IDT723613L20PFG8 [IDT]

FIFO, 64X36, 12ns, Synchronous, CMOS, PQFP120, TQFP-120;
IDT723613L20PFG8
型号: IDT723613L20PFG8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FIFO, 64X36, 12ns, Synchronous, CMOS, PQFP120, TQFP-120

先进先出芯片
文件: 总26页 (文件大小:193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND  
IDT723613  
BYTE SWAPPING 64 x 36  
Supports clock frequencies up to 67 MHz  
Fast access times of 10 ns  
Available in 132-pin quad flatpack (PQFP) or space-saving  
120-pin thin quad flatpack (TQFP)  
FEATURES:  
Free-running CLKA and CLKB may be asynchronous or  
coincident (permits simultaneous reading and writing of data on  
a single clock edge)  
64 x 36 storage capacity FIFO buffering data from Port A to  
Port B  
Mailbox bypass registers in each direction  
Dynamic Port B bus sizing of 36 bits (long word), 18-bits (word),  
and 9 bits (byte)  
Industrial temperature range (–40°C to +85°C) is available  
DESCRIPTION:  
The IDT723613 is a monolithic, high-speed, low-power, CMOS synchro-  
nous(clocked)FIFOmemorywhichsupportsclockfrequenciesupto67MHz  
andhasread-accesstimesasfastas10ns.The64x36dual-portSRAMFIFO  
buffersdatafromportAtoportB.TheFIFOhasflagstoindicateemptyandfull  
conditions,andtwoprogrammableflags,Almost-Full(AF)andAlmost-Empty  
(AE),toindicatewhenaselectednumberofwordsisstoredinmemory.FIFO  
dataonportBcanbeoutputin36-bit,18-bit,and9-bitformatswithachoiceof  
big-orLittle-Endianconfigurations.Threemodesofbyte-orderswappingare  
possiblewithanybus-sizeselection.Communicationbetweeneachportcan  
bypass theFIFOviatwo36-bitmailboxregisters.Eachmailboxregisterhas  
a flagtosignalwhen newmailhas beenstored. Parityis checkedpassively  
Selection of Big- or Little-Endian format for word and byte bus  
sizes  
Three modes of byte-order swapping on Port B  
Programmable Almost-Full and Almost-Empty flags  
Microprocessor interface control logic  
FF, AF flags synchronized by CLKA  
EF, AE flags synchronized by CLKB  
Passive parity checking on each Port  
Parity Generation can be selected for each Port  
FUNCTIONAL BLOCK DIAGRAM  
CLKA  
CSA  
W/RA  
ENA  
Port-A  
Control  
Logic  
MBA  
MBF1  
PEFB  
Parity  
Gen/Check  
Mail 1  
Register  
RST  
PGB  
Device  
Control  
ODD/  
EVEN  
RAM ARRAY  
64 x 36  
64 x 36  
36  
36  
Read  
Pointer  
Write  
Pointer  
B0 - B35  
Status Flag  
FF  
AF  
EF  
Logic  
AE  
FIFO  
CLKB  
CSB  
W/RB  
ENB  
BE  
SIZ0  
SIZ1  
SW0  
SW1  
Programmable  
Flag Offset  
Registers  
FS  
0
1
Port-B  
FS  
Control  
A - A35  
0
Logic  
PGA  
Mail 2  
Register  
Parity  
Gen/Check  
3145 drw01  
PEFA  
MBF2  
IDTandtheIDTlogoareregisteredtrademarksofIntegratedDeviceTechnologyInc.SyncFIFOisatrademarkofIntegratedDeviceTechnology,Inc.  
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES  
MARCH 2002  
1
DSC-3145/1  
©
2002 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
DESCRIPTION(CONTINUED)  
anotherandcanbeasynchronousorcoincident.Theenablesforeachportare  
arrangedtoprovideasimpleinterfacebetweenmicroprocessorsand/orbuses  
withsynchronousinterfaces.  
The Full Flag (FF) and Almost-Full (AF) flag of the FIFO are two-stage  
synchronizedtotheportclock(CLKA)thatwritesdataintoitsarray.TheEmpty  
Flag(EF)andAlmost-Empty(AE)flagoftheFIFOaretwo-stagesynchronized  
totheportclock(CLKB)thatreads datafromits array.  
on each port and may be ignored if not desired. Parity generation can be  
selected for data read from each port. Two or more devices may be used in  
paralleltocreatewiderdatapaths.  
The IDT723613 is a synchronous (clocked) FIFO, meaning each port  
employsasynchronousinterface.Alldatatransfersthroughaportaregated  
to the LOW-to-HIGH transition of a continuous (free-running) port clock by  
enable signals. The continuous clocks foreachportare independentofone  
The IDT723613 is characterized for operation from 0°C to 70°C.  
PINCONFIGURATIONS  
A
A
A
23  
22  
21  
1
B
22  
21  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
2
B
3
GND  
GND  
4
B
B
B
B
B
B
B
B
B
B
B
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
A
A
A
A
A
A
A
A
A
A
A
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
GND  
GND  
B
9
A
A
9
8
7
B
8
B
7
A
VCC  
V
CC  
B
6
A
6
5
4
3
B
5
A
B
4
A
B
3
A
GND  
GND  
B
2
A
2
1
0
B
1
A
B
0
A
EF  
AE  
NC  
NC  
NC  
3145 drw02  
TQFP (PN120-1, ORDER CODE: PF)  
TOP VIEW  
NOTE:  
1. NC = No internal connection.  
2
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
PINCONFIGURATIONS(CONTINUED)  
GND  
NC  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
GND  
AE  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
NC  
EF  
*
A
0
B
0
A
1
B
1
A
2
B
2
GND  
GND  
A
3
B
3
A
4
B
4
A
5
B
5
A
6
CC  
B
6
V
VCC  
A
7
B
7
A
8
B
8
A
9
B
9
GND  
GND  
A
10  
11  
B
B
V
B
B
B
10  
11  
CC  
12  
13  
14  
A
V
CC  
98  
A
12  
13  
14  
97  
A
96  
A
GND  
95  
GND  
94  
A
A
A
A
A
A
15  
16  
17  
18  
19  
20  
B
B
B
B
B
B
15  
16  
17  
18  
19  
20  
93  
92  
91  
90  
89  
88  
GND  
GND  
87  
A21  
A22  
A23  
B21  
B22  
B23  
86  
85  
84  
3145 drw03  
* Electrical pin 1 in center of beveled edge. Pin 1 identifier in corner.  
PQFP(2) (PQ132-1, ORDER CODE: PQF)  
TOP VIEW  
NOTES:  
1. NC = No internal connection.  
2. Uses Yamaichi socket IC51-1324-828.  
3
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
PIN DESCRIPTION  
Symbol  
A0-A35  
AE  
Name  
I/O  
I/O  
O
Description  
Port A Data  
36-bit bidirectional data port for side A.  
Almost-Empty Flag  
Almost-Full Flag  
Programmable Almost-Empty flag synchronized to CLKB. It is LOW when Port B the number of 36-bit  
Port B words in the FIFO is less than or equal to the value in the offset register, X.  
Programmable Almost-Full flag synchronized to CLKA. It is LOW when the number of 36-bit empty location  
Port A in the FIFO is less than or equal to the value in the offset register, X.  
AF  
O
B0-B35  
Port B Data  
I/O  
I
36-bit bidirectional data port for side B  
B E  
Big-Endian Select  
Selects the bytes on port B used during byte or word FIFO reads. A LOW on BE selects the most significant  
bytes on B0-B35 for use, and a HIGH selects the least significant bytes.  
CLKA  
CLKB  
Port A Clock  
Port B Clock  
I
I
CLKA is a continuous clock that synchronizes all data transfers through port A and can be asynchronous or  
coincident to CLKB. FF and AF are synchronized to the LOW-to-HIGH transition of CLKA.  
CLKB is a continuous clock that synchronizes all data transfers through port B and can be asynchronous or  
coincident to CLKA. Port-B byte swapping and data port sizing operations are also synchronous to the  
LOW-to-HIGH transition of CLKB. EF and AE are synchronized to the LOW-to-HIGH transition of CLKB.  
CSA  
CSB  
EF  
Port A Chip Select  
Port B Chip Select  
Empty Flag  
I
I
CSA must be LOW to enable a LOW-to-HIGH transition of CLKA to read or write data on port A. The  
A0-A35 outputs are in the high-impedance state when CSA is HIGH.  
CSB must be LOW to enable a LOW-to-HIGH transition of CLKB to read or write data on port B. The  
B0-B35 outputs are in the high-impedance state when CSB is HIGH.  
O
EF is synchronized to the LOW-to-HIGH transition of CLKB. When EF is LOW, the FIFO is empty, and  
Port B reads from its memory are disabled. Data can be read from the FIFO to its output register when EF is  
HIGH. EF is forced LOW when the device is reset and is set HIGH by the second LOW-to-HIGH transition  
of CLKB after data is loaded into empty FIFO memory.  
ENA  
ENB  
FF  
Port A Enable  
Port B Enable  
Full Flag  
I
I
ENA must be HIGH to enable a LOW-to-HIGH transition of CLKA to read or write data on port A.  
ENB must be HIGH to enable a LOW-to-HIGH transition of CLKB to read or write data on port B.  
FF is synchronized to the LOW-to-HIGH transition of CLKA. When FF is LOW, the FIFO is full, and writes  
O
Port A to its memory are disabled. FF is forced LOW when the device is reset and is set HIGH by the second  
LOW-to-HIGH transition of CLKA after reset.  
FS1, FS0  
MBA  
Flag Offset Selects  
Port A Mailbox Select  
Mail1 Register Flag  
I
The LOW-to-HIGH transition of RST latches the values of FS0 and FS1, which loads one of four preset  
values into the Almost-Full flag and Almost-Empty flag offsets.  
I
A high level on MBA chooses a mailbox register for a port A read or write operation. When the A0-A35  
outputs are active, mail2 register data is output.  
MBF1  
O
MBF1 is set LOW by a LOW-to-HIGH transition of CLKA that writes data to the mail1 register. Writes to the  
mail1 register are inhibited while MBF1 is set LOW. MBF1 is set HIGH by a LOW-to-HIGH transition of  
CLKB when a port B read is selected and both SIZ1 and SIZ0 are HIGH. MBF1 is set HIGH when the  
device is reset.  
MBF2  
Mail2 Register Flag  
O
I
MBF2 is set LOW by a LOW-to-HIGH transition of CLKB that writes data to the mail2 register. Writes to  
the mail2 register are inhibited while MBF2 is set LOW. MBF2 is set HIGH by a LOW-to-HIGH transition  
of CLKA when a port A read is selected and MBA is HIGH. MBF2 is set HIGH when the device is reset.  
ODD/  
EVEN  
Odd/Even Parity Select  
Port A Parity Error Flag  
Odd parity is checked on each port when ODD/EVEN is HIGH, and even parity is checked when ODD  
EVEN is LOW. ODD/EVEN also selects the type of parity generated for each port if parity generation is  
enabled for a read operation.  
PEFA  
O
When any byte applied to terminals A0-A35 fails parity, PEFA is LOW. Bytes are organized as A0-A8, A9-A17,  
(Port A) A18-A26, and A27-A35, with the most significant bit of each byte serving as the parity bit. The type of parity  
checked is determined by the state of the ODD/EVEN input. The parity trees used to check the A0-A35  
inputs are shared by the mail2 register to generate parity if parity generation is selected by PGA. Therefore,  
if a mail2 read with parity generation is set up by having CSA LOW, ENA HIGH, W/RA LOW, MBA HIGH  
and PGA HIGH, the PEFA flag is forced HIGH regardless of the state of the A0-A35 inputs.  
PEFB  
Port B Parity Error Flag  
O
When any valid byte applied to terminals B0-B35 fails parity, PEFB is LOW. Bytes are organized as B0-B8,  
(PortB) B9-B17, B18-B26, and B27-B35, with the most significant bit of each byte serving as the parity bit. A byte is  
valid when it is used by the bus size selected for port B. The type of parity checked is determined by the  
state of the ODD/EVEN input. The parity trees used to check the B0-B35 inputs are shared by the mail1  
register to generate parity if parity generation is selected by PGB. Therefore, if a mail1 read with parity  
generation is set up by having CSB LOW, ENB HIGH, W/RB LOW, SIZ1 and SIZ0 HIGH and PGB  
HIGH, the PEFB flag is forced HIGH regardless of the state of the B0-B35 inputs.  
4
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
PINDESCRIPTION(CONTINUED)  
Symbol  
Name  
I/O  
Description  
PGA  
Port A Parity Generation  
I
Parity is generated for data reads from the mail2 register when PGA is HIGH. The type of parity  
generated is selected by the state of the ODD/EVEN input. Bytes are organized at A0-A8, A9-A17,  
A18-A26, and A27-A35. The generated parity bits are output in the most significant bit of each byte.  
PGB  
Port B Parity  
Reset  
I
I
Parity is generated for data reads from port B when PGB is HIGH. The type of parity generated is  
selected by the state of the ODD/EVEN input. Bytes are organized as B0-B8, B9-B17, B18-B26, and  
B27-B35. The generated parity bits are output in the most significant bit of each byte.  
RST  
To reset the device, four LOW-to-HIGH transitions of CLKA and four LOW-to-HIGH transitions of CLKB  
must occur while RST is LOW. This sets the AF, MBF1, and MBF2 flags HIGH and the EF, AE, and FF  
flags LOW. The LOW-to-HIGH transition of RST latches the status of the FS1 and FS0 inputs to select  
Almost-Full flag and Almost-Empty flag offset.  
SIZ0,  
SIZ1  
Port B Bus Size Selects  
Port B Byte Swap Selects  
I
A LOW-to-HIGH transition of CLKB latches the states of SIZ0, SIZ1, and BE, and the following LOW-to  
(Port B) HIGH transition of CLKB implements the latched states as a port B bus size. Port B bus sizes can be  
long word, word, or byte. A HIGH on both SIZ0 and SIZ1 accesses the mailbox registers for a port B 36-bit  
write or read.  
SW0,  
SW1  
I
At the beginning of each long word FIFO read, one of four modes of byte-order swapping is selected by  
(Port B) SW0 and SW1. The four modes are no swap, byte swap, word swap, and byte-word swap. Byte order  
swapping is possible with any bus-size selection.  
W/RA  
W/RB  
Port A Write/Read Select  
Select  
I
A HIGH selects a write operation and a LOW selects a read operation on port A for a LOW-to-HIGH  
transition of CLKA. The A0-A35 outputs are in the high-impedance state when W/RA is HIGH.  
Port B Write/Read Select  
I
A HIGH selects a write operation and a LOW selects a read operation on port B for a LOW-to-HIGH  
transition of CLKB. The B0-B35 outputs are in the high-impedance state when W/RB is HIGH.  
5
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
ABSOLUTEMAXIMUMRATINGSOVEROPERATINGFREE-AIRTEMPERATURE  
RANGE(UNLESSOTHERWISENOTED)(1)  
Symbol  
VCC  
VI(2)  
VO(2)  
IIK  
Rating  
Commercial  
–0.5 to 7  
–0.5 to VCC+0.5  
–0.5 to VCC+0.5  
±20  
Unit  
V
Supply Voltage Range  
Input Voltage Range  
V
Output Voltage Range  
V
Input Clamp Current, (VI < 0 or VI > VCC)  
Output Clamp Current, (VO < 0 or VO > VCC)  
Continuous Output Current, (VO = 0 to VCC)  
Continuous Current Through VCC or GND  
Storage Temperature Range  
mA  
mA  
mA  
mA  
°C  
IOK  
±50  
IOUT  
ICC  
±50  
±500  
TSTG  
–65 to 150  
NOTES:  
1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the  
device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions  
for extended periods may affect device reliability.  
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
VCC  
VIH  
Parameter  
Min.  
4.5  
2
Max.  
5.5  
0.8  
–4  
Unit  
Supply Voltage  
V
High-Level Input Voltage  
Low-Level Input Voltage  
V
VIL  
0
V
IOH  
High-Level Output Current  
Low-Level Output Current  
Operating Free-Air Temperature  
mA  
mA  
°C  
IOL  
8
TA  
70  
ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-  
AIR TEMPERATURE RANGE (UNLESS OTHERWISE NOTED)  
IDT723613  
(1)  
Commercial & Industrial  
TA = 15, 20 ns  
Parameter  
Test Conditions  
Min.  
Typ.(2) Max.  
Unit  
VOH  
VCC = 4.5V,  
VCC = 4.5V,  
VCC = 5.5V,  
VCC = 5.5V,  
VCC = 5.5V,  
VI = 0  
IOH = –4 mA  
IOL = 8 mA  
VI = VCC or 0  
VO = VCC or 0  
IO = 0 mA,  
f = 1 MHz  
2.4  
4
0.5  
±50  
±50  
1
V
VOL  
II  
V
µ A  
µ A  
mA  
pF  
IOZ  
ICC(3)  
C i  
VI = VCC or GND  
Co  
VO = 0,  
f = 1 MHz  
8
pF  
NOTES:  
1. Industrial temperature range product for 20ns is available as a standard device. All other speed grades are available by special order.  
2. All typical values are at VCC = 5V, TA = 25°C.  
3. For additional ICC information, see the following page.  
6
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
400  
VCC = 5.5V  
f
data  
= 1/2 f  
S
350  
300  
T
A
= 25°C  
C
L
= 0 pF  
250  
200  
VCC = 5V  
VCC = 4.5V  
150  
100  
50  
0
80  
0
10  
20  
30  
40  
50  
60  
70  
3145 drw04  
fS  
Clock Frequency  
MHz  
Figure 1. Typical Characteristics: Supply Current vs Clock Frequency  
CALCULATING POWER DISSIPATION  
The ICCf current for the graph in Figure 1 was taken while simultaneously reading and writing the FIFO on the IDT723613 with CLKA and CLKB set to  
fS. All date inputs and data outputs change state during each clock cycle to consume the highest supply current. Data outputs were disconnected to  
normalize the graph to a zero-capacitance load. Once the capacitive lead per data-output channel is known, the power dissipation can be calculated with  
the equation below.  
With ICC(f) taken from Figure 1, the maximum power dissipation (PT) of the IDT723613 may be calculated by:  
PT = VCC x ICC(f) + Σ[CL x (VOH VOL)2 x fo)  
where:  
CL  
fo  
VOH  
VOL  
=
=
=
=
output capacitive load  
switching frequency of an output  
output high-level voltage  
output high-level voltage  
When no reads or writes are occurring on the IDT723613, the power dissipated by a single clock (CLKA or CLKB) input running at frequency fS is  
calculated by:  
PT = VCC x fS x 0.29mA/MHz  
7
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
AC ELECTRICAL CHARACTERISTICS OVER RECOMMENDED RANGES OF  
SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE  
(Commercial: VCC = 5.0V ±10%, TA = 0°C to +70°C; Industrial; VCC = 5.0V ± 10%,TA = 40°C to +85°C)  
Commercial  
IDT723613L15  
Com’l & Ind’l(1)  
IDT723613L20  
Symbol  
fS  
Parameter  
Min.  
Max.  
Min.  
Max.  
50  
Unit  
MHz  
ns  
Clock Frequency, CLKA or CLKB  
Clock Cycle Time, CLKA or CLKB  
66.7  
tCLK  
tCLKH  
tCLKL  
tDS  
15  
6
20  
8
Pulse Duration, CLKA and CLKB HIGH  
ns  
Pulse Duration, CLKA and CLKB LOW  
6
8
ns  
Setup Time, A0-A35 before CLKAand B0-B35 before CLKB↑  
4
5
ns  
tENS  
Setup Time, CSA, W/RA, ENA, and MBA before CLKA; CSB,W/RB, and ENB before  
CLKB↑  
5
5
ns  
tSZS  
Setup Time, SIZ0, SIZ1,and BE before CLKB↑  
Setup Time, SW0 and SW1 before CLKB↑  
Setup Time, ODD/EVEN and PGB before CLKB(2)  
Setup Time, RST LOW before CLKAor CLKB(3)  
Setup Time, FS0 and FS1 before RST HIGH  
4
5
4
5
5
1
1
2
0
0
5
4
8
14  
5
7
5
6
6
1
1
2
0
0
6
4
8
16  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSWS  
tPGS  
tRSTS  
tFSS  
tDH  
Hold Time, A0-A35 after CLKAand B0-B35 after CLKB↑  
Hold Time, CSA W/RA, ENA and MBA after CLKA; CSB, W/RB, and ENB after CLKB↑  
Hold Time, SIZ0, SIZ1, and BE after CLKB↑  
tENH  
tSZH  
tSWH  
tPGH  
tRSTH  
tFSH  
Hold Time, SW0 and SW1 after CLKB↑  
Hold Time, ODD/EVEN and PGB after CLKB(2)  
Hold Time, RST LOW after CLKAor CLKB(3)  
Hold Time, FS0 and FS1 after RST HIGH  
tSKEW1(4) Skew Time, between CLKAand CLKBfor EF and FF  
tSKEW2(4) Skew Time, between CLKAand CLKBfor AE and AF  
NOTES:  
1. Industrial temperature range product for 20ns speed grade is available as a standard device. All other speed grades are available by special order.  
2. Only applies for a clock edge that does a FIFO read.  
3. Requirement to count the clock edge as one of at least four needed to reset a FIFO.  
4. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB cycle.  
8
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF  
SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL = 30PF  
(Commercial: VCC = 5.0V ±10%, TA = 0°C to +70°C; Industrial; VCC = 5.0V ± 10%,TA = 40°C to +85°C)  
Commercial  
IDT723613L15  
Com’l & Ind’l(1)  
IDT723613L20  
Symbol  
tA  
Parameter  
Access Time, CLKAto A0-A35 and CLKBto B0-B35  
Propagation Delay Time, CLKAto FF  
Min.  
2
Max.  
Min.  
2
Max.  
12  
Unit  
ns  
10  
10  
10  
10  
10  
9
tWFF  
tREF  
2
2
12  
ns  
Propagation Delay Time, CLKBto EF  
2
2
12  
ns  
tPAE  
Propagation Delay Time, CLKBto AE  
2
2
12  
ns  
tPAF  
Propagation Delay Time, CLKAto AF  
2
2
12  
ns  
tPMF  
Propagation Delay Time, CLKAto MBF1 LOW or MBF2 HIGH and CLKBto MBF2  
LOW or MBF1 HIGH  
1
1
12  
ns  
tPMR  
Propagation Delay Time, CLKAto B0-B35(2) and CLKBto A0-A35(3)  
3
2
1
3
3
2
1
11  
11  
11  
10  
11  
12  
11  
3
2
1
3
3
2
1
12  
12  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(4)  
tPPE  
Propagation delay time, CLKBto PEFB  
tMDV  
Propagation Delay Time, SIZ1, SIZ0 to B0-B35 valid  
11.5  
11  
tPDPE  
Propagation Delay Time, A0-A35 valid to PEFA valid; B0-B35 valid to PEFB valid  
Propagation Delay Time, ODD/EVEN to PEFA and PEFB  
tPOPE  
12  
(5)  
tPOPB  
Propagation Delay Time, ODD/EVEN to parity bits (A8, A17, A26, A35) and (B8, B17, B26, B35)  
13  
tPEPE  
Propagation Delay Time, CSA, ENA, W/RA, MBA, or PGA to PEFA; CSB, ENB, W/RB,  
SIZ1, SIZ0, or PGB to PEFB  
12  
(5)  
tPEPB  
Propagation Delay Time, CSA, ENA, W/RA, MBA, or PGA to parity bits (A8, A17, A26, A35);  
CSB, ENB, W/RB, SIZ1, SIZ0, or PGB to parity bits (B8, B17, B26, B35)  
3
12  
3
13  
ns  
tRSF  
tEN  
Propagation Delay Time, RST to AE, EF LOW and AF, MBF1, MBF2 HIGH  
1
2
15  
10  
1
2
20  
12  
ns  
ns  
Enable Time, CSA and W/RA LOW to A0-A35 active and CSB LOW and W/RB HIGH to  
B0-B35 active  
tDIS  
Disable Time, CSA or W/RA HIGH to A0-A35 at high impedance and CSB HIGH or W/RB  
LOW to B0-B35 at high impedance  
1
8
1
9
ns  
NOTES:  
1. Industrial temperature range product for 20ns speed grade is available as a standard device. All other speed grades are available by special order.  
2. Writing data to the mail1 register when the B0-B35 outputs are active and SIZ1 and SIZ0 are HIGH.  
3. Writing data to the mail2 register when the A0-A35 outputs are active.  
4. Only applies when a new port-B bus size is implemented by the rising CLKB edge.  
5. Only applies when reading data from a mail register.  
9
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
FIFOtotheB0-B35outputsbyaLOW-to-HIGHtransitionofCLKBwhenCSB  
is LOW, W/RBis LOW, ENBis HIGH, EFB is HIGH, andeitherSIZ0orSIZ1  
is LOW (see Table 3).  
FUNCTIONALDESCRIPTION  
RESET (RST)  
Thesetupandhold-timeconstraintstotheportclocksfortheportChipSelects  
(CSA,CSB)andWrite/Readselects(W/RA,W/RB)areonlyforenablingwrite  
andreadoperationsandarenotrelatedtohigh-impedancecontrolofthedata  
outputs. IfaportenableisLOWduringaclockcycle,theportsChipSelectand  
Write/Readselectcanchangestatesduringthesetupandholdtimewindowof  
thecycle.  
The IDT723613 is reset by taking the Reset (RST) input LOW for at least  
four port A Clock (CLKA) and four port B Clock (CLKB) LOW-to-HIGH  
transitions. The Reset input can switch asynchronously to the clocks. A  
device reset initializes the internal read and write pointers of the FIFO and  
forcestheFullFlag(FF)LOW,theEmptyFlag(EF)LOW,theAlmost-Empty  
flag (AE) LOW, and the Almost-Full flag (AF) HIGH. A reset also forces the  
Mailbox Flags (MBF1, MBF2) HIGH. After a reset, FF is set HIGH after two  
LOW-to-HIGH transitions of CLKA. The device must be reset after power  
up before data is written to its memory.  
A LOW-to-HIGH transition on the RST input loads the Almost-Full and  
Almost-Empty Offset register (X) with the value selected by the Flag Select  
(FS0,FS1)inputs. Thevaluesthatcanbeloadedintotheregisterareshown  
in Table 1.  
SYNCHRONIZED FIFO FLAGS  
EachFIFOflagissynchronizedtoitsportclockthroughtwoflip-flopstages.  
This is done to improve the flags’ reliability by reducing the probability of  
metastable events on their outputs when CLKA and CLKB operate asyn-  
chronously to one another. FF and AF are synchronized to CLKA. EF and  
AE are synchronized to CLKB. Table 4 shows the relationship of each port  
flag to the level of FIFO fill.  
FIFO WRITE/READ OPERATION  
EMPTY FLAG (EF)  
The state of the port A data (A0-A35) outputs is controlled by the port-A  
Chip Select (CSA) and the port-A Write/Read select (W/RA). The A0-A35  
outputsareinthehigh-impedancestatewheneitherCSAorW/RAisHIGH.The  
A0-A35 outputs are active when both CSA and W/RA are LOW.  
Data is loaded into the FIFO from the A0-A35 inputs on a LOW-to-HIGH  
transitionofCLKAwhenCSA is LOW, W/RAis HIGH, ENAis HIGH, MBAis  
LOW, and FFA is HIGH (see Table 2).  
The FIFO Empty Flag is synchronized to the port clock that reads data  
from its array (CLKB). When the EF is HIGH, new data can be read to the  
FIFO output register. When the EF is LOW, the FIFO is empty and  
attempted FIFO reads are ignored. When reading the FIFO with a byte or  
word size on port B, EF is set LOW when the fourth byte or second word of  
the last long word is read.  
The FIFO read pointer is incremented each time a new word is clocked  
to its output register. The state machine that controls the EF monitors a  
write-pointer and read-pointer comparator that indicates when the FIFO  
SRAM status is empty, empty+1, or empty+2. A word written to the FIFO  
can be read to the FIFO output register in a minimum of three port B clock  
(CLKB)cycles. Therefore,anEFisLOWifawordinmemoryisthenextdata  
tobesenttotheFIFOoutputregisterandtwoCLKBcycleshavenotelapsed  
since the time the word was written. The EF of the FIFO is set HIGH by the  
second LOW-to-HIGH transition of CLKB, and the new data word can be  
read to the FIFO output register in the following cycle.  
ThestateoftheportBdata(B0-B35)outputsiscontrolledbytheportBChip  
Select(CSB)andtheportBWrite/Readselect(W/RB).TheB0-B35outputsare  
inthe high-impedance state wheneitherCSB orW/RBis HIGH. The B0-B35  
outputsareactivewhenbothCSBandW/RBareLOW. Dataisreadfromthe  
TABLE 1 — FLAG PROGRAMMING  
Almost-Full and  
ALOW-to-HIGHtransitiononCLKBbeginsthefirstsynchronizationcycle  
ofawriteiftheclocktransitionoccursattimetSKEW1 orgreaterafterthewrite.  
Otherwise, the subsequent CLKB cycle can be the first synchronization  
cycle (see Figure 10).  
FS1  
FS0  
RST  
Almost-Empty Flag  
Offset Register (X)  
H
H
L
L
H
L
H
L
16  
12  
8
4
TABLE 2 — PORT A ENABLE FUNCTION TABLE  
CSA  
H
L
W/RA  
ENA  
MBA  
CLKA  
A0-A35 Outputs  
Port Function  
X
X
X
X
X
In high-impedance state  
In high-impedance state  
In high-impedance state  
In high impedance state  
Active, mail2 register  
Active, mail2 register  
Active, mail2 register  
Active, mail2 register  
None  
H
L
X
None  
L
H
H
L
FIFO write  
L
H
H
H
Mail1 write  
L
L
L
L
X
None  
L
L
H
L
None  
None  
L
L
L
H
X
L
L
H
H
Mail2 read (set MBF2 HIGH)  
10  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
TABLE 3 — PORT B ENABLE FUNCTION TABLE  
CSB  
H
L
W/RB  
ENB  
SIZ1, SIZ0  
CLKB  
B0-B35 Outputs  
In high-impedance state  
In high-impedance state  
In high-impedance state  
In high-impedance state  
Active, FIFO output register  
Active, FIFO output register  
Active, mail1 register  
Port Function  
X
X
X
X
X
None  
H
L
X
None  
L
H
H
One, both LOW  
Both HIGH  
One, both LOW  
One, both LOW  
Both HIGH  
Both HIGH  
None  
Mail2 write  
L
H
H
L
L
L
X
None  
L
L
H
FIFO read  
L
L
L
X
None  
L
L
H
Active mail1 register  
Mail1 read (set MBF1 HIGH)  
aFIFOwritefortheAEflagtoreflectthenewleveloffill. Therefore,theAEflag  
ofaFIFOcontaining(X+1)ormorelongwordsremainsLOWiftwoCLKBcycles  
havenotelapsedsincethewritethatfilledthememorytothe(X+1)level. The  
AEflagissetHIGHbythesecondCLKBLOW-to-HIGHtransitionaftertheFIFO  
writethatfillsmemorytothe(X+1)level. ALOW-to-HIGHtransitionofCLKB  
beginsthefirstsynchronizationcycle ifitoccursattimetSKEW2orgreaterafter  
thewritethatfillstheFIFOto(X+1)longwords. Otherwise,thesubsequentCLKB  
cycle canbe the firstsynchronizationcycle (see Figure 12).  
FULL FLAG (FF)  
TheFIFOFullFlagissynchronizedtotheportclockthatwritesdatatoitsarray  
(CLKA). WhentheFF isHIGH,aSRAMlocationisfreetoreceivenewdata.  
NomemorylocationsarefreewhentheFFisLOWandattemptedwritestothe  
FIFO are ignored.  
Each time a word is written to the FIFO, its write-pointer is incremented.  
The state machine that controls the FF monitors a write-pointer and read-  
pointer comparator that indicates when the FIFO SRAM status is full, full-1,  
or full-2. From the time a word is read from the FIFO, its previous memory  
locationisreadytobewritteninaminimumofthreeCLKAcycles.Therefore,  
a FF is LOW if less than two CLKA cycles have elapsed since the next  
memorywrite locationhas beenread. The secondLOW-to-HIGHtransition  
ontheFF synchronizingclockafterthe readsets the FF HIGHanddata can  
be written in the following clock cycle.  
ALMOST FULL FLAG (AF)  
TheFIFOAlmost-Fullflagissynchronizedtotheportclockthatwritesdata  
to its array (CLKA). The state machine that controls an AF flag monitors a  
write-pointer and read-pointer comparator that indicates when the FIFO  
SRAM status is almost -full, almost- full-1, or almost-full-2. The almost-full  
state is defined by the value of the Almost-Full and Almost-Empty Offset  
register (X). This register is loaded with one of four preset values during a  
devicereset(seeresetabove). TheAFflagisLOWwhentheFIFOcontains  
(64-X) or more long words in memory and is HIGH when the FIFO contains  
[64-(X+1)] or less long words.  
ALOW-to-HIGHtransitiononCLKAbeginsthefirstsynchronizationcycle  
ofareadiftheclocktransitionoccursattimetSKEW1orgreateraftertheread.  
Otherwise,thesubsequentclockcyclecanbethefirstsynchronizationcycle  
(see Figure 11).  
Two LOW-to-HIGH transitions on the port A Clock (CLKA) are required  
aftera FIFOreadfortheAF flagtoreflectthe newleveloffill. Therefore, the  
AF flag of a FIFO containing [64-(X+1)] or less words remains LOW if two  
CLKA cycles have not elapsed since the read that reduced the number of  
long words in memory to [64-(X+1)]. The AF flag is set HIGH by the second  
CLKALOW-to-HIGHtransitionaftertheFIFOreadthatreducesthenumber  
oflongwords inmemoryto[64-(X+1)]. ALOW-to-HIGHtransitiononCLKA  
beginsthefirstsynchronizationcycleifitoccursattimetSKEW2orgreaterafter  
the read that reduces the number of long words in memory to [64-(X+1)].  
Otherwise, the subsequent CLKA cycle can be the first synchronization  
cycle (see Figure 13).  
ALMOST-EMPTY FLAG (AE)  
The FIFO Almost-Empty flag is synchronized to the port clock that reads  
data from its array (CLKB). The state machine that controls the AE flag  
monitors a write-pointer and read-pointer comparator that indicates when  
theFIFOSRAMstatusisalmost-empty,almost-empty+1,oralmost-empty+2.  
The almost-empty state is defined by the value of the Almost-Full and  
Almost-Empty Offset register (X). This register is loaded with one of four  
preset values during a device reset (see reset above). The AE flag is LOW  
when the FIFO contains X or less long words in memory and is HIGH when  
the FIFO contains (X+1) or more long words.  
TwoLOW-to-HIGHtransitionsontheportBClock(CLKB)arerequiredafter  
MAILBOX REGISTERS  
Two 36-bit bypass registers (mail1, mail2) are on the IDT723613 to pass  
commandandcontrolinformationbetweenportAandportBwithoutputting  
it in queue. A LOW-to-HIGH transition on CLKA writes A0-A35 data to the  
mail1registerwhena portAwrite is selectedbyCSA, W/RA, andENA(with  
MBA HIGH). A LOW-to-HIGH transition on CLKB writes B0-B35 data to the  
mail2 register when a port B write is selected by CSB, W/RB, andENB(and  
both SIZ0 and SIZ1 are HIGH). Writing data to a mail register sets its  
corresponding flag (MBF1 or MBF2) LOW. Attempted writes to a mail  
register are ignored while its mail flag is LOW.  
WhentheportBdata(B0-B35)outputsareactive,thedataonthebuscomes  
fromtheFIFOoutputregisterwheneitheroneorbothSIZ1andSIZ0areLOW  
and from the mail1 register when both SIZ1 and SIZ0 are HIGH. The Mail1  
RegisterFlag(MBF1)is setHIGHbyarisingCLKBedgewhenaportBread  
TABLE 4 — FIFO FLAG OPERATION  
Number of 36-Bit  
Words in the FIFO  
Synchronized  
to CLKB  
Synchronized  
to CLKA  
(1)  
EF  
L
AE  
L
AF  
H
H
H
L
FF  
0
1 to X  
H
H
H
H
L
H
H
H
H
L
(X + 1) to [64 – (X + 1)]  
(64 – X) to 63  
64  
H
H
H
L
NOTE:  
1. X is the value in the Almost-Empty flag and Almost-Full flag Offset register.  
11  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
is selected by CSB, W/RB, and ENB, (and both SIZ1 and SIZ0 HIGH). The SIZ1areHIGH,themail1registerisaccessedforaportBlong-wordreadand  
Mail2 Register Flag (MBF2) is set HIGH by a rising CLKA edge when a port themail2registerisaccessedforaportBlong-wordwrite.Themailregisteris  
Areadis selectedbyCSA, W/RA,andENA(withMBAHIGH). Thedataina accessedimmediatelyandanybus-sizingoperationthatcanbeunderwayis  
mailregisterremainsintactafteritisreadandchangesonlywhennewdatais unaffectedbythemailregisteraccess.Afterthemailregisteraccessiscomplete,  
writtentotheregister.  
thepreviousFIFOaccesscanresumeinthenextCLKBcycle.Thelogicdiagram  
inFigure3showsthepreviousbus-sizeselectionispreservedwhenthemail  
registersareaccessedfromportB.AportBbus-sizeisimplementedoneach  
DYNAMIC BUS SIZING  
The port B bus can be configured in a 36-bit long word, 18-bit word, or 9- risingCLKBedgeaccordingtothestates ofSIZ0_Q,SIZ1_Q,andBE_Q.  
bit byte format for data read from the FIFO. Word- and byte-size bus  
selections can utilize the most significant bytes of the bus (Big-Endian) or PARITY CHECKING  
least significant bytes of the bus (Little-Endian). Port B bus-size can be  
changed dynamically and synchronous to CLKB to communicate with four parity trees to check the parity of incoming (or outgoing) data. A parity  
peripherals of various bus widths. failure on one or more bytes of the port A data bus is reported by a low level  
TheportAdatainputs(A0-A35) andportBdatainputs(B0-B35)eachhave  
ThelevelsappliedtotheportBbus-sizeselect(SIZ0,SIZ1)inputsandthe on the port A Parity Error Flag (PEFA). A parity failure on one or more bytes  
Big-Endian select (BE) input are stored on each CLKB LOW-to-HIGH of the port B data inputs that are valid for the bus-size implementation is  
transition. The stored port B bus-size selection is implemented by the next reported by a low level on the port B Parity Error Flag (PEFB). Odd or Even  
rising edge on CLKB according to Figure 2.  
parity checking can be selected, and the Parity Error Flags can be ignored  
Only 36-bit long-word data is written to or read from the FIFO memory on if this feature is not desired.  
the IDT723613. Bus-matching operations are done after data is read from  
Parity status is checked on each input bus according to the level of the  
the FIFO RAM. Port B bus sizing does not apply to mail register operations. Odd/Even parity (ODD/EVEN) select input. A parity error on one or more  
valid bytes of a port is reported by a LOW level on the corresponding port  
BUS-MATCHING FIFO READS  
ParityErrorFlag(PEFA,PEFB)output. PortAbytesarearrangedasA0-A8,  
Datais readfromtheFIFORAMin36-bitlong-wordincrements.Ifalong- A9-A17, A18-A26, and A27-A35, and port B bytes are arranged as B0-B8, B9-  
wordbus-sizeisimplemented,theentirelongwordimmediatelyshiftstothe B17, B18-B26, andB27-B35, andits validbytes are those usedina portBbus  
FIFOoutputregisteruponaread.Ifbyteorwordsizeisimplementedonport size implementation. When Odd/Even parity is selected, a port Parity Error  
B, only the first one or two bytes appear on the selected portion of the FIFO Flag (PEFA, PEFB) is LOW if any byte on the port has an odd/even number  
output register, with the rest of the long word stored in auxiliary registers. In of LOW levels applied to its bits.  
this case, subsequent FIFO reads with the same bus-size implementation  
output the rest of the long word to the FIFO output register in the order mail2registerwhenparitygenerationisselectedforport-Areads(PGA=HIGH).  
shown by Figure 2. WhenaportAreadfromthemail2registerwithparitygenerationisselectedwith  
The four parity trees used to check the A0-A35 inputs are shared by the  
Each FIFO read with a new bus-size implementation automatically un- CSA LOW, ENAHIGH, W/RALOW, MBAHIGH, andPGAHIGH, the portA  
loads data from the FIFO RAM to its output register and auxiliary registers. ParityErrorFlag(PEFA)is heldHIGHregardless ofthelevels appliedtothe  
Therefore,implementinganewportBbus-sizeandperformingaFIFOread A0-A35inputs. Likewise,theparitytreesusedtochecktheB0-B35inputsare  
before all bytes or words stored in the auxiliary registers have been read sharedbythemail1registerwhenparitygenerationisselectedforportBreads  
results in a loss of the unread data in these registers.  
(PGB=HIGH). WhenaportBreadfromthemail1registerwithparitygeneration  
When reading data from FIFO in byte or word format, the unused B0-B35 isselectedwithCSBLOW,ENBHIGH,W/RBLOW,bothSIZ0andSIZ1HIGH,  
outputs remain inactive but static, with the unused FIFO output register bits andPGBHIGH,theportBParityErrorFlag(PEFB)isheldHIGHregardless  
holding the last data value to decrease power consumption.  
ofthelevels appliedtotheB0-B35 inputs.  
BYTE SWAPPING  
PARITY GENERATION  
The byte-order arrangement of data read from the FIFO can be changed  
A HIGH level on the port A Parity Generate select (PGA) or port B Parity  
synchronous to the rising edge of CLKB. Byte-order swapping is not Generate select (PGB) enables the IDT723613 to generate parity bits for  
available formailregisterdata. Fourmodes ofbyte-orderswapping(includ- portreadsfromaFIFOormailboxregister. PortAbytesarearrangedasA0-  
ing no swap) can be done with any data port size selection. The order of the A8, A9-A17, A18-A26, and A27-A35, with the most significant bit of each byte  
bytes are rearranged within the long word, but the bit order within the bytes usedas the paritybit. PortBbytes are arrangedas B0-B8, B9-B17, B18-B26,  
remainsconstant.  
and B27-B35, with the most significant bit of each byte used as the parity bit.  
BytearrangementischosenbytheportBSwapselect(SW0,SW1)inputs A write to a FIFO or mail register stores the levels applied to all nine inputs  
on a CLKB rising edge that reads a new long word from the FIFO. The byte of a byte regardless of the state of the Parity Generate select (PGA, PGB)  
order chosen on the first byte or first word of a new long word read from the inputs. When data is read from a port with parity generation selected, the  
FIFOismaintaineduntiltheentirelongwordistransferred,regardlessofthe lowereightbitsofeachbyteareusedtogenerateaparitybitaccordingtothe  
SW0 and SW1 states during subsequent reads. Figure 4 is an example of levelontheODD/EVENselect. Thegeneratedparitybitsaresubstitutedfor  
the byte-order swapping available for long word reads. Performing a byte thelevelsoriginallywrittentothemostsignificantbitsofeachbyteastheword  
swapandbus-sizesimultaneouslyforaFIFOreadfirstrearrangesthebytes is read to the data outputs.  
as shown in Figure 4, then outputs the bytes as shown in Figure 2.  
Paritybits forFIFOdataaregeneratedafterthedatais readfromSRAM  
andbeforethedataiswrittentotheoutputregister. Therefore,theportAParity  
Generateselect(PGA)andOdd/Evenparityselect(ODD/EVEN)havesetup  
PORT-B MAIL REGISTER ACCESS  
InadditiontoselectingportBbussizesforFIFOreads,theportBbusSize and hold time constraints to the port A Clock (CLKA) and the port B Parity  
select(SIZ0,SIZ1)inputsalsoaccessthemailregisters.WhenbothSIZ0and Generate select (PGB) and ODD/EVEN select have setup and hold time  
12  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
A35 A27  
A26 A18  
A17 A9  
A8 A0  
BYTE ORDER ON PORT A:  
D
Write to FIFO  
A
B
C
B35 B27  
B26 B18  
B17 B9  
B8 B0  
BE SIZ1 SIZ0  
Read from FIFO  
A
B
D
C
X
L
L
(a) LONG WORD SIZE  
B35 B27  
B26 B18  
B17 B9  
B17 B9  
B8 B0  
B8 B0  
BE  
SIZ1 SIZ0  
A
B
1st: Read from FIFO  
2nd: Read from FIFO  
L
L
H
B35 B27  
B26 B18  
D
C
(b) WORD SIZE  
BIG-ENDIAN  
B35 B27  
B35 B27  
B26 B18  
B17 B9  
B8 B0  
BE SIZ1 SIZ0  
1st: Read from FIFO  
2nd: Read from FIFO  
C
D
H
L
H
B26 B18  
B17 B9  
B8 B0  
A
B
(c) WORD SIZE  
LITTLE-ENDIAN  
B35 B27  
B26 B18  
B17 B9  
B17 B9  
B17 B9  
B17 B9  
B8 B0  
BE SIZ1 SIZ0  
A
B35 B27  
B
1st: Read from FIFO  
2nd: Read from FIFO  
L
H
L
B26 B18  
B26 B18  
B26 B18  
B8 B0  
B8 B0  
B35 B27  
C
3rd: Read from FIFO  
4th: Read from FIFO  
B35 B27  
B8 B0  
D
(d) BYTE SIZE  
BIG-ENDIAN  
B35 B27  
B35 B27  
A35 A27  
B35 B27  
B26 B18  
B17 B9  
B8 B0  
BE SIZ1 SIZ0  
H
H
L
D
1st: Read from FIFO  
2nd: Read from FIFO  
B26 B18  
A26 A18  
B17 B9  
A17 A9  
B17 B9  
B8 B0  
C
A8 A0  
3rd: Read from FIFO  
B
B8 B0  
A
B26 B18  
4th: Read from FIFO  
(d) BYTE SIZE  
LITTLE-ENDIAN  
3145 fig01  
Figure 2. Dynamic Bus Sizing  
13  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
the port Chip Select (CSA, CSB) is LOW, Enable (ENA, ENB) is HIGH, and  
Write/Readselect(W/RA,W/RB)inputisLOW,themailregisterisselected (MBA  
HIGH for port A; both SIZ0 and SIZ1 are HIGH for port B), and port Parity  
Generateselect(PGA,PGB)isHIGH. Generatingparityformailregisterdata  
doesnotchangethecontentsoftheregister.  
constraintstotheportBClock(CLKB).Thesetimingconstraintsonlyapply  
forarisingclockedgeusedtoreadanewlongwordtotheFIFOoutputregister.  
Thecircuitusedtogenerateparityforthemail1dataissharedbytheportB  
bus(B0-B35)tocheckparityandthecircuitusedtogenerateparityforthemail2  
data is shared by the port A bus (A0-A35) to check parity. The shared parity  
treesofaportareusedtogenerateparitybitsforthedatainamailregisterwhen  
CLKB  
MUX  
G1  
1
SIZ0 Q  
SIZ1 Q  
BE Q  
D
Q
SIZ0  
SIZ1  
BE  
1
3145 fig02  
Figure 3. Logic Diagram for SIZ0, SIZ1, and BE Register  
14  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
A35 A27  
A26 A18  
A17 A9  
A8 A0  
SW1  
SW0  
D
A
B
C
L
L
A
B
D
C
B35 B27  
B26 B18  
B17 B9  
B8 B0  
(a) NO SWAP  
A35 A27  
A26 A18  
A17 A9  
A8 A0  
SW1  
L
SW0  
H
A
B
C
D
D
C
B
A
B35 B27  
B26 B18  
B17 B9  
B8 B0  
(b) BYTE SWAP  
A35 A27  
A26 A18  
A17 A9  
A8 A0  
SW1  
H
SW0  
L
A
B
C
D
C
D
A
B
B35 B27  
B26 B18  
B17 B9  
B8 B0  
(c) WORD SWAP  
A35 A27  
A26 A18  
A17 A9  
A8 A0  
SW1 SW0  
A
B
C
D
H
H
B
D
C
A
3145 fig03  
(d) BYTE-WORD SWAP  
Figure 4. Byte Swapping for FIFO Reads (Long-Word Size Example)  
15  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
CLKA  
CLKB  
tRSTH  
t
RSTS  
t
FSS  
t
FSH  
RST  
FS1,FS0  
FF  
0,1  
t
WFF  
t
WFF  
t
REF  
EF  
AE  
AF  
t
PAE  
t
PAF  
t
RSF  
MBF1,  
MBF2  
3145 drw05  
Figure 5. Device Reset Loading the X Register with the Value of Eight  
tCLK  
tCLKH  
tCLKL  
CLKA  
FFA  
CSA  
HIGH  
tENH  
tENS  
tENH  
tENS  
W/RA  
t
ENH  
t
ENS  
ENS  
MBA  
tENH  
tENH  
t
ENH  
t
tENS  
tENS  
ENA  
tDH  
t
DS  
W1(1)  
W2(1)  
A0 - A35  
No Operation  
ODD/  
EVEN  
tPDPE  
tPDPE  
PEFA  
Valid  
Valid  
3145 drw06  
NOTE:  
1. Written to the FIFO.  
Figure 6. FIFO Write Cycle Timing  
16  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
CLKB  
EF  
HIGH  
CSB  
W/RB  
tENS  
tENH  
tENH  
tENS  
ENB  
tSWS  
No Operation  
tSWH  
SW1,  
SW0  
t
t
SZH  
t
t
SZS  
BE  
SZH  
SZS  
SIZ1,  
SIZ0  
NOT (1,1)(1)  
(0,0)  
NOT (1,1)(1)  
(0,0)  
tPGS  
tPGH  
PGB,  
ODD/  
EVEN  
tDIS  
tEN  
tA  
tA  
W1(2)  
W2(2)  
Previous Data  
B0-B35  
3145 drw07  
NOTES:  
1. SIZ0 = HIGH and SIZ1 = HIGH selects the mail1 register for output on B0-B35.  
2. Data read from FIFO1.  
DATA SWAP TABLE FOR FIFO LONG-WORD READS  
FIFO Data Write  
Swap Mode  
FIFO Data Read  
A35-A27  
A26-A18  
A17-A9  
A8-A0  
SW1  
SW0  
B35-B27  
B26-B18  
B17-B9  
B8-B0  
A
A
A
A
B
B
B
B
C
C
C
C
D
D
D
D
L
L
L
H
L
A
D
C
B
B
C
D
A
C
B
A
D
D
A
B
C
H
H
H
Figure 7. FIFO Long-Word Read Cycle Timing  
17  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
CLKB  
EF  
HIGH  
CSB  
W/RB  
tENS  
tENH  
ENB  
No Operation  
tSWS  
tSWH  
SW1,  
SW0  
t
SZH  
t
t
SZS  
SZS  
BE  
t
SZH  
SIZ1,  
SIZ0  
NOT (1,1) (1)  
NOT (1,1)(1)  
(0,1)  
(0,1)  
t
PGS  
tPGH  
PGB,  
ODD/  
EVEN  
t
EN  
tA  
t
A
A
tDIS  
Little  
Previous Data  
Read 1  
Read 1  
Read 2  
Read 2  
B0-B17  
Endian(2)  
t
tA  
tDIS  
Big  
Endian(2)  
B18-B35  
Previous Data  
3145 drw08  
NOTES:  
1. SIZ0 = HIGH and SIZ1 = HIGH selects the mail1 register for output on B0-B35.  
2. Unused word B0-B17 or B18-B35 holds last FIFO1 output register data for word-size reads.  
DATA SWAP TABLE FOR FIFO WORD READS  
FIFO Data Read  
FIFO Data Write  
Swap Mode  
Read  
No.  
Big-Endian  
Little-Endian  
A35-A27  
A26-A18  
A17-A9  
A8-A0  
D
SW1  
L
SW0  
B35-B27  
B26-B18  
B17-B9  
B8-B0  
1
2
A
C
B
D
C
A
D
B
A
A
B
B
C
C
L
1
2
D
B
C
A
B
D
A
C
D
L
H
1
2
C
A
D
B
A
C
B
D
A
A
B
B
C
C
D
D
H
H
L
1
2
B
D
A
C
D
B
C
A
H
Figure 8. FIFO Word Read-Cycle Timing  
18  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
CLKB  
EF  
HIGH  
CSB  
W/RB  
tENS  
tENH  
ENB  
No Operation  
tSWS  
tSWH  
SW1,  
SW0  
t
t
SZS  
SZS  
tSZH  
BE  
t
SZH  
SIZ1,  
SIZ0  
Not (1,1) (1)  
(1,0)  
(1,0)  
(1,0)  
(1,0)  
(1)  
(1)  
(1)  
Not (1,1)  
Not (1,1)  
PGH  
Not (1,1)  
t
tPGS  
PGB,  
ODD/  
EVEN  
tDIS  
tEN  
tA  
tA  
tA  
tA  
Read 1  
Previous Data  
Read 2  
Read 3  
Read 4  
Read 4  
B0-B8  
tDIS  
tA  
tA  
tA  
t
A
B27-B35  
Previous Data  
Read 1  
Read 2  
Read 3  
3145 drw09  
NOTES:  
1. SIZ0 = HIGH and SIZ1 = HIGH selects the mail1 register for output on B0-B35.  
2. Unused bytes hold last FIFO output register data for byte-size reads.  
DATA SWAP TABLE FOR FIFO BYTE READS  
FIFO Data Read  
FIFO Data Write  
A26-A18  
Swap Mode  
Read  
No.  
Big-  
Endian  
Little-  
Endian  
A35-A27  
A17-A9  
A8-A0  
SW1  
SW0  
B35-B27  
B8-B0  
1
A
D
2
3
4
B
C
D
C
B
A
A
B
B
B
B
C
D
L
L
H
L
1
2
3
4
D
C
B
A
A
B
C
D
A
A
A
C
C
C
D
D
D
L
H
H
1
2
3
4
C
D
A
B
B
A
D
C
1
2
3
4
B
A
D
C
C
D
A
B
H
Figure 9. FIFO Byte Read-Cycle Timing  
19  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
tCLK  
tCLKL  
tCLKH  
CLKA  
CSA  
LOW  
HIGH  
WRA  
tENS  
tENH  
MBA  
tENS  
tENH  
ENA  
tDS  
FF  
tDH  
HIGH  
W1  
A0 - A35  
t
t
t
CLKH CLK tCLKL  
(1)  
SKEW1  
1
2
CLKB  
t
REF  
tREF  
EF  
FIFO Empty  
CSB  
LOW  
W/RB LOW  
SIZ1,  
SIZ0  
LOW  
tENS  
tENH  
ENB  
tA  
W1  
B0 -B35  
3145 drw10  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for EF to transition HIGH in the next CLKB cycle. If the time between the rising CLKA  
edge and rising CLKB edge is less than tSKEW1, then the transition of EF HIGH may occur one CLKB cycle later than shown.  
2. Port B size of long word is selected for the FIFO read by SIZ1 = LOW, SIZ0 = LOW. If port-B size is word or byte, EF is set LOW by the last word or byte read from the  
FIFO, respectively.  
Figure 10. EF Flag Timing and First Data Read when the FIFO is Empty  
20  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
tCLK  
tCLKL  
tCLKH  
CLKB  
CSB LOW  
W/RB LOW  
SIZ1,  
SIZ0  
LOW  
tENH  
tENS  
ENB  
EF HIGH  
tA  
Previous Word in FIFO Output Register  
Next Word From FIFO  
B0 -B35  
tCLK  
(1)  
SKEW1  
tCLKH  
t
tCLKL  
1
2
CLKA  
t
WFF  
t
WFF  
FF  
FIFO Full  
CSA  
LOW  
WRA HIGH  
tENS  
tENH  
MBA  
tENS  
tENH  
ENA  
tDS  
tDH  
A0 - A35  
To FIFO  
3145 drw11  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for EF to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge  
and rising CLKA edge is less than tSKEW1, then the transition of EF HIGH may occur one CLKA cycle later than shown.  
2. Port B size of long word is selected for the FIFO read by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte, tSKEW1 is referenced from the rising CLKB edge that reads  
the last word or byte of the long word, respectively.  
Figure 11. FF Flag Timing and First Available Write when the FIFO is Full  
CLKA  
tENH  
tENS  
ENA  
(1)  
SKEW2  
t
1
2
CLKB  
t
PAE  
t
PAE  
AE  
X Long Words in FIFO  
(X+1) Long Words in FIFO  
ENH  
t
t
ENS  
ENB  
3145 drw12  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AE to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge  
and rising CLKB edge is less than tSKEW2, then AE may transition HIGH one CLKB cycle later than shown.  
2. FIFO write (CSA = LOW, W/RA = HIGH, MBA = LOW), FIFO read (CSB = LOW, W/RB = LOW, MBB = LOW).  
3. Port B size of long word is selected for the FIFO read by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte, tSKEW2 is referenced to the last word or byte of the long  
word, respectively.  
Figure 12. Timing for AE when the FIFO is Almost-Empty  
21  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
(1)  
SKEW2  
t
1
2
CLKA  
tENH  
tENS  
ENA  
t
PAF  
t
PAF  
(64-X) Long Words in FIFO  
[64-(X+1)] Long Words in FIFO  
AF  
CLKB  
ENB  
t
ENH  
tENS  
3145 drw13  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AF to transition HIGH in the next CLKA cycle. If the time between the rising CLKA edge  
and rising CLKB edge is less than tSKEW2, then AF may transition HIGH one CLKB cycle later than shown.  
2. FIFO write (CSA = L0W, W/RA = HIGH, MBA = LOW), FIFO read (CSB = LOW, W/RB = LOW, MBB = LOW).  
3. Port-B size of long word is selected for FIFO read by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte, tSKEW2 is referenced from the last word or byte read of the  
long word, respectively.  
Figure 13. Timing for AF when the FIFO is Almost Full  
CLKA  
t
ENS  
t
ENH  
ENH  
CSA  
W/RA  
MBA  
tENS  
t
tENH  
t
ENS  
ENS  
t
tENH  
ENA  
A0 - A35  
CLKB  
tDH  
t
DS  
W1  
t
PMF  
t
PMF  
MBF1  
CSB  
W/RB  
SIZ1, SIZ0  
ENB  
tENH  
tENS  
t
PMR  
tEN  
tDIS  
t
MDV  
W1 (Remains valid in Mail1 Register after read)  
FIFO Output Register  
B0 - B35  
4661 drw14  
NOTE:  
1. Port-B parity generation off (PGB = LOW).  
Figure 14. Timing for Mail1 Register and MBF1 Flag  
22  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
CLKB  
t
ENS  
ENS  
t
ENH  
ENH  
CSB  
t
t
W/RB  
t
SZS  
t
SZH  
SIZ1,  
SIZ0  
tENS  
tENH  
ENB  
B0 - B35  
CLKA  
tDH  
t
DS  
W1  
t
PMF  
tPMF  
MBF2  
CSA  
W/RA  
MBA  
ENA  
tENH  
tENS  
tEN  
t
PMR  
tDIS  
W1 (Remains valid in Mail2 Register after read)  
A0 - A35  
3145 drw15  
NOTE:  
1. Port-A parity generation off (PGA = LOW).  
Figure 15. Timing for Mail2 Register and MBF2 Flag  
ODD/  
EVEN  
W/RA  
MBA  
PGA  
t
PEPE  
t
PEPE  
tPOPE  
tPOPE  
PEFA  
NOTE:  
Valid  
Valid  
Valid  
Valid  
3145 drw16  
1. CSA = LOW and ENA = HIGH.  
Figure 16. ODD/EVEN, W/RA, MBA, and PGA to PEFA Timing  
ODD/  
EVEN  
W/RB  
SIZ1,  
SIZ0  
PGB  
t
PEPE  
t
PEPE  
tPOPE  
tPOPE  
PEFB  
Valid  
Valid  
Valid  
Valid  
3145 drw17  
NOTE:  
1. CSB = LOW and ENB = HIGH.  
Figure 17. ODD/EVEN, W/RB, SIZ1, SIZ0, and PGB to PEFB Timing  
23  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
ODD/  
EVEN  
CSA  
LOW  
W/RA  
MBA  
PGA  
t
PEPB  
t
POPB  
tPEPB  
tEN  
A8, A17,  
A26, A35  
Generated Parity  
Mail2 Data  
Generated Parity  
Mail2 Data  
3145 drw18  
NOTE:  
1. ENA = HIGH.  
Figure 18. Parity Generation Timing when Reading from the Mail2 Register  
ODD/  
EVEN  
CSB  
LOW  
W/RB  
SIZ1,  
SIZ0  
PGB  
t
PEPB  
tMDV  
t
POPB  
tPEPB  
tEN  
B8, B17,  
B26, B35  
Generated Parity  
Generated Parity  
Mail1 Data  
3145 drw19  
Mail1  
Data  
NOTE:  
1. ENB = HIGH.  
Figure 19. Parity Generation Timing when Reading from the Mail1 Register  
24  
IDT723613 CMOS CLOCKED FIFO WITH  
BUS-MATCHING AND BYTE SWAPPING 64 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
PARAMETER MEASUREMENT INFORMATION  
5V  
1.1kΩ  
From Output  
Under Test  
30 pF (1)  
680Ω  
PROPAGATION DELAY  
LOAD CIRCUIT  
3 V  
3 V  
Timing  
Input  
1.5 V  
th  
High-Level  
1.5 V  
1.5 V  
Input  
GND  
1.5 V  
1.5 V  
GND  
tS  
tW  
3 V  
3 V  
1.5 V  
1.5 V  
Low-Level  
GND  
Input  
Data,  
Enable  
Input  
GND  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VOLTAGE WAVEFORMS  
PULSE DURATIONS  
3 V  
Output  
Enable  
1.5 V  
1.5 V  
tPZL  
GND  
tPLZ  
3 V  
3 V  
Input  
1.5 V  
1.5 V  
tPD  
1.5 V  
Low-Level  
Output  
GND  
V
OL  
tPD  
tPZH  
V
OH  
V
OH  
In-Phase  
Output  
1.5 V  
1.5 V  
High-Level  
Output  
1.5 V  
V
tPHZ  
OL  
OV  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
3145 drw20  
Figure 20. Load Circuit and Voltage Waveforms  
25  
ORDERINGINFORMATION  
IDT  
XXXXXX  
X
XX  
X
X
Device Type Power  
Speed  
Package  
Process/  
Temperature  
Range  
BLANK  
I(1)  
Commercial (0°C to +70°C)  
Industrial (40°C to +85°C)  
PF  
PQF  
Thin Quad Flat Pack (TQFP, PN120-1)  
Plastic Quad Flat Pack (PQFP, PQ132-1)  
Commercial Only  
Com’l & Ind’l  
15  
20  
Clock Cycle Time (tCLK)  
Speed in Nanoseconds  
L
Low Power  
723613  
64 x 36 SyncFIFO  
3145 drw21  
NOTE:  
1. Industrial temperature range product for 20ns speed grade is available as a standard device. All other speed grades are available by special order.  
DATASHEETDOCUMENTHISTORY  
03/05/2002  
pgs. 1, 6, 8, 9, 24 and 26.  
CORPORATE HEADQUARTERS  
for SALES:  
for Tech Support:  
2975StenderWay  
Santa Clara, CA 95054  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
e-mail:FIFOhelp@idt.com  
26  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY