IDT70V24TL20JI8 [IDT]

Multi-Port SRAM, 4KX16, 20ns, CMOS, CQCC84;
IDT70V24TL20JI8
型号: IDT70V24TL20JI8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Multi-Port SRAM, 4KX16, 20ns, CMOS, CQCC84

静态存储器
文件: 总25页 (文件大小:381K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 3.3V  
8/4K x 18 DUAL-PORT  
8/4K x 16 DUAL-PORT  
STATIC RAM  
IDT70V35/34S/L  
IDT70V25/24S/L  
Features  
Separate upper-byte and lower-byte control for multiplexed  
bus compatibility  
IDT70V35/34 (IDT70V25/24) easily expands data bus width  
to 36 bits (32 bits) or more using the Master/Slave select  
when cascading more than one device  
M/S = VIH for BUSY output flag on Master  
M/S = VIL for BUSY input on Slave  
BUSY and Interrupt Flag  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
LVTTL-compatible, single 3.3V (±0.3V) power supply  
Available in a 100-pin TQFP (IDT70V35/24) & (IDT70V25/24),  
86-pin PGA (IDT70V25/24) and 84-pin PLCC (IDT70V25/24)  
Industrial temperature range (-40°C to +85°C) is available  
for selected speeds  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
IDT70V35/34  
– Commercial:15/20/25ns (max.)  
Industrial:20ns  
IDT70V25/24  
– Commercial:15/20/25/35/55ns(max.)  
Industrial:20/25ns  
Low-power operation  
IDT70V35/34S  
IDT70V35/34L  
Active: 430mW (typ.)  
Standby: 3.3mW (typ.)  
Active: 415mW (typ.)  
Standby: 660µW (typ.)  
IDT70V25/24S  
IDT70V25/24L  
Active: 400mW (typ.)  
Standby: 3.3mW (typ.)  
Active: 380mW (typ.)  
Standby: 660µW (typ.)  
Functional Block Diagram  
R/W  
L
R/W  
R
R
UBL  
UB  
LB  
CE  
OE  
R
LB  
CE  
OE  
L
R
R
L
L
,
(5)  
(5)  
I/O9R-I/O17R  
I/O9L-I/O17L  
I/O  
Control  
I/O  
Control  
(4)  
(4)  
I/O0R-I/O8R  
I/O0L-I/O8L  
(2,3)  
L
(2,3)  
BUSY  
R
BUSY  
(1)  
12R  
(1)  
12L  
A
A
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A0L  
A
0R  
13  
13  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE  
OE  
R/W  
R
CE  
OE  
L
L
R
R
R/W  
L
SEM  
R
SEM  
INTL  
L
(3)  
(3)  
INTR  
M/S  
5624 drw 01  
NOTES:  
1. A12 is a NC for IDT70V34 and for IDT70V24.  
2. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
3. BUSY outputs and INT outputs are non-tri-stated push-pull.  
4. I/O0x - I/O7x for IDT70V25/24.  
5. I/O8x - I/O15x for IDT70V25/24.  
OCTOBER 2004  
1
DSC-5624/5  
©2004IntegratedDeviceTechnology,Inc.  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
The IDT70V35/34 (IDT70V25/24) is a high-speed 8/4K x 18 (8/4K featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
x16) Dual-Port Static RAM. The IDT70V35/34 (IDT70V25/24) is de- a very low standby power mode.  
signedtobeusedasastand-aloneDual-PortRAMorasacombination  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
MASTER/SLAVE Dual-Port RAM for 36-bit (32-bit) or wider memory devices typically operate on only 430mW (IDT70V35/34) and 400mW  
systemapplicationsresultsinfull-speed,error-freeoperationwithoutthe (IDT70V25/24) of power.  
needforadditionaldiscretelogic.  
The IDT70V35/34 (IDT70V25/24) is packaged in a plastic 100-pin  
This device provides two independent ports with separate control, ThinQuadFlatpack. TheIDT70V25/24ispackagedinaceramic84-pin  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor PGA and 84-Pin PLCC.  
reads or writes to any location in memory. An automatic power down  
PinConfigurations(1,2,3,4)  
06/24/04  
Index  
100 99 98 9796 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
N/C  
N/C  
I/O8L  
I/O17L  
I/O11L  
I/O12L  
I/O13L  
I/O14L  
Vss  
N/C  
N/C  
N/C  
N/C  
75  
74  
2
3
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
4
5
A
A
A
A
A
A
5L  
4L  
3L  
2L  
1L  
0L  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
I/O15L  
I/O16L  
IDT70V35/34PF  
INT  
L
(5)  
PN100-1  
VDD  
BUSY  
Vss  
M/S  
L
Vss  
I/O0R  
I/O1R  
I/O2R  
100-Pin TQFP  
(6)  
Top View  
BUSY  
R
INT  
R
VDD  
A
A
A
A
A
0R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
I/O8R  
I/O17R  
N/C  
1R  
2R  
3R  
4R  
N/C  
N/C  
N/C  
N/C  
N/C  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
,
5624 drw 02  
NOTES:  
1. A12 is a NC for IDT70V34.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground.  
4. PN100-1 package body is approximately 14mm x 14mm x 1.4mm.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part marking.  
6.422  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfigurations(1,2,3,4)(con't)  
06/24/04  
Index  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
N/C  
N/C  
N/C  
N/C  
75  
2
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
N/C  
N/C  
N/C  
3
4
N/C  
5
A
A
A
A
A
A
5L  
4L  
3L  
2L  
1L  
0L  
I/O10L  
I/O11L  
I/O12L  
I/O13L  
6
7
8
VSS  
9
I/O14L  
I/O15L  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
IDT70V25/24PF  
PN100-1(4)  
INT  
L
BUSY  
L
V
V
DD  
SS  
100-Pin TQFP  
Top View(5)  
V
SS  
M/S  
BUSY  
I/O0R  
I/O1R  
I/O2R  
R
INT  
R
A
A
A
A
A
0R  
VDD  
1R  
2R  
3R  
4R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
5624 drw 03  
NOTES:  
1. A12 is a NC for IDT70V24.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground.  
4. PN100-1 package body is approximately 14mm x 14mm x 1.4mm.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part marking.  
