IDT70V24L35PFI [IDT]

HIGH-SPEED 3.3V 4K x 16 DUAL-PORT STATIC RAM; HIGH -SPEED 3.3V 4K ×16双口静态RAM
IDT70V24L35PFI
型号: IDT70V24L35PFI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH-SPEED 3.3V 4K x 16 DUAL-PORT STATIC RAM
HIGH -SPEED 3.3V 4K ×16双口静态RAM

存储 内存集成电路 静态存储器
文件: 总22页 (文件大小:184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 3.3V  
4K x 16 DUAL-PORT  
STATIC RAM  
IDT70V24S/L  
IDT70V24 easily expands data bus width to 32 bits or more  
using the Master/Slave select when cascading more than  
one device  
M/S = VIH for BUSY output flag on Master  
M/S = VIL for BUSY input on Slave  
BUSY and Interrupt Flag  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
LVTTL-compatible, single 3.3V (±0.3V) power supply  
Available in 84-pin PGA, 84-pin PLCC and 100-pin TQFP  
Industrial temperature range (-40°C to +85°C) is available  
for selected speeds  
Features  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
– Commercial:15/20/25/35/55ns(max.)  
Industrial:20/25/35/55ns(max.)  
Low-power operation  
IDT70V24S  
Active:400mW(typ.)  
Standby: 3.3mW (typ.)  
IDT70V24L  
Active:380mW(typ.)  
Standby: 660µW (typ.)  
Separate upper-byte and lower-byte control for multiplexed  
bus compatibility  
Functional Block Diagram  
R/WR  
UBR  
R/WL  
UBL  
LBR  
CER  
OER  
LBL  
CEL  
OEL  
I/O8L-I/O15L  
I/O8R-I/O15R  
I/O  
Control  
I/O  
Control  
I/O0R-I/O7R  
I/O0L-I/O7L  
BUSY(1,2)  
(1,2)  
BUSYR  
L
A11L  
A11R  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A0L  
A0R  
12  
12  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CEL  
OEL  
CER  
OER  
R/WR  
WL  
R/  
SEMR  
INTR  
SEML  
INTL  
(2)  
(2)  
M/S  
2911 drw 01  
NOTES:  
1. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
2. BUSY outputs and INT outputs are non-tri-stated push-pull.  
MARCH 2000  
1
DSC-2911/8  
©2000IntegratedDeviceTechnology,Inc.  
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
reads or writes to any location in memory. An automatic power down  
TheIDT70V24isahigh-speed4Kx16Dual-PortStaticRAM.The  
IDT70V24isdesignedtobeusedasastand-alone64K-bitDual-PortRAM featurecontrolledbyCE permitstheon-chipcircuitryofeachporttoenter  
a very low standby power mode.  
orasacombinationMASTER/SLAVEDual-PortRAMfor32-bit-or-more  
wordsystems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproach  
in32-bitorwidermemorysystemapplicationsresultsinfull-speed,error-  
freeoperationwithouttheneedforadditionaldiscretelogic.  
Thisdeviceprovidestwoindependentportswithseparatecontrol,  
address,andI/Opinsthatpermitindependent,asyn-chronousaccessfor  
Fabricated using IDTs CMOS high-performance technology,  
thesedevices typicallyoperateononly400mWofpower.  
The IDT70V24is packagedina ceramic84-pinPGA, an84-Pin  
PLCC and a 100-pin Thin Quad Flatpack.  
Pin Configurations(1,2,3)  
INDEX  
11 10  
12  
9
8
7
6
5
4
3
2
1 84 83 82 81 80 79 78 77 76 75  
74  
I/O8L  
I/O9L  
7L  
A
73  
72  
71  
70  
69  
68  
67  
6L  
A
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
10L  
I/O  
I/O11L  
12L  
5L  
A
4L  
A
I/O  
3L  
A
I/O13L  
GND  
A2L  
A
1L  
14L  
I/O  
A
0L  
I/O15L  
VCC  
66 INTL  
IDT70V24J  
(4)  
L
BUSY  
J84-1  
65  
64  
63  
GND  
GND  
84-Pin PLCC  
Top View  
0R  
I/O  
I/O  
(5)  
M/S  
1R  
R
62 BUSY  
I/O2R  
VCC  
R
61 INT  
60  
59  
58  
57  
56  
55  
54  
A
0R  
3R  
I/O  
1R  
A
I/O4R  
I/O5R  
I/O6R  
A2R  
3R  
A
29  
30  
31  
32  
4R  
A
7R  
I/O  
I/O  
A
5R  
8R  
6R  
A
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
2911 drw 02  
Index  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
N/C  
N/C  
N/C  
1
N/C  
N/C  
N/C  
N/C  
A5L  
A4L  
A3L  
A2L  
A1L  
75  
74  
2
3
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
4
N/C  
I/O10L  
I/O11L  
I/O12L  
I/O13L  
GND  
I/O14L  
I/O15L  
VCC  
GND  
I/O0R  
I/O1R  
I/O2R  
VCC  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
N/C  
N/C  
N/C  
N/C  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
A0L  
IDT70V24PF  
PN100-1  
INTL  
BUSYL  
GND  
M/S  
BUSYR  
INTR  
A0R  
A1R  
A2R  
A3R  
A4R  
N/C  
N/C  
N/C  
N/C  
(4)  
100-Pin TQFP  
(5)  
Top View  
NOTES:  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
3. J84-1 package body is approximately 1.15 in x 1.15 in x .17 in.  
PN100-1 package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
2911 drw 03  
6.42  
2
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
63  
61  
60  
58  
55  
54  
51  
48  
46  
A11L  
44  
A9L  
45  
A10L  
43  
A8L  
41  
A6L  
38  
A3L  
35  
A0L  
31  
42  
A7L  
40  
A5L  
39  
A4L  
37  
A2L  
34  
11  
10  
09  
08  
07  
06  
05  
04  
03  
02  
01  
I/O7L  
I/O5L  
I/O4L  
I/O2L  
I/O0L  
OE  
SEM  
LB  
L
L
L
L
66  
I/O10L  
64  
62  
59  
56  
49  
50  
47  
I/O8L  
I/O6L  
I/O3L  
I/O1L  
N/C  
UB  
CE  
L
67  
I/O11L  
69  
I/O13L  
72  
I/O15L  
75  
65  
57  
53  
VCC  
52  
R/WL  
GND  
I/O9L  
68  
I/O12L  
71  
I/O14L  
70  
73  
VCC  
74  
33  
BUSY  
L
INTL  
IDT70V24G  
G84-3(4)  
32  
36  
A1L  
GND  
I/O0R  
GND  
GND  
M/S  
84-Pin PGA  
Top View(5)  
76  
77  
78  
VCC  
28  
29  
30  
I/O1R  
A0R  
I/O2R  
INT  
R
BUSY  
R
79  
80  
26  
A2R  
23  
27  
I/O3R  
I/O4R  
A1R  
81  
83  
7
11  
12  
25  
SEM  
R
5R  
A
I/O5R  
GND  
GND  
I/O7R  
A3R  
82  
1
2
5
8
10  
14  
17  
20  
22  
24  
W
6R  
9R  
10R  
13R  
15R  
R
11R  
8R  
6R  
A
4R  
I/O  
I/O  
I/O  
I/O  
I/O  
R/  
UB  
A
A
A
R
84  
3
4
6
9
15  
13  
16  
18  
19  
21  
I/O8R  
I/O11R I/O12R I/O14R  
N/C  
A10R  
A9R  
A7R  
OE  
LB  
CE  
R
R
R
A
B
C
D
E
F
G
H
J
K
L
2911 drw 04  
Index  
NOTES:  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 1.12 in x 1.12 in x .16 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
Pin Names  
Left Port  
Right Port  
Names  
CEL  
CER  
WR  
Chip Enable  
WL  
R/  
R/  
Read/Write Enable  
Output Enable  
Address  
OEL  
OER  
0L  
A
11 L  
0R  
A
11R  
- A  
- A  
0L  
15L  
0R  
15R  
I/O - I/O  
SEML  
UBL  
I/O - I/O  
SEMR  
UBR  
Data Input/Output  
Semaphore Enable  
Upper Byte Select  
Lower Byte Select  
Interrupt Flag  
LBL  
LBR  
INT  
INT  
R
L
BUSYL  
BUSYR  
Busy Flag  
S
M/  
Master or Slave Select  
Power  
CC  
V
GND  
Ground  
2911 tbl 01  
6.42  
3
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
R/W  
X
X
L
I/O8-15  
High-Z  
High-Z  
DATAIN  
High-Z  
DATAIN  
I/O0-7  
High-Z  
High-Z  
High-Z  
DATAIN  
DATAIN  
High-Z  
DATAOUT  
DATAOUT  
High-Z  
Mode  
Deselected: Power Down  
CE  
H
X
L
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
H
Both Bytes Deselected  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
H
L
L
H
L
H
L
L
L
H
L
H
H
H
X
L
H
L
H
DATAOUT  
High-Z  
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
L
L
H
L
H
L
L
L
H
DATAOUT  
High-Z  
X
H
X
X
X
Outputs Disabled  
2911 tbl 02  
NOTE:  
1. A0L A11L A0R A11R  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
R/W  
H
H
I/O8-15  
I/O0-7  
Mode  
CE  
H
X
H
X
L
OE  
L
UB  
X
H
X
H
L
LB  
X
H
X
H
X
L
SEM  
L
DATAOUT  
DATAOUT  
DATAIN  
DATAOUT  
DATAOUT  
DATAIN  
Read Data in Semaphore Flag  
Read Data in Semaphore Flag  
Write DIN0 into Semaphore Flag  
Write DIN0 into Semaphore Flag  
Not Allowed  
L
L
X
X
X
X
L
L
DATAIN  
DATAIN  
____  
____  
X
X
L
____  
____  
L
X
L
Not Allowed  
2911 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all of the I/O's (I/O0-I/O15). These eight semaphores are addressed by A0-A2.  
6.42  
4
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Absolute Maximum Ratings(1)  
Maximum Operating Temperature  
andSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
Grade  
Ambient  
Temperature  
GND  
Vcc  
(2)  
VTERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +4.6  
V
Commercial  
Industrial  
0OC to +70OC  
0V  
0V  
+
3.3V 0.3V  
Temperature  
Under Bias  
-55 to +125  
-55 to +125  
50  
oC  
oC  
-40OC to +85OC  
+
3.3V 0.3V  
TBIAS  
TSTG  
IOUT  
2911 tbl 05  
NOTES:  
Storage  
Temperature  
1. This is the parameter TA.  
DC Output  
Current  
mA  
2911 tbl 04  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability.  
Recommended DC Operating  
Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
V
2. VTERM must not exceed Vcc +0.3V for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period over VTERM > Vcc + 0.3V.  
VCC  
Supply Voltage  
3.0  
3.3  
3.6  
GND Ground  
0
0
0
V
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
2.0  
VCC+0.3(2)  
0.8  
V
____  
-0.3(1)  
V
____  
Capacitance  
(TA = +25°C, f = 1.0MHz)  
2911 tbl 06  
NOTES:  
1. VIL> -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 0.3V.  
Symbol  
CIN  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2 )  
VIN = 3dV  
Max. Unit  
9
pF  
COUT  
VOUT = 3dV  
11  
pF  
2911 tbl 07  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested.  
2. 3dV references the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VCC = 3.3V ± 0.3V)  
70V24S  
70V24L  
Symbol  
|ILI|  
Parameter  
Test Conditions  
VCC = 3.6V, VIN = 0V to VCC  
CE = VIH, VOUT = 0V to VCC  
IOL = +4mA  
Min.  
Max.  
10  
Min.  
Max.  
5
Unit  
µA  
µA  
V
(1)  
___  
___  
Input Leakage Current  
___  
___  
___  
___  
|ILO|  
Output Leakage Current  
Output Low Voltage  
Output High Voltage  
10  
5
VOL  
0.4  
0.4  
___  
___  
VOH  
IOH = -4mA  
2.4  
2.4  
V
2911 tbl 08  
NOTE:  
1. At VCC < 2.0V input leakages are undefined.  
6.42  
5
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (VCC = 3.3V ± 0.3V)  
70V24X15  
Com'l Only  
70V24X20  
Com'l  
& Ind  
70V24X25  
Com'l  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
CC  
I
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
150  
140  
215  
185  
140  
130  
200  
175  
130  
125  
190  
165  
mA  
IL  
CE = V , Outputs Open  
IH  
SEM = V  
(3)  
MAX  
f = f  
____  
____  
____  
____  
IND  
S
L
140  
130  
225  
195  
130  
125  
210  
180  
SB1  
I
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
25  
20  
35  
30  
20  
15  
30  
25  
16  
13  
30  
25  
mA  
mA  
mA  
mA  
R
L
IH  
CE and CE = V  
R
L
IH  
SEM = SEM = V  
MAX  
f = f  
(3)  
____  
____  
____  
____  
MIL &  
IND  
S
L
20  
15  
45  
40  
16  
13  
45  
40  
(5)  
IH  
SB2  
I
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
85  
80  
120  
110  
80  
75  
110  
100  
75  
72  
110  
95  
"A"  
IL  
"B"  
CE = V and CE = V  
Active Port Outputs Open,  
(3)  
MAX  
f=f  
____  
____  
____  
____  
MIL &  
IND  
S
L
80  
75  
130  
115  
75  
72  
125  
110  
R
L
IH  
SEM = SEM = V  
SB3  
I
L
Full Standby Current  
Both Ports CE and  
R CC  
CE > V - 0.2V,  
COM'L  
S
L
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
(Both Ports  
-
IN  
CC  
CMOS Level Inputs)  
V
V
> V - 0.2V or  
< 0.2V, f = 0  
____  
____  
____  
____  
(4)  
MIL &  
IND  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
IN  
R
L
CC  
SEM = SEM > V -0.2V  
SB4  
I
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
"A"  
COM'L  
S
L
85  
80  
125  
105  
80  
75  
115  
100  
75  
70  
105  
90  
CE < 0.2V and  
(5)  
"B"  
CC  
CE > V - 0.2V  
R
L
CC  
SEM = SEM > V -0.2V  
____  
____  
____  
____  
IN  
CC IN  
> V - 0.2V or V < 0.2V  
MIL &  
IND  
S
L
80  
75  
130  
115  
75  
70  
120  
105  
V
Active Port Outputs Open,  
f = f  
(3)  
MAX  
2911 tbl 09a  
70V24X35  
Com'l  
& Ind  
70V24X55  
Com'l  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
COM'L  
S
120  
115  
180  
155  
120  
115  
180  
155  
mA  
CE = VIL, Outputs Open  
SEM = VIH  
L
(3)  
f = fMAX  
IND  
S
L
120  
115  
200  
170  
120  
115  
200  
170  
ISB1  
ISB2  
ISB3  
ISB4  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
13  
11  
25  
20  
13  
11  
25  
20  
mA  
mA  
mA  
mA  
CER and CEL = VIH  
SEMR = SEML = VIH  
(3)  
f = fMAX  
MIL &  
IND  
S
L
13  
11  
40  
35  
13  
11  
40  
35  
(5)  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
70  
65  
100  
90  
70  
65  
100  
90  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Open,  
(3)  
f=fMAX  
MIL &  
IND  
S
L
70  
65  
120  
105  
70  
65  
120  
105  
SEMR = SEML = VIH  
Full Standby Current  
Both Ports CEL and  
CER > VCC - 0.2V,  
COM'L  
S
L
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
(Both Ports  
-
CMOS Level Inputs)  
VIN > VCC - 0.2V or  
VIN < 0.2V, f = 0(4)  
MIL &  
IND  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
SEMR = SEML > VCC-0.2V  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
COM'L  
S
L
65  
60  
100  
85  
65  
60  
100  
85  
CE"A" < 0.2V and  
(5)  
CE"B" > VCC - 0.2V  
SEMR = SEML > VCC-0.2V  
VIN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Open,  
MIL &  
IND  
S
L
65  
60  
115  
100  
65  
60  
115  
100  
(3)  
f = fMAX  
2911 tbl 09b  
NOTES:  
1. 'X' in part number indicates power rating (S or L)  
2. VCC = 3.3V, TA = +25°C, and are not production tested. ICC DC = 115mA (typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using AC Test Conditionsof input levels of GND  
to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6.42  
6
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
3.3V  
AC Test Conditions  
Input Pulse Levels  
3.3V  
GND to 3.0V  
3ns Max.  
1.5V  
Input Rise/Fall Times  
590  
590  
DATAOUT  
BUSY  
INT  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
DATAOUT  
1.5V  
30pF  
435  
435  
5pF*  
Figures 1 and 2  
2911 tbl 10  
,
2911 drw 05  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
* Including scope and jig.  
Figure 1. AC Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
Timing of Power-Up Power-Down  
CE  
tPU  
tPD  
ICC  
50%  
50%  
ISB  
,
2911 drw 06  
6.42  
7
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
70V24X15  
Com'l Only  
70V24X20  
Com'l  
& Ind  
70V24X25  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
tRC  
Read Cycle Time  
15  
20  
25  
ns  
ns  
ns  
____  
____  
____  
tAA  
tACE  
Address Access Time  
15  
15  
15  
20  
20  
20  
25  
25  
25  
____  
____  
____  
____  
____  
____  
____  
____  
____  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
tABE  
ns  
Output Enable Access Time(3)  
tAOE  
tOH  
tLZ  
10  
12  
13  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
Output Hold from Address Change  
3
3
3
Output Low-Z Time(1,2)  
____  
____  
____  
3
3
3
____  
____  
____  
Output High-Z Time(1,2)  
tHZ  
10  
12  
15  
____  
____  
____  
Chip Enable to Power Up Time(1,2)  
tPU  
tPD  
tSOP  
tSAA  
0
0
0
____  
____  
____  
Chip Disable to Power Down Time(1,2)  
15  
20  
25  
____  
____  
____  
Semaphore Flag Update Pulse (OE or SEM)  
10  
10  
10  
Semaphore Address Access(3)  
____  
____  
____  
15  
20  
25  
ns  
2911 tbl 11a  
70V24X35  
Com'l  
& Ind  
70V24X55  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
tRC  
Read Cycle Time  
35  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
tAA  
tACE  
tABE  
tAOE  
tOH  
tLZ  
Address Access Time  
35  
35  
35  
55  
55  
55  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time(3)  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
20  
30  
____  
____  
3
3
____  
____  
3
3
Output High-Z Time(1,2)  
15  
25  
____  
____  
tHZ  
tPU  
tPD  
tSOP  
tSAA  
Chip Enable to Power Up Time(1,2)  
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access(3)  
0
0
____  
____  
____  
____  
35  
50  
____  
____  
15  
15  
____  
____  
35  
55  
ns  
2911 tbl 11b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access semaphore, CE = VIH or UB and LB = VIH, and SEM = VIL.  
4. 'X' in part number indicates power rating (S or L).  
6.42  
8
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
tAA  
(4)  
tACE  
CE  
(4)  
tAOE  
OE  
(4)  
tABE  
UB, LB  
R/W  
tOH  
(1)  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
tHZ  
BUSYOUT  
(3,4)  
2911 drw 07  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE, CE, LB, or UB.  
2. Timing depends on which signal is de-asserted first CE, OE, LB, or UB.  
3. tBDD delay is required only in cases where opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY has no relation  
to valid output data.  
4. Start of valid data depends on which timing becomes effective last tABE, tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6.42  
9
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
Operating TemperatureandSupplyVoltage(5)  
70V24X15  
Com'l Only  
70V24X20  
Com'l  
& Ind  
70V24X25  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
tWP  
12  
0
15  
0
20  
0
tWR  
tDW  
tHZ  
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
10  
15  
15  
____  
____  
____  
10  
12  
15  
____  
____  
____  
tDH  
0
0
0
(1,2)  
____  
____  
____  
tWZ  
tOW  
tSWRD  
tSPS  
Write Enable to Output in High-Z  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
12  
15  
____  
____  
____  
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
ns  
2911 tbl 12a  
70V24X35  
Com'l  
& Ind  
70V24X55  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
tWP  
25  
0
40  
0
tWR  
tDW  
tHZ  
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
15  
30  
____  
____  
15  
25  
____  
____  
tDH  
0
0
(1,2)  
____  
____  
tWZ  
tOW  
tSWRD  
tSPS  
Write Enable to Output in High-Z  
15  
25  
Output Active from End-of-Write(1,2,4)  
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
SEM Flag Write to Read Time  
ns  
Flag Contention Window  
SEM  
2911 tbl 12b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access SRAM, CE = VIL, UB or LB = VIL, SEM = VIH. To access semaphore, CE = VIH or UB and LB = VIH and SEM = VIL. Either condition must be valid for  
the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the SRAM under all operating conditions. Although tDH and tOW values will vary over  
voltage and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part number indicates power rating (S or L).  
6.42  
10  
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE SEM(9)  
or  
CE or SEM (9)  
(3)  
(6)  
(2)  
tWR  
tAS  
tWP  
W
R/  
(7)  
tWZ  
tOW  
(4)  
(4)  
DATAOUT  
DATAIN  
tDW  
tDH  
2911 drw 08  
Timing Waveform of Write Cycle No. 2, CE, UB, LB Controlled Timing(1,5)  
tWC  
ADDRESS  
tAW  
(9)  
or  
CE SEM  
(3)  
(2)  
(6)  
tWR  
tEW  
tAS  
(9)  
or  
UB LB  
R/  
W
tDW  
tDH  
DATAIN  
2911 drw 09  
NOTES:  
1. R/W or CE or UB & LB must be high during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a low UB or LB and a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high-impedance state.  
6. Timing depends on which enable signal is asserted last, CE, R/W or byte control.  
7. This parameter is guaranteed by device characterization, but is not production tested.Transition is measured 0mV from low or high-impedance voltage with Output  
Test Load (Figure 2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be placed on the  
bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified tWP.  
9. To access SRAM, CE = VIL, UB or LB = VIL, SEM = VIH. To access semaphore, CE = VIH or UB and LB = VIH and SEM = VIL. Either condition must be valid for  
the entire tEW time.  
6.42  
11  
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tOH  
tSAA  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tACE  
tWR  
tAW  
tEW  
SEM  
tSOP  
tDW  
DATAIN  
VALID  
DATAOUT  
VALID(2)  
I/O0  
tAS  
tWP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
Write Cycle  
Read Cycle  
2911 drw 10  
NOTES:  
1. CE = VIH or UB & LB = VIH for the duration of the above timing (both write and read cycle).  
2. DATAOUT VALIDrepresents all I/O's (I/O0-I/O15)equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2)  
"A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
2911 drw 11  
NOTES:  
1. D0R = D0L = VIL, CER = CEL = VIH, or Both UB & LB = VIH.  
2. All timing is the same for left or right port. Amay be either left or right port. Bis the opposite port from A.  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied there is no guarantee which side will be granted the semaphore flag.  
6.42  
12  
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingOemperatureandSupplyVoltageRange(6)  
70V24X15  
Com'l Ony  
70V24X20  
Com'l  
& Ind  
70V24X25  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S = VIH)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tBAA  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
15  
17  
17  
____  
____  
____  
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
Write Hold After BUSY(5)  
18  
30  
30  
____  
____  
____  
12  
15  
17  
BUSY TIMING (M/S = VIL)  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
tWB  
tWH  
0
0
0
ns  
ns  
Write Hold After BUSY(5)  
12  
15  
17  
PORT-TO-PORT DELAY TIMING  
tWDD  
Write Pulse to Data Delay(1)  
tDDD  
Write Data Valid to Read Data Delay(1)  
____  
____  
____  
____  
____  
____  
30  
25  
45  
35  
50  
35  
ns  
ns  
2911 tbl 13a  
70V24X35  
Com'l  
& Ind  
70V24X55  
Com'l  
& Ind  
Symbol  
BUSY TIMING (M/S = VIH)  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
tBAA  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
20  
20  
20  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
20  
35  
____  
____  
5
5
____  
____  
BUSY Disable to Valid Data(3)  
Write Hold After BUSY(5)  
35  
40  
____  
____  
25  
25  
BUSY TIMING (M/S = VIL)  
____  
____  
____  
____  
BUSY Input to Write(4)  
tWB  
tWH  
0
0
ns  
ns  
Write Hold After BUSY(5)  
25  
25  
PORT-TO-PORT DELAY TIMING  
tWDD  
Write Pulse to Data Delay(1)  
tDDD  
Write Data Valid to Read Data Delay(1)  
____  
____  
____  
____  
60  
45  
80  
65  
ns  
ns  
2911 tbl 13b  
NOTES:  
1. Port-to-port delay through SRAM cells from writing port to reading port, refer to "Timing Waveform of Read With BUSY (M/S = VIH)" or "Timing Waveform of Write  
With Port-To-Port Delay (M/S = VIL)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0ns, tWDD tWP (actual) or tDDD tDW (actual).  
4. To ensure that the write cycle is inhibited during contention.  
5. To ensure that a write cycle is completed after contention.  
6. 'X' in part number indicates power rating (S or L).  
6.42  
13  
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Read with BUSY(2,4,5) (M/S = VIH)  
tWC  
MATCH  
ADDR"A"  
R/W"A"  
tWP  
tDW  
tDH  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
tBAA  
tBDA  
tBDD  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
2911 drw 12  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (slave).  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSY"A" = VIH and BUSY"B" input is shown above.  
5. All timing is the same for both left and right ports. Port "A" may be either the left or right Port. Port "B" is the port opposite from port "A".  
6.42  
14  
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Slave Write (M/S = VIL)  
tWP  
R/W  
"A"  
(3)  
tWB  
BUSY"B"  
R/W"B"  
(1)  
tWH  
(2)  
2911 drw 13  
NOTES:  
1. tWH must be met for both BUSY input (slave) and output (master).  
2. Busy is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the slaveversion.  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
tAPS  
"B"  
CE  
tBAC  
tBDC  
BUSY"B"  
2911 drw 14  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
ADDRESS "N"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
2911 drw 15  
NOTES:  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from A.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
6.42  
15  
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
70V24X15  
Com'l Only  
70V24X20  
Com'l  
& Ind  
70V24X25  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
tAS  
Address Set-up Time  
0
0
0
ns  
ns  
ns  
tWR  
tINS  
tINR  
Write Recovery Time  
Interrupt Set Time  
0
0
0
____  
____  
____  
15  
15  
20  
20  
20  
20  
____  
____  
____  
Interrupt Reset Time  
ns  
2911 tbl 14a  
70V24X35  
Com'l  
& Ind  
70V24X55  
Com'l  
& Ind  
Symbol  
INTERRUPT TIMING  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
tAS  
Address Set-up Time  
0
0
ns  
ns  
ns  
tWR  
tINS  
tINR  
Write Recovery Time  
Interrupt Set Time  
0
0
____  
____  
25  
25  
40  
40  
____  
____  
Interrupt Reset Time  
ns  
2911 tbl 14b  
NOTES:  
1. 'X' in part number indicates power rating (S or L).  
6.42  
16  
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
tWC  
ADDR"A"  
INTERRUPT SET ADDRESS(2)  
(3)  
(4)  
tAS  
tWR  
CE"A"  
R/  
W"A"  
(3)  
tINS  
INT"B"  
2911 drw 16  
tRC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
tINR  
INT"B"  
2911 drw 17  
NOTES:  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from A.  
2. See Interrupt Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
6.42  
17  
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table III — Interrupt Flag(1)  
Left Port  
Right Port  
R/WL  
L
A11L-A0L  
FFF  
X
R/WR  
X
A11R-A0R  
X
Function  
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
CEL  
L
OEL  
X
INTL  
X
CER  
X
OER  
X
INTR  
(2)  
L
(3)  
X
X
X
X
X
L
L
FFF  
FFE  
X
H
(3)  
X
X
X
X
L
L
L
X
X
X
(2)  
X
L
L
FFE  
H
X
X
X
Reset Left INTL Flag  
2911 tbl 15  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
0L 11L  
A -A  
(1)  
(1)  
A
0R-A11R  
Function  
Normal  
Normal  
Normal  
CE  
L
CER  
X
BUSYL  
BUSYR  
X
H
X
L
NO MATCH  
MATCH  
H
H
H
X
H
H
MATCH  
H
H
(3)  
L
MATCH  
(2)  
(2)  
Write Inhibit  
2911 tbl 16  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT70V24 are push  
pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. L if the inputs to the opposite port were stable prior to the address and enable inputs of this port. VIH if the inputs to the opposite port became stable after the address and  
enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored when  
BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0 - D15 Left  
D0 - D15 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
2911 tbl 17  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V24.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O15). These eight semaphores are addressed by A0-A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
6.42  
18  
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
MASTER  
SLAVE  
Dual Port  
SRAM  
CE  
CE  
Dual Port  
SRAM  
BUSYL  
BUSYR  
BUSYL  
BUSYR  
MASTER  
Dual Port  
SRAM  
SLAVE  
Dual Port  
SRAM  
CE  
CE  
BUSYR  
BUSYR  
BUSY  
BUSY  
L
L
BUSYR  
BUSYL  
2911 drw 18  
Figure 3. Busy and chip enable routing for both width and depth expansion with IDT70V24 SRAMs.  
Functional Description  
prevented to a port by tying the BUSY pin for that port LOW.  
ThebusyoutputsontheIDT70V24SRAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate.Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
The IDT70V24 provides two ports with separate control, address  
andI/Opinsthatpermitindependentaccesstoanylocationinmemory.  
TheIDT70V24hasanautomaticpowerdownfeaturecontrolledbyCE.  
The CE controls on-chip power down circuitry that permits the respec-  
tive port to go into a standby mode when not selected (CE HIGH).  
When a port is enabled, access to the entire memory array is  
permitted.  
Width Expansion with BUSY Logic  
Master/Slave Arrays  
Interrupts  
WhenexpandinganIDT70V24SRAMarrayinwidthwhileusingbusy  
logic,onemasterpartisusedtodecidewhichsideoftheSRAMarraywill  
receiveaBUSYindication,andtooutputthatindication.Anynumberof  
slavestobeaddressedinthesameaddressrangeasthemaster,usethe  
BUSYsignalas awriteinhibitsignal.Thus ontheIDT70V24SRAMthe  
BUSYpinisanoutputifthepartisusedasamaster(M/Spin=VIH),and  
theBUSYpinisaninputifthepartusedasaslave(M/Spin=VIL)as shown  
in Figure 3.  
If two or more master parts were used when expanding in width, a  
splitdecisioncouldresultwithonemasterindicatingBUSYononeside  
of the array and another master indicating BUSY on one other side of  
the array. This would inhibit the write operations from one port for part  
of a word and inhibit the write operations from the other port for the  
other part of the word.  
If the user chooses the interrupt function, a memory location (mail  
boxormessagecenter)is assignedtoeachport. Theleftportinterrupt  
flag (INTL) is asserted when the right port writes to memory location  
FFE (HEX), where a write is defined as the CE=R/W=VIL per Truth  
Table III. The left port clears the interrupt by accessing address  
location FFE when CER = OER = VIL, R/W is a "don't care". Likewise,  
the right port interrupt flag (INTR) is asserted when the left port writes  
to memory location FFF (HEX) and to clear the interrupt flag (INTR),  
the right port must read the memory location FFF. The message (16  
bits) at FFE or FFF is user-defined, since it is an addressable SRAM  
location.Iftheinterruptfunctionisnotused,addresslocationsFFEand  
FFF are not used as mail boxes, but as part of the random access  
memory. Refer to Truth Table IIII for the interrupt operation.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. It ignores whether an access is a read or write.  
In a master/slave array, both address and chip enable must be valid  
long enough for a BUSY flag to be output from the master before the  
actualwrite pulse canbe initiatedwitheitherthe R/Wsignalorthe byte  
enables. Failure to observe this timing can result in a glitched internal  
write inhibit signal and corrupted data in the slave.  
Busy Logic  
Busy Logic provides a hardware indication that both ports of the  
SRAM have accessed the same location at the same time. It also  
allows one of the two accesses to proceed and signals the other side  
thattheSRAMisbusy.TheBUSYpincanthenbeusedtostalltheaccess  
untiltheoperationon theothersideiscompleted.Ifawriteoperationhas  
beenattemp-tedfromthesidethatreceivesaBUSYindication,thewrite  
signalisgatedinternallytopreventthewritefromproceeding.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
anduse anyBUSYindicationas aninterruptsource toflagthe eventof  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
Semaphores  
The IDT70V24is anextremelyfastDual-Port4Kx16CMOSStatic  
RAM with an additional 8 address locations dedicated to binary  
semaphore flags. These flags alloweitherprocessoronthe leftorright  
side of the Dual-Port SRAM to claim a privilege over the other  
processor for functions defined by the system designers software. As  
an example, the semaphore can be used by one processor to inhibit  
the otherfromaccessinga portionofthe Dual-PortSRAMoranyother  
shared resource.  
6.42  
19  
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
TheDual-PortSRAMfeaturesafastaccesstime,andbothportsare StaticRAM.Eachoftheflagshasauniqueaddresswhichcanbeaccessed  
completelyindependentofeachother.Thismeansthattheactivityonthe by either side through address pins A0 A2. When accessing the  
leftportinnowayslows theaccess timeoftherightport.Bothports are semaphores,noneoftheotheraddresspinshasanyeffect.  
identicalinfunctiontostandardCMOSStaticRAMandcanbeaccessed  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel  
to, at the same time with the only possible conflict arising from the iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
simultaneous writing of, or a simultaneous READ/WRITE of, a non- on that side and a one on the other side (see Truth Table V). That  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous semaphorecannowonlybemodifiedbythesideshowingthezero.When  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
in the non-semaphore portion of the Dual-Port SRAM. These devices settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
haveanautomaticpower-downfeaturecontrolledbyCE,theDual-Port ispending)andthencanbewrittentobybothsides.Thefactthattheside  
SRAMenable,andSEM,thesemaphoreenable.TheCEandSEMpins whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
controlon-chippowerdowncircuitrythatpermitstherespectiveporttogo fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
intostandbymodewhennotselected.Thisistheconditionwhichisshown communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
in Truth Table I where CE and SEM are both HIGH.  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
SystemswhichcanbestusetheIDT70V24containmultipleprocessors storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
or controllers and are typically very high-speed systems which are freedbythefirstside.  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
a performance increase offered by the IDT70V24's hardware sema- thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
phores,whichprovidealockoutmechanismwithoutrequiringcomplex azeroreadsasallzeros.Thereadvalueislatchedintoonesidesoutput  
programming.  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
Softwarehandshakingbetweenprocessors offers themaximumin signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
system flexibility by permitting shared resources to be allocated in stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
varying configurations. The IDT70V24 does not use its semaphore Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
flags to control any resources through hardware, thus allowing the cause either signal (SEM or OE) to go inactive or the output will never  
system designer total flexibility in system architecture.  
change.  
A sequence WRITE/READ must be used by the semaphore in  
An advantage of using semaphores rather than the more common  
methods of hardware arbitration is that wait states are never incurred order to guarantee that no system level contention will occur. A  
in either processor. This can prove to be a major advantage in very processor requests access to shared resources by attempting to write  
high-speed systems.  
a zero into a semaphore location. If the semaphore is already in use,  
the semaphore request latch will contain a zero, yet the semaphore  
flag will appear as one, a fact which the processor will verify by the  
subsequent read (see Truth Table V). As an example, assume a  
processorwritesazerototheleftportatafreesemaphorelocation.On  
asubsequentread,theprocessorwillverifythatithas writtensuccess-  
fully to that location and will assume control over the resource in  
question. Meanwhile, if a processor on the right side attempts to write  
a zero to the same semaphore flag it will fail, as will be verified by the  
factthataonewillbereadfromthatsemaphoreontherightsideduring  
subsequent read. Had a sequence of READ/WRITE been used  
instead, system contention problems could have occurred during the  
gap between the read and write cycles.  
It is important to note that a failed semaphore request must be  
followed by either repeated reads or by writing a one into the same  
location. The reason for this is easily understood by looking at the  
simple logic diagram of the semaphore flag in Figure 4. Two sema-  
phore request latches feed into a semaphore flag. Whichever latch is  
first to present a zero to the semaphore flag will force its side of the  
semaphore flag LOW and the other side HIGH. This condition will  
continue until a one is written to the same semaphore request latch.  
Should the other sides semaphore request latch have been written to  
a zero in the meantime, the semaphore flag will flip over to the other  
sideassoonasaoneiswrittenintothefirstsidesrequestlatch.Thesecond  
sidesflagwillnowstayLOWuntilitssemaphorerequestlatchiswrittento  
aone.Fromthisitiseasytounderstandthat,ifasemaphoreisrequested  
andtheprocessorwhichrequesteditnolongerneedstheresource,the  
entiresystemcanhangupuntilaoneiswrittenintothatsemaphorerequest  
How the Semaphore Flags Work  
The semaphore logic is a set of eight latches which are indepen-  
dentofthe Dual-PortSRAM. These latches canbe usedtopass a flag,  
or token, from one port to the other to indicate that a shared resource  
is in use. The semaphores provide a hardware assist for a use  
assignmentmethodcalledTokenPassingAllocation.Inthis method,  
thestateofasemaphorelatchisusedasatokenindicatingthatshared  
resource is in use. If the left processor wants to use this resource, it  
requests the token by setting the latch. This processor then verifies its  
success in setting the latch by reading it. If it was successful, it  
proceeds to assume control over the shared resource. If it was not  
successful in setting the latch, it determines that the right side  
processor has set the latch first, has the token and is using the shared  
resource. The left processor can then either repeatedly request that  
semaphores status or remove its request for that semaphore to  
perform another task and occasionally attempt again to gain control of  
the token via the set and test sequence. Once the right side has  
relinquished the token, the left side should succeed in gaining control.  
The semaphore flags are active LOW. A token is requested by  
writing a zero into a semaphore latch and is released when the same  
side writes a one to that latch.  
The eight semaphore flags reside within the IDT70V24 in a  
separate memory space from the Dual-Port SRAM. This address  
spaceisaccessedbyplacingaLOWinputontheSEMpin(whichactsas  
a chip select for the semaphore flags) and using the other control pins  
(Address,OE,andR/W)astheywouldbeusedinaccessingastandard  
6.42  
20  
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
latch.  
Once the left side was finished with its task, it would write a one to  
The critical case of semaphore timing is when both sides request Semaphore 0 and may then try to gain access to Semaphore 1. If  
a single tokenbyattemptingtowrite a zerointoitatthe same time. The Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
semaphore logic is specially designed to resolve this problem. If itssemaphorerequestandperformothertasksuntilitwasabletowrite,then  
simultaneous requests are made, the logic guarantees that only one readazerointoSemaphore1.Iftherightprocessorperformsasimilartask  
side receives the token. If one side is earlier than the other in making withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap  
the request, the first side to make the request will receive the token. If 2Kblocks ofDual-PortSRAMwitheachother.  
bothrequests arriveatthesametime,theassignmentwillbearbitrarily  
made to one port or the other.  
The blocks do not have to be any particular size and can even be  
variable, depending upon the complexity of the software using the  
One caution that should be noted when using semaphores is that semaphore flags. All eight semaphores could be used to divide the  
semaphores alone do not guarantee that access to a resource is Dual-Port SRAM or other shared resources into eight parts. Sema-  
secure. As with any powerful programming technique, if semaphores phores can even be assigned different meanings on different sides  
are misused or misinterpreted, a software error can easily happen.  
rather than being given a common meaning as was shown in the  
Initialization of the semaphores is not automatic and must be example above.  
handled via the initialization program at power-up. Since any sema-  
Semaphores are a useful form of arbitration in systems like disk  
phore request flag which contains a zero must be reset to a one, all interfaces where the CPU must be locked out of a section of memory  
semaphores on both sides should have a one written into them at during a transfer and the I/O device cannot tolerate any wait states.  
initialization from both sides to assure that they will be free when With the use of semaphores, once the two devices has determined  
needed.  
which memory area was off-limitsto the CPU, both the CPU and the  
I/O devices could access their assigned portions of memory continu-  
ously without any wait states.  
Semaphores are also useful in applications where no memory  
WAITstate is available on one or both sides. Once a semaphore  
handshake has been performed, both processors can access their  
assigned SRAM segments at full speed.  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
case, block arbitration is very important. For this application one  
processor may be responsible for building and updating a data  
structure. The other processor then reads and interprets that data  
structure. If the interpreting processor reads an incomplete data  
structure, a major error condition may exist. Therefore, some sort of  
arbitration must be used between the two different processors. The  
building processor arbitrates for the block, locks it and then is able to  
goinandupdatethedatastructure.Whentheupdateiscompleted,the  
data structure blockis released. This allows the interpretingprocessor  
to come back and read the complete data structure, thereby guaran-  
teeing a consistent data structure.  
UsingSemaphores—SomeExamples  
Perhaps the simplest application of semaphores is their applica-  
tionasresourcemarkersfortheIDT70V24sDual-PortSRAM. Saythe  
4K x 16 SRAM was to be divided into two 2K x 16 blocks which were to  
be dedicated at any one time to servicing either the left or right port.  
Semaphore 0 could be used to indicate the side which would control  
thelowersectionofmemory,andSemaphore1couldbedefinedasthe  
indicator for the upper section of memory.  
To take a resource, in this example the lower 2K of Dual-Port  
SRAM, the processor on the left port could write and then read a  
zero in to Semaphore 0. If this task were successfully completed  
(a zero was read back rather than a one), the left processor would  
assume control of the lower 2K. Meanwhile the right processor was  
attemptingtogaincontrolofthe resourceaftertheleftprocessor,itwould  
read back a one in response to the zero it had attempted to write into  
Semaphore0.Atthispoint,thesoftwarecouldchoosetotryandgaincontrol  
ofthesecond2Ksectionbywriting,thenreadingazerointoSemaphore  
1.Ifitsucceededingainingcontrol,itwouldlockouttheleftside.  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
2911 drw 19  
Figure 4. IDT70V24 Semaphore Logic  
6.42  
21  
IDT70V24S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Ordering Information  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
PF  
G
J
100-pin TQFP (PN100-1)  
84-pin PGA (G84-3)  
84-pin PLCC (J84-1)  
15  
20  
25  
35  
55  
Commercial Only  
Commercial & Industrial  
Commercial & Industrial  
Commercial & Industrial  
Commercial & Industrial  
Speed in nanoseconds  
S
L
Standard Power  
Low Power  
70V24 64K (4K x 16) 3.3V Dual-Port RAM  
2911 drw 20  
Datasheet Document History  
3/8/99:  
Initiated datasheet document history  
Converted to new format  
Cosmetic and typographical corrections  
Pages 2 and 3 Added additional notes to pin configurations  
Changed drawing format  
Page 2 TQFP for corrected pinout (no pin 55 was shown)  
Page1Changed660mWto660µW  
Replaced IDT logo  
6/10/99:  
8/1/99:  
8/30/99:  
11/12/99:  
3/10/00:  
Added 15 and 20ns speed grades  
UpgradedDCparameters  
AddedIndustrialTemperatureinformation  
Changed±200mVto0mVinnotes  
CORPORATE HEADQUARTERS  
2975 Stender Way  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
22  

相关型号:

IDT70V24L55G

HIGH-SPEED 3.3V 4K x 16 DUAL-PORT STATIC RAM
IDT

IDT70V24L55GG

Dual-Port SRAM, 4KX16, 55ns, CMOS, CPGA84, 1.120 X 1.120 INCH, 0.160 INCH HEIGHT, GREEN, CERAMIC, PGA-84
IDT

IDT70V24L55GGI

Dual-Port SRAM, 4KX16, 55ns, CMOS, CPGA84, CERAMIC, PGA-84
IDT

IDT70V24L55GI

HIGH-SPEED 3.3V 4K x 16 DUAL-PORT STATIC RAM
IDT

IDT70V24L55J

HIGH-SPEED 3.3V 4K x 16 DUAL-PORT STATIC RAM
IDT

IDT70V24L55J8

Dual-Port SRAM, 4KX16, 55ns, CMOS, PQCC84, 1.150 X 1.150 INCH, 0.170 INCH HEIGHT, PLASTIC, LCC-84
IDT

IDT70V24L55JG

Dual-Port SRAM, 4KX16, 55ns, CMOS, PQCC84, 1.150 X 1.150 INCH, 0.170 INCH HEIGHT, GREEN, PLASTIC, LCC-84
IDT

IDT70V24L55JG8

Dual-Port SRAM, 4KX16, 55ns, CMOS, PQCC84, PLASTIC, LCC-84
IDT

IDT70V24L55JI

HIGH-SPEED 3.3V 4K x 16 DUAL-PORT STATIC RAM
IDT

IDT70V24L55PF

HIGH-SPEED 3.3V 4K x 16 DUAL-PORT STATIC RAM
IDT

IDT70V24L55PF8

Dual-Port SRAM, 4KX16, 55ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
IDT

IDT70V24L55PF9

Dual-Port SRAM, 4KX16, 55ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
IDT