IDT72T20108L10BBI [IDT]

2.5 VOLT HIGH-SPEED TeraSync? DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATION; 2.5 VOLT HIGH -SPEED TeraSync ™ DDR / SDR FIFO 20位/ 10位配置
IDT72T20108L10BBI
型号: IDT72T20108L10BBI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

2.5 VOLT HIGH-SPEED TeraSync? DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATION
2.5 VOLT HIGH -SPEED TeraSync ™ DDR / SDR FIFO 20位/ 10位配置

先进先出芯片 双倍数据速率
文件: 总51页 (文件大小:478K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5VOLTHIGH-SPEEDTeraSyncDDR/SDRFIFO20-BIT/10-BITCONFIGURATION  
32,768 x 20/65,536 x 10, 65,536 x 20/131,072 x 10  
131,072 x 20/262,144 x 10, 262,144 x 20/524,288 x 10  
IDT72T2098, IDT72T20108  
IDT72T20118, IDT72T20128  
Programmable Almost-Empty and Almost-Full flags, each flag  
can default to one of four preselected offsets  
Dedicated serial clock input for serial programming of flag offsets  
User selectable input and output port bus sizing  
-x20 in to x20 out  
-x20 in to x10 out  
-x10 in to x20 out  
-x10 in to x10 out  
Auto power down minimizes standby power consumption  
Master Reset clears entire FIFO  
FEATURES:  
Choose among the following memory organizations:  
IDT72T2098  
IDT72T20108  
IDT72T20118  
IDT72T20128  
32,768 x 20/65,536 x 10  
65,536 x 20/131,072 x 10  
131,072 x 20/262,144 x 10  
262,144 x 20/524,288 x 10  
Up to 250MHz Operation of Clocks  
-4ns read/write cycle time, 3.2ns access time  
Users selectable input port to output port data rates, 500Mb/s  
Data Rate  
Partial Reset clears data, but retains programmable settings  
Empty and Full flags signal FIFO status  
Select IDT Standard timing (using EF and FF flags) or First  
Word Fall Through timing (using OR and IR flags)  
Output enable puts data outputs into High-Impedance state  
JTAG port, provided for Boundary Scan function  
208 Ball Grid array (PBGA), 17mm x 17mm, 1mm pitch  
Easily expandable in depth and width  
Independent Read and Write Clocks (permit reading and writing  
simultaneously)  
High-performance submicron CMOS technology  
Industrial temperature range (-40°C to +85°C) is available  
-DDR to DDR  
-DDR to SDR  
-SDR to DDR  
-SDR to SDR  
User selectable HSTL or LVTTL I/Os  
Read Enable & Read Clock Echo outputs aid high speed operation  
2.5V LVTTL or 1.8V, 1.5V HSTL Port Selectable Input/Ouput voltage  
3.3V Input tolerant  
Mark & Retransmit, resets read pointer to user marked position  
Write Chip Select (WCS) input enables/disables Write  
Operations  
Read Chip Select (RCS) synchronous to RCLK  
FUNCTIONALBLOCKDIAGRAM  
D0 -Dn (x20, x10)  
SREN SEN  
SCLK  
WCLK  
WSDR  
WEN  
WCS  
SI  
SO  
INPUT REGISTER  
OFFSET REGISTER  
FF/IR  
PAF  
EF/OR  
PAE  
WRITE CONTROL  
LOGIC  
FLAG  
LOGIC  
FWFT  
FSEL0  
FSEL1  
RAM ARRAY  
WRITE POINTER  
32,768 x 20 or 65,536 x 10  
65,536 x 20 or 131,072 x 10  
131,072 x 20 or 262,144 x 10  
262,144 x 20 or 524,288 x 10  
READ POINTER  
BUS  
IW  
OW  
CONFIGURATION  
RT  
READ  
CONTROL  
LOGIC  
MARK  
RSDR  
MRS  
PRS  
OUTPUT REGISTER  
RESET  
LOGIC  
TCK  
TRST  
TMS  
TDO  
JTAG CONTROL  
(BOUNDARY SCAN)  
RCLK  
REN  
RCS  
TDI  
Vref  
HSTL I/0  
CONTROL  
EREN  
OE  
5996 drw01  
HSTL  
Q0 -Qn (x20, x10)  
ERCLK  
IDTandtheIDTlogoareregisteredtrademarksofIntegratedDeviceTechnology,Inc.TheTeraSyncisatrademarkofIntegratedDeviceTechnology,Inc.  
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES  
DECEMBER 2003  
1
2003 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
DSC-5996/8  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
PINCONFIGURATIONS  
A1 BALL PAD CORNER  
A
V
CC  
V
CC  
DNC  
DNC  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
GND  
GND  
GND  
GND  
GND  
Q1  
Q0  
Q3  
Q2  
Q5  
Q4  
Q7  
Q6  
Q9  
V
DDQ  
VDDQ  
B
C
D
E
F
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
HSTL GND  
Q8  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
VCC  
VCC  
GND  
GND  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DNC  
DNC  
DNC  
VCC  
VCC  
VCC  
VCC  
V
DDQ  
VDDQ  
VDDQ  
VDDQ  
TRST  
TDO  
PAF  
DNC  
TCK  
TDI  
GND  
VDDQ MARK  
DNC  
DNC  
RCS  
RT  
REN  
TMS  
VDDQ  
VDDQ  
G
H
J
OE  
WCLK  
WEN  
MRS  
FWFT  
WCS  
VDDQ  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDQ  
RCLK  
FF/IR  
VDDQ  
VDDQ  
SCLK  
SI  
SEN  
SREN  
FSEL1 FSEL0 GND  
VDDQ  
K
L
PRS  
EREN  
IW  
DNC  
V
CC  
GND  
GND  
GND  
GND  
GND  
GND  
V
DDQ  
SO  
WSDR RSDR  
PAE  
DNC  
DNC  
DNC  
DNC  
OW  
VCC  
V
DDQ  
ERCLK  
DNC  
M
N
P
R
T
EF  
/
OR  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
VCC  
VDDQ  
DNC  
D18  
D19  
VCC  
V
CC  
V
CC  
VCC  
GND  
GND  
GND  
GND  
8
GND  
GND  
GND  
GND  
9
VDDQ  
V
DDQ  
V
DDQ  
VDDQ  
DNC  
DNC  
Q11  
Q10  
14  
DNC  
DNC  
DNC  
GND  
D16  
D17  
4
V
CC  
D14  
D15  
5
V
CC  
D12  
D13  
6
VCC  
VDDQ  
V
DDQ  
V
DDQ  
Q15  
Q14  
12  
VDDQ  
D10  
D11  
7
Q19  
Q18  
10  
Q17  
Q13  
Q12  
13  
VCC  
VCC  
Q16  
VDDQ  
VDDQ  
VREF  
1
2
3
11  
15  
16  
5996 drw02  
NOTE:  
1. DNC - Do Not Connect.  
PBGA: 1mm pitch, 17mm x 17mm (BB208-1, order code: BB)  
TOP VIEW  
2
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
Boththeinputandoutputport canbeselectedforeither2.5V LVTTL orHSTL  
operation. ThiscanbeachievedbytyingtheHSTLsignalLOWforLVTTLor  
HIGHforHSTLvoltageoperation. WhenthereadportissetupforHSTLmode,  
theReadChipSelect(RCS)inputalsohasthebenefitofdisablingthereadport  
inputs,providingadditionalpowersavings.  
DESCRIPTION:  
TheIDT72T2098/72T20108/72T20118/72T20128areexceptionallydeep,  
extremelyhighspeed,CMOSFirst-In-First-Out(FIFO)memorieswiththeability  
toreadandwritedataonbothrisingandfallingedgesofclock. Thedevicehas  
aflexiblex20/x10Bus-MatchingmodeandtheoptiontoselectSingleorDouble  
Dataclockratesforinputandoutputports. TheseFIFOsofferseveralkeyuser  
benefits:  
Flexible x20/x10 Bus-Matching on both read and write ports  
Abilitytoreadandwrite onbothrisingandfallingedges ofa clock  
UserselectableSingleorDoubleDataRateofinputandoutputports  
AuserselectableMARKlocationforretransmit  
User selectable I/O structure for HSTL or LVTTL  
Thefirstworddatalatencyperiod,fromthetimethefirstwordiswrittento  
an empty FIFO to the time it can be read, is fixed and short.  
Highdensityofferingsupto5Mbit  
High speed operation of up to 250MHz  
Thereistheoptionofselectingdifferentdataratesontheinputandoutputports  
ofthedevice. Thereareatotaloffourcombinationstochoosefrom,DoubleData  
Rate toDouble Data Rate (DDRtoDDR), DDRtoSingle Data Rate (DDRto  
SDR), SDRtoDDR, andSDRtoSDR. The clockingcanbe setupusingthe  
WSDRandRSDRpins. Forexample,tosetuptheinputtooutputcombination  
ofDDRtoSDR,WSDRwillbeHIGHandRSDRwillbeLOW. Readandwrite  
operations are initiatedonthe risingedge ofRCLKandWCLKrespectively,  
neveronthefallingedge. IfRENorWENisassertedafterarisingedgeofclock,  
noreadorwriteoperationswillbepossibleonthefallingedgeofthatsamepulse.  