6.42  
3
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfigurations(1,2,3,4)(con't)  
06/11/04  
63  
61  
60  
58  
55  
54  
51  
48  
46  
45  
42  
11  
10  
09  
08  
07  
06  
05  
04  
03  
02  
01  
I/O7L  
I/O5L  
I/O4L  
I/O2L  
I/O0L  
A
11L  
A
10L  
A
7L  
5L  
OE  
L
SEM  
L
LBL  
66  
I/O10L  
67  
I/O11L  
69  
I/O13L  
72  
I/O15L  
75  
64  
62  
59  
56  
49  
50  
47  
44  
43  
41  
40  
(1)  
12L  
I/O8L  
I/O6L  
I/O3L  
I/O1L  
A
A
9L  
A
8L  
A
UBL  
CEL  
65  
57  
53  
52  
39  
V
SS  
V
DD  
I/O9L  
A
6L  
3L  
0L  
R/W  
L
A
4L  
2L  
68  
I/O12L  
71  
I/O14L  
70  
38  
37  
A
A
73  
33  
35  
34  
BUSY  
L
A
VDD  
INT  
L
IDT70V25/24  
G
74  
32  
31  
36  
G84-3(4)  
V
SS  
V
SS  
VSS  
I/O0R  
M/S  
A
1L  
84-Pin PGA  
Top View(5)  
76  
77  
78  
28  
29  
30  
I/O1R  
V
DD  
I/O2R  
A
0R  
INT  
R
BUSY  
R
79  
80  
26  
27  
I/O3R  
A2R  
I/O4R  
A
1R  
3R  
81  
83  
7
8
11  
12  
23  
25  
VSS  
SEMR  
A
5R  
I/O5R  
VSS  
I/O7R  
I/O9R  
A
82  
1
2
5
10  
14  
17  
20  
22  
24  
I/O6R  
I/O10R I/O13R I/O15R R/W  
R
A11R  
A
8R  
A
6R  
9R  
A
4R  
7R  
UB  
R
84  
3
4
6
9
15  
13  
16  
18  
19  
21  
(1)  
I/O8R  
I/O11R I/O12R I/O14R  
A12R  
A10R  
A
A
OER  
LBR  
CER  
A
B
C
D
E
F
G
H
J
K
L
5624 drw 04  
Index  
NOTES:  
1. A12 is a NC for IDT70V24.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground supply.  
4. G84-3 package body is approximately 1.12 in x 1.12 in x .16 in.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part marking.  
6.442  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfigurations(1,2,3,4)(con't)  
06/08/04  
INDEX  
11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75  
I/O8L  
I/O9L  
A
A
A
A
A
A
A
A
7L  
6L  
5L  
4L  
3L  
2L  
1L  
0L  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
I/O10L  
I/O11L  
I/O12L  
I/O13L  
V
SS  
I/O14L  
I/O15L  
IDT70V25/24J  
J84-1(4)  
INT  
L
BUSY  
L
V
DD  
SS  
84-Pin PLCC  
Top View(5)  
V
SS  
V
I/O0R  
I/O1R  
I/O2R  
M/S  
BUSY  
R
INT  
R
V
DD  
A
A
A
A
A
A
A
0R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
I/O7R  
I/O8R  
1R  
2R  
3R  
4R  
5R  
6R  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
,
5624 drw 05  
NOTES:  
1. A12 is a NC for IDT70V24.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground.  
4. J84-1 package body is approximately 1.15 in x 1.15 in x .17 in.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part marking.  
6.42  
5
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
Names  
Chip Enable  
CE  
R/W  
OE  
L
CE  
R
L
R/W  
R
Read/Write Enable  
Output Enable  
L
OE  
R
(1)  
(1)  
A
0L - A12L  
I/O0L - I/O17L  
SEM  
UB  
LB  
INT  
BUSY  
A
0R - A12R  
Address  
(2)  
(2)  
I/O0R - I/O17R  
Data Input/Output  
Semaphore Enable  
L
SEM  
UB  
LB  
INT  
BUSY  
M/S  
R
(3)  
Upper Byte Select  
L
R
NOTES:  
(4)  
Lower Byte Select  
L
R
1. A12 is a NC for IDT70V34 and for IDT70V24.  
2. I/O0x - I/O15x for IDT70V25/24.  
3. Upper Byte Select controls pins 9-17 for IDT70V35/34 and controls pins 8-15  
for IDT70V25/24.  
4. Lower Byte Select controls pins 0-8 for IDT70V35/34 and controls pins 0-7  
for IDT70V25/24.  
Interrupt Flag  
L
R
Busy Flag  
L
R
Master or Slave Select  
Power (3.3V)  
V
DD  
VSS  
Ground (0V)  
5624 tbl 01  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
(3)  
(2)  
R/W  
X
X
L
I/O9-17  
I/O0-8  
Mode  
CE  
H
X
L
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
High-Z  
High-Z  
DATAIN  
High-Z  
DATAIN  
High-Z  
High-Z  
Deselected: Power Down  
Both Bytes Deselected  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
H
H
High-Z  
L
L
H
L
H
DATAIN  
DATAIN  
High-Z  
L
L
L
H
L
H
H
H
X
L
H
L
H
DATAOUT  
High-Z  
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
L
L
H
L
H
DATAOUT  
DATAOUT  
High-Z  
L
L
L
H
DATAOUT  
High-Z  
X
H
X
X
X
Outputs Disabled  
5624 tbl 02  
NOTES:  
1. A0L-A12L A0R-A12R for IDT70V35/34 and A0L-A11L A0R-A11R for IDT70V25/24.  
2. Outputs for IDT70V25/24 are I/O0x-I/O7x.  
3. Outputs for IDT70V25/24 are I/O8x-I/O15x.  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
(1)  
(1)  
R/W  
H
H
I/O9-17  
I/O0-8  
Mode  
Read Data in Semaphore Flag  
Read Data in Semaphore Flag  
CE  
H
X
H
X
L
OE  
L
UB  
X
H
X
H
L
LB  
X
H
X
H
X
L
SEM  
L
DATAOUT  
DATAOUT  
DATAIN  
DATAOUT  
DATAOUT  
DATAIN  
L
L
X
X
X
X
L
Write I/O into Semaphore Flag  
0
L
DATAIN  
DATAIN  
Write I/O0 into Semaphore Flag  
____  
____  
X
X
L
Not Allowed  
Not Allowed  
____  
____  
L
X
L
5624 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all of the I/O's (I/O0-I/O17 for IDT70V35/34) and (I/O0-I/O15 for IDT70V25/24). These eight semaphores  
are addressed by A0-A2.  
6.462  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AbsoluteMaximumRatings(1)  
MaximumOperatingTemperature  
andSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
Grade  
Ambient  
Temperature  
GND  
VDD  
(2)  
V
TERM  
Te rminal Vo ltag e  
with Respect  
to GND  
-0.5 to +4.6  
V
Commercial  
0OC to +70OC  
0V  
0V  
3.3V  
3.3V  
+
0.3V  
T
BIAS  
Te mp e rature  
Under Bias  
-55 to +125  
-65 to +150  
oC  
oC  
Industrial  
-40OC to +85OC  
+
0.3V  
5624 tbl 05  
NOTE:  
Storage  
Te mp e rature  
TSTG  
1. This is the parameter TA. This is the "instant on" case temperature.  
T
JN  
Junction Temperature  
+150  
50  
oC  
DC Output  
Current  
mA  
IOUT  
5624 tbl 04  
NOTES:  
RecommendedDCOperating  
Conditions  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS  
may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
Symbol  
Parameter  
Supply Voltage  
Ground  
Min.  
3.0  
Typ.  
Max.  
3.6  
0
Unit  
V
V
DD  
SS  
IH  
IL  
3.3  
V
0
0
V
2. VTERM must not exceed VDD + 0.3V for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > VDD + 0.3V.  
____  
V
Input High Voltage  
Input Low Voltage  
2.0  
V
DD+0.3(2)  
V
____  
V
-0.3(1)  
0.8  
V
Capacitance(1) (TA = +25°C, f = 1.0MHz)  
5624 tbl 06  
NOTES:  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions  
IN = 0V  
OUT = 0V  
Max. Unit  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed VDD + 0.3V.  
CIN  
V
9
pF  
(2)  
C
OUT  
V
10  
pF  
5624 tbl 07  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested.  
2. COUT also references CI/O.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 3.3V ꢀ.3Vꢁ  
70V35/34/25/24S  
70V35/34/25/24L  
Symbol  
|ILI  
|ILO  
Parameter  
Test Conditions  
Min.  
Max.  
10  
Min.  
Max.  
5
Unit  
µA  
µA  
V
(1)  
___  
___  
|
Input Leakage Current  
V
DD = 3.6V, VIN = 0V to VDD  
___  
___  
___  
___  
|
Output Leakage Currentt(1)  
Output Low Voltage  
10  
5
CE = VIH, VOUT = 0V to VDD  
VOL  
IOL = +4mA  
0.4  
0.4  
___  
___  
VOH  
Output High Voltage  
IOH = -4mA  
2.4  
2.4  
V
5624 tbl 08  
NOTE:  
1. At VDD < 2.0V leakages are undefined.  
6.42  
7
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range for 70V35/34(1) (VDD = 3.3V ꢀ.3Vꢁ  
70V35/34X15  
Com'l Only  
70V35/34X20  
Com'l  
70V35/34X25  
Com'l Only  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
IDD  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
150  
140  
215  
185  
140  
130  
200  
175  
130  
125  
190  
165  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
IND  
S
L
140  
130  
225  
195  
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
25  
20  
35  
30  
20  
15  
30  
25  
16  
13  
30  
25  
mA  
mA  
mA  
mA  
CE  
SEM  
f = fMAX  
R
and CE  
L
= VIH  
R
= SEML = VIH  
(3)  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
20  
15  
45  
40  
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
85  
80  
120  
110  
80  
75  
110  
100  
75  
72  
110  
95  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
80  
75  
130  
115  
SEM  
R
= SEML = VIH  
ISB3  
Full Standby Current  
(Both Ports -  
CMOS Level Inputs)  
Both Ports CE  
CE > VDD - 0.2V,  
IN > VDD - 0.2V or  
L
and  
COM'L  
S
L
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
R
V
SEINM  
V
____  
____  
____  
____  
____  
____  
____  
____  
< 0.2V, f = 0(4)  
MIL &  
IND  
S
L
1.0  
0.2  
15  
5
R
= SEML > VDD - 0.2V  
ISB4  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
COM'L  
S
L
85  
80  
125  
105  
80  
75  
115  
100  
75  
70  
105  
90  
CE < 0.2V and  
CE"BA"" > VDD - 0.2V  
(5)  
SEM  
R
= SEML > VDD - 0.2V  
____  
____  
____  
____  
MIL &  
IND  
S
L
80  
75  
130  
115  
V
IN > VDD - 0.2V or VIN < 0.2V  
____  
____  
____  
____  
Active Port Outputs Disabled,  
(3)  
f = fMAX  
5624 tbl 09  
NOTES:  
1. 'X' in part number indicates power rating (S or L)  
2. VDD = 3.3V, TA = +25°C, and are not production tested. IDD DC = 115mA (typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using AC Test Conditions” of input  
levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
AC Test Conditions  
3.3V  
3.3V  
Input Pulse Levels  
GND to 3.0V  
3ns Max.  
1.5V  
590Ω  
590Ω  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
DATAOUT  
BUSY  
INT  
DATAOUT  
1.5V  
5pF*  
435Ω  
30pF  
435Ω  
Figures 1 and 2  
,
5624 tbl 10  
5624 drw 06  
Figure 1. AC Output Test Load  
Figure 2. Output Test  
Load  
(For tLZ, tHZ, tWZ, tOW)  
*Including scope and jig.  
Timing of Power-Up Power-Down  
CE  
tPU  
tPD  
I
CC  
SB  
50%  
50%  
I
,
5624 drw 07  
6.482  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating Temperature  
and Supply Voltage Range for 70V25/24(1) (VDD = 3.3V ꢀ.3Vꢁ  
70V25/24X15  
Com'l Only  
70V25/24X20  
Com'l  
70V25/24X25  
Com'l  
& Ind  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
IDD  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
150  
140  
215  
185  
140  
130  
200  
175  
130  
125  
190  
165  
mA  
CE = VIL, Outputs Open  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
IND  
S
L
140  
130  
225  
195  
125  
180  
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
25  
20  
35  
30  
20  
15  
30  
25  
16  
13  
30  
25  
mA  
mA  
mA  
mA  
CE  
SEM  
f = fMAX  
R
and CE  
L
= VIH  
R
= SEM  
L = VIH  
(3)  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
20  
15  
45  
40  
13  
40  
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
85  
80  
120  
110  
80  
75  
110  
100  
75  
72  
110  
95  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Open,  
(3)  
f=fMAX  
SEM  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
80  
75  
130  
115  
R
= SEML = VIH  
72  
110  
ISB3  
Full Standby Current  
(Both Ports -  
CMOS Level Inputs)  
Both Ports CE  
CE > VDD - 0.2V,  
IN > VDD - 0.2V or  
L
and  
COM'L  
S
L
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
R
V
(4)  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
1.0  
0.2  
15  
5
VIN < 0.2V, f = 0  
0.2  
5
SEM = SEM > VDD - 0.2V  
R
L
ISB4  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
COM'L  
S
L
85  
80  
125  
105  
80  
75  
115  
100  
75  
70  
105  
90  
CE"A" < 0.2V and  
(5)  
CE"B" > VDD - 0.2V  
SEM = SEM > VDD - 0.2V  
IN > VDD - 0.2V or VIN < 0.2V  
R
L
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
80  
75  
130  
115  
V
70  
105  
Active Port Outputs Open,  
(3)  
f = fMAX  
5624 tbl 09a  
70V25/24X35  
Com'l  
70V25/24X55  
Com'l  
& Ind  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
IDD  
Dynamic Operating  
Current  
(Both Ports Active)  
COM'L  
S
L
120  
115  
180  
155  
120  
115  
180  
155  
mA  
CE = VIL, Outputs Open  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
IND  
S
L
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
13  
11  
25  
20  
13  
11  
25  
20  
mA  
mA  
mA  
mA  
CE  
SEM  
f = fMAX  
R
and CE  
L
= VIH  
R
= SEML = VIH  
(3)  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
70  
65  
100  
90  
70  
65  
100  
90  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Open,  
(3)  
f=fMAX  
SEM  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
R
= SEML = VIH  
ISB3  
Full Standby Current  
(Both Ports -  
CMOS Level Inputs)  
Both Ports CE  
CE > VDD - 0.2V,  
IN > VDD - 0.2V or  
L
and  
COM'L  
S
L
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
R
V
V
SEINM  
____  
____  
____  
____  
____  
____  
____  
____  
< 0.2V, f = 0(4)  
MIL &  
IND  
S
L
R
= SEML > VDD - 0.2V  
ISB4  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
COM'L  
S
L
65  
60  
100  
85  
65  
60  
100  
85  
CE"A" < 0.2V and  
(5)  
CE"B" > VDD- 0.2V  
SEM = SEM > VDD - 0.2V  
IN > VDD - 0.2V or VIN < 0.2V  
R
L
MIL &  
IND  
S
L
V
____  
____  
____  
____  
____  
____  
____  
____  
Active Port Outputs Open,  
(3)  
f = fMAX  
5624 tbl 09b  
NOTES:  
1. 'X' in part number indicates power rating (S or L)  
2. VDD = 3.3V, TA = +25°C, and are not production tested. IDD DC = 115mA (typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using AC Test Conditions” of input  
levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6.42  
9
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating  
TemperatureandSupplyVoltageRangefor70V35/34(4)  
70V35/34X15  
Com'l Only  
70V35/34X20  
Com'l  
70V35/34X25  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
20  
25  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
15  
15  
15  
20  
20  
20  
25  
25  
25  
____  
____  
____  
____  
____  
____  
____  
____  
____  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output Enable Access Time(3)  
t
10  
12  
13  
____  
____  
____  
t
Output Hold from Address Change  
3
3
3
____  
____  
____  
Output Low-Z Time(1,2)  
t
3
3
3
____  
____  
____  
Output High-Z Time(1,2)  
t
10  
12  
15  
____  
____  
____  
Chip Enable to Power Up Time(1,2)  
t
0
0
0
____  
____  
____  
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access(3)  
t
15  
20  
25  
____  
____  
____  
t
10  
10  
10  
____  
____  
____  
t
15  
20  
25  
ns  
5624 tbl 11  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL.  
4. 'X' in part number indicates power rating (S or L).  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE  
OE  
(4)  
tAOE  
(4)  
t
ABE  
UB, LB  
R/W  
(1)  
tOH  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
tHZ  
BUSYOUT  
(3,4)  
5624 drw 08  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE, CE, LB, or UB.  
2. Timing depends on which signal is de-asserted first, CE, OE, LB, or UB.  
3. tBDD delay is required only in case where opposite port is completing a write operation to the same address location for simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tABE, tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6.1402  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating  
TemperatureandSupplyVoltageRangefor70V25/24(4)  
70V25/24X15  
Com'l Only  
70V25/24X20  
70V25/24X25  
Com'l  
Com'l  
& Ind  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
20  
25  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
15  
15  
15  
20  
20  
20  
25  
25  
25  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output Enable Access Time(3)  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
t
10  
12  
13  
____  
____  
____  
t
3
3
3
____  
____  
____  
t
3
3
3
____  
____  
____  
Output High-Z Time(1,2)  
t
10  
12  
15  
____  
____  
____  
Chip Enable to Power Up Time(1,2)  
t
0
0
0
____  
____  
____  
Chip Disable to Power Down Time(1,2)  
t
15  
20  
25  
____  
____  
____  
t
Semaphore Flag Update Pulse (OE or SEM)  
10  
10  
10  
____  
____  
____  
Semaphore Address Access(3)  
t
15  
20  
25  
ns  
5624 tbl 11a  
70V25/24X35  
Com'l Only  
70V25/24X55  
Com'l Only  
Symbol  
READ CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
35  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
t
Address Access Time  
35  
35  
35  
55  
55  
55  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time(3)  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
t
t
t
20  
30  
____  
____  
t
3
3
____  
____  
t
3
3
Output High-Z Time(1,2)  
15  
25  
____  
____  
t
t
Chip Enable to Power Up Time(1,2)  
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access(3)  
0
0
____  
____  
____  
____  
t
35  
50  
____  
____  
t
15  
15  
____  
____  
t
35  
55  
ns  
5624 tbl 11b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL.  
4. 'X' in part number indicates power rating (S or L).  
6.42  
11  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage for 70V35/34(5)  
70V35/34X15  
Com'l Only  
70V35/34X20  
Com'l  
70V35/34X25  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
15  
0
20  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
10  
15  
15  
____  
____  
____  
t
10  
12  
15  
____  
____  
____  
t
0
0
0
(1,2)  
____  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
12  
15  
____  
____  
____  
t
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
5624 tbl 12  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access SRAM, CE = VIL, UB or LB = VIL, SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL. Either condition must be valid for  
the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the SRAM under all operating conditions. Although tDH and tOW values will vary over  
voltage and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part number indicates power rating (S or L).  
6.1422  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage for 70V25/24(5)  
70V25/24X15  
Com'l Only  
70V25/24X20  
Com'l  
70V25/24X25  
Com'l  
& Ind  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
15  
0
20  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
10  
15  
15  
____  
____  
____  
t
10  
12  
15  
____  
____  
____  
t
0
0
0
(1,2)  
____  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
12  
15  
____  
____  
____  
t
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
5624 tbl 12a  
70V25/24X35  
Com'l Only  
70V25/24X55  
Com'l Only  
Symbol  
WRITE CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
25  
0
40  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
15  
30  
____  
____  
t
15  
25  
____  
____  
t
0
0
(1,2)  
____  
____  
t
Write Enable to Output in High-Z  
15  
25  
t
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
5624 tbl 12b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access SRAM, CE = VIL, UB or LB = VIL, SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL. Either condition must be valid for  
the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the SRAM under all operating conditions. Although tDH and tOW values will vary over  
voltage and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part number indicates power rating (S or L).  
6.42  
13  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM (9)  
CE or SEM (9)  
R/W  
(3)  
WR  
(2)  
(6)  
t
tAS  
tWP  
(7)  
tWZ  
tOW  
(4)  
(4)  
DATAOUT  
DATAIN  
tDW  
tDH  
5624 drw 09  
Timing Waveform of Write Cycle No. 2, CE, UB, LB Controlled Timing(1,5)  
t
WC  
ADDRESS  
CE or SEM(9)  
UB or LB(9)  
t
AW  
(3)  
(6)  
(2)  
t
WR  
t
EW  
tAS  
R/W  
t
DW  
tDH  
DATAIN  
5624 drw 10  
NOTES:  
1. R/W or CE or UB & LB must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW UB or LB and a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end-of-write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition the outputs remain in the HIGH-impedance state.  
6. Timing depends on which enable signal is asserted last, CE, R/W, or UB or LB.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with Output Test Load  
(Figure 2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as  
the specified tWP.  
9. To access SRAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access Semaphore, CE = VIH or UB and LB = VIH, and SEM = VIL. tEW must be met for either condition.  
6.1442  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tOH  
tSAA  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
t
WR  
tACE  
tAW  
t
EW  
SEM  
t
SOP  
t
DW  
DATAOUT  
VALID(2)  
DATAIN  
VALID  
I/O0  
t
AS  
tWP  
tDH  
R/W  
t
AOE  
t
SWRD  
OE  
Write Cycle  
Read Cycle  
5624 drw 11  
NOTES:  
1. CE = VIH or UB & LB = VIH for the duration of the above timing (both write and read cycle).  
2. DATAOUT VALID” represents all I/O's (I/O0-I/O17 for IDT70V35/34) and (I/O0-I/O15 for IDT70V25/24) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2)  
"A"  
R/W"A"  
SEM"A"  
t
SPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
5624 drw 12  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH, or both UB & LB = VIH.  
2. All timing is the same for left and right port. Port A” may be either left or right port. Port B” is the opposite from port A”.  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will obtain the semaphore flag.  
6.42  
15  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating  
TemperatureandSupplyVoltageRangefor70V35/34(6)  
70V35/34X15  
Com'l Ony  
70V35/34X20  
Com'l  
& Ind  
70V35/34X25  
Com'l Only  
Symbol  
BUSY TIMING (M/S = VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Dis able Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
t
t
t
15  
17  
17  
____  
____  
____  
t
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
t
18  
30  
30  
(5)  
____  
____  
____  
t
Write Hold After BUSY  
12  
15  
17  
BUSY TIMING (M/S = VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
t
WB  
0
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
12  
15  
17  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
30  
25  
45  
35  
50  
35  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
5624 tbl 13  
NOTES:  
1. Port-to-port delay through SRAM cells from writing port to reading port, refer to "TIMING WAVEFORM OF WRITE PORT-TO-PORT READ AND  
BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited during contention.  
5. To ensure that a write cycle is completed after contention.  
6. 'X' in part number indicates power rating (S or L).  
Timing Waveform of Write Port-to-Port Read and BUSY(2,4,5) (M/S = VIH)  
tWC  
ADDR"A"  
MATCH  
t
WP  
R/W"A"  
tDH  
tDW  
DATAIN "A"  
VALID  
(1)  
tAPS  
ADDR"B"  
MATCH  
t
BAA  
t
BDA  
tBDD  
BUSY"B"  
t
WDD  
DATAOUT "B"  
VALID  
(3)  
t
DDD  
NOTES:  
5624 drw 13  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (slave).  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSYA” = VIH and BUSYB” input is shown above.  
5. All timing is the same for both left and right ports. Port A” may be either the left or right port. Port B ” is the port opposite from port A”.  
6.1462  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating  
TemperatureandSupply VoltageRangefor70V25/24(6)  
70V25/24X15  
Com'l Ony  
70V25/24X20  
70V25/24X25  
Com'l  
Com'l  
& Ind  
& Ind  
Symbol  
BUSY TIMING (M/S = VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
t
t
t
15  
17  
17  
____  
____  
____  
t
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
t
18  
30  
30  
t
Write Hold After BUSY(5)  
12  
15  
17  
____  
____  
____  
BUSY TIMING (M/S = VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
0
ns  
ns  
tWH  
12  
15  
17  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
30  
25  
45  
35  
50  
35  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
5624 tbl 13a  
70V25/24X35  
Com'l Only  
70V25/24X55  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S = VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
20  
20  
20  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
t
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
t
t
20  
35  
____  
____  
t
5
5
____  
____  
BUSY Disable to Valid Data(3)  
t
35  
40  
t
Write Hold After BUSY(5)  
25  
25  
____  
____  
BUSY TIMING (M/S = VIL  
)
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
ns  
ns  
tWH  
25  
25  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
60  
45  
80  
65  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
5624 tbl 13b  
NOTES:  
1. Port-to-port delay through SRAM cells from writing port to reading port, refer to "TIMING WAVEFORM OF WRITE PORT-TO-PORT READ AND  
BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited during contention.  
5. To ensure that a write cycle is completed after contention.  
6. 'X' in part number indicates power rating (S or L).  
6.42  
17  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with BUSY  
t
WP  
R/W"A"  
(3)  
t
WB  
BUSY"B"  
(1)  
tWH  
(2)  
R/W"B"  
,
5624 drw 14  
NOTES:  
1. tWH must be met for both master BUSY input (slave) and output (master).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the slave version.  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
BUSY"B"  
5624 drw 15  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
NOTES:  
ADDRESS "N"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
5624 drw 16  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
6.1482  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating  
TemperatureandSupply VoltageRangefor70V35/34(1)  
70V35/34X15  
Com'l Only  
70V35/34X20  
70V35/34X25  
Com'l Only  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
t
0
0
0
____  
____  
____  
t
15  
15  
20  
20  
20  
20  
____  
____  
____  
t
Interrupt Reset Time  
ns  
5624 tbl 14  
AC Electrical Characteristics Over the Operating  
TemperatureandSupply VoltageRangefor70V25/24(1)  
70V25/24X15  
Com'l Only  
70V25/24X20  
70V25/24X25  
Com'l  
Com'l  
& Ind  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
t
0
0
0
____  
____  
____  
t
15  
15  
20  
20  
20  
20  
____  
____  
____  
t
Interrupt Reset Time  
ns  
5624 tbl 14a  
70V25/24X35  
Com'l Only  
70V25/24X55  
Com'l Only  
Symbol  
INTERRUPT TIMING  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
ns  
ns  
ns  
t
0
0
____  
____  
t
25  
25  
40  
40  
____  
____  
t
Interrupt Reset Time  
ns  
5624 tbl 14b  
NOTES:  
1. 'X' in part number indicates power rating (S or L).  
6.42  
19  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
tWC  
ADDR"A"  
CE"A"  
INTERRUPT SET ADDRESS (2)  
(3)  
AS  
(4)  
t
tWR  
R/W"A"  
INT"B"  
(3)  
tINS  
5624 drw 17  
tRC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
tINR  
INT"B"  
5624 drw 18  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from A”.  
2. See Interrupt Flag Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
6.2402  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table III — Interrupt Flag(1)  
Left Port  
(4)  
Right Port  
(4)  
12R-A0R  
R/W  
L
A12L-A0L  
R/W  
R
A
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CE  
L
OEL  
INT  
L
CE  
R
OER  
INTR  
(2)  
L
L
X
X
L
X
X
X
L
1FFF(4)  
X
X
X
X
L
L
X
X
L
X
L
R
(3)  
X
X
X
1FFF(4)  
1FFE(4)  
X
H
R
(3)  
X
X
L
L
X
X
X
X
L
(2)  
X
1FFE(4)  
H
X
L
5624 tbl 15  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. A12 is a NC for IDT70V34 and for IDT70V24, therefore Interrupt Addresses are FFF and FFE.  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
(4)  
A
12L-A0L  
(1)  
(1)  
A
12R-A0R  
Function  
Normal  
Normal  
Normal  
CE  
L
CE  
R
BUSY  
L
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
H
MATCH  
H
(3)  
MATCH  
Note(2)  
Note(2)  
Write Inhibit  
5624 tbl 16  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the  
IDT70V35/34 (IDT70V25/24) are push pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. L if the inputs to the opposite port were stable prior to the address and enable inputs of this port. VIH if the inputs to the opposite port became stable after the  
address and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally  
ignored when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. A12 is a NC for IDT70V34 and for IDT70V24. Address comparison will be for A0 - A11.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D17 Left(2)  
D0  
- D17 Right(2)  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
5624 tbl 17  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V35/34 (IDT70V25/24).  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O17 for IDT70V35/34) and (I/O0-I/O15 for IDT70V25/24). These eight semaphores  
are addressed by A0-A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Tables.  
6.42  
21  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
CE  
SLAVE  
Dual Port  
SRAM  
CE  
MASTER  
Dual Port  
SRAM  
BUSY  
R
BUSY  
R
BUSY  
L
BUSY  
L
MASTER  
Dual Port  
SRAM  
SLAVE  
Dual Port  
SRAM  
CE  
CE  
BUSY  
R
BUSY  
R
BUSYR  
BUSY  
L
BUSYL  
BUSY  
L
5624 drw 19  
Figure 3. Busy and chip enable routing for both width and depth expansion with IDT70V35/34 (IDT70V25/24) SRAMs.  
FunctionalDescription  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
The BUSY outputs on the IDT70V35/34 (IDT70V25/24) SRAM in  
master mode, are push-pull type outputs and do not require pull up  
resistorstooperate.IftheseSRAMsarebeingexpandedindepth,then  
theBUSYindicationfortheresultingarrayrequirestheuseofanexternal  
ANDgate.  
TheIDT70V35/34(IDT70V25/24)providestwoportswithseparate  
control,addressandI/Opinsthatpermitindependentaccessforreadsor  
writestoanylocationinmemory.TheIDT70V35/34(IDT70V25/24)has  
anautomaticpowerdownfeaturecontrolledbyCE.TheCEcontrolson-  
chip power down circuitry that permits the respective port to go into a  
standby mode when not selected (CE HIGH). When a port is enabled,  
accesstotheentirememoryarrayispermitted.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)is assignedtoeachport. Theleftportinterruptflag  
(INTL) is asserted when the right port writes to memory location 1FFE  
(HEX)(FFEforIDT70V34andIDT70V24), where a write is definedas  
theCER=R/WR=VIL perTruthTableIII.Theleftportclearstheinterrupt  
Width Expansion with Busy Logic  
Master/SlaveArrays  
When expanding an IDT70V35/34 (IDT70V25/24) SRAM array in  
ontheIDT70V35andIDT70V25byanaddress location1FFE(FFEfor widthwhileusingBUSYlogic,onemasterpartisusedtodecidewhichside  
IDT70V34andIDT70V24)accesswhenCEL=OEL=VIL,R/WLisa"don't of the SRAM array will receive a BUSY indication, and to output that  
care".Likewise,therightportinterruptflag(INTR)issetwhentheleftport indication. Anynumberofslaves tobe addressedinthe same address  
writestomemorylocation1FFFforIDT70V35andIDT70V25(HEX)(FFF rangeasthemaster,usetheBUSYsignalasawriteinhibitsignal.Thus  
forIDT70V34andIDT70V24)andtoclearthe interruptflag(INTR), the ontheIDT70V35/34(IDT70V25/24)SRAMtheBUSYpinisanoutputif  
right port must read the memory location 1FFF for IDT70V35 and thepartisusedasamaster(M/Spin=VIH),andtheBUSYpinisaninput  
IDT70V25(FFFforIDT70V34andIDT70V24). The message (16bits) if the part used as a slave (M/S pin = VIL) as shown in Figure 3.  
at 1FFE or 1FFF for IDT70V35 and IDT70V25 (FFE or FFF for  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
IDT70V34 and IDT70V24) is user-defined, since it is an addressable decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
SRAMlocation.Iftheinterruptfunctionisnotused,addresslocations1FFE arrayandanothermasterindicatingBUSYononeothersideofthearray.  
and1FFFforIDT70V35andIDT70V25(FFEandFFFforIDT70V34and Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
IDT70V24)arenotusedasmailboxes,butaspartoftherandomaccess inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
memory.RefertoTruthTableIIIfortheinterruptoperation.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. Itignores whetheranaccess is a readorwrite. In  
a master/slave array, bothaddress andchipenable mustbe validlong  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwitheithertheR/Wsignalorthebyteenables.Failure  
toobservethistimingcanresultinaglitchedinternalwriteinhibitsignaland  
corrupteddataintheslave.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheSRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheSRAMisbusy.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
Semaphores  
The IDT70V35/34(IDT70V25/24)is anextremelyfastDual-Port8/  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications. 4K x 18 (8/4K x 16) CMOS Static RAM with an additional 8 address  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether locationsdedicatedtobinarysemaphoreflags.Theseflagsalloweither  
anduse anyBUSYindicationas aninterruptsource toflagthe eventof processorontheleftorrightsideoftheDual-PortSRAMtoclaimaprivilege  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis overtheotherprocessorforfunctionsdefinedbythesystemdesigners  
6.2422  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
a chip select for the semaphore flags) and using the other control pins  
(Address,OE,andR/W)astheywouldbeusedinaccessingastandard  
staticRAM.Eachoftheflagshasauniqueaddresswhichcanbeaccessed  
by either side through address pins A0 A2. When accessing the  
semaphores,noneoftheotheraddresspinshasanyeffect.  
software.Asanexample,thesemaphorecanbeusedbyoneprocessor  
toinhibittheotherfromaccessingaportionoftheDual-PortSRAMorany  
other shared resource.  
TheDual-PortSRAMfeaturesafastaccesstime,andbothportsare  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnowayslows theaccess timeoftherightport.Bothports are  
identicalinfunctiontostandardCMOSStaticRAMandcanbeaccessed  
atthesametimewiththeonlypossibleconflictarisingfromthesimultaneous  
writingof,orasimultaneousREAD/WRITEof,anon-semaphorelocation.  
Semaphoresareprotectedagainstsuchambiguoussituationsandmay  
be used by the system program to avoid any conflicts in the non-  
semaphore portion of the Dual-Port SRAM. These devices have an  
automatic power-down feature controlled byCE, the Dual-Port SRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chippowerdowncircuitrythatpermits the respective porttogointo  
standbymodewhennotselected.Thisistheconditionwhichisshownin  
Truth Table I where CE and SEM are both HIGH.  
SystemswhichcanbestusetheIDT70V35/34(IDT70V25/24)contain  
multiple processors or controllers and are typically very high-speed  
systems which are software controlled or software intensive. These  
systemscanbenefit fromaperformanceincreaseofferedbytheIDT70V35/  
34 (IDT70V25/24)'s hardware semaphores, which provide a lockout  
mechanismwithoutrequiringcomplexprogramming.  
Softwarehandshakingbetweenprocessors offers themaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT70V35/34(IDT70V25/24)doesnotuseitssema-  
phoreflagstocontrolanyresourcesthroughhardware,thusallowingthe  
systemdesignertotalflexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
on that side and a one on the other side (see Truth Table V). That  
semaphorecannowonlybemodifiedbythesideshowingthezero.When  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
ispending)andthencanbewrittentobybothsides.Thefactthattheside  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
freedbythefirstside.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintoonesidesoutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableV).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attempts towriteazerotothesamesemaphoreflagitwillfail,as willbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
gap between the read and write cycles.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation.The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Shouldtheothersidessemaphorerequestlatch  
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
overtotheothersideassoonasaoneiswrittenintothefirstsidesrequest  
latch.Thesecond sidesflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requestedandthe processorwhichrequesteditnolongerneeds the  
resource,theentiresystemcanhangupuntilaoneis writtenintothat  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortSRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.”Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst,hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
thatsemaphoresstatusorremoveitsrequestforthatsemaphoretoperform  
anothertaskandoccasionallyattemptagaintogaincontrolofthetokenvia  
thesetandtestsequence.Oncetherightsidehasrelinquishedthetoken,  
theleftsideshouldsucceedingainingcontrol.  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites  
aonetothatlatch.  
TheeightsemaphoreflagsresidewithintheIDT70V35/34(IDT70V25/  
24)inaseparatememoryspacefromtheDual-PortSRAM.Thisaddress  
spaceisaccessedbyplacingaLOWinputontheSEMpin(whichactsas  
6.42  
23  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
semaphorerequestlatch.Thecriticalcaseofsemaphoretimingiswhen control,itwouldlockouttheleftside.  
bothsidesrequestasingletokenbyattemptingtowriteazerointoitatthe  
Once the left side was finished with its task, it would write a one to  
same time. The semaphore logic is specially designed to resolve this Semaphore 0 and may then try to gain access to Semaphore 1. If  
problem.Ifsimultaneousrequestsaremade,thelogicguaranteesthatonly Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
onesidereceivesthetoken.Ifonesideisearlierthantheotherinmaking itssemaphorerequestandperformothertasksuntilitwasabletowrite,then  
therequest,thefirstsidetomaketherequestwillreceivethetoken.Ifboth readazerointoSemaphore1.Iftherightprocessorperformsasimilartask  
requestsarriveatthesametime,theassignmentwillbearbitrarilymade withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap  
to one port or the other.  
4Kblocks ofDual-PortSRAMwitheachother.  
One caution that should be noted when using semaphores is that  
The blocks do not have to be any particular size and can even be  
semaphoresalonedonotguaranteethataccesstoaresourceissecure. variable, depending upon the complexity of the software using the  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual-  
ormisinterpreted, a software errorcaneasilyhappen.  
PortSRAMorothersharedresourcesintoeightparts.Semaphorescan  
Initializationofthesemaphoresisnotautomaticandmustbehandled evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest given a common meaning as was shown in the example above.  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth Semaphores are a useful form of arbitration in systems like disk  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring  
to assure that they will be free when needed.  
atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse  
ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea  
wasoff-limitstotheCPU,boththeCPUandtheI/Odevicescouldaccess  
theirassignedportionsofmemorycontinuouslywithoutanywaitstates.  
SemaphoresarealsousefulinapplicationswherenomemoryWAIT”  
stateisavailableononeorbothsides.Onceasemaphorehandshakehas  
been performed, both processors can access their assigned RAM  
segmentsatfullspeed.  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
mayberesponsibleforbuildingandupdatingadatastructure.Theother  
processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
processorreadsanincompletedatastructure,amajorerrorconditionmay  
exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
is completed, the data structure block is released. This allows the  
interpretingprocessortocomebackandreadthecompletedatastructure,  
therebyguaranteeingaconsistentdatastructure.  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
resource markers for the IDT70V35/34 (IDT70V25/24)s Dual-Port  
SRAM.Saythe8Kx18SRAMwastobedividedintotwo4Kx18blocks  
whichweretobededicatedatanyonetimetoservicingeithertheleftor  
rightport.Semaphore0couldbeusedtoindicatethesidewhichwould  
controlthelowersectionofmemory,andSemaphore1couldbedefined  
astheindicatorfortheuppersectionofmemory.  
Totakearesource,inthisexamplethelower4KofDual-PortSRAM,  
the processor on the left port could write and then read a zero in to  
Semaphore0.Ifthistaskweresuccessfullycompleted(azerowasread  
backratherthana one), the leftprocessorwouldassume controlofthe  
lower4K.Meanwhiletherightprocessorwasattemptingtogaincontrolof  
the resourceaftertheleftprocessor,itwouldreadbackaoneinresponse  
tothezeroithadattemptedtowriteintoSemaphore0.Atthis point,the  
softwarecouldchoosetotryandgaincontrolofthesecond4Ksectionby  
writing,thenreadingazerointoSemaphore1.Ifitsucceededingaining  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
5624 drw 20  
Figure 4. IDT70V35/34 (IDT70V25/24) Semaphore Logic  
6.2442  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
OrderingInformation(1)  
Industrial and Commercial Temperature Ranges  
A
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power Speed Package  
Process/  
Temperature  
Range  
Step  
Blank Commercial (0°C to +70°C)  
I(1)  
Industrial (-40°C to +85°C)  
PF  
G
J
100-pin TQFP (PN100-1) 70V35/34/25/24  
84-Pin PGA (G84-3)  
70V25/24  
70V25/24  
84-Pin PLCC (J84-1)  
,
15  
20  
25  
25  
35  
55  
Commercial Only - 70V35/34/25/24  
Commercial & Industrial - 70V35/34/25/24  
Commercial Only - 70V35/34  
,
Speed in Nanoseconds  
Commercial & Industrial - 70V25/24  
Commercial Only - 70V25/24  
Commercial Only - 70V25/24  
S
L
Standard Power  
Low Power  
Blank  
T
No stepping designation  
Current Stepping  
144K (8K x 18-Bit) 3.3V Dual-Port RAM  
72K (4K x 18-Bit) 3.3V Dual-Port RAM  
128K (8K x 16-Bit) 3.3V Dual-Port RAM  
64K (4K x 16-Bit) 3.3V Dual-Port RAM  
70V35  
70V34  
70V25  
70V24  
5624 drw 21a  
NOTES:  
1. Contact your local sales office for Industrial temp range for other speeds, packages and powers.  
DatasheetDocumentHistory  
06/08/00:  
08/09/01:  
InitialPublicOffering  
Page 1 Corrected I/O numbering  
Page 5-7, 10&12 RemovedIndustrialtemperature range offeringfor25ns fromDC&ACElectricalCharacteristics  
Page17 RemovedIndustrialtemperaturerangeofferingfor25nsspeedfromtheorderinginformation  
AddedIndustrialtemperatureofferingfootnote  
07/02/02:  
06/22/04:  
Page 2 Addeddate revisionforpinconfiguration  
Added 70V34 to datasheet (4K x 18)  
Consolidated70V25/24datasheets (8/4Kx16)into70V35/34(8/4Kx18)datasheet  
RemovedPreliminarystatusfromdatasheet  
Page 2 & 3 Changed naming convention from VCC to VDD and from GND to VSS for PN100 packages  
Page7 UpdatedConditionsinCapacitancetable  
Page7 AddedJunctionTemperaturetoAbsoluteMaximumRatingstable  
Page 9, 11, 13, 17 &, 19 Added DC and AC Electrical Characteristics tables for 70V25/24 data  
Page21& 22 ChangedInterruptflagtable,footnotes andInterrupts texttoreflect70V25/24data  
Page 1 & 15 Replaced old logo with new TM logo  
10/28/04:  
Page25 Addedsteppingindicatortoorderinginformation  
CORPORATE HEADQUARTERS  
2975 Stender Way  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
25  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY