IDT70P34L25BYI [IDT]

HIGH-SPEED 1.8V 8/4K x 18 DUAL-PORT, 8/4K x 16 DUAL-PORT STATIC RAM; HIGH -SPEED 1.8V 8 / 4K ×18的双端口, 8 / 4K ×16双口静态RAM
IDT70P34L25BYI
型号: IDT70P34L25BYI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH-SPEED 1.8V 8/4K x 18 DUAL-PORT, 8/4K x 16 DUAL-PORT STATIC RAM
HIGH -SPEED 1.8V 8 / 4K ×18的双端口, 8 / 4K ×16双口静态RAM

文件: 总23页 (文件大小:294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 1.8V  
8/4K x 18 DUAL-PORT  
8/4K x 16 DUAL-PORT  
STATIC RAM  
ADVANCED  
IDT70P35/34L  
IDT70P25/24L  
Features  
select when cascading more than one device  
M/S = VIH for BUSY output flag on Master  
M/S = VIL for BUSY input on Slave  
BUSY and Interrupt Flag  
On-chip port arbitration logic  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
IDT70P35/34L (IDT70P25/24L)  
– Commercial: 20/25ns (max.)  
Full on-chip hardware support of semaphore signaling  
between ports  
– Industrial: 25ns (max.)  
Low-power operation  
Fully asynchronous operation from either port  
LVTTL-compatible, single 1.8V (±100mV) power supply  
Available in a 100-pin Thin Quad Flatpack (TQFP) package,  
100-pin 0.8mm pitch Ball Grid Array (fpBGA), and 100-pin  
0.5mm pitch BGA (fpBGA)  
IDT70P35/34L (IDT70P25/24L)  
Active:30.6mW(typ.)  
Standby: 5.4mW (typ.)  
Separate upper-byte and lower-byte control for multiplexed  
bus compatibility  
IDT70P35/34L (IDT70P25/24L) easily expands data bus  
width to 36 bits (32 bits) or more using the Master/Slave  
Industrial temperature range (-40°C to +85°C) is available  
for selected speeds  
Functional Block Diagram  
R/W  
L
R/W  
R
R
UBL  
UB  
LB  
CE  
OE  
R
LB  
L
CEL  
R
R
OEL  
,
(5)  
(5)  
(4)  
I/O9R-I/O17R  
I/O9L-I/O17L  
I/O  
Control  
I/O  
Control  
(4)  
I/O0R-I/O8R  
I/O0L-I/O8L  
BUSY (2,3)  
L
(2,3)  
BUSY  
R
(1)  
12L  
(1)  
A
A
A
12R  
0R  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A0L  
13  
13  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE  
OE  
R/W  
R
CE  
OE  
R/W  
L
L
R
R
L
SEM  
R
SEM  
L
(3)  
(3)  
INTR  
M/S  
INTL  
5683 drw 01  
NOTES:  
1. A12 is a NC for IDT70P34 and IDT70P24.  
2. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
3. BUSY outputs and INT outputs are non-tri-stated push-pull.  
4. I/O0x - I/O7x for IDT70P25/24.  
5. I/O8x - I/O15x for IDT70P25/24.  
FEBRUARY 2004  
1
DSC-5683/2  
©2004 IntegratedDeviceTechnology,Inc.  
IDT70P35/34L(IDT70P25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
The IDT70P35/34L (IDT70P25/24L) is a high-speed 8/4K x 18 reads or writes to any location in memory. An automatic power down  
(8/4Kx16)Dual-PortStaticRAM. TheIDT70P35/34L(IDT70P25/24L) featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
is designed to be used as a stand-alone Dual-Port RAM or as a a very low standby power mode.  
combinationMASTER/SLAVEDual-PortRAMfor36-bit(32-bit)orwider  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
memory system applications results in full-speed, error-free operation devices typically operate on only 30.6mW of power.  
withouttheneedforadditionaldiscretelogic.  
TheIDT70P35/34L(IDT70P25/24L)ispackagedinaplastic100-pin  
This device provides two independent ports with separate control, Thin Quad Flatpack, a 100-pin fine pitch Ball Grid Array, and a 100-pin  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor 0.5mmpitchfpBGA.  
IDT70P35/34PinConfigurations(1,2,3,4)  
12/17/03  
Index  
100 99 98 9796 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
75  
74  
2
3
I/O8L  
I/O17L  
I/O11L  
I/O12L  
I/O13L  
I/O14L  
Vss  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
4
5
A5L  
A4L  
A3L  
A2L  
A1L  
A0L  
6
7
8
9
I/O15L  
I/O16L  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
IDT70P35/34PF  
PN100-1  
(5)  
INTL  
BUSY  
Vss  
M/S  
VDD  
L
100-Pin TQFP  
Vss  
I/O0R  
I/O1R  
I/O2R  
(6)  
Top View  
BUSY  
R
INT  
R
VDD  
A
A
A
A
A
0R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
I/O8R  
I/O17R  
N/C  
1R  
2R  
3R  
4R  
N/C  
N/C  
N/C  
N/C  
N/C  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
,
5683 drw 02  
NOTES:  
1. A12 is a NC for IDT70P34.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground.  
4. PN100-1 package body is approximately 14mm x 14mm x 1.4mm.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part marking.  
6.422  
IDT70P35/34L (IDT70T25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
IDT70P35/34PinConfigurations(cont'd)(1,2,3,4)  
IDT70P35/34BF  
BF100(5)  
100-Pin fpBGA  
Top View(6)  
12/16/03  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
(1)  
A
6R  
A9R  
A
12R  
CER  
V
SS  
V
SS  
VSS  
I/O7R  
I/O13R I/O10R  
B1  
B2  
B3  
B6  
B7  
B9  
B8  
B10  
B4  
B5  
A
8R  
A
10R  
NC  
NC  
I/O12R I/O9R I/O6R  
R
SEM  
R
R/W  
R
OE  
C2  
C3  
C4  
D4  
C1  
C5  
C6  
C7  
C8  
C9  
C10  
A
4R  
A
5R  
2R  
0R  
I/O16R  
A
3R  
A
7R  
1L  
I/O15R I/O11R I/O8R  
I/O3R  
UB  
R
D1  
D2  
D3  
D9  
D5  
D6  
D7  
D8  
D10  
A
1R  
A
11R  
SS  
I/O1R  
A
NC  
I/O14R I/O17R I/O5R  
INT  
R
LBR  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
E10  
M/S BUSY  
R
A
A
V
V
SS  
I/O4R I/O2R I/O0R  
VDD  
F7  
F6  
F8  
F9  
F10  
F1  
F2  
F3  
F5  
F4  
V
SS  
A
0L  
6L  
V
DD  
V
SS  
V
DD  
NC  
I/O14L I/O15L I/O16L  
BUSY  
L
G1  
G2  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G3  
A
3L  
V
SS  
V
SS  
INT  
L
A
NC  
I/O3L NC I/O12L  
,
I/O13L  
H7  
H8  
H9  
H10  
H5  
H6  
H1  
H2  
H3  
H4  
A
2L  
A
5L  
A
10L  
I/O1L I/O7L I/O8L I/O17L I/O11L  
CE  
L
LB  
L
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J10  
J9  
A
4L  
7L  
A
8L  
A
11L SEM  
L
I/O4L I/O6L  
V
SS  
R/W  
L
OE  
L
I/O10L  
K1  
K2  
K3  
K5  
K6  
K7  
K8  
K9  
K10  
K4  
(1)  
V
DD  
V
DD  
A
A
12L  
UB  
L
I/O0L  
A9L  
I/O2L I/O5L I/O9L  
5683 drw 03  
NOTES:  
1. A12 is a NC for IDT70P34.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground.  
4. BF-100 package body is approximately 10mm x 10mm x 1.4mm with 0.8mm ball pitch.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part marking.  
6.42  
3
IDT70P35/34L(IDT70P25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
IDT70P25/24PinConfigurations(1,2,3,4)  
12/17/03  
Index  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
N/C  
N/C  
N/C  
N/C  
75  
2
74  
3
N/C  
N/C  
N/C  
N/C  
I/O10L  
I/O11L  
I/O12L  
I/O13L  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
4
5
A5L  
A4L  
A3L  
A2L  
A1L  
A0L  
6
7
8
9
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
I/O14L  
I/O15L  
IDT70P25/24PF  
PN100-1(5)  
INT  
L
VDD  
BUSY  
VSS  
M/S  
BUSY  
L
100-Pin TQFP  
Top View(6)  
VSS  
I/O0R  
I/O1R  
I/O2R  
R
INT  
R
A
A
A
A
A
0R  
VDD  
1R  
2R  
3R  
4R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
.
5683 drw 04  
NOTES:  
1. A12 is a NC for IDT70P24.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground.  
4. PN100-1 package body is approximately 14mm x 14mm x 1.4mm.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part marking.  
6.442  
IDT70P35/34L (IDT70T25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
IDT70P25/24PinConfigurations(cont'd)(1,2,3,4)  
IDT70P25/24BF  
BF100(5)  
100-Pin fpBGA  
Top View(6)  
12/16/03  
A1  
A2  
A3  
A6  
A7  
A8  
A9  
A4  
A5  
A10  
(1)  
12R  
A
A
6R  
A
9R  
CE  
R
V
SS  
V
SS  
V
SS  
I/O9R I/O7R  
I/O12R  
B1  
B2  
B3  
B6  
B7  
B9  
B4  
B5  
B8  
B10  
NC  
NC  
A
8R  
A
10R  
SEM  
R
R/W  
R
I/O11R I/O8R I/O6R  
OE  
R
C1  
C5  
C6  
C2  
C3  
C4  
D4  
C7  
C8  
C9  
C10  
A
3R  
A
4R  
A
5R  
2R  
0R  
A
7R  
UB  
R
I/O15R I/O14R  
I/O10R NC  
I/O3R  
D1  
D2  
D3  
D5  
D6  
D7  
D8  
D9  
D10  
A
1R  
A
NC  
I/O13R  
I/O5R  
A
11R  
NC  
I/O1R  
INT  
R
LB  
R
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
E10  
A
1L  
BUSY  
R
M/S  
A
V
SS  
V
SS  
I/O4R I/O2R I/O0R  
V
DD  
F7  
F5  
F6  
F8  
F9  
F10  
F1  
F2  
F3  
F4  
V
DD  
V
SS  
V
SS  
A0L  
NC  
VDD I/O13L I/O14L  
I/O15L  
BUSY  
L
G1  
G2  
G4  
G5  
G6  
G7  
G3  
G8  
G9  
G10  
A
6L  
INT  
L
A
3L  
V
SS  
I/O3L  
NC  
NC I/O11L  
V
SS I/O12L  
,
H7  
H5  
H6  
H8  
H9  
H10  
H1  
H3  
H4  
H2  
A
2L  
A
5L  
A
10L  
11L  
LB  
L
CE  
L
I/O1L I/O7L  
I/O10L  
NC  
NC  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J10  
A
4L  
A
8L  
A
V
SS  
SEM  
L
R/W  
L
OE  
L
I/O4L I/O6L  
I/O9L  
K6  
K8  
K1  
K2  
K3  
K4  
K5  
K7  
K9  
K10  
(1)  
12L  
A
7L  
V
DD  
A
9L  
A
UB  
L
V
DD  
I/O0L I/O2L I/O5L I/O8L  
5683 drw 05  
NOTES:  
1. A12 is a NC for IDT70P24.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground.  
4. BF-100 package body is approximately 10mm x 10mm x 1.4mm with 0.8mm ball pitch.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part marking.  
6.42  
5
IDT70P35/34L(IDT70P25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
IDT70P25/24PinConfigurations(1,2,3,4)  
70P25/24BY  
BY-100(5)  
100-Ball 0.5mm Pitch BGA  
Top View(6)  
12/17/03  
A1  
A5  
A2  
A3  
A6  
A7  
A8  
A9  
A4  
A10  
A
11R UB  
R
Vss SEM  
R
I/O15R I/O12R I/O10R Vss  
A
5R  
A
8R  
4R  
B1  
B2  
B3  
B6  
B7  
B9  
B4  
B5  
B8  
B10  
OE  
R
A3R  
A
A
7R  
A
9R  
CE  
R
R/WR  
VDD I/O9R I/O6R  
C1  
C5  
C6  
C2  
C3  
D3  
C4  
C7  
C8  
C9  
C10  
A
0R  
A
1R  
A
2R  
A
6R  
I/O14R I/O11R I/O7R Vss  
LB  
R
NC  
D6  
D1  
D2  
D9  
D5  
D7  
D8  
D10  
D4  
(1)  
NC  
NC  
A
10R  
A12R I/O13R I/O8R I/O5R I/O2R  
BUSY  
R INTR  
E5  
E6  
E7  
E8  
E9  
E10  
E1  
E2  
E3  
E4  
Vss  
I/O1R Vss  
Vss  
NC  
Vss  
I/O4R  
VDD  
M/S  
INTL  
F7  
F5  
F6  
F9  
F10  
F1  
F2  
F3  
F8  
F4  
Vss  
A1L  
V
DD  
I/O3R I/O15L  
I/O0R  
V
DD  
NC BUSY  
L
Vss  
G1  
G5  
G2  
G4  
G6  
G8  
G9  
G3  
G7  
G10  
(1)  
A
12L  
A
5L  
9L  
I/O3L I/O11L I/O12L I/O14L I/O13L  
OE  
L
A
2L  
NC  
H7  
H8  
H9  
H10  
H5  
H6  
H3  
H4  
H1  
H2  
A
A
0L  
A
4L  
7L  
LB  
L
CE  
L
I/O1L  
V
DD  
NC  
NC I/O10L  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J10  
I/O4L  
A
10L  
NC  
V
DD  
Vss  
I/O6L I/O8L I/O9L  
A
3L  
A
K6  
K8  
K10  
K2  
K4  
K5  
K7  
K9  
K1  
K3  
R/W  
L
L
I/O2L  
A
6L  
A
8L  
A
11L  
UB  
L
I/O0L  
I/O5L I/O7L  
SEM  
5683 drw 06  
NOTES:  
1. A12X is a NC for IDT70P24.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground supply.  
4. BY100-1 package body is approximately 6mm x 6mm x 1mm, ball pitch 0.5mm.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part-marking.  
6.462  
IDT70P35/34L (IDT70T25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
Names  
Chip Enable  
CE  
R/W  
OE  
L
CE  
R/W  
OE  
R
L
R
Read/Write Enable  
Output Enable  
L
R
(1)  
(1)  
A
0L - A12L  
A
0R - A12R  
Address  
(2)  
(2)  
I/O0L - I/O17L  
I/O0R - I/O17R  
Data Input/Output  
Semaphore Enable  
Upper Byte Select(3)  
Lower Byte Select(4)  
Interrupt Flag  
SEM  
UB  
LB  
INT  
BUSY  
L
SEM  
UB  
LB  
INT  
BUSY  
M/S  
R
L
R
L
R
L
R
Busy Flag  
L
R
NOTE:  
Master or Slave Select  
Power (1.8V)  
1. A12 is a NC for IDT70P34 and IDT70P24.  
2. I/O0x - I/O15x for IDT70P25/24.  
V
V
DD  
3. IDT70P35/34L: UBx controls I/O9x - I/O17x  
IDT70P25/24L: UBx controls I/O8x - I/O15x  
4. IDT70P35/34L: LBx controls I/O0x - I/O8x  
IDT70P25/24L: LBx controls I/O0x - I/O7x  
SS  
Ground (0V)  
5683 tbl 01  
6.42  
7
IDT70P35/34L(IDT70P25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
(3)  
(2)  
R/W  
X
I/O9-17  
I/O0-8  
Mode  
CE  
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
H
High-Z  
High-Z  
DATAIN  
High-Z  
DATAIN  
High-Z  
High-Z  
Deselected: Power Down  
Both Bytes Deselected  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
X
X
H
L
L
H
High-Z  
L
L
H
L
H
DATAIN  
DATAIN  
High-Z  
L
L
L
H
L
H
H
H
X
L
H
L
H
DATAOUT  
High-Z  
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
L
L
H
L
H
DATAOUT  
DATAOUT  
High-Z  
L
X
L
L
H
DATAOUT  
High-Z  
H
X
X
X
Outputs Disabled  
5683 tbl 02  
NOTE:  
1. A0L — A12L A0R — A12R for IDT70P35 and IDT70P25; A0L — A11L A0R — A11R for IDT70P34 and IDT70P24.  
2. Outputs for IDT70P25/24 are I/O0x - I/O7x.  
3. Outputs for IDT70P25/24 are I/O8x - I/O15x.  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
(1)  
(1)  
R/W  
H
I/O9-17  
I/O0-8  
Mode  
Read Data in Semaphore Flag  
CE  
OE  
L
UB  
X
LB  
X
SEM  
H
L
L
L
L
L
L
DATAOUT  
DATAOUT  
DATAIN  
DATAOUT  
DATAOUT  
DATAIN  
X
H
L
H
X
H
X
Read Data in Semaphore Flag  
Write DIN0 into Semaphore Flag  
Write DIN0 into Semaphore Flag  
Not Allowed  
H
X
X
X
H
L
H
X
DATAIN  
DATAIN  
____  
____  
L
L
X
X
____  
____  
X
X
X
L
Not Allowed  
5683 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all of the I/O's (I/O0-I/O17 for IDT70P35/34 and I/O0-I/O15 for IDT70P25/24). These eight semaphores  
are addressed by A0-A2.  
6.482  
IDT70P35/34L (IDT70T25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Absolute Maximum Ratings(1)  
Maximum Operating Temperature  
andSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
V
Grade  
Ambient  
GND  
V
DD  
Temperature  
VTERM  
Terminal Voltage  
with Respect to GND  
-0.5 to VDDMAX  
+ 0.3V  
Commercial  
0OC to +70OC  
0V  
0V  
1.8V  
1.8V  
+
+
100mV  
100mV  
Temperature Under Bias  
-55 to +125  
oC  
(2)  
Industrial  
-40OC to +85OC  
T
BIAS  
STG  
JN  
OUT  
T
Storage Temperature  
Junction Temperature  
DC Output Current  
-65 to +150  
+150  
oC  
oC  
5683 tbl 05  
NOTE:  
1. This is the parameter TA. This is the "instant on" case temperature.  
T
I
20  
mA  
5683 tbl 04  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in Recommended DC Operating  
the operational sections of this specification is not implied. Exposure to absolute  
Conditions  
maximum rating conditions for extended periods may affect reliability.  
2. Ambient Temperature Under DC Bias. No AC Conditions. Chip Deselected.  
Symbol  
Parameter  
Supply Voltage  
Ground  
Min.  
1.7  
Typ.  
Max.  
1.9  
Unit  
V
V
V
DD  
SS  
1.8  
0
0
0
V
____  
V
V
IH  
IL  
Input High Voltage  
Input Low Voltage  
1.2  
V
DD+0.2  
0.4  
V
-0.2(1)  
V
____  
Capacitance(1) (TA = +25°C, f = 1.0MHz)  
5683 tbl 06  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2)  
IN = 3dV  
OUT = 3dV  
Max. Unit  
CIN  
V
9
pF  
COUT  
V
11  
pF  
5683 tbl 07  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested.  
2. 3dV references the interpolated capacitance when the input and output  
signals switch from 0V to 3V or from 3V to 0V.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 1.8V ± 100mV)  
(70P25/24L)  
70P35/34L  
Symbol  
|ILI  
|ILO  
Parameter  
Input Leakage Current  
Test Conditions  
DD = 1.8V, VIN = 0V to  
CE = VIH, VOUT = 0V to  
OL = +0.1mA  
OH = -0.1mA  
Min.  
Max.  
Unit  
___  
|
V
V
DD  
1
1
µA  
µA  
V
___  
___  
|
Output Leakage Currentt  
Output Low Voltage  
Output High Voltage  
VDD  
V
V
OL  
OH  
I
0.2  
___  
I
V
DD - 0.2  
V
5683 tbl 08  
6.42  
9
IDT70P35/34L(IDT70P25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(VDD = 1.8V ± 100mV)  
70P35/34L20  
(70P25/24L20)  
Com'l Only  
70P35/34L25  
(70P25/24L25)  
Com'l  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
25  
Max.  
40  
Typ.(2)  
20  
Max.  
32  
Unit  
IDD  
Dynamic Operating  
Current  
(Both Ports Active)  
mA  
L
L
L
L
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
IND  
25  
46  
20  
38  
f = fMAX  
ISB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
mA  
mA  
COM'L  
IND  
3.5  
5.6  
6.0  
2.2  
3.5  
4.6  
CE  
R
and CE  
L
= VIH  
L = VIH  
SEM  
R
= SEM  
(3)  
3.5  
2.2  
f = fMAX  
(1)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
CE"A" = VIL and CE"B" = VIH  
L
L
15  
15  
25  
32  
12  
12  
20  
26  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
IND  
SEM  
R
= SEM  
L
= VIH  
and  
ISB3  
Full Standby Current  
(Both Ports -  
CMOS Level Inputs)  
Both Ports CE  
L
mA  
mA  
COM'L  
L
L
L
L
4.5  
4.5  
15  
7.5  
7.5  
25  
3
3
5
5
CE  
R
> VDD - 0.2V,  
V
V
IN > VDD - 0.2V or  
IN < 0.2V, f = 0(4)  
IND  
SEM  
R
= SEML > VDD-0.2V  
ISB4  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
CE"A" < 0.2V and  
COM'L  
CE"B" > VDD - 0.2V(1)  
12  
20  
SEM  
V
R
= SEML > VDD-0.2V  
IN > VDD - 0.2V or VIN < 0.2V  
IND  
Active Port Outputs Disabled,  
15  
32  
12  
26  
(3)  
f = fMAX  
5683 tbl 09  
NOTES:  
1. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
2. DD = 1.8V, TA = +25°C, and are not production tested. IDD dc = 15mA (typ.)  
V
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using “AC Test Conditions” of input levels of GND  
to 3V.  
4. f = 0 means no address or control lines change.  
1.8V  
AC Test Conditions  
Input Pulse Levels  
13500  
10800Ω  
GND to 1.8V  
3ns Max.  
0.9V  
Input Rise/Fall Times  
30pF  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
0.9V  
Figure 1  
5683 drw 07  
5683 tbl 10  
Figure 1. AC Output Test Load  
*(For tLZ, tHZ, tWZ, tOW)  
Timing of Power-Up Power-Down  
CE  
tPU  
t
PD  
I
CC  
50%  
50%  
I
SB  
,
5683 drw 07  
6.1402  
IDT70P35/34L (IDT70T25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70P35/34L20  
(70P25/24L20)  
Com'l Only  
70P35/34L25  
(70P25/24L25)  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
20  
25  
ns  
ns  
ns  
____  
____  
t
Address Access Time  
20  
20  
20  
25  
25  
25  
____  
____  
____  
____  
____  
____  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output Enable Access Time(3)  
t
12  
13  
____  
____  
t
Output Hold from Address Change  
3
3
____  
____  
Output Low-Z Time(1,2)  
t
3
3
Output High-Z Time(1,2)  
____  
____  
t
12  
15  
____  
____  
Chip Enable to Power Up Time(1,2)  
t
0
0
____  
____  
Chip Disable to Power Down Time(1,2)  
t
20  
25  
____  
____  
t
Semaphore Flag Update Pulse (OE or SEM)  
10  
10  
Semaphore Address Access(3)  
____  
____  
t
20  
25  
ns  
5683 tbl 11  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 1).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL.  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE  
OE  
(4)  
tAOE  
(4)  
tABE  
UB, LB  
R/W  
(1)  
tOH  
tLZ  
(4)  
DATAOUT  
BUSYOUT  
VALID DATA  
(2)  
t
HZ  
,
(3,4)  
5683 drw 09  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE, CE, LB, or UB.  
2. Timing depends on which signal is de-asserted first, CE, OE, LB, or UB.  
3. tBDD delay is required only in case where opposite port is completing a write operation to the same address location for simultaneous read operations BUSY has no  
relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tABE, tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6.42  
11  
IDT70P35/34L(IDT70P25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage  
70P35/34L20  
(70P25/24L20)  
Com'l Only  
70P35/34L25  
(70P25/24L25)  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
15  
0
20  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
15  
15  
____  
____  
t
12  
15  
____  
____  
t
0
0
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
12  
15  
____  
____  
t
____  
____  
t
0
5
5
0
5
5
____  
____  
____  
____  
t
t
ns  
5683 tbl 12  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 1).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access SRAM, CE = VIL, UB or LB = VIL, SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL. Either condition must be valid for the entire  
tEW time.  
4. The specification for tDH must be met by the device supplying write data to the SRAM under all operating conditions. Although tDH and tOW values will vary over voltage and  
temperature, the actual tDH will always be smaller than the actual tOW.  
6.1422  
IDT70P35/34L (IDT70T25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
(7)  
t
HZ  
OE  
t
AW  
CE or SEM(9)  
CE or SEM(9)  
R/W  
(3)  
WR  
(2)  
tWP  
(6)  
t
t
AS  
(7)  
t
WZ  
tOW  
(4)  
(4)  
DATAOUT  
DATAIN  
t
DW  
tDH  
,
5683 drw 10  
Timing Waveform of Write Cycle No. 2, CE, UB, LB Controlled Timing(1,5)  
t
WC  
ADDRESS  
CE or SEM(9)  
UB or LB(9)  
t
AW  
(3)  
(6)  
(2)  
t
WR  
tEW  
t
AS  
R/W  
t
DW  
tDH  
DATAIN  
,
5683 drw 11  
NOTES:  
1. R/W or CE or UB & LB must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW UB or LB and a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end-of-write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition the outputs remain in the HIGH-impedance state.  
6. Timing depends on which enable signal is asserted last, CE, R/W, or UB or LB.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with Output Test Load  
(Figure 1).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as  
the specified tWP.  
9. To access SRAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access Semaphore, CE = VIH or UB and LB = VIH, and SEM = VIL. tEW must be met for either condition.  
6.42  
13  
IDT70P35/34L(IDT70P25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
t
OH  
t
SAA  
A0 - A2  
VALID ADDRESS  
VALID ADDRESS  
t
AW  
tWR  
tACE  
tEW  
SEM  
tSOP  
tDW  
OUT  
DATA  
DATA  
0
VALID(2)  
DATAIN VALID  
tAS  
tWP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
t
SOP  
Read Cycle  
.
Write Cycle  
5683 drw 12  
NOTES:  
1. CE = VIH or UB & LB = VIH for the duration of the above timing (both write and read cycle).  
2. “DATAOUT VALID” represents all I/O's (I/O0-I/O17 for IDT70P35/34) and (I/O0-I/O15 for IDT70P25/24) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
(2)  
SIDE  
"A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
(2)  
SIDE  
"B"  
R/W"B"  
SEM"B"  
,
5683 drw 13  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH, or both UB & LB = VIH.  
2. All timing is the same for left and right port. Port “A” may be either left or right port. Port “B” is the opposite from port “A”.  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will obtain the semaphore flag.  
6.1442  
IDT70P35/34L (IDT70T25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70P35/34L20  
(70P25/24L20)  
Com'l Only  
70P35/34L25  
(70P25/24L25)  
Com'l  
& Ind  
Symbol  
BUSY TIMING (M/S = VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
t
t
t
17  
17  
____  
____  
t
5
5
____  
____  
BUSY Disable to Valid Data(3)  
t
30  
30  
t
Write Hold After BUSY(5)  
15  
17  
____  
____  
BUSY TIMING (M/S = VIL  
)
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
ns  
ns  
tWH  
15  
17  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
45  
35  
50  
35  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
5683 tbl 13  
NOTES:  
1. Port-to-port delay through SRAM cells from writing port to reading port, refer to "TIMING WAVEFORM OF WRITE PORT-TO-PORT READ AND  
BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited during contention.  
5. To ensure that a write cycle is completed after contention.  
Timing Waveform of Write Port-to-Port Read and BUSY(2,4,5) (M/S = VIH)  
t
WC  
ADDR"A"  
MATCH  
t
WP  
R/W"A"  
t
DH  
t
DW  
DATAIN "A"  
VALID  
(1)  
tAPS  
ADDR"B"  
MATCH  
t
BAA  
tBDA  
tBDD  
BUSY"B"  
t
WDD  
DATAOUT "B"  
VALID  
(3)  
t
DDD  
,
NOTES:  
5683 drw 14  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (slave).  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSY“A” = VIH and BUSY“B” input is shown above.  
5. All timing is the same for both left and right ports. Port “A” may be either the left or right port. Port “B ” is the port opposite from port “A”.  
6.42  
15  
IDT70P35/34L(IDT70P25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with BUSY  
tWP  
R/W"A"  
(3)  
tWB  
BUSY"B"  
(1)  
t
WH  
(2)  
R/W"B"  
,
5683 drw 15  
NOTES:  
1. tWH must be met for both master BUSY input (slave) and output (master).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the slave version.  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
t
APS  
CE"B"  
tBAC  
t
BDC  
BUSY"B"  
,
5683 drw 16  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESS "N"  
(2)  
t
APS  
ADDR"B"  
MATCHING ADDRESS "N"  
t
BAA  
tBDA  
,
BUSY"B"  
5683 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from “A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
6.1462  
IDT70P35/34L (IDT70T25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70P35/34L20  
(70P25/24L20)  
Com'l Only  
70P35/34L25  
(70P25/24L25)  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
ns  
ns  
ns  
t
0
0
____  
____  
t
20  
20  
20  
20  
____  
____  
t
Interrupt Reset Time  
ns  
5683 tbl 14  
Waveform of Interrupt Timing(1)  
t
WC  
ADDR"A"  
CE"A"  
INTERRUPT SET ADDRESS(2)  
(3)  
AS  
(4)  
t
tWR  
R/W"A"  
INT"B"  
(3)  
t
INS  
,
5683 drw 18  
t
RC  
INTERRUPT CLEAR ADDRESS(2)  
ADDR"B"  
CE"B"  
(3)  
t
AS  
OE"B"  
(3)  
INR  
t
INT"B"  
,
5683 drw 19  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from “A”.  
2. See Interrupt Flag Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
6.42  
17  
IDT70P35/34L(IDT70P25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table III — Interrupt Flag(1)  
Left Port  
Right Port  
(4)  
(4)  
R/W  
L
L
A
12L-A0L  
R/W  
X
R
A
12R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CE  
L
OE  
L
INT  
X
L
CE  
X
R
OE  
R
INTR  
L
X
1FFF  
X
X
X
L(2)  
H(3)  
X
R
X
X
X
X
X
L
L
1FFF  
1FFE  
X
R
X
X
X
X
L(3)  
L
L
X
L
X
L
L
1FFE  
H(2)  
X
X
X
X
L
5683 tbl 15  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. A12 is a NC for IDT70P34 and IDT70P24, therefore Interrupt Addresses are FFF and FFE.  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
(4)  
A
12L-A0L  
(1)  
(1)  
A
12R-A0R  
Function  
Normal  
Normal  
Normal  
CE  
X
L
CE  
X
R
BUSY  
H
L
BUSYR  
NO MATCH  
MATCH  
H
H
H
X
H
X
H
MATCH  
H
H
L
L
MATCH  
(2)  
(2)  
Write Inhibit(3)  
5683 tbl 16  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the  
IDT70P35/34L (IDT70P25/24L) are push pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. L if the inputs to the opposite port were stable prior to the address and enable inputs of this port. H if the inputs to the opposite port became stable after the  
address and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. A12 is a NC for IDT70P34 and IDT70P24. Address comparison will be for A0 - A11.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D17 Left(2)  
D0  
- D17 Right(2)  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
5683 tbl 17  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70P35/34L (IDT70P25/24L).  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O17 for IDT70P35/34 and I/O0-I/O15 for IDT70P25/24). These eight semaphores  
are addressed by A0-A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Tables.  
6.1482  
IDT70P35/34L (IDT70T25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
CE  
SLAVE  
Dual Port  
SRAM  
CE  
MASTER  
Dual Port  
SRAM  
BUSY  
R
BUSY  
R
BUSY  
L
BUSY  
L
MASTER  
Dual Port  
SRAM  
SLAVE  
Dual Port  
SRAM  
CE  
CE  
BUSY  
R
BUSY  
R
BUSYR  
BUSY  
L
BUSYL  
BUSY  
L
,
5683 drw 20  
Figure 3. Busy and chip enable routing for both width and depth expansion with IDT70P35/34L (IDT70P25/24L) SRAMs.  
FunctionalDescription  
The IDT70P35/34L (IDT70P25/24L) provides two ports with sepa- operationscanbepreventedtoaportbytyingtheBUSYpinforthatport  
ratecontrol,addressandI/Opinsthatpermitindependentaccessforreads LOW.  
orwritestoanylocationinmemory.TheIDT70P35/34L(IDT70P25/24L)  
TheBUSYoutputsontheIDT70P35/34L(IDT70P25/24L)SRAMin  
hasanautomaticpowerdownfeaturecontrolledbyCE.TheCEcontrols master mode, are push-pull type outputs and do not require pull up  
on-chippowerdowncircuitrythatpermitstherespectiveporttogointoa resistorstooperate.IftheseSRAMsarebeingexpandedindepth,then  
standby mode when not selected (CE HIGH). When a port is enabled, theBUSYindicationfortheresultingarrayrequirestheuseofanexternal  
accesstotheentirememoryarrayispermitted.  
ANDgate.  
Width Expansion with Busy Logic  
Interrupts  
If the user chooses the interrupt function, a memory location (mail  
boxormessagecenter)isassignedtoeachport. Theleftportinterrupt  
flag (INTL) is asserted when the right port writes to memory location  
1FFE(HEX)(FFFforIDT70P34andIDT70P24),whereawrite isdefined  
astheCER=R/WR=VIL perTruthTableIII.Theleftportclearstheinterrupt  
by an address location 1FFE access when CEL = OEL = VIL, R/WL is a  
"don'tcare".Likewise,therightportinterruptflag(INTR)issetwhenthe  
leftportwritestomemorylocation1FFF(HEX)(FFFforIDT70P34and  
IDT70P24)andtocleartheinterruptflag(INTR),therightportmustread  
thememorylocation1FFF. Themessagetotheinterruptmailboxisuser-  
defined,sinceitisanaddressableSRAMlocation.Iftheinterruptfunction  
isnotused,theinterruptaddresslocationsarenotusedasmailboxesbut  
aspartoftherandomaccessmemory.  
Master/Slave Arrays  
When expanding an IDT70P35/34L (IDT70P25/24L) SRAM array  
inwidthwhileusingBUSYlogic,onemasterpartisusedtodecidewhich  
sideoftheSRAMarraywillreceiveaBUSYindication,andtooutputthat  
indication. Any number of slaves to be addressed in the same address  
rangeasthemaster,usetheBUSYsignalasawriteinhibitsignal.Thus  
ontheIDT70P35/34L(IDT70P25/24L)SRAMtheBUSYpinisanoutput  
ifthepartisusedasamaster(M/Spin=VIH),andtheBUSYpinisaninput  
if the part used as a slave (M/S pin = VIL) as shown in Figure 3.  
If two or more master parts were used when expanding in width, a  
splitdecisioncouldresultwithonemasterindicatingBUSYononeside  
of the array and another master indicating BUSY on one other side of  
the array. This would inhibit the write operations from one port for part  
of a word and inhibit the write operations from the other port for the  
other part of the word.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. It ignores whether an access is a read or write.  
In a master/slave array, both address and chip enable must be valid  
long enough for a BUSY flag to be output from the master before the  
actual write pulse can be initiated with either the R/W signal or the byte  
enables. Failure to observe this timing can result in a glitched internal  
write inhibit signal and corrupted data in the slave.  
Busy Logic  
Busy Logic provides a hardware indication that both ports of the  
SRAM have accessed the same location at the same time. It also  
allows one of the two accesses to proceed and signals the other side  
that the SRAM is “busy”. The BUSY pin can then be used to stall the  
access until the operation on the other side is completed. If a write  
operation has been attempted from the side that receives a BUSY  
indication, the write signal is gated internally to prevent the write from  
proceeding.  
The use of BUSY logic is not required or desirable for all applica-  
tions. In some cases it may be useful to logically OR the BUSYoutputs  
togetheranduseany BUSYindicationasaninterruptsourcetoflagthe  
event of an illegal or illogical operation. If the write inhibit function of  
BUSYlogicisnotdesirable, the BUSYlogiccanbedisabledbyplacing  
the part in slave mode with the M/Spin. Once in slave mode the BUSY  
pinoperatessolelyasawriteinhibitinputpin. Normaloperationcanbe  
programmedbytyingtheBUSYpinsHIGH.Ifdesired,unintendedwrite  
Semaphores  
TheIDT70P35/34L(IDT70P25/24L)isanextremelyfastDual-Port  
8/4K x 18 (8/4K x 16) CMOS Static RAM with an additional 8 address  
locationsdedicatedtobinarysemaphoreflags.Theseflagsalloweither  
processorontheleftorrightsideoftheDual-PortSRAMtoclaimaprivilege  
overtheotherprocessorforfunctionsdefinedbythesystemdesigner’s  
software.Asanexample,thesemaphorecanbeusedbyoneprocessor  
6.42  
19  
IDT70P35/34L(IDT70P25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
toinhibittheotherfromaccessingaportionoftheDual-PortSRAMorany the SEM pin (which acts as a chip select for the semaphore flags) and  
other shared resource. using the other control pins (Address, OE, and R/W) as they would be  
TheDual-PortSRAMfeaturesafastaccesstime,andbothportsare usedinaccessingastandardstaticRAM. Eachoftheflagshasa  
completelyindependentofeachother.Thismeansthattheactivityonthe unique address which can be accessed by either side through  
leftportinnowayslowstheaccesstimeoftherightport. Bothportsare address pins A0 A2. When accessing the semaphores, none of the  
identicalinfunctiontostandardCMOSStaticRAMandcanbeaccessed otheraddresspinshasanyeffect.  
atthesametimewiththeonlypossibleconflictarisingfromthesimultaneous  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel  
writingof,orasimultaneousREAD/WRITEof,anon-semaphorelocation. iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
Semaphoresareprotectedagainstsuchambiguoussituationsandmay on that side and a one on the other side (see Truth Table V). That  
be used by the system program to avoid any conflicts in the non- semaphorecannowonlybemodifiedbythesideshowingthezero.When  
semaphore portion of the Dual-Port SRAM. These devices have an aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
automatic power-down feature controlled by CE, the Dual-Port SRAM settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol ispending)andthencanbewrittentobybothsides.Thefactthattheside  
on-chip power down circuitry that permits the respective port to go into whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
standbymodewhennotselected.Thisistheconditionwhichisshownin fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
Truth Table I where CE and SEM are both HIGH.  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
Systems which can best use the IDT70P35/34L (IDT70P25/24L) shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
contain multiple processors or controllers and are typically very high- storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
speedsystemswhicharesoftwarecontrolledorsoftwareintensive.These freedbythefirstside.  
systemscanbenefit fromaperformanceincreaseofferedbytheIDT70P35/  
34L(IDT70P25/24L)'shardwaresemaphores,whichprovidealockout thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
mechanismwithoutrequiringcomplexprogramming. azeroreadsasallzeros.Thereadvalueislatchedintooneside’soutput  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
Softwarehandshakingbetweenprocessorsoffersthemaximumin registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
system flexibility by permitting shared resources to be allocated in signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
varying configurations. The IDT70P35/34L (IDT70P25/24L) does not stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
useitssemaphoreflagstocontrolanyresourcesthroughhardware,thus Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
allowingthesystemdesignertotalflexibilityinsystemarchitecture.  
cause either signal (SEM or OE) to go inactive or the output will never  
An advantage of using semaphores rather than the more common change.  
methods of hardware arbitration is that wait states are never incurred  
A sequence WRITE/READ must be used by the semaphore in  
in either processor. This can prove to be a major advantage in very order to guarantee that no system level contention will occur. A  
high-speed systems.  
processor requests access to shared resources by attempting to write  
a zero into a semaphore location. If the semaphore is already in use,  
the semaphore request latch will contain a zero, yet the semaphore  
flag will appear as one, a fact which the processor will verify by the  
subsequent read (see Truth Table V). As an example, assume a  
processorwritesazerototheleftportatafreesemaphorelocation. On  
asubsequentread, theprocessorwillverifythatithaswrittensuccess-  
fully to that location and will assume control over the resource in  
question. Meanwhile, if a processor on the right side attempts to write  
a zero to the same semaphore flag it will fail, as will be verified by the  
factthataonewillbereadfromthatsemaphoreontherightsideduring  
subsequent read. Had a sequence of READ/WRITE been used  
instead, system contention problems could have occurred during the  
gap between the read and write cycles.  
It is important to note that a failed semaphore request must be  
followed by either repeated reads or by writing a one into the same  
location. The reason for this is easily understood by looking at the  
simple logic diagram of the semaphore flag in Figure 4. Two sema-  
phore request latches feed into a semaphore flag. Whichever latch is  
first to present a zero to the semaphore flag will force its side of the  
semaphore flag LOW and the other side HIGH. This condition will  
continue until a one is written to the same semaphore request latch.  
Should the other side’s semaphore request latch have been written to  
azerointhemeantime,thesemaphoreflagwillflipovertotheotherside  
assoonasaoneiswrittenintothefirstside’srequestlatch.Thesecond  
side’sflagwillnowstayLOWuntilitssemaphorerequestlatchiswrittento  
How the Semaphore Flags Work  
The semaphore logic is a set of eight latches which are indepen-  
dent of the Dual-Port SRAM. These latches can be used to pass a flag,  
or token, from one port to the other to indicate that a shared resource  
is in use. The semaphores provide a hardware assist for a use  
assignmentmethodcalledTokenPassingAllocation.Inthismethod,  
thestateofasemaphorelatchisusedasatokenindicatingthatshared  
resource is in use. If the left processor wants to use this resource, it  
requests the token by setting the latch. This processor then verifies its  
success in setting the latch by reading it. If it was successful, it  
proceeds to assume control over the shared resource. If it was not  
successful in setting the latch, it determines that the right side  
processor has set the latch first, has the token and is using the shared  
resource. The left processor can then either repeatedly request that  
semaphore’s status or remove its request for that semaphore to  
perform another task and occasionally attempt again to gain control of  
the token via the set and test sequence. Once the right side has  
relinquished the token, the left side should succeed in gaining control.  
The semaphore flags are active LOW. A token is requested by  
writing a zero into a semaphore latch and is released when the same  
side writes a one to that latch.  
TheeightsemaphoreflagsresidewithintheIDT70P35/34L  
(IDT70P25/24L) in a separate memory space from the Dual-Port  
SRAM. This address space is accessed by placing a LOW input on  
6.2402  
IDT70P35/34L (IDT70T25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
aone.Fromthisitiseasytounderstandthat,ifasemaphoreisrequested 4Ksectionbywriting,thenreadingazerointoSemaphore1.Ifitsucceeded  
andtheprocessorwhichrequesteditnolongerneedstheresource,the ingainingcontrol,itwouldlockouttheleftside.  
entiresystemcanhangupuntilaoneiswrittenintothatsemaphorerequest  
latch.  
Once the left side was finished with its task, it would write a one to  
Semaphore 0 and may then try to gain access to Semaphore 1. If  
The critical case of semaphore timing is when both sides request a Semaphore 1 was still occupied by the right side, the left side could  
single token by attempting to write a zero into it at the same time. The undo its semaphore request and perform other tasks until it was able  
semaphore logic is specially designed to resolve this problem. If to write, then read a zero into Semaphore 1. If the right processor  
simultaneous requests are made, the logic guarantees that only one performsasimilartaskwithSemaphore0,thisprotocolwouldallowthe  
side receives the token. If one side is earlier than the other in making two processors to swap 4K blocks of Dual-Port SRAM with each other.  
the request, the first side to make the request will receive the token. If  
bothrequestsarriveatthesametime, theassignmentwillbearbitrarily variable, depending upon the complexity of the software using the  
made to one port or the other. semaphore flags. All eight semaphores could be used to divide the  
The blocks do not have to be any particular size and can even be  
One caution that should be noted when using semaphores is that Dual-Port SRAM or other shared resources into eight parts. Sema-  
semaphores alone do not guarantee that access to a resource is phores can even be assigned different meanings on different sides  
secure. As with any powerful programming technique, if semaphores rather than being given a common meaning as was shown in the  
are misused or misinterpreted, a software error can easily happen.  
Initialization of the semaphores is not automatic and must be  
example above.  
Semaphores are a useful form of arbitration in systems like disk  
handled via the initialization program at power-up. Since any sema- interfaces where the CPU must be locked out of a section of memory  
phore request flag which contains a zero must be reset to a one, all during a transfer and the I/O device cannot tolerate any wait states.  
semaphores on both sides should have a one written into them at With the use of semaphores, once the two devices has determined  
initialization from both sides to assure that they will be free when which memory area was “off-limits” to the CPU, both the CPU and the  
needed.  
I/O devices could access their assigned portions of memory continu-  
ously without any wait states.  
Semaphores are also useful in applications where no memory  
“WAIT” state is available on one or both sides. Once a semaphore  
handshake has been performed, both processors can access their  
assigned RAM segments at full speed.  
UsingSemaphores—SomeExamples  
Perhaps the simplest application of semaphores is their applica-  
tionasresourcemarkersfortheIDT70P35/34L(IDT70P25/24L)’sDual-  
Port SRAM. Say for example, the 8K x 18 SRAM was to be divided into  
two4Kx18blockswhichweretobededicatedatanyonetimetoservicing  
eithertheleftorrightport.Semaphore0couldbeusedtoindicatetheside  
whichwouldcontrolthelowersectionofmemory,andSemaphore1could  
bedefinedastheindicatorfortheuppersectionofmemory.  
To take a resource, in this example the lower 4K of Dual-Port  
SRAM, the processor on the left port could write and then read a zero  
in to Semaphore 0. If this task were successfully completed (a zero  
was read back rather than a one), the left processor would assume  
control of the lower 4K. Meanwhile the right processor was attempting  
togaincontrolofthe resourceaftertheleftprocessor,itwouldreadback  
aoneinresponsetothezeroithadattemptedtowriteintoSemaphore0.  
Atthispoint,thesoftwarecouldchoosetotryandgaincontrolofthesecond  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
case, block arbitration is very important. For this application one  
processor may be responsible for building and updating a data  
structure. The other processor then reads and interprets that data  
structure. If the interpreting processor reads an incomplete data  
structure, a major error condition may exist. Therefore, some sort of  
arbitration must be used between the two different processors. The  
building processor arbitrates for the block, locks it and then is able to  
goinandupdatethedatastructure.Whentheupdateiscompleted,the  
data structure block is released. This allows the interpreting processor  
to come back and read the complete data structure, thereby guaran-  
teeing a consistent data structure.  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
5683 drw 21  
Figure 4. IDT70P35/34L (IDT70P25/24L) Semaphore Logic  
6.42  
21  
IDT70P35/34L(IDT70P25/24L)  
ADVANCED  
High-Speed 1.8V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Ordering Information(1)  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power Speed Package  
Process/  
Temperature  
Range  
Blank  
I
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
100-pin TQFP (PN100-1)  
100-pin 0.8mm pitch fpBGA (BF100)  
100-pin 0.5mm pitch fpBGA(BY100)(1)  
PF  
BF  
BY  
,
,
20  
25  
Commercial Only  
Commercial & Industrial  
Speed in Nanoseconds  
L
Low Power  
144K (8K x 18-Bit) 1.8V Dual-Port RAM  
72K (4K x 18-Bit) 1.8V Dual-Port RAM  
128K (8K x 16-Bit) 1.8V Dual-Port RAM  
64K (4K x 16-Bit) 1.8V Dual-Port RAM  
5683 drw 22  
70P35  
70P34  
70P25  
70P24  
NOTE:  
1. Available only for IDT70P25/24.  
AdvancedDatasheet: Definition  
"ADVANCED"datasheetscontaindescriptionsforproductsthatareinearlyrelease.  
Datasheet Document History  
01/26/04:  
02/25/04:  
InitialDatasheet  
Page 1Corrected standby power from 18µW to 5.4mW for low-power operation  
CORPORATE HEADQUARTERS  
2975 Stender Way  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
6.2422  
WWW.ALLDATASHEET.COM  
Copyright © Each Manufacturing Company.  
All Datasheets cannot be modified without permission.  
This datasheet has been download from :  
www.AllDataSheet.com  
100% Free DataSheet Search Site.  
Free Download.  
No Register.  
Fast Search System.  
www.AllDataSheet.com  

相关型号:

IDT70P34L25PF

HIGH-SPEED 1.8V 8/4K x 18 DUAL-PORT, 8/4K x 16 DUAL-PORT STATIC RAM
IDT

IDT70P34L25PFI

HIGH-SPEED 1.8V 8/4K x 18 DUAL-PORT, 8/4K x 16 DUAL-PORT STATIC RAM
IDT

IDT70P35

HIGH-SPEED 1.8V 8/4K x 18 DUAL-PORT, 8/4K x 16 DUAL-PORT STATIC RAM
IDT

IDT70P3517

512K/256K x36 SYNCHRONOUS DUAL QDR-II
IDT

IDT70P3517S233RM

512K/256K x36 SYNCHRONOUS DUAL QDR-II
IDT

IDT70P3517S250RM

512K/256K x36 SYNCHRONOUS DUAL QDR-II
IDT