IDT72605 [IDT]

CMOS SyncBiFIFOO 256 x 18 x 2 and 512 x 18 x 2; CMOS SyncBiFIFOO 256 ×18× 2和512 ×18× 2
IDT72605
型号: IDT72605
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

CMOS SyncBiFIFOO 256 x 18 x 2 and 512 x 18 x 2
CMOS SyncBiFIFOO 256 ×18× 2和512 ×18× 2

先进先出芯片
文件: 总20页 (文件大小:212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
IDT72605  
IDT72615  
Integrated Device Technology, Inc.  
FEATURES:  
DESCRIPTION:  
• Two independent FIFO memories for fully bidirectional  
data transfers  
• 256 x 18 x 2 organization (IDT 72605)  
• 512 x 18 x 2 organization (IDT 72615)  
• Synchronous interface for fast (20ns) read and write  
cycle times  
• Each data port has an independent clock and read/write  
control  
• Output enable is provided on each port as a three-state  
control of the data bus  
• Built-in bypass path for direct data transfer between two  
ports  
• Two fixed flags, Empty and Full, for both the A-to-B and  
the B-to-A FIFO  
• Programmable flag offset can be set to any depth in the  
FIFO  
The IDT72605 and IDT72615 are very high-speed, low-  
power bidirectional First-In, First-Out (FIFO) memories, with  
synchronous interface for fast read and write cycle times. The  
SyncBiFIFO  
is a data buffer that can store or retrieve  
information from two sources simultaneously. Two Dual-Port  
FIFO memory arrays are contained in the SyncBiFIFO; one  
data buffer for each direction.  
The SyncBiFIFO has registers on all inputs and outputs.  
Data is only transferred into the I/O registers on clock edges,  
hence the interfaces are synchronous. Each Port has its own  
independent clock. Data transfers to the I/O registers are  
gated by the enable signals. The transfer direction for each  
portiscontrolledindependentlybyaread/writesignal. Individ-  
ual output enable signals control whether the SyncBiFIFO is  
driving the data lines of a port or whether those data lines are  
in a high-impedance state.  
• The synchronous BiFIFO is packaged in a 64-pin TQFP  
(Thin Quad Flatpack), 68-pin PGA and 68-pin PLCC  
• Industrial temperature range (-40oC to +85oC) is avail-  
able, tested to military electrical specifications  
Bypass control allows data to be directly transferred from  
input to output register in either direction.  
The SyncBiFIFO has eight flags. The flag pins are full,  
empty, almost-full, and almost-empty for both FIFO memo-  
ries. The offset depths of the almost-full and almost-empty  
flags can be programmed to any location.  
The SyncBiFIFO is fabricated using IDT’s high-speed,  
submicron CMOS technology.  
FUNCTIONAL BLOCK DIAGRAM  
DA0-DA17  
ENA  
R/WA  
HIGH  
Z
CONTROL  
OEA  
INPUT REGISTER  
OUTPUT REGISTER  
MUX  
CLKA  
RESET  
LOGIC  
CSA  
A2  
RS  
µP  
A1  
INTERFACE  
A0  
EFAB  
PAEAB  
PAFAB  
FFAB  
MEMORY  
ARRAY  
512 x 18  
256 x 18  
MEMORY  
ARRAY  
512 x 18  
256 x 18  
EFBA  
FLAG  
LOGIC  
FLAG  
LOGIC  
PAEBA  
PAFBA  
FFBA  
3
7
POWER  
SUPPLY  
MUX  
VCC  
GND  
OUTPUT REGISTER  
INPUT REGISTER  
CLKB  
HIGH  
Z
CONTROL  
OEB  
R/WB  
ENB  
2704 drw 01  
BYPB  
DB0-DB17  
SyncBiFIFO is a trademark and the IDT logo is a registered trademark of Integrated Device Technology, Inc.  
COMMERCIAL TEMPERATURE RANGES  
DECEMBER 1996  
For latest information contact IDT's web site at www.idt.com or fax-on-demand at 408-492-8391.  
1996 Integrated Device Technology, Inc.  
DSC-2704/5  
5.18  
1
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
PIN CONFIGURATIONS  
11  
D
B3  
D
B4  
D
B5  
B6  
D
D
B7  
D
B9  
D
B11  
B12  
D
D
B13 GND  
B14 B15  
V
CC  
10  
D
B1  
DB2 GND  
D
B8 GND  
D
D
D
D
B16  
B17  
D
B10  
09 RS  
DB0  
OEA  
08 R/W  
B
CLK  
EN  
B
PAEAB PAFAB  
EFAB FFAB  
07 OE  
B
B
G68-1  
06 GND BYP  
B
05 PAEBA PAFBA  
04 EFBA FFBA  
A
A
2
0
VCC  
A1  
Pin 1 Designator  
EN  
A
CSA  
03  
02  
01  
D
D
A1  
A2  
D
D
D
A0  
CLKA R/WA  
A3 GND  
D
A6  
A7  
D
D
A8 GND  
D
A12  
D
A14  
DA16  
DA17  
D
D
A10  
A11  
A4  
D
A5  
D
A9  
VCC  
DA13 GND  
DA15  
A
B
C
D
E
F
H
J
K
L
G
2704 drw 02  
PGA  
Top View  
9 8 7 6 5 4 3 2  
686766656463 6261  
1
DA16  
DA17  
CLK A  
10  
60  
DA2  
DA1  
DA0  
EFBA  
FFBA  
PAEBA  
PAFBA  
GND  
BYPB  
OEB  
ENB  
R/WB  
CLKB  
RS  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
R/WA  
A
EN  
CSA  
A0  
A1  
A2  
VCC  
EFAB  
AB  
FF  
PAEAB  
AB  
PAF  
J68-1  
OEA  
DB17  
DB16  
DB0  
DB1  
DB2  
2728293031323334353637383940414243  
2704 drw 03  
PLCC  
Top View  
5.18  
2
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
PIN CONFIGURATIONS  
PIN 1  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
DA2  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DB3  
2
DB4  
DA3  
DA4  
DA5  
DA6  
DA7  
DA8  
DA9  
3
GND  
DB5  
4
5
DB6  
6
DB7  
DB8  
7
8
DB9  
PN64-1  
9
DB10  
DB11  
DB12  
DB13  
DB14  
GND  
DB15  
DB16  
GND  
VCC  
DA10  
DA11  
DA12  
DA13  
DA14  
DA15  
10  
11  
12  
13  
14  
15  
16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
2704 drw 04  
TQFP  
Top View  
5.18  
3
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
PIN DESCRIPTION  
Symbol  
Name  
I/O  
Description  
DA0-DA17 Data A  
I/O Data inputs & outputs for the 18-bit Port A bus.  
CSA  
Chip Select A  
I
I
Port A is accessed when CSA is LOW. Port A is inactive if CSA is HIGH.  
R/WA  
Read/Write A  
This pin controls the read or write direction of Port A. If R/WA is LOW, Data A input data is  
written into Port A. If R/WA is HIGH, Data A output data is read from Port A. In bypass mode,  
when R/WA is LOW, message is written into AB output register. If R/WA is HIGH, message  
is read from BA output register.  
CLKA  
ENA  
Clock A  
I
I
I
CLKA is typically a free running clock. Data is read or written into Port A on the rising edge of  
CLKA.  
Enable A  
When ENA is LOW, data can be read or written to Port A. When ENA is HIGH, no data  
transfers occur.  
OEA  
Output Enable A  
When R/WA is HIGH , Port A is an output bus and OEA controls the high-impedance state of  
DA0-DA17. If OEA is HIGH, Port A is in a high-impedance state. If OEA is LOW while CSA is  
LOW and R/WA is HIGH, Port A is in an active (low-impedance) state.  
A0, A1, A2 Addresses  
DB0-DB17 Data B  
I
When CSA is asserted, A0, A1, A2 and R/WA are used to select one of six internal resources.  
I/O Data inputs & outputs for the 18-bit Port B bus.  
R/WB  
Read/Write B  
I
This pin controls the read or write direction of Port B. If R/WB is LOW, Data B input data is  
written into Port B. If R/WB is HIGH, Data B output data is read from Port B. In bypass mode,  
when R/WB is LOW, message is written into BA output register. If R/WB is HIGH, message  
is read from AB output register.  
CLKB  
ENB  
Clock B  
I
I
I
Clock B is typically a free running clock. Data is read or written into Port B on the rising edge  
of CLKB.  
Enable B  
When ENB is LOW, data can be read or written to Port B. When ENB is HIGH, no data  
transfers occur.  
OEB  
Output Enable B  
When R/WB is HIGH , Port B is an output bus and OEB controls the high-impedance state of  
DB0-DB17. If OEB is HIGH, Port B is in a high-impedance state. If OEB is LOW while R/WB  
is HIGH, Port B is in an active (low-impedance) state.  
EFAB  
AB Empty Flag  
O
O
O
O
When EFAB is LOW, the AB FIFO is empty and further data reads from Port B are inhibited.  
When EFAB is HIGH, the FIFO is not empty. EFAB is synchronized to CLKB. In the bypass  
mode, EFAB HIGH indicates that data DA0-DA17 is available for passing through. After the  
data DB0-DB17 has been read, EFAB goes LOW.  
PAEAB  
PAFAB  
FFAB  
AB  
Programmable  
Almost-Empty Flag  
When PAEAB is LOW, the AB FIFO is almost empty. An almost empty FIFO contains less  
than or equal to the offset programmed into PAEAB Register. When PAEAB is HIGH, the  
AB FIFO contains more than offset in PAEAB Register. The default offset value for PAEAB  
Register is 8. PAEAB is synchronized to CLKB.  
AB  
Programmable  
Almost-Full Flag  
When PAFAB is LOW, the AB FIFO is almost full. An almost full FIFO contains greater than  
the FIFO depth minus the offset programmed into PAFAB Register. When PAFAB is HIGH,  
the AB FIFO contains less than or equal to the depth minus the offset in PAFAB Register.  
The default offset value for PAFAB Register is 8. PAFAB is synchronized to CLKA.  
AB Full Flag  
When FFAB is LOW, the AB FIFO is full and further data writes into Port A are inhibited.  
When FFAB is HIGH, the FIFO is not full. FFAB is synchronized to CLKA. In bypass mode,  
FFAB tells Port A that a message is waiting in Port B’s output register. If FFAB is LOW, a  
bypass message is in the register. If FFAB is HIGH, Port B has read the message and another  
message can be written into Port A.  
EFBA  
BA Empty Flag  
O
O
O
When EFBA is LOW, the BA FIFO is empty and further data reads from Port A are inhibited.  
When EFBA is HIGH, the FIFO is not empty. EFBA is synchronized to CLKA. In the bypass  
mode, EFBA HIGH indicates that data DB0-DB17 is available for passing through. After the  
data DA0-DA17 has been read, EFBA goes LOW on the following cycle.  
PAEBA  
PAFBA  
BA  
Programmable  
Almost-Empty Flag  
When PAEBA is LOW, the BA FIFO is almost empty. An almost empty FIFO contains less  
than or equal to the offset programmed into PAEBA Register. When PAEBA is HIGH, the  
BA FIFO contains more than offset in PAEBA Register. The default offset value for PAEBA  
Register is 8. PAEBA is synchronized to CLKA.  
BA  
Programmable  
Almost-Full Flag  
When PAFBA is LOW, the BA FIFO is almost full. An almost full FIFO contains greater than  
the FIFO depth minus the offset programmed into PAFBA Register. When PAFBA is HIGH,  
the BA FIFO contains less than or equal to the depth minus the offset in PAFBA Register.  
The default offset value for PAFBA Register is 8. PAFBA is synchronized to CLKB.  
2704 tbl 01  
5.18  
4
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
PIN DESCRIPTION (Continued)  
Symbol  
Name  
I/O  
Description  
FFBA  
BA Full Flag  
O
When FFBA is LOW, the BA FIFO is full and further data writes into Port B are inhibited.  
When FFBA is HIGH, the FIFO is not full. FFBA is synchronized to CLKB. In bypass mode,  
FFBA tells Port B that a message is waiting in Port A’s output register. If FFBA is LOW, a  
bypass message is in the register. If FFBA is HIGH, Port A has read the message and another  
message can be written into Port B.  
BYPB  
Port B Bypass  
Flag  
O
I
This flag informs Port B that the Synchronous BiFIFO is in bypass mode. When BYPB is  
LOW, Port A has placed the FIFO into bypass mode. If BYPB is HIGH, the Synchronous  
BiFIFO passes data into memory. BYPB is synchronized to CLKB.  
RS  
Reset  
A LOW on this pin will perform a reset of all Synchronous BiFIFO functions.  
VCC  
GND  
Power  
Ground  
There are three +5V power pins for the PLCC and PGA packages and two for the TQFP.  
There are seven ground pins for the PLCC and PGA packages and four for the TQFP.  
2704 tbl 02  
RECOMMENDED DC  
OPERATING CONDITIONS  
ABSOLUTE MAXIMUM RATINGS(1)  
Symbol  
Rating  
Com’l.  
Mil.  
Unit  
Symbol  
VCC  
Parameter  
Supply Voltage  
Min. Typ. Max. Unit  
VTERM Terminal Voltage  
with Respect  
–0.5 to +7.0 –0.5 to +7.0  
V
4.5 5.0  
5.5  
0
V
V
V
V
GND  
VIH  
VIL(1)  
Supply Voltage  
0
0
to Ground  
Input High Voltage  
Input Low Voltage  
2.0  
0.8  
TA  
Operating  
Temperature  
0 to +70  
–55 to +125 °C  
NOTE:  
2704 tbl 04  
TBIAS  
TSTG  
Temperature  
Under Bias  
–55 to +125 –65 to +135 °C  
–55 to +125 –65 to +150 °C  
1. 1.5V undershoots are allowed for 10ns once per cycle.  
Storage  
Temperature  
IOUT  
DC Output Current  
50  
50  
mA  
CAPACITANCE (TA = +25°C, F = 1.0MHz)  
NOTE:  
2704 tbl 03  
Symbol  
CIN(2)  
Parameter  
Conditions  
VIN = 0V  
Max. Unit  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-  
INGS may cause permanent damage to the device. This is a stress rating  
onlyandfunctionaloperationofthedeviceattheseoranyotherconditions  
abovethoseindicatedintheoperationalsectionsofthisspecificationisnot  
implied. Exposure to absolute maximum rating conditions for extended  
periods may affect reliability.  
Input Capacitance  
10  
10  
pF  
COUT(1,2) Output Capacitance  
NOTES:  
1. With output deselected.  
VOUT = 0V  
pF  
2704 tbl 05  
2. Characterized values, not currently tested.  
DC ELECTRICAL CHARACTERISTICS  
(Commercial: VCC = 5V ± 10%, TA = 0°C to +70°C)  
IDT72615L  
IDT72605L  
Commercial  
tCLK = 20, 25, 35, 50ns  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
(1)  
IIL  
Input Leakage Current (Any Input)  
Output Leakage Current  
–1  
–10  
2.4  
1
µA  
µA  
V
(2)  
IOL  
10  
VOH  
VOL  
Output Logic "1" Voltage IOUT = –2mA  
Output Logic "0" Voltage IOUT = 8mA  
Average VCC Power Supply Current  
0.4  
230  
V
(3)  
ICC  
mA  
2704 tbl 06  
NOTES:  
1. Measurements with 0.4V VIN VCC.  
2. OEA, OEB VIH; 0.4 VOUT VCC.  
3. Tested with outputs open. Testing frequency f=20MHz  
5.18  
5
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
+5V  
AC TEST CONDITIONS  
In Pulse Levels  
GND to 3.0V  
3ns  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.1K  
1.5V  
1.5V  
D.U.T.  
See Figure 2  
2704 tbl 07  
680Ω  
30pF*  
2704 drw 05  
or equivalent circuit  
Figure 2. Output Load  
* Includes jig and scope capacitances.  
AC ELECTRICAL CHARACTERISTICS  
(Commercial: VCC = 5V±10%, TA = 0°C to +70°C)  
Commercial  
72615L20  
72605L20  
72615L25  
72605L25  
72615L35  
72605L35  
72615L50  
72605L50  
Symbol  
Parameter  
Clock frequency  
Min.  
Max. Min. Max. Min. Max. Min.  
Max. Unit  
Timing Figures  
fCLK  
50  
27  
10  
25  
10  
10  
25  
15  
15  
3
40  
28  
15  
35  
14  
14  
35  
21  
21  
3
28  
35  
21  
50  
20  
20  
50  
30  
30  
3
20 MHz  
tCLK  
tCLKH  
tCLKL  
tRS  
Clock cycle time  
20  
8
50  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4,5,6,7  
Clock HIGH time  
4,5,6,7,12,13,14,15  
Clock LOW time  
8
4,5,6,7,12,13,14,15  
Reset pulse width  
20  
12  
12  
3
3
tRSS  
tRSR  
tRSF  
tA  
Reset set-up time  
3
Reset recovery time  
Reset to flags in intial state  
Data access time  
3
3
5,7,8,9,10,11  
tCS  
Control signal set-up time(1)  
6
6
8
10  
4,5,6,7,8,9,10,11,  
12, 13,14,15  
tCH  
Control signal hold time(1)  
1
1
1
1
ns  
4,5,6,7,10,11,12,  
13, 14,15  
tDS  
tDH  
tOE  
Data set-up time  
Data hold time  
6
1
3
10  
6
1
3
13  
8
1
3
20  
10  
1
28  
ns  
ns  
ns  
4,6,8,9,10,11  
4,6  
Output Enable LOW to  
output data valid(2)  
3
5,7,8,9,10,11  
tOLZ  
tOHZ  
Output Enable LOW to data  
bus at Low-Z(2)  
0
3
0
3
0
3
0
3
ns  
ns  
5,7,8,9,10,11  
5,7,10,11  
Output Enable HIGH to data  
bus at High-Z(2)  
10  
13  
20  
28  
tFF  
tEF  
Clock to Full Flag time  
10  
10  
12  
15  
15  
15  
21  
21  
21  
30  
30  
30  
ns  
ns  
ns  
4,6,10,11  
5,7,8,9,10,11  
12,14  
Clock to Empty Flag time  
tPAE  
Clock to Programmable  
Almost Empty Flag time  
tPAF  
tSKEW1  
tSKEW2  
NOTES:  
Clock to Programmable  
Almost Full Flag time  
10  
17  
12  
12  
19  
15  
17  
25  
21  
20  
34  
30  
ns  
ns  
ns  
13,15  
Skew between CLKA & CLKB  
for Empty/Full Flags(2)  
4,5,6,7,8,9,10,11  
4, 7,12,13,14,15  
Skew between CLKA & CLKB  
for Programmable Flags(2)  
2704 tbl 08  
1. Control signals refer to CSA, R/WA, ENA, A2, A1, A0, R/WB, ENB.  
2. Minimum values are guaranteed by design.  
5.18  
6
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
FUNCTIONAL DESCRIPTION  
RESET  
IDTs SyncBiFIFO is versatile for both multiprocessor and  
Reset is accomplished whenever the Reset (RS) input is  
peripheral applications. Data can be stored or retrieved from taken to a LOW state with CSA, ENA and ENB HIGH. During  
two sources simultaneously. reset, both internal read and write pointers are set to the first  
The SyncBiFIFO has registers on all inputs and outputs. location. A reset is required after power up before a write  
Data is only transferred into the I/O registers on clock edges, operation can take place. The AB and BA FIFO Empty  
hence the interfaces are synchronous. Two Dual-Port FIFO Flags (EFAB, EFBA) and Programmable Almost Empty Flags  
memory arrays are contained in the SyncBiFIFO; one data (PAEAB, PAEBA) will be set to LOW after tRSF. The AB and  
buffer for each direction. Each port has its own independent BAFIFOFullFlags(FFAB, FFBA)andProgrammableAlmost  
clock. Data transfers to the I/O registers are gated by the Full Flags (PAFAB, PAFBA) will be set to HIGH after tRSF. After  
enable signals. The transfer direction for each port is con- the reset, the offsets of the Almost-Empty Flags and Almost-  
trolled independently by a read/write signal. Individual output Full Flags for the AB and BA FIFO offset default to 8.  
enable signals control whether the SyncBiFIFO is driving the  
data lines of a port or whether those data lines are in a high-  
impedance state. The processor connected to Port A of the  
PORT A INTERFACE  
The SyncBiFIFO is straightforward to use in micro-pro-  
BiFIFO can send or receive messages directly to the Port B  
cessor-based systems because each port has a standard  
device using the 18-bit bypass path.  
microprocessor control set. Port A interfaces with micropro-  
cessorthroughthethreeaddresspins(A2-A0)andaChipSelect  
TheSyncBiFIFOcanbeusedinmultiplesof18-bits.Ina36-  
to 36-bit configuration, two SyncBiFIFOs operate in parallel.  
CSA pins. WhenCSA isasserted,A2,A1,A0 andR/WA areused  
Both devices are programmed simultaneously, 18 data bits to  
to select one of six internal resources (Table 1).  
each device. This configuration can be extended to wider bus  
With A2=0 and A1=0, A0 determines whether data can be  
widths (54- to 54-bits, 72- to 72-bits, etc.) by adding more  
read out of output register or be written into the FIFO (A0=0),  
SyncBiFIFOs to the configuration. Figure 1 shows multiple  
or the data can pass through the FIFO through the bypass  
SyncBiFIFOs configured for multiprocessor communication.  
path (A0=1).  
The microprocessor or microcontroller connected to Port A  
controls all operations of the SyncBiFIFO. Thus, all Port A  
interface pins are inputs driven by the controlling processor.  
Port B interfaces with a second processor. The Port B control  
With A2=1, four programmable flags (two AB FIFO pro-  
grammable flags and two BA FIFO programmable flags)  
can be selected: the AB FIFO Almost-Empty Flag Offset  
(A1=0,A0=0),ABFIFOAlmost-FullFlagOffset(A1=0,A0=1),  
pins are inputs driven by the second processor.  
BAFIFOAlmost-EmptyFlagOffset(A1=1,A0=0),BAFIFO  
Almost-Full Flag Offset (A1=1, A0=1).  
Port A is disabled when CSA is deasserted and data A is in  
high-impedance state.  
IDT  
SYNCBIFIFO  
DATA A  
CLK  
DATA B  
CLK  
CLK  
A
B
CLK  
CONTROL A CONTROL B  
MICROPROCESSOR  
A
MICROPROCESSOR  
B
DATA  
DATA  
IDT  
SYNCBIFIFO  
CONTROL  
LOGIC  
CONTROL  
LOGIC  
ADDR, I/0  
ADDR, I/0  
DATA A  
CLK  
CONTROL A CONTROL B  
DATA B  
A
CLK  
B
RAM A  
RAM B  
SYSTEM  
CLOCK A  
SYSTEM  
CLOCK B  
2704 drw 06  
NOTES:  
1. Upper SyncBiFIFO only is used in 18- to 18-bit configuration.  
2. Control A Consists of R/WA, ENA, OEA, CSA, A2, A1, A0. Control B consists of R/WB, ENB, OEB.  
Figure 1. 36- to 36-bit Processor Interface Configuration.  
5.18  
7
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
Data A  
I/O  
A
CS  
R/  
A
W
A
EN  
A
OE  
Port A Operation  
0
0
0
0
I
Data A is written on CLKA . This write cycle immediately following  
low-impedance cycle is prohibited. Note that even though OEA = 0, a  
LOW logic level on R/WA, once qualified by a rising edge on CLKA, will  
put Data A into a high-impedance state.  
0
0
0
0
0
1
0
1
0
1
X
0
I
I
Data A is written on CLKA ≠  
Data A is ignored  
Data is read(1) from RAM array to output register on CLKA ,  
O
Data A is low-impedance  
0
1
0
1
O
Data is read(1) from RAM array to output register on CLKA ,  
Data A is high-impedance  
0
1
1
0
1
1
1
0
1
O
O
I
Output register does not change(2), Data A is low-impedance  
Output register does not change(2), Data A is high-impedance  
Data A is ignored(3)  
0
1
1
X
X
X
X
O
Data A is high-impedance(3)  
2704 tbl 09  
NOTES:  
1. When A2A1A0 = 000, the next BA FIFO value is read out of the output register and the read pointer advances. If A2A1A0 = 001, the bypass path is  
selected and bypass data from the Port B input register is read from the Port A output register. If A2A1A00 = 1XX, a flag offset register is selected  
and its offset is read out through Port A output register.  
2. Regardless of the condition of A2A1A0, the data in the Port A output register does not change and the BA read pointer does not advance.  
3. If CSA# is HIGH, then BYPB is HIGH. No bypass occur under this condition.  
Table 1. Port A Operation Control Signals  
BYPASS PATH  
data is read into the Port B output register. OEB still controls  
whetherPortBisinahigh-impedancestate. WhenOEBisLOW,  
theoutputregisterdataappearsatDB0-DB17. EFABgoesLOW  
following theCLKB rising edge for this read. FFAB goes HIGH  
on the next CLKA rising edge, letting Port A know that another  
word can be written through the bypass path.  
BypassdatatransfersfromPortBtoPortAworkinasimilar  
manner with EFBA and FFBA indicating the Port A output  
register state.  
When the Port A address changes from bypass mode  
(A2A1A0=001)toFIFOmode(A2A1A0=000)ontherisingedge  
of CLKA, the data held in the Port B output register may be  
overwritten. Unless Port A monitors the BYPB pin and waits  
forPortBtoclockoutthelastbypassword, datafromtheAB  
FIFOwilloverwritedatainthePortBoutputregister. BYPB will  
go HIGH on the rising edge of CLKB signifying that Port B has  
finished its last bypass operation. Port B must read any  
bypass data in the output register on this last CLKB clock or it  
is lost and the SyncBiFIFO returns to FIFO operations. It is  
especially important to monitor BYPB when CLKB is much  
slower than CLKA to avoid this condition. BYPB will also go  
HIGH after CSA is brought HIGH; in this manner the Port B  
bypass data may also be lost.  
The bypass paths provide direct communication between  
Port A and Port B. There are two full 18-bit bypass paths, one  
in each direction. During a bypass operation, data is passed  
directly between the input and output registers, and the FIFO  
memory is undisturbed.  
Port A initiates and terminates all bypass operations. The  
bypass flag, BYPB, is asserted to inform Port B that a bypass  
operation is beginning. The bypass flag state is controlled by  
the Port A controls, although the BYPB signal is synchronized  
to CLKB. So, BYPB is asserted on the next rising edge ofCLKB  
when A2A1A0=001and CSA is LOW. When Port A returns to  
normal FIFO mode (A2A1A0=000 or CSA is HIGH), BYPB is  
deasserted on the next CLKB rising edge.  
Once the SyncBiFIFO is in bypass mode, all data transfers  
arecontrolledbythestandardPortA(R/WA, CLKA, ENA, OEA)  
and Port B (R/WB, CLKB, ENB, OEB) interface pins. Each  
bypass path can be considered as a one word deep FIFO.  
Data is held in each input register until it is read. Since the  
controls of each port operate independently, Port A can be  
readingbypassdataatthesametimePortBisreadingbypass  
data.  
When R/WA and ENA is LOW, data on pins DA0-DA17 is  
written into Port A input register. Following the rising edge of  
CLKA for this write, the AB Full Flag (FFAB) goes LOW.  
Subsequent writes into Port A are blocked by internal logic  
until FFAB goes HIGH again. On the next CLKB rising edge,  
the AB Empty Flag (EFAB) goes HIGH indicating to Port B  
that data is available. Once R/WB is HIGH and ENB is LOW,  
Since the Port A processor controls CSA and the bypass  
mode,thisscenariocanbehandledforBAbypassdata. The  
Port A processor must be set up to read the last bypass word  
before leaving bypass mode.  
5.18  
8
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
PROGRAMMABLE FLAGS  
A
A2  
0
A1  
0
A0  
0
Read  
Write  
CS  
0
0
0
BA FIFO AB FIFO  
TheIDTSyncBiFIFOhaseightflags:four flagsforABFIFO  
(EFAB, PAEAB, PAFAB, FFAB), and four flags for BA FIFO  
(EFBA, PAEBA, PAFBA, FFBA). The Empty and Full flags are  
fixed, while the Almost Empty and Almost Full offsets can be  
set to any depth through the Flag Offset Registers (see Table  
3). The flags are asserted at the depths shown in the Flag  
Truth Table (Table 4). After reset, the programmable flag  
offsets are set to 8. This means the Almost Empty flags are  
asserted at Empty +8 words deep, and the Almost Full flags  
are asserted at Full -8 words deep.  
The PAEAB is synchronized to CLKB, while PAEAB is syn-  
chronizedtoCLKA;andPAEBA issynchronizedtoCLKA, while  
PAEBA is synchronized toCLKB. If the minimum time (tSKEW2)  
between a rising CLKB and a rising CLKA is met, the flag will  
change state on the current clock; otherwise, the flag may not  
change state until the next clock rising edge. For the specific  
flag timings, refer to Figures 12-15.  
0
0
1
18-bit Bypass Path  
1
0
0
AB FIFO Almost-Empty  
Flag Offset  
0
0
0
1
1
1
1
X
0
1
1
X
1
0
1
X
AB FIFO Almost-Full  
Flag Offset  
BA FIFO Almost-Empty  
Flag Offset  
BA FIFO Almost-Full  
Flag Offset  
Port A Disabled  
2704 tbl 10  
Table 2. Accessing Port A Resources Using  
A, A2, A1, and A0.  
CS  
PORT A CONTROL SIGNALS  
The Port A control signals pins dictate the various opera-  
tions shown in Table 2. Port A is accessed whenCSA is LOW,  
and is inactive if CSA is HIGH. R/WA and ENA lines determine  
whenDataAcanbewrittenorread. IfR/WA andENAareLOW,  
PORT B CONTROL SIGNALS  
ThePortBcontrolsignalpinsdictatethevariousoperations  
dataiswrittenintoinputregisterontheLOW-to-HIGHtransition shown in Table 5. Port B is independent of CSA. R/WB and  
of CLKA. If R/WA is HIGH and OEA is LOW, data comes out ENB lines determine when Data can be written or read in Port  
of bus and is read from output register into three-state buffer. B. IfR/WB andENB areLOW, dataiswrittenintoinputregister,  
Refer to pin descriptions for more information.  
and on LOW-to-HIGH transition of CLKB data is written into  
17  
X
16  
X
15  
X
14  
X
13  
X
12  
X
11  
X
10  
X
9
8
8
8
8
7
6
5
4
3
2
1
0
0
0
PAEAB Register  
PAFAB Register  
PAEBA Register  
X
AB FIFO Almost-Empty Flag Offset  
17  
X
16  
X
15  
X
14  
X
13  
X
12  
X
11  
X
10  
X
9
7
7
6
5
4
3
2
1
1
X
AB FIFO Almost-Full Flag Offset  
17  
X
16  
X
15  
X
14  
X
13  
X
12  
X
11  
X
10  
X
9
6
5
4
3
2
X
BA FIFO Almost-Empty Flag Offset  
17  
X
16  
X
15  
X
14  
X
13  
X
12  
X
11  
X
10  
X
9
7
6
5
4
3
2
1
0
PAFBA Register  
X
BA FIFO Almost-Full Flag Offset  
2704 tbl 11  
NOTE:  
1. Bit 8 must be set to 0 for the IDT72605 (256 x 18) Synchronous BiFIFO.  
Table 3. Flag Offset Register Format.  
Number of Words  
in FIFO  
From  
To  
EF  
PAE  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
PAF  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
FF  
0
0
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
1
n
D-(m+1)  
D-1  
n+1  
D-m  
D
D
NOTES:  
2704 tbl 12  
n = Programmable Empty Offset (PAEAB Register or PAEBA Register)  
m = Programmable Full Offset (PAFAB Register or PAFBA Register)  
D = FIFO Depth (IDT72605 = 256 words, IDT72615= 512 words)  
Table 4. Internal Flag Truth Table.  
5.18  
9
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
inputregisterandtheFIFOmemory. IfR/WB isHIGHandOEB  
isLOW, datacomesoutofbusandisreadfromoutputregister  
into three-state buffer. In bypass mode, if R/WB is LOW,  
bypass messages are transferred into BA output register. If  
R/WA is HIGH, bypass messages are transferred into AB  
outputregister. Refertopindescriptionsformoreinformation.  
Data B  
R/  
B
W
B
EN  
B
OE  
I/O  
Port B Operation  
0
0
0
I
Data B is written on CLKB . This write cycle immediately following output low-  
impedance cycle is prohibited. Note that even though OEB = 0, a LOW logic level on  
R/WB, once qualified by a rising edge on CLKB, will put Data B into a high-impedance  
state.  
0
0
1
0
1
0
1
X
0
I
I
Data B is written on CLKB .  
Data B is ignored  
O
Data is read(1) from RAM array to output register on CLKB , Data B is LOW  
impedance  
1
0
1
O
Data is read(1) from RAM array to output register on CLKB , Data B is HIGH  
impedance  
1
1
1
1
0
1
O
O
Output register does not change(2), Data B is low-impedance  
Output register does not change(2), Data B is high-impedance  
2704 tbl 13  
NOTES:  
1. When A2A1A0 = 000 or 1XX, the next AB FIFO value is read out of the output register and the read pointer advances. If A2A1A0 = 001, the bypass  
path is selected and bypass data is read from the Port B output register.  
2. Regardless of the condition of A2A1A0, the data in the Port B output register does not change and the AB read pointer does not advance.  
Table 5. Port B Operation Control Signals.  
5.18  
10  
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
tRS  
RS  
tRSF  
EFAB,  
PAEAB,  
EFBA,  
PAEBA  
tRSF  
EFAB,  
PAEAB,  
EFBA,  
PAEBA  
tRSS  
tRSR  
CSA,  
ENA,  
EN B  
2704 drw 07  
Figure 3. Reset Timing  
tCLK  
tCLKH  
tCLKL  
CLKA  
A0 , A1, A2,  
R/WA  
CSA  
tCS  
tCH  
NO OPERATION  
ENA  
tFF  
tFF  
FFAB  
DA0-DA17  
CLKB  
tDS  
tDH  
tSKEW1  
DATA IN VALID  
READ  
NO READ  
OPERATION  
2704 drw 08  
Figure 4. Port A (AB) Write Timing  
5.18  
11  
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
tCLK  
tCLKH  
tCLKL  
CLKA  
A0, A1, A2 ,  
R/WA  
CSA  
tCS  
tCH  
tEF  
tA  
NO OPERATION  
ENA  
EFBA  
tEF  
DA0-DA17  
VALID DATA  
tOHZ  
tOLZ  
tOE  
OEA  
tSKEW1  
CLKB  
NO WRITE  
WRITE  
2704 drw 09  
Figure 5. Port A (BA) Read Timing  
tCLK  
tCLKH  
tCLKL  
CLKB  
R/WB  
tCS  
tCH  
NO OPERATION  
ENB  
tFF  
tFF  
FFBA  
tDS  
tDH  
DB0-DB17  
CLKA  
tSKEW1  
DATA IN VALID  
READ  
NO READ  
OPERATION  
2704 drw 10  
Figure 6. Port B (BA) Write Timing  
5.18  
12  
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
tCLK  
tCLKH  
tCLKL  
CLKB  
R/WB  
tCS  
tCH  
tEF  
tA  
NO OPERATION  
ENB  
EFAB  
tEF  
DB0-DB17  
VALID DATA  
tOHZ  
tOLZ  
tOE  
OEB  
tSKEW1  
CLKA  
NO WRITE  
OPERATION  
WRITE  
2704 drw 11  
Figure 7. Port B (AB) Read Timing  
5.18  
13  
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLKA  
A0, A1, A2 ,  
R/WA  
tCS  
CSA , EN  
A
tDS  
DA0-DA17  
D0 (First valid write)  
D1  
D2  
D3  
tFRL  
(1)  
tSKEW1  
CLKB  
R/WB  
ENB  
tCS  
tEF  
EFAB  
tA  
tA  
DB0-DB17  
D0  
D1  
tOLZ  
tOE  
OEB  
2704 drw 12  
NOTE:  
1. When tSKEW1 minimum specification, tFRL(Max.) = tCLK + tSKEW1  
tSKEW1 < minimum specification, tFRL(Max.) = 2tCLK + tSKEW1 or tCLK + tSKEW1  
The Latency Timing applies only at the Empty Boundary (EF = LOW).  
Figure 8. AB First Data Word Latency after Reset for Simultaneous Read and Write  
5.18  
14  
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLK  
R/W  
EN  
B
B
B
t
CS  
t
DS  
DB0-DB17  
D0  
(First valid write)  
D1  
D2  
D3  
tFRL  
tSKEW1  
(1)  
CLK  
A
A0, A1 , A2,  
R/WA  
tCS  
CSA , EN  
A
t
EF  
EFBA  
t
A
tA  
DA0-DA17  
D0  
D1  
t
OLZ  
t
OE  
OE  
A
2704 drw 13  
NOTE:  
1. When tSKEW1 minimum specification, tFRL(Max.) = tCLK + tSKEW1  
tSKEW1 < minimum specification, tFRL(Max.) = 2tCLK + tSKEW1  
The Latency Timing apply only at the Empty Boundary (EF = LOW).  
Figure 9. BA First Data Word Latency after Reset for Simultaneous Read and Write  
5.18  
15  
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLKA  
A0, A1, A2 ,  
R/WA  
tCS  
A2, A1 , A0 , = 001  
tCH  
CSA  
tCS  
tCH  
ENA  
tFF  
tFF  
tFF  
BYPASS FLAG  
FIFO FLAG  
FFAB  
tDS  
DA0-DA17  
DATA INPUT  
tSKEW1  
tSKEW1  
tSKEW1  
CLKB  
R/WB  
ENB  
tCS  
tEF  
tEF  
tEF  
FIFO FLAG  
BYPASS FLAG  
FIFO FLAG  
EFAB  
BYPB  
tA  
DB0-DB17  
DATA OUTPUT  
tOLZ  
tOE  
tOHZ  
OEB  
2704 drw 14  
NOTES:  
1. When CSA is brought HIGH, AB Bypass mode will switch to FIFO mode on the following CLKA LOW-to-HIGH transition.  
2. After the bypass operation is completed, the BYPB goes from LOW-to-HIGH; this will reset all bypass flags. The bypass path becomes available for  
the next bypass operation.  
3. When A-side changed from bypass mode into FIFO mode, B-side only has one cycle to read the bypass data. On the next cycle, B-side will be  
forced back to FIFO mode.  
Figure 10. AB Bypass Timing  
5.18  
16  
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLK  
R/W  
EN  
B
B
B
tCS  
tCH  
FIFO FLAG  
tFF  
t
FF  
t
FF  
t
FF  
FFBA  
BYPASS FLAG  
BYP  
B
t
DS  
DATA INPUT  
D
B0-DB17  
tSKEW1  
tSKEW1  
tSKEW1  
tSKEW1  
CLK  
A
tCS  
tCS  
A
2
, A1 , A0 , = 001  
A0  
, A  
1
, A2,  
tCS  
CS  
A
A
A
R/W  
EN  
tCS  
t
EF  
tEF  
tEF  
tEF  
FIFO FLAG  
BYPASS FLAG  
FIFO FLAG  
EFBA  
tA  
DATA OUTPUT  
D
A0-DA17  
tOLZ  
t
OE  
tOHZ  
OE  
A
2704 drw 15  
NOTES:  
1. When CSA is brought HIGH, AB Bypass mode will switch to FIFO mode on the following CLKA going LOW-to-HIGH.  
2. After the bypass operation is completed, the BYPB goes from LOW-to-HIGH; this will reset all bypass flags. The bypass path becomes available for  
the next bypass operation.  
3. When A-side changed from bypass mode into FIFO mode, B-side only has one cycle to read the bypass data. On the next cycle, B-side will be  
forced back to FIFO mode.  
Figure 11. BA Bypass Timing  
5.18  
17  
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
tCLKH  
tCLKL  
tCS  
CLKA  
tCH  
ENA  
(R/WA = 0)  
n+1 words in FIFO  
WRITE  
n words in FIFO  
PAEAB  
CLKB  
(1)  
tSKEW2  
tPAE  
tPAE  
(2)  
tCS  
tCH  
ENA  
(R/WB = 1)  
2704 drw 16  
READ  
NOTES:  
1. tSKEW2 the minimum time between a rising CLKA edge and a rising CLKB edge for PAEAB to change during that clock cycle. If the time between the  
rising edge of CLKA and the rising edge of CLKB is less than tSKEW, then PAEAB may not go HIGH until the next CLKB rising edge.  
2. If a read is performed on this rising edge of the read clock, there will be Empty + (n + 1) words in the FIFO when PAE goes LOW.  
Figure 12. AB Programmable Almost-Empty Flag Timing  
tCLKH  
tCLKL  
tCS  
(2)  
CLKA  
tCH  
ENA  
(R/W A = 0)  
WRITE  
Full - (m+1) words in FIFO  
Full - m words in FIFO  
PAFAB  
CLKB  
tPAF  
tPAF  
tCH  
tCS  
ENB  
(R/W B = 1)  
2704 drw 17  
READ  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for PAFAB to change during that clock cycle. If the time between the  
rising edge of CLKB and the rising edge of CLKA is less than tSKEW2, then PAFAB may not go HIGH until the next CLKA rising edge.  
2. If a write is performed on this rising edge of the write clock, there will be Full - (m + 1) words in the FIFO when PAF goes LOW.  
Figure 13. AB Programmable Almost-Full Flag Timing  
5.18  
18  
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
t
CLKH  
tCLKL  
CLK  
B
B
t
CS  
tCH  
EN  
(R/W  
A = 0)  
WRITE  
n words in FIFO  
n+1 words in FIFO  
PAEBA  
(1)  
tSKEW2  
tPAE  
tPAE  
(2)  
CLK  
EN  
A
A
t
CS  
tCH  
2704 drw 18  
(R/WA = 1)  
READ  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for PAEBA to change during that clock cycle. If the time between the  
rising edge of CLKB and the rising edge of CLKA is less than tSKEW2, then PAEBA may not go HIGH until the next CLKA rising edge.  
2. If a read is performed on this rising edge of the read clock, there will be Empty + (n - 1) words in the FIFO when PAE goes LOW.  
Figure 14. BA Programmable Almost-Empty Flag Timing  
tCLKH  
tCLKL  
tCS  
(2)  
CLKB  
tCH  
ENB  
(R/WA = 0)  
WRITE  
Full - (m+1) words in FIFO  
Full - m words in FIFO  
PAFBA  
CLKA  
(1)  
tPAF  
tSKEW2  
tPAF  
tCS  
tCH  
ENA  
(R/WA = 1)  
READ  
2704 drw 19  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for PAFBA to change during that clock cycle. If the time between the  
rising edge of CLKB and the rising edge of CLKA is less than tSKEW2, then PAFBA may not go HIGH until the next CLKA rising edge.  
2. If a write is performed on this rising edge of the write clock, there will be Full - (m + 1) words in the FIFO when PAF goes LOW.  
Figure 15. BA Programmable Almost-Full Flag Timing  
5.18  
19  
IDT72605/IDT72615 CMOS SyncBiFIFO  
256 x 18 x 2 and 512 x 18 x 2  
COMMERCIAL TEMPERATURE RANGE  
ORDERING INFORMATION  
IDT  
XXXXX  
Device Type Power Speed Package Process/  
Temperature  
Range  
X
XX  
X
X
BLANK Commercial (0°C to +70°C)  
G
J
PF  
68-pin PGA  
68-pin PLCC  
64-pin TQFP  
20  
25  
35  
50  
Clock Cycle Time (t CLK) in ns  
L
Low Power  
72605  
72615  
256 x 18 Parallel Synchronous Bidirectional FIFO  
512 x 18 Parallel Synchronous Bidirectional FIFO  
2704 drw 20  
5.18  
20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY