole outputs (push-pull).  
MAY 2000  
1
DSC 3199/7  
©2000IntegratedDeviceTechnology,Inc.  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Description  
circuitry of each port to enter a very low standby power mode.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typically operate on only 750mW of power. The IDT7027 is  
packagedina100-pinThinQuadFlatpack(TQFP)anda108-pinceramic  
Pin Grid Array (PGA).  
Military grade product is manufactured in compliance with the  
latest revision of MIL-PRF-38535 QML, making it ideally suited to  
military temperature applications demanding the highest level of  
performanceandreliability.  
The IDT7027 is a high-speed 32K x 16 Dual-Port Static RAM,  
designed to be used as a stand-alone 512K-bit Dual-Port RAM or as a  
combinationMASTER/SLAVEDual-PortRAMfor32-bit-or-moreword  
systems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproachin32-  
bitorwidermemorysystemapplicationsresultsinfull-speed,error-free  
operationwithouttheneedforadditionaldiscretelogic.  
The device provides two independent ports with separate control,  
address,andI/Opinsthatpermit independent,asynchronousaccessfor  
reads or writes to any location in memory. An automatic power down  
featurecontrolledby thechipenables(CE0 andCE1)permitstheon-chip  
PinConfigurations(1,2,3)  
INDEX  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
9L  
A
A9R  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A10R  
2
A10L  
11L  
A11R  
A12R  
A13R  
A14R  
NC  
NC  
NC  
R
LB  
3
A
4
A12L  
A13L  
A14L  
NC  
NC  
NC  
5
6
7
8
9
LBL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
IDT7027PF  
(4)  
L
UB  
R
UB  
PN100-1  
CE0L  
CE1L  
0R  
CE  
CE1R  
SEMR  
GND  
100-Pin TQFP  
(5)  
L
SEM  
Top View  
Vcc  
L
R/W  
R
R/W  
OEL  
GND  
GND  
R
OE  
GND  
GND  
15L  
I/O  
15R  
I/O  
I/O  
I/O  
I/O14L  
14R  
13R  
13L  
12L  
I/O  
I/O  
I/O12R  
I/O11R  
I/O10R  
I/O11L  
I/O10L  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
.
3199 drw 02  
NOTES:  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
2
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
81  
A10R  
80  
A11R  
77  
A14R  
74  
76  
79  
72  
69  
68  
65  
63  
60  
57  
54  
UBR SEMR  
GND  
NC  
NC  
GND  
NC  
I/O13R I/O10R NC  
12  
11  
10  
09  
08  
84  
A7R  
83  
A8R  
78  
A13R  
73  
70  
67  
64  
61  
59  
56  
53  
CE1R R/WR GND I/O14R I/O12R I/O9R  
NC  
LBR  
87  
86  
82  
75  
71  
66  
62  
58  
55  
51  
50  
CE0R OER  
A4R  
A5R  
A9R  
A12R  
NC  
I/O15R I/O11R NC  
I/O8R I/O7R  
90  
A1R  
88  
A3R  
85  
A6R  
52  
49  
47  
NC  
Vcc I/O5R  
92  
91  
89  
48  
46  
45  
INTR  
A0R  
A2R  
I/O6R I/O4R I/O3R  
95  
94  
93  
44  
43  
42  
GND  
BUSYR  
I/O2R I/O1R I/O0R  
M/  
S
07  
06  
IDT7027G  
G108-1  
(4)  
96  
BUSYL  
97  
98  
39  
40  
41  
NC  
INTL  
I/O0L GND  
I/O1L  
108-Pin PGA  
(5)  
Top View  
99  
100  
A1L  
102  
35  
37  
38  
A0L  
A3L  
I/O4L I/O2L GND  
05  
04  
03  
02  
01  
101  
103  
A4L  
106  
31  
34  
36  
A2L  
A7L  
Vcc  
I/O5L I/O3L  
104  
105  
1
4
7
9
8
12  
17  
21  
25  
28  
32  
33  
A5L  
A6L  
A10L  
A13L  
NC  
CE1L GND I/O14L I/O10L  
NC  
I/O7L I/O6L  
107  
2
3
5
10  
13  
16  
19  
22  
24  
29  
30  
UBL SEML  
A8L  
A11L  
A14L  
NC  
OEL  
GND I/O13L I/O11L NC  
I/O8L  
108  
6
11  
14  
15  
18  
20  
23  
26  
27  
LBL CE0L  
A9L  
A12L  
B
NC  
Vcc R/WL  
NC I/O15L I/O12L I/O9L NC  
.
A
C
D
E
F
G
H
J
K
L
M
3199 drw 03  
INDEX  
NOTES:  
Pin Names  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 1.21 in x 1.21 in x .16 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
Left Port  
Right Port  
Names  
CE0L  
1L  
CE0R  
1R  
Chip Enables  
Read/Write Enable  
Output Enable  
Address  
, CE  
, CE  
WL  
WR  
R/  
R/  
OEL  
OER  
0L  
14L  
0R  
A
14R  
- A  
A
- A  
0L  
15L  
0R  
15R  
I/O - I/O  
SEML  
UBL  
I/O - I/O  
SEMR  
UBR  
Data Input/Output  
Semaphore Enable  
Upper Byte Select  
Lower Byte Select  
Interrupt Flag  
LBL  
LBR  
INTL  
INTR  
BUSYL  
BUSYR  
S
Busy Flag  
M/  
Master or Slave Select  
Power  
CC  
V
GND  
Ground  
3199 tbl 01  
3
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table I – Chip Enable  
CE1  
Mode  
CE  
CE0  
V
IL  
V
IH  
Port Selected (TTL Active)  
L
< 0.2V  
>VCC -0.2V  
X
Port Se le cte d (CMOS Active )  
Port Deselected (TTL Inactive)  
Port Deselected (TTL Inactive)  
Po rt Deselected (CMOS Inactive)  
Port Deselected (CMOS Inactive)  
V
IH  
X
V
IL  
H
>VCC -0.2V  
X
X
<0.2V  
3199 tbl 02  
NOTES:  
1. Chip Enable references are shown above with the actual CE0 and CE1 levels, CE is a reference only.  
2. Port "A" and "B" references are located where CE is used.  
3. "H" = VIH and "L" = VIL.  
Truth Table II – Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
CE(2)  
H
X
L
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
R/W  
X
X
L
I/O8-15  
I/O0-7  
High-Z  
High-Z  
High-Z  
DATAIN  
DATAIN  
High-Z  
Mode  
Deselected: Power-Down  
Both Bytes Deselected  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
High-Z  
High-Z  
H
H
DATAIN  
High-Z  
L
L
H
L
H
L
L
L
H
DATAIN  
DATAOUT  
High-Z  
L
H
H
H
X
L
H
L
H
Read Upper Byte Only  
L
L
H
L
H
DATAOUT Read Lower Byte Only  
DATAOUT Read Both Bytes  
L
L
L
H
DATAOUT  
High-Z  
X
H
X
X
X
High-Z  
Outputs Disabled  
3199 tbl 03  
NOTES:  
1. A0L A14L A0R A14R.  
2. Refer to Chip Enable Truth Table.  
Truth Table III – Semaphore Read/Write Control  
Inputs(1)  
Outputs  
(2)  
R/  
W
I/O8-15  
DATAOUT  
DATAOUT  
DATAIN  
I/O0-7  
Mode  
CE  
OE  
L
UB  
X
H
X
H
L
LB  
X
H
X
H
X
L
SEM  
L
H
H
DATAOUT Read Data in Semaphore Flag  
DATAOUT Read Data in Semaphore Flag  
X
H
L
L
H
X
X
X
X
L
DATAIN  
Write I/O0 into Semaphore Flag  
Write I/O0 into Semaphore Flag  
Not Allowed  
X
L
L
DATAIN  
DATAIN  
______  
______  
X
X
L
______  
______  
L
X
L
Not Allowed  
3199 tbl 04  
NOTES:  
1. There are eight semaphore flags written to via I/O0 and read from all the I/Os (I/O0 __I/O15). These eight semaphore flags are addressed by A0-A2.  
2. Refer to Chip Enable Truth Table.  
4
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AbsoluteMaximumRatings(1,3)  
MaximumOperating  
TemperatureandSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Military  
Unit  
Ambient  
(2)  
Grade  
Temperature  
-55OC to+125OC  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
Vcc  
VTERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +7.0  
-0.5 to +7.0  
V
Military  
5.0V+ 10%  
5.0V+ 10%  
5.0V+ 10%  
Commercial  
Industrial  
0V  
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
50  
-65 to +135  
-65 to +150  
50  
oC  
oC  
TBIAS  
TSTG  
IOUT  
0V  
Storage  
Temperature  
3199 tbl 06  
NOTES:  
1. This is the parameter TA. This is the "instant on" case temperature.  
2. Industrial temperature: for other speeds packages and powers, contact your  
sales office.  
DC Output  
Current  
mA  
3199 tbl 05  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
Capacitance(1)  
(TA = +25°C, f = 1.0mhz) TQFP ONLY  
Symbol  
CIN  
Parameter  
Conditions(2)  
Max. Unit  
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > Vcc + 10%.  
Input Capacitance  
VIN = 3dV  
9
pF  
Output  
Capacitance  
COUT  
OUT  
V
= 3dV  
10  
pF  
RecommendedDCOperating  
Conditions  
3199 tbl 08  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested.  
2. 3dV represents the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
Symbol  
Parameter  
Min.  
Typ. Max. Unit  
VCC  
Supply Voltage  
4.5  
5.0  
5.5  
0
V
V
V
GND Ground  
0
0
V
Input High Voltage  
Input Low Voltage  
2.2  
6.0(2)  
0.8  
____  
IH  
-0.5(1)  
V
____  
VIL  
3199 tbl 07  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VCC = 5.0V ± 10%)  
7027S  
7027L  
Symbol  
|ILI|  
Parameter  
Test Conditions  
Min.  
Max.  
10  
Min.  
Max.  
5
Unit  
µA  
µA  
V
(1)  
___  
___  
Input Leakage Current  
VCC = 5.5V, VIN = 0V to VCC  
___  
___  
___  
___  
|ILO|  
Output Leakage Current  
Output Low Voltage  
Output High Voltage  
IH OUT  
CC  
10  
5
CE = V , V = 0V to V  
VOL  
IOL = 4mA  
0.4  
0.4  
___  
___  
VOH  
IOH = -4mA  
2.4  
2.4  
V
3199 tbl 09  
NOTE:  
1. At Vcc < 2.0V, input leakages are undefined.  
5
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1,6,7) (VCC = 5.0V ± 10%)  
7027X20  
Com'l Only  
7027X25  
Com'l, Ind  
& Military  
7027X35  
Com'l &  
Military  
7027X55  
Com'l &  
Military  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2) Max. Typ.(2) Max. Typ.(2) Max. Typ.(2) Max. Unit  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
185  
185  
325  
285  
180  
170  
305  
265  
160  
160  
295  
255  
150  
150  
270  
230  
mA  
mA  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
MIL &  
IND  
S
L
170  
170  
345  
305  
160  
160  
335  
295  
150  
150  
310  
270  
ISB1  
ISB2  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
S
L
55  
55  
90  
70  
40  
40  
85  
60  
30  
30  
85  
60  
20  
20  
85  
60  
CEL = CER = VIH  
SEMR = SEML = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
MIL &  
IND  
S
L
40  
40  
100  
80  
30  
30  
100  
80  
20  
20  
100  
80  
(5)  
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
S
L
120  
120  
215  
185  
105  
105  
200  
170  
95  
95  
185  
155  
85  
85  
165  
135  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
____  
____  
____  
____  
MIL &  
IND  
S
L
105  
105  
230  
200  
95  
95  
215  
185  
85  
85  
195  
165  
SEMR = SEML = VIH  
ISB3  
ISB4  
Full Standby Current  
Both Ports CEL and  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
mA  
mA  
(Both Ports - All CMOS CER > VCC - 0.2V  
Level Inputs)  
VIN > VCC - 0.2V or  
____  
____  
____  
____  
VIN < 0.2V, f = 0(4)  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
SEMR = SEML > VCC - 0.2V  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
CE"A" < 0.2V and  
COM'L  
S
L
115  
115  
190  
160  
100  
100  
170  
145  
90  
90  
160  
135  
80  
80  
135  
110  
(5)  
CE"B" > VCC - 0.2V  
SEMR = SEML > VCC - 0.2V  
VIN > VCC - 0.2V or  
____  
____  
____  
____  
MIL &  
IND  
S
L
100  
100  
200  
175  
90  
90  
190  
165  
80  
80  
175  
150  
VIN < 0.2V, Active Port Outputs  
(3)  
Disable d, f = fMAX  
3199 tbl 10  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
2. VCC = 5V, TA = +25°C, and are not production tested. ICCDC = 120mA (Typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/ tRC, and using AC Test Conditionsof input  
levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6. Refer to Chip Enable Truth Table.  
7. Industrial temperature: for other speeds, packages and powers contact your sales office.  
6
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
5V 5V  
AC Test Conditions  
dInput Pulse Levels  
GND to 3.0V  
5ns Max.  
1.5V  
893  
893  
Input Rise/Fall Times  
DATAOUT  
BUSY  
INT  
DATAOUT  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
30pF  
5pF*  
1.5V  
347  
347Ω  
Figures 1 and 2  
3199 drw 04  
3199 tbl 11  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
Figure 1. AC Output Test Load  
*Including scope and jig.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRanges(4,6)  
7027X20  
Com'l Only  
7027X25  
Com'l, Ind.  
& Military  
7027X35  
Com'l &  
Military  
7027X55  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Unit  
READ CYCLE  
____  
____  
____  
____  
tRC  
Read Cycle Time  
20  
25  
35  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
____  
tAA  
Address Access Time  
20  
20  
20  
25  
25  
25  
35  
35  
35  
55  
55  
55  
Chip Enable Access Time(3)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tACE  
tABE  
Byte Enable Access Time(3)  
AOE  
t
Output Enable Access Time  
12  
13  
20  
30  
____  
____  
____  
____  
tOH  
tLZ  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
3
3
3
3
____  
____  
____  
____  
3
3
3
3
Output High-Z Time(1,2)  
12  
15  
15  
25  
____  
____  
____  
____  
HZ  
t
tPU  
tPD  
Chip Enable to Power Up Time(2,5)  
Chip Disable to Power Down Time(2,5)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
0
0
____  
____  
____  
____  
____  
____  
____  
____  
20  
25  
35  
50  
____  
____  
____  
____  
SOP  
t
10  
12  
15  
15  
____  
____  
____  
____  
tSAA  
20  
25  
35  
55  
ns  
3199 tbl 12  
NOTES:.  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE= VIH and SEM = VIL.  
4. 'X' in part numbers indicates power rating (S or L).  
5. Refer to Chip Enable Truth Table.  
6. Industrial temperature: for other speeds, packages and powers contact your sales office.  
7
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
tAA  
(4)  
tACE  
CE(6)  
(4)  
tAOE  
OE  
(4)  
tABE  
UB, LB  
R/W  
tOH  
(1)  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
tHZ  
BUSYOUT  
(3,4)  
3199 drw 05  
tBDD  
Timing of Power-Up Power-Down  
CE(6)  
tPU  
tPD  
CC  
I
50%  
50%  
ISB  
.
3199 drw 06  
NOTES:  
1. Timing depends on which signal is asserted last, CE, OE, LB, or UB.  
2. Timing depends on which signal is de-asserted first CE, OE, LB, or UB.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6. Refer to Chip Enable Truth Table.  
8
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
Operating TemperatureandSupply Voltage(5,6)  
7027X20  
Com'l Only  
7027X25  
Com'l, Ind  
& Military  
7027X35  
Com'l &  
Military  
7027X55  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
Write Cycle Time  
Chip Enable to End-of-Write(3)  
20  
15  
15  
0
25  
20  
20  
0
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
EW  
t
tAW  
tAS  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
tWP  
15  
0
20  
0
25  
0
40  
0
tWR  
tDW  
tHZ  
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
15  
15  
15  
30  
____  
____  
____  
____  
12  
15  
15  
25  
____  
____  
____  
____  
tDH  
0
0
0
0
(1,2)  
____  
____  
____  
____  
tWZ  
tOW  
tSWRD  
tSPS  
Write Enable to Output in High-Z  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
12  
15  
15  
25  
____  
____  
____  
____  
0
5
5
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
____  
____  
ns  
3199 tbl 13  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM CE= VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time. Refer to Chip Enable  
Truth Table.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part numbers indicates power rating (S or L).  
6. Industrial temperature: for other speeds, packages and powers contact your sales office.  
9
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE SEM (9,10)  
or  
UB or LB(9)  
(3)  
(2)  
(6)  
tWR  
tAS  
tWP  
R/W  
DATAOUT  
DATAIN  
(7)  
tOW  
tWZ  
(4)  
(4)  
tDW  
tDH  
3199 drw 07  
Timing Waveform of Write Cycle No. 2, CE, UB, LB Controlled Timing(1,5)  
tWC  
ADDRESS  
tAW  
(9,10)  
or  
CE SEM  
(6)  
tAS  
(3)  
(2)  
tWR  
tEW  
(9)  
or  
UB LB  
R/  
W
tDW  
tDH  
DATAIN  
3199 drw 08  
NOTES:  
1. R/W or CE or UB and LB = VIH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL and a R/W = VIL for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure  
2).  
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
10. Refer to Chip Enable Truth Table.  
10  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tOH  
tSAA  
VALID ADDRESS  
VALID ADDRESS  
tACE  
A0-A2  
tWR  
tAW  
tEW  
SEM  
tSOP  
tDW  
DATAIN  
VALID  
DATAOUT  
VALID(2)  
I/O0  
tAS  
tWP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
Write Cycle  
Read Cycle  
3199 drw 09  
NOTES:  
1. CE = VIH or UB and LB = VIH for the duration of the above timing (both write and read cycle), refer to Chip Enable Truth Table.  
2. "DATAOUT VALID" represents all I/O's (I/O0-I/O15) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2)  
"A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
3199 drw 10  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH, or both UB & LB = VIH (refer to Chip Enable Truth Table).  
2. All timing is the same for left and right ports. Port Amay be either left or right port. Port Bis the opposite from port A.  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will be granted the semaphore flag.  
11  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
Operating TemperatureandSupply VoltageRange(6,7)  
7027X20  
Com'l Only  
7027X25  
Com'l, Ind.  
& Military  
7027X35  
Com'l &  
Military  
7027X55  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Unit  
BUSY TIMING (M/S=VIH)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tBAA  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
20  
20  
20  
20  
20  
20  
20  
20  
20  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
17  
17  
20  
35  
____  
____  
____  
____  
5
5
5
5
BUSY Disable to Valid Data(3)  
____  
____  
____  
____  
30  
30  
35  
40  
Write Hold After BUSY(5)  
15  
17  
25  
25  
____  
____  
____  
____  
BUSY TIMING (M/S=VIL)  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
PORT-TO-PORT DELAY TIMING  
tWDD  
Write Pulse to Data Delay(1)  
tDDD  
Write Data Valid to Read Data Delay(1)  
____  
____  
____  
____  
____  
____  
____  
____  
tWB  
0
0
0
0
ns  
ns  
tWH  
15  
17  
25  
25  
____  
____  
____  
____  
____  
____  
____  
____  
45  
30  
50  
35  
60  
45  
80  
65  
ns  
ns  
3199 tbl 14  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD tWP (actual), or tDDD tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
6. 'X' in part numbers indicates power rating (S or L).  
7. Industrial temperature: for other speeds, packages and powers contact your sales office.  
12  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadandBUSY (M/S = VIH)(2,4,5)  
tWC  
MATCH  
ADDR"A"  
tWP  
R/  
W"A"  
tDW  
tDH  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
tBAA  
tBDA  
tBDD  
BUSY"B"  
tWDD  
VALID  
DATAOUT "B"  
(3)  
tDDD  
3199 drw 11  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (slave).  
2. CEL = CER = VIL (refer to Chip Enable Truth Table).  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSY"A" = VIH and BUSY"B" input is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY (M/S = VIL)  
tWP  
R/ "A"  
W
(3)  
tWB  
BUSY"B"  
(1)  
tWH  
.
R/  
W"B"  
(2)  
3199 drw 12  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the "Slave" version.  
13  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(M/S = VIH)(1,3)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
"B"  
BUSY  
3199 drw 13  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(M/S = VIH)(1)  
ADDR"A"  
ADDRESS "N"  
(2)  
tAPS  
ADDR"B"  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
"B"  
BUSY  
3199 drw 14  
NOTES:  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from port A.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
3. Refer to Chip Enable Truth Table.  
AC Electrical Characteristics Over the  
Operating TemperatureandSupply VoltageRange(1,2)  
7027X20  
Com'l Only  
7027X25  
Com'l, Ind  
& Military  
7027X35  
Com'l &  
Military  
7027X55  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
tAS  
Address Set-up Time  
0
0
0
0
ns  
ns  
ns  
tWR  
tINS  
tINR  
Write Recovery Time  
Interrupt Set Time  
0
0
0
0
____  
____  
____  
____  
20  
20  
20  
20  
25  
25  
40  
40  
____  
____  
____  
____  
Interrupt Reset Time  
ns  
3199 tbl 15  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
2. Industrial temperature: for other speeds, packages and powers contact your sales office.  
14  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1,5)  
tWC  
(2)  
ADDR"A"  
INTERRUPT SET ADDRESS  
(4)  
(3)  
tAS  
tWR  
"A"  
CE  
R/  
W"A"  
(3)  
tINS  
INT"B"  
3199 drw 15  
tRC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
(3)  
tAS  
"B"  
CE  
"B"  
OE  
(3)  
tINR  
INT"B"  
3199 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from port A.  
2. See the Interrupt Truth Table IV.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
5. Refer to Chip Enable Truth Table.  
Truth Table IV — Interrupt Flag(1,4)  
Left Port  
Right Port  
WL  
R/  
WR  
R/  
A14L-A0L  
7FFF  
X
A14R-A0R  
X
Function  
CEL  
L
OEL  
X
INTL  
X
CER  
X
OER  
X
INT  
R
(2)  
L
X
X
X
X
X
L
L
Set Right INT Flag  
R
(3)  
X
X
X
L
L
7FFF  
7FFE  
X
H
Reset Right INT Flag  
R
(3)  
X
X
X
L
L
X
X
Set Left INT Flag  
L
(2)  
L
L
7FFE  
H
X
X
X
X
Reset Left INT Flag  
L
3199 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. Refer to Chip Enable Truth Table.  
15  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table V —  
Address Bus Arbitration(4)  
Inputs  
Outputs  
AOL-A14L  
OR-A14R  
(1)  
(1)  
A
Function  
Normal  
Normal  
Normal  
Write  
CE  
L
CER  
X
BUSYL  
BUSYR  
X
H
X
NO MATCH  
MATCH  
H
H
H
H
H
H
X
H
MATCH  
L
L
MATCH  
(2)  
(2)  
(3)  
Inhibit  
3199 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT7027 are  
push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of the actual logic level on the pin. Writes to the right port are internally  
ignored when BUSYR outputs are driving LOW regardless of the actual logic level on the pin.  
4. Refer to Chip Enable Truth Table.  
Truth Table VI — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0 - D15 Left  
D0 - D15 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
3199 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7027.  
2. There are eight semaphore flags written to via I/O0 and read from all the I/O's (I/O0-I/O15). These eight semaphores are addressed by A0-A2.  
3. CE = VIH, SEM = VIL, to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
TheIDT7027providestwoportswithseparatecontrol,addressand  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation  
inmemory.TheIDT7027hasanautomaticpowerdownfeaturecontrolled  
by CE0 and CE1. The CE0 and CE1 control the on-chip power down  
circuitrythatpermitstherespectiveporttogointoastandbymodewhen  
not selected (CE = VIH). When a port is enabled, access to the entire  
memoryarrayispermitted.  
(INTL) is asserted when the right port writes to memory location 7FFE  
(HEX), where a write is defined as CER = R/WR = VIL per Truth Table  
IV. The leftportclears the interruptthroughaccess ofaddress location  
7FFEwhenCEL=OEL=VIL,R/Wisa"don'tcare".Likewise,therightport  
interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
7FFF(HEX)andtocleartheinterruptflag(INTR),therightportmustread  
the memory location 7FFF. The message (16 bits) at 7FFE or 7FFF is  
user-defined since it is an addressable SRAM location. If the interrupt  
functionisnotused,addresslocations7FFEand7FFFarenotusedas  
mail-boxes by ignoring the interrupt, but as part of the random access  
memory.RefertoTruthTableIVfortheinterruptoperation.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)is assignedtoeachport. Theleftportinterruptflag  
16  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
pulsecanbeinitiatedwitheithertheR/Wsignalorthebyteenables.Failure  
toobservethistimingcanresultinaglitchedinternalwriteinhibitsignaland  
corrupteddataintheslave.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisBusy.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
anduse anyBUSYindicationas aninterruptsource toflagthe eventof  
anillegalorillogicaloperation.Ifthewriteinhibitfunctionofbusylogicisnot  
desirable,theBUSYlogiccanbedisabledbyplacingthepartinslavemode  
withtheM/Spin.OnceinslavemodetheBUSYpinoperatessolelyasa  
writeinhibitinputpin.Normaloperationcanbeprogrammedbytyingthe  
BUSY pins HIGH. If desired, unintended write operations can be pre-  
ventedtoa portbytyingthe BUSYpinforthatportLOW.  
Semaphores  
TheIDT7027isafastDual-Port32Kx16CMOSStaticRAMwithan  
additional8addresslocationsdedicatedtobinarysemaphoreflags.These  
flagsalloweitherprocessorontheleftorrightsideoftheDual-PortSRAM  
toclaimaprivilegeovertheotherprocessorforfunctionsdefinedbythe  
systemdesignerssoftware.Asanexample,thesemaphorecanbeused  
byoneprocessortoinhibittheotherfromaccessingaportionoftheDual-  
Port SRAM or any other shared resource.  
TheDual-PortSRAMfeaturesafastaccesstime,andbothportsare  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnowayslows theaccess timeoftherightport.Bothports are  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
in the non-semaphore portion of the Dual-Port SRAM. These devices  
haveanautomaticpower-downfeaturecontrolledbyCE theDual-Port  
SRAMenable,andSEM,thesemaphoreenable.TheCEandSEMpins  
controlon-chippowerdowncircuitrythatpermitstherespectiveporttogo  
intostandbymodewhennotselected. Thisistheconditionwhichisshown  
in Truth Table II where CE and SEM = VIH.  
TheBUSYoutputsontheIDT7027RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate.Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
A15  
CE0  
CE0  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSYR  
BUSYR  
BUSYL  
BUSYL  
SystemswhichcanbestusetheIDT7027containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
software controlled or software intensive. These systems can benefit  
from a performance increase offered by the IDT7027's hardware  
semaphores, which provide a lockout mechanism without requiring  
complexprogramming.  
CE1  
CE1  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSYR  
BUSYR  
BUSYR  
BUSYL  
BUSYL  
BUSYL  
3199 drw 17  
Softwarehandshakingbetweenprocessors offers themaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT7027doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT7027 RAMs.  
Width Expansion with Busy Logic  
Master/SlaveArrays  
WhenexpandinganIDT7027RAMarrayinwidthwhileusingBUSY  
logic, one master part is used to decide which side of the RAM array  
willreceiveaBUSYindication,andtooutputthatindication.Anynumber  
ofslavestobeaddressedinthesameaddressrangeasthemaster,use  
theBUSYsignalasawriteinhibitsignal.ThusontheIDT7027RAMthe  
BUSYpinisanoutputifthepartisusedasaMaster(M/Spin=VIH),and  
theBUSYpinisaninputifthepartusedasaSlave(M/Spin=VIL)asshown  
in Figure 3.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. Itignores whetheranaccess is a readorwrite. In  
a master/slave array, bothaddress andchipenable mustbe validlong  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortSRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
that semaphores status or remove its request for that semaphore to  
17  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
performanothertaskandoccasionallyattemptagaintogaincontrolofthe side during subsequent read. Had a sequence of READ/WRITE been  
tokenviathesetandtestsequence.Oncetherightsidehasrelinquished usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
thetoken,theleftsideshouldsucceedingainingcontrol.  
gap between the read and write cycles.  
Thesemaphoreflagsareactivelow.Atokenisrequestedbywriting  
It isimportanttonotethatafailedsemaphorerequestmustbefollowed  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites byeitherrepeatedreadsorbywritingaoneintothesamelocation.The  
aonetothatlatch. reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
The eightsemaphore flags reside withinthe IDT7027ina separate ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
memoryspacefromtheDual-PortSRAM.Thisaddressspaceisaccessed into a semaphore flag. Whichever latch is first to present a zero to the  
byplacingalowinputontheSEMpin(whichactsasachipselectforthe  
semaphore flags) and using the other control pins (Address, OE, and  
L PORT  
R PORT  
R/W)as theywouldbeusedinaccessingastandardStaticRAM.Each  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof  
theotheraddresspinshasanyeffect.  
SEMAPHORE  
SEMAPHORE  
REQUEST FLIP FLOP  
D0  
REQUEST FLIP FLOP  
D0  
D
D
Q
Q
WRITE  
WRITE  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
on that side and a one on the other side (see Truth Table VI). That  
semaphorecannowonlybemodifiedbythesideshowingthezero.When  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
ispending)andthencanbewrittentobybothsides.Thefactthattheside  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
freedbythefirstside.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintoonesidesoutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableVI).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attempts towriteazerotothesamesemaphoreflagitwillfail,as willbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
.
3199 drw 18  
Figure 4. IDT7027 Semaphore Logic  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Shouldtheothersidessemaphorerequestlatch  
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
overtotheothersideassoonasaoneiswrittenintothefirstsidesrequest  
latch.ThesecondsidesflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requestedandthe processorwhichrequesteditnolongerneeds the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
The criticalcase ofsemaphore timingis whenbothsides requesta  
single token by attempting to write a zero into it at the same time. The  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
thetoken.Ifonesideis earlierthantheotherinmakingtherequest,the  
first side to make the request will receive the token. If both requests  
arriveatthesametime,theassignmentwillbearbitrarilymadetooneport  
or the other.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
ormisinterpreted, a software errorcaneasilyhappen.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
18  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
OrderingInformation  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
Commercial (0°C to +70°C)  
Industrial (-40°C to + 85°C)  
Military (-55°C to +125°C)  
I(1)  
B
Compliant to MIL-PRF-38535 QML  
PF  
G
100-pin TQFP (PN100-1)  
108-pin PGA (G108-1)  
20  
25  
35  
55  
Commercial Only  
Speed in  
nanoseconds  
Commercial, Industrial & Military  
Commercial & Military  
Commercial & Military  
S
L
Standard Power  
Low Power  
7027  
512K (32K x 16) Dual-Port RAM  
3199 drw 19  
NOTE:  
1. Industrial temperature range is available on selected TQFP packages in standard power.  
For other speeds, packages and powers contact your sales office.  
DatasheetDocumentHistory  
1/15/99:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Pages2and3Addedadditionalnotestopinconfigurations  
Pages 4 and 16 Fixed typographical errors  
Changeddrawingformat  
5/19/99:  
6/3/99:  
Page 1 CorrectedDSCnumber  
Replaced IDT logo  
Page 5 Increasedstoragetemperatureparameter  
ClarifiedTAparameter  
11/10/99:  
5/22/00:  
Page 6 DCElectricalparameterschangedwordingfrom"open"to"disabled"  
Changed±200mVto0mVinnotes  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
19  
6.42  

相关型号:

IDT7027L25GI

HIGH-SPEED 32K x 16 DUAL-PORT STATIC RAM
IDT

IDT7027L25PF

HIGH-SPEED 32K x 16 DUAL-PORT STATIC RAM
IDT

IDT7027L25PF9

Dual-Port SRAM, 32KX16, 25ns, CMOS, PQFP100, TQFP-100
IDT

IDT7027L25PFB

HIGH-SPEED 32K x 16 DUAL-PORT STATIC RAM
IDT

IDT7027L25PFG

Dual-Port SRAM, 32KX16, 25ns, CMOS, PQFP100, TQFP-100
IDT

IDT7027L25PFGI

Dual-Port SRAM, 32KX16, 25ns, CMOS, PQFP100, TQFP-100
IDT

IDT7027L25PFI

HIGH-SPEED 32K x 16 DUAL-PORT STATIC RAM
IDT

IDT7027L35

Dual-Port SRAM, 32KX16, 35ns, CMOS, CPGA108, CERAMIC, PGA-108
IDT

IDT7027L35G

HIGH-SPEED 32K x 16 DUAL-PORT STATIC RAM
IDT

IDT7027L35GB

HIGH-SPEED 32K x 16 DUAL-PORT STATIC RAM
IDT

IDT7027L35GG

Dual-Port SRAM, 32KX16, 35ns, CMOS, CPGA108, CERAMIC, PGA-108
IDT

IDT7027L35GGB

Dual-Port SRAM, 32KX16, 35ns, CMOS, CPGA108, CERAMIC, PGA-108
IDT