AnOutputEnable(OE)inputisprovidedforhigh-impedancecontrolofthe  
outputs. A read Chip Select (RCS) input is also provided for synchronous  
enable/disableofthereadportcontrolinput,REN.TheRCSinputissynchro-  
nizedtothereadclock,andalsoprovideshigh-impedancecontrolstotheQn  
dataoutputs. WhenRCSisdisabled,RENwillbedisabledinternallyandthe  
data outputs willbe inHigh-Impedance. Unlike the ReadChipSelectsignal  
however,OEisnotsynchronoustoRCLK.Outputsarehigh-impedanceshortly  
afteradelaytimewhentheOEtransitionsfromLOWtoHIGH.  
The Echo Read Enable (EREN) and Echo Read Clock (ERCLK) outputs  
areusedtoprovidetightersynchronizationbetweenthedatabeingtransmitted  
fromthe Qnoutputs andthe data beingreceivedbythe inputdevice. These  
outputsignalsfromthereadportarerequiredforhigh-speeddatacommuni-  
cations. Datareadfromthereadportisavailableontheoutputbuswithrespect  
toERENandERCLK,whichis usefulwhendatais beingreadathigh-speed  
operationswheresynchronizationisimportant.  
ThefrequenciesofboththeRCLKandWCLKsignalsmayvaryfrom0tofMAX  
withcompleteindependence. Therearenorestrictionsonthefrequencyofone  
clockinputwithrespecttoanother.  
Therearetwopossibletimingmodesofoperationwiththesedevices:IDT  
Standard mode and First Word Fall Through (FWFT) mode.  
InIDTStandardmode,thefirstwordwrittentoanemptyFIFOwillnotappear  
onthedataoutputlinesunlessaspecificreadoperationisperformed. Aread  
operation,whichconsistsofactivatingRENandenablingarisingRCLKedge,  
willshiftthewordfrominternalmemorytothedataoutputlines. Beawarethat  
in Double Data Rate (DDR) mode only the IDT Standard mode is available.  
InFWFTmode,thefirstwordwrittentoanemptyFIFOisclockeddirectlyto  
thedataoutputlinesafterthreetransitionsofRCLK. Areadoperationdoesnot  
have tobe performedtoaccess the firstwordwrittentothe FIFO. However,  
subsequentwords writtentotheFIFOdorequireaLOWonRENforaccess.  
ThestateoftheFWFTinputduringMasterResetdeterminesthetimingmode  
inuse.  
Bus-Matching Double Data Rate FIFOs are particularly appropriate for  
network,video,telecommunications,datacommunicationsandotherapplica-  
tionsthatrequirefastdatatransferonbothrisingandfallingedgesoftheclock.  
Thisisagreatalternativetoincreasingdataratewithoutextendingthewidthof  
thebusorthespeedofthedevice.Theyarealsoeffectiveinapplicationsthat  
needtobufferlargeamountsofdataandmatchbussesofunequalsizes.  
Each FIFO has a data input port (Dn) and a data output port (Qn), both of  
whichcanassumeeithera20-bitora10-bitwidthasdeterminedbythestate  
ofexternalcontrolpinsInputWidth(IW),OutputWidth(OW)duringtheMaster  
Resetcycle.  
TheinputportiscontrolledbyaWriteClock(WCLK)inputandaWriteEnable  
(WEN)input. DatapresentontheDndatainputscanbewrittenintotheFIFO  
on every rising and falling edge of WCLK when WEN is asserted and Write  
SingleDataRate(WSDR)pinheldHIGH. Datacanbeselectedtowriteonly  
ontherisingedgesofWCLKifWSDRisasserted.Toguaranteefunctionality  
ofthedevice,WENmustbeacontrolledsignalandnottiedtoground.Thisis  
importantbecauseWENmustbeHIGHduringthetimewhentheMasterReset  
(MRS)pulse is LOW. Inaddition, the WSDR pinmustbe tiedHIGHorLOW.  
Itis nota controlledsignalandcannotbe changedduringFIFOoperation.  
WriteoperationscanbeselectedforeitherSingleorDoubleDataRatemode.  
ForSingleDataRateoperation,writingintotheFIFOrequirestheWriteSingle  
DataRate(WSDR)pintobeasserted. DatawillbewrittenintotheFIFOonthe  
risingedgeofWCLKwhentheWriteEnable(WEN)is asserted. ForDouble  
DataRateoperations,writingintotheFIFOrequiresWSDRtobedeasserted.  
DatawillbewrittenintotheFIFOonbothrisingandfallingedgeofWCLKwhen  
WENisasserted.  
The output port is controlled by a Read Clock (RCLK) input and a Read  
Enable(REN)input. DataisreadfromtheFIFOoneveryrisingandfallingedge  
ofRCLKwhenRENisassertedandReadSingleDataRate(RSDR)pinheld  
HIGH. DatacanbeselectedtoreadonlyontherisingedgesofRCLKifRSDR  
isasserted. Toguaranteefunctionalityofthedevice,RENmustbeacontrolled  
signalandnottiedtoground. This is importantbecause REN mustbe HIGH  
duringthetimewhentheMasterReset(MRS)pulseis LOW.Inaddition,the  
RSDRpinmustbetiedHIGHorLOW. Itisnotacontrolledsignalandcannot  
be changed during FIFO operation.  
ReadoperationscanbeselectedforeitherSingleorDoubleDataRatemode.  
Similartothewriteoperations,readingfromtheFIFOinsingledataraterequires  
theReadSingleDataRate(RSDR)pintobeasserted. Datawillbereadfrom  
theFIFOontherisingedgeofRCLKwhentheReadEnable(REN)isasserted.  
ForDoubleDataRateoperations,readingintotheFIFOrequiresRSDRtobe  
deasserted. DatawillbereadoutoftheFIFOonbothrisingandfallingedge  
of RCLK when and REN is asserted.  
ForapplicationsrequiringmoredatastoragecapacitythanasingleFIFOcan  
provide,theFWFTtimingmodepermitsdepthexpansionbychainingFIFOs  
inseries(i.e.thedataoutputsofoneFIFOareconnectedtothecorresponding  
data inputs of the next). No external logic is required.  
TheseFIFOshavefourflagpins,EF/OR(EmptyFlagorOutputReady),FF/  
IR (FullFlagorInputReady), PAE (ProgrammableAlmost-Emptyflag),and  
PAF(ProgrammableAlmost-Fullflag).TheEFandFFfunctionsareselected  
inIDTStandardmode.TheIRandORfunctionsareselectedinFWFTmode.  
PAE andPAF are always available foruse, irrespective oftimingmode.  
PAEandPAFflagscanbeprogrammedindependentlytoswitchatanypoint  
inmemory. Programmableoffsetsmarkthelocationwithintheinternalmemory  
thatactivatesthePAEandPAFflagsandcanonlybeprogrammedserially. To  
programtheoffsets,setSENactiveanddatacanbeloadedviatheSerialInput  
3
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
ThisdeviceincludesaRetransmitfromMarkfeaturethatutilizestwocontrol  
inputs,MARKandRT(Retransmit). IftheMARKinputisenabledwithrespect  
totheRCLK,thememorylocationbeingreadatthepointwillbemarked. Any  
subsequent retransmit operation (when RT goes LOW), will reset the read  
pointertothismarked”location.  
Thedevicecanbeconfiguredwithdifferentinputandoutputbuswidthsas  
previouslystated. Theseratesare:x20tox20,x20tox10,x10tox20andx10  
to x10.  
DESCRIPTION(CONTINUED)  
(SI)pinattherisingedgeofSCLK. Toreadouttheoffsetregistersserially,set  
SRENactiveanddatacanbereadoutviatheSerialOutput(SO)pinattherising  
edgeofSCLK. Fourdefaultoffsetsettingsarealsoprovided,sothatPAEcan  
bemarkedatapredefinednumberoflocationsfromtheemptyboundaryand  
thePAFthresholdcanalsobemarkedatsimilarpredefinedvaluesfromthefull  
boundary. ThedefaultoffsetvaluesaresetduringMasterResetbythestate  
of the FSEL0 and FSEL1 pins.  
If,atanytime,theFIFOisnotactivelyperforminganoperation,thechipwill  
automaticallypowerdown. Onceinthepowerdownstate,thestandbysupply  
currentconsumptionisminimized. Initiatinganyoperation(byactivatingcontrol  
inputs)willimmediatelytakethedeviceoutofthepowerdownstate.  
AJTAGtestportis provided, here the FIFOhas fullyfunctionalboundary  
Scan feature, compliant with IEEE 1449.1 Standard Test Access Port and  
BoundaryScanArchitecture.  
TheDoubleDataRateFIFOhasthecapabilityofoperatingineitherLVTTL  
orHSTLmode. HSTLmodecanbeselectedbyenablingtheHSTLpin. Both  
inputandoutputportswilloperateineitherHSTLorLVTTLmode,butcannot  
beselectedindependentofoneanother.  
DuringMasterReset(MRS),thefollowingeventsoccur:thereadandwrite  
pointersaresettothefirstlocationoftheinternalFIFOmemory,theFWFTpin  
selectsIDTStandardmodeorFWFTmode,thebuswidthconfigurationofthe  
readandwriteportisdeterminedbythestateofIWandOW,andthedefaultoffset  
valuesfortheprogrammableflagsareset.  
The Partial Reset (PRS) also sets the read and write pointers to the first  
locationofthememory. However,thetimingmodeandthevaluesstoredinthe  
programmableoffsetregistersbeforePartialResetremainunchanged. The  
flagsareupdatedaccordingtothetimingmodeandoffsetsineffect. PRSisuseful  
forresettingadeviceinmid-operation,whenreprogrammingprogrammable  
flagswouldbeundesirable.  
The IDT72T2098/72T20108/72T20118/72T20128 are fabricated using  
IDT’shigh-speedsubmicronCMOStechnology.  
The timing of thePAE and PAF flags are synchronous to RCLK and WCLK,  
respectively. The PAE flag is asserted upon the rising edge of RCLK only and  
not WCLK. Similarly the PAF is asserted and updated on the rising edge of  
WCLK only and not RCLK.  
4
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
PARTIAL RESET (PRS) MASTER RESET (MRS)  
WRITE CLOCK (WCLK)  
READ CLOCK (RCLK)  
READ ENABLE (REN)  
OUTPUT ENABLE (OE)  
WRITE ENABLE (WEN)  
WRITE CHIP SELECT (WCS)  
IDT  
READ CHIP SELECT (RCS)  
72T2098  
72T20108  
72T20118  
72T20128  
WRITE SINGLE DATA RATE (WSDR)  
READ SINGLE DATA RATE (RSDR)  
(x20, x10) DATA IN (D  
0
- Dn)  
(x20, x10) DATA OUT (Q0 - Qn)  
RCLK ECHO (ERCLK)  
REN ECHO (EREN)  
MARK  
SERIAL CLOCK (SCLK)  
SERIAL ENABLE(SEN)  
SERIAL READ ENABLE(SREN)  
FIRST WORD FALL THROUGH (FWFT)  
SERIAL INPUT (SI)  
RETRANSMIT (RT)  
EMPTY FLAG/OUTPUT READY (EF/OR)  
PROGRAMMABLE ALMOST-EMPTY (PAE)  
SERIAL OUTPUT (SO)  
FULL FLAG/INPUT READY (FF/IR)  
PROGRAMMABLE ALMOST-FULL (PAF)  
5996 drw03  
OUTPUT WIDTH (OW)  
INPUT WIDTH (IW)  
Figure 1. Single Device Configuration Signal Flow Diagram  
TABLE 1 — BUS-MATCHING CONFIGURATION MODES  
IW  
OW  
Write Port Width  
Read Port Width  
L
L
L
H
L
x20  
x20  
x10  
x10  
x20  
x10  
x20  
x10  
H
H
H
NOTE:  
1. Pin status during Master Reset.  
TABLE 2 — DATA RATE-MATCHING CONFIGURATION MODES  
WSDR  
RSDR  
Write Port Width  
Read Port Width  
H
H
L
L
H
L
H
L
DoubleDataRate  
DoubleDataRate  
SingleDataRate  
SingleDataRate  
DoubleDataRate  
SingleDataRate  
DoubleDataRate  
SingleDataRate  
NOTE:  
1. Pin status during Master Reset.  
2. Data Rate Matching can be used in conjunction with Bus-Matching modes.  
5
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTION  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
D0-D19  
DataInputs  
HSTL-LVTTL Data inputs fora 20-, or10-bitbus. Whenusing10-bitmode, the unusedinputpins are ina dontcare  
(See Pin No.  
tablefordetails)  
INPUT  
state.ThedatabusissampledonbothrisingandfallingedgesofWCLKwhenWENisenabledandDDR  
Mode is enabled or on the rising edges of WCLK only in SDR Mode.  
EF/OR  
(M14)  
EmptyFlag/  
OutputReady  
HSTL-LVTTL IntheIDTStandardmode,theEFfunctionisselected.EFindicateswhetherornottheFIFOmemoryis  
OUTPUT empty.InFWFTmode,theORfunctionisselected.ORindicateswhetherornotthereisvaliddataavailable  
attheoutputs.  
ERCLK  
(L16)  
Echo Read  
Clock  
HSTL-LVTTL ReadClockEchooutput,mustbeequaltoorfasterthantheQndataoutputs.  
OUTPUT  
EREN  
(K16)  
Echo Read  
Enable  
HSTL-LVTTL ReadEnableEchooutput,usedinconjunctionwithERCLK.  
OUTPUT  
FF/IR  
(H3)  
Full Flag/  
Input Ready  
HSTL-LVTTL IntheIDTStandardmode,theFFfunctionisselected. FFindicateswhetherornottheFIFOmemoryis  
OUTPUT empty. InFWFTmode,theIRfunctionisselected. IRindicateswhetherornotthereisspaceavailable  
forwritingtotheFIFOmemory.  
FSEL0(1)  
(J3)  
FSEL1(1)  
(J2)  
FlagSelectBit0  
Flag Select Bit 1  
LVTTL  
INPUT  
DuringMasterReset,thisinputalongwithFSEL1willselectthedefaultoffsetvaluesfortheprogrammable  
flags PAEandPAF. There are fourpossible settings available.  
LVTTL  
INPUT  
DuringMasterReset, thisinputalongwithFSEL0willselectthedefaultoffsetvaluesfortheprogrammable  
flags PAE and PAF. There are four possible settings available.  
FWFT  
(G2)  
FirstWordFall  
Through  
LVTTL  
INPUT  
DuringMasterreset, selects FirstWordFallThroughorIDTStandardmode. FWFTis notavailable in  
DDR mode. In SDR mode, the first word will always fall through on the rising edge.  
(1)  
HSTL  
(B7)  
HSTLSelect  
LVTTL  
INPUT  
ThisinputpinisusedtoselectHSTLor2.5VLVTTLdeviceoperation. IfHSTLinputsarerequired,this  
inputmustbetiedHIGH,otherwiseitshouldbetiedLOW.  
(1)  
IW  
InputWidth  
LVTTL  
DuringMasterReset,this pin,alongwithOWselects thebus widthofthereadandwriteport.  
INPUT  
(K1)  
MARK  
(E14)  
Mark Read  
Pointerfor  
Retransmit  
HSTL-LVTTL Whenthispinisassertedthecurrentlocationofthereadpointerwillbemarked. AnysubsequentRetransmit  
INPUT  
operationwillresetthereadpointertothisposition. Thereisanunlimitednumbertotimestosetthemark  
location,butonlythemostrecentlocationmarkedwillbeacknowledged.  
MRS  
(J1)  
MasterReset  
HSTL-LVTTL MRSinitializesthereadandwritepointerstozeroandsetstheoutputregisterstoallzeros. DuringMaster  
INPUT  
Reset,theFIFOisconfiguredforeitherFWFTorIDTStandardmode,Bus-Matchingconfigurations,  
programmableflagdefaultsettings,andsingleordoubledataclockmode.  
OE  
OutputEnable  
OutputWidth  
HSTL-LVTTL WhenHIGH,dataoutputsQ0-Q19areinhighimpedance. WhenLOW,thedataoutputsQ0-Q19areenabled.  
(G15)  
INPUT  
NootheroutputsareaffectedbyOE.  
(1)  
OW  
(L3)  
LVTTL  
INPUT  
DuringMasterReset,this pinalongwithIWselects thebus widthofthereadandwriteport.  
PAE  
(L15)  
Programmable HSTL-LVTTL PAEgoesHIGHifthenumberofwordsintheFIFOmemoryisgreaterthanorequaltooffsetn,whichis  
Almost-Empty  
Flag  
OUTPUT storedintheEmptyOffsetregister. PAEgoesLOWifthenumberofwordsintheFIFOmemoryislessthan  
offsetn.  
PAF  
Programmable HSTL-LVTTL PAFgoesHIGHifthenumberoffreelocationsintheFIFOmemoryismorethanoffsetm,whichisstored  
(G3)  
Almost-FullFlag  
PartialReset  
DataOutputs  
OUTPUT intheFullOffsetregister.PAFgoesLOWifthenumberoffreelocationsintheFIFOmemoryislessthan  
or equal to m.  
PRS  
(K3)  
HSTL-LVTTL PRSinitializesthereadandwritepointerstozeroandsetstheoutputregisterstoallzeros. DuringPartial  
INPUT  
Reset,theexistingmode(IDTstandardorFWFT)andprogrammableflagsettingsarenotaffected.  
Q0-Q19  
(See Pin No.  
tablefordetails)  
HSTL-LVTTL Dataoutputsfora20-,or10-bitbus. Whenin10-bitmode,theunusedoutputpinsshouldnotbeconnected.  
OUTPUT TheoutputdataisclockedonbothrisingandfallingedgesofRCLKwhenRENisenabledandDDRMode  
is enabled or on the rising edges of RCLK only in SDR Mode.  
RCLK  
(G16)  
ReadClock  
HSTL-LVTTL InputclockwhenusedinconjunctionwithRENforreadingdatafromtheFIFOmemoryandoutput  
INPUT  
register.  
6
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTION(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
RCS  
(F14)  
Read Chip  
Select  
HSTL-LVTTL RCSprovidessynchronousenable/disablecontrolof thereadportandHigh-Impedancecontrolofthe  
INPUT  
Qndataoutputs,synchronoustoRCLK. WhenusingRCS theOEpinmustbetiedLOW. DuringMaster  
orPartialResettheRCSinputisdontcare,ifOEisLOWthedataoutputswillbeLow-Impedanceregardless  
ofRCS.  
REN  
(F16)  
ReadEnable  
HSTL-LVTTL WhenLOWandinDDRmode,RENalongwitharisingandfallingedgeofRCLKwillsenddatainFIFO  
INPUT  
memorytothe outputregisterandreadthe currentdata inoutputregister. InSDRmode data willonly  
be read on the rising edge of RCLK only.  
(1)  
RSDR  
(L2)  
ReadSingle  
DataRate  
LVTTL  
INPUT  
WhenLOW,thisinputpinsetsthereadporttoSingleDataClockmode. WhenHIGH,thereadportwill  
operateinDoubleDataClockmode.ThispinmustbetiedeitherHIGHorLOWandcannottoggleduring  
operation.  
RT  
(F15)  
Retransmit  
HSTL-LVTTL RTassertedontherisingedgeofRCLKinitializesthereadpointertothefirstlocationinmemory.EFflag  
INPUT  
issettoLOW(ORtoHIGHinFWFTmode).Thewritepointer,offsetregisters,andflagsettingsarenot  
affected.IfamarkhasbeensetviatheMARKinputpin,thenthereadpointerwillinitializetothemarklocation  
when RT is asserted.  
SCLK  
(H15)  
SerialClock  
LVTTL  
INPUT  
ArisingedgeofSCLKwillclocktheserialdatapresentontheSIinputintotheoffsetregistersprovided  
thatSENisenabled.ArisingedgeofSCLKwillalsoreaddataoutoftheoffsetregistersprovidedthatSREN  
isenabled.  
SEN  
(J15)  
SerialInput  
Enable  
HSTL-LVTTL SENusedinconjunctionwithSIandSCLKenablesserialloadingoftheprogrammableflagoffsets.  
INPUT  
SREN  
(J16)  
Serial Read  
Enable  
HSTL-LVTTL SRENusedinconjunctionwithSOandSCLKenablesserialreadingoftheprogrammableflagoffsets.  
INPUT  
SI  
(H16)  
SerialInput  
SerialOutput  
JTAGClock  
HSTL-LVTTL Thisinputpinisusedtoloadserialdataintotheprogrammableflagoffsets.UsedinconjunctionwithSEN  
INPUT  
and SCLK.  
SO  
(K15)  
HSTL-LVTTL Thisoutputpinisusedtoreaddatafromtheprogrammableflagoffsets.UsedinconjunctionwithSREN  
OUTPUT and SCLK.  
(2)  
TCK  
HSTL-LVTTL ClockinputforJTAGfunction.Oneoffourterminals requiredbyIEEEStandard1149.1-1990.Test  
(F1)  
INPUT  
operationsofthedevicearesynchronoustoTCK.DatafromTMSandTDIaresampledontherisingedge  
ofTCKandoutputschangeonthefallingedgeofTCK.IftheJTAGfunctionisnotusedthissignalneeds  
tobe tiedtoGND.  
(2)  
TDI  
JTAGTestData HSTL-LVTTL One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan  
(E2)  
Input  
INPUT  
operation,testdataseriallyloadedviatheTDIontherisingedgeofTCKtoeithertheInstructionRegister,  
IDRegisterandBypass Register.Aninternalpull-upresistorforces TDIHIGHifleftunconnected.  
(2)  
TDO  
JTAGTestData HSTL-LVTTL One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan  
(F3)  
Output  
OUTPUT  
operation,testdataseriallyloadedoutputviatheTDOonthefallingedgeofTCKfromeithertheInstruction  
Register,IDRegisterandBypassRegister.Thisoutputishighimpedanceexceptwhenshifting,whilein  
SHIFT-DR and SHIFT-IR controller states.  
TMS(2)  
(F2)  
JTAGMode  
Select  
HSTL-LVTTL TMSisaserialinputpin.OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.TMSdirectsthe  
INPUT thedevicethroughitsTAPcontrollerstates.Aninternalpull-upresistorforcesTMSHIGHifleftunconnected.  
HSTL-LVTTL TRST is an asynchronous reset pin for the JTAG controller. The JTAG TAP controller does not  
(2)  
TRST  
JTAGReset  
(E3)  
INPUT  
automaticallyresetuponpower-up,thusitmustberesetbyeitherthissignalorbysettingTMS=HIGH  
forfiveTCKcycles.IftheTAPcontrollerisnotproperlyresetthentheFIFOoutputswillalwaysbeinhigh-  
impedance.IftheJTAGfunctionisusedbuttheuserdoesnotwanttouseTRST,thenTRSTcanbetied  
withMRStoensureproperFIFOoperation.IftheJTAGfunctionisnotusedthenthissignalneedstobe  
tiedtoGND.Aninternalpull-upresistorforcesTRSTHIGHifleftunconnected.  
WCLK  
(G1)  
WriteClock  
HSTL-LVTTL InputclockwhenusedinconjunctionwithWENforwritingdataintotheFIFOmemory.  
INPUT  
WCS  
(H2)  
WriteChipSelect HSTL-LVTTL The WCS pin an be regarded as a second WEN input, enabling/disabling write operations.  
INPUT  
WEN  
(H1)  
WriteEnable  
HSTL-LVTTL WhenLOWandinDDRmode,WENalongwitharisingandfallingedgeofWCLKwillwritedataintothe  
INPUT  
FIFO memory. In SDR mode data will only be read on the rising edge of RCLK only.  
7
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTION(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
(1)  
WSDR  
(L1)  
WriteSingleData  
Rate  
LVTTL  
INPUT  
WhenLOW,thisinputpinsetsthewriteporttoSingleDataClockmode. WhenHIGH,thewriteportwill  
operateinDoubleDataClockmode. ThispinmustbetiedeitherHIGHorLOWandcannottoggleduring  
operation.  
VCC  
(See below)  
+2.5VSupply  
O/PRailVoltage  
GroundPin  
INPUT  
INPUT  
INPUT  
INPUT  
There are VCC supply inputs and must be connected to the 2.5V supply rail.  
VDDQ  
(See below)  
Thispinshouldbetiedtothedesiredvoltagerailforprovidingpowertotheoutputdrivers. Nominally1.5V  
or 1.8V for HSTL, 2.5V for LVTTL.  
GND  
(See below)  
These are Ground pins are for the core device and must be connected to the GND rail.  
Vref  
(T3)  
Reference  
Voltage  
ThisisaVoltageReferenceinputandmustbeconnectedtoavoltageleveldeterminedintheRecommended  
DC OperatingConditionssection. ThisprovidesthereferencevoltagewhenusingHSTLclassinputs.  
IfHSTLclassinputsarenotbeingused,thispincanbeleftfloating.  
NOTES:  
1. Inputs should not change state after Master Reset.  
2. These pins are for the JTAG port. Please refer to pages 24-27 and Figures 5-7.  
PIN NUMBER TABLE  
Symbol  
Name  
I/OTYPE  
HSTL-LVTTL D0-C3, D1-A4, D2-B4, D3-C4, D4-A5, D5-B5, D6-C5, D7-A6, D8-B6, D9-A7, D10-R7, D11-T7,  
INPUT D12-R6, D13-T6, D14-R5, D15-T5, D16-R4, D17-T4, D18-P3, D19-R3  
Pin Number  
D0-19  
DataInputs  
Q0-19  
DataOutputs  
HSTL-LVTTL Q0-B10, Q1-A10, Q2-B11, Q3-A11, Q4-B12, Q5-A12, Q6-B13, Q7-A13, Q8-B14, Q9-A14, Q10-T14  
OUTPUT Q11-R14, Q12-T13, Q13-R13, Q14-T12, Q15-R12, Q16-T11, Q17-R11, Q18-T10, Q19-R10  
VCC  
+2.5VSupply  
INPUT  
INPUT  
A(1,2), C(6,7), D(4-7), K4, L4, M4, N(4-7), P(5-7), T(1,2)  
VDDQ  
O/PRailVoltage  
A(15,16), C(10-13), D(10-13), E13, F(4,13), G(4,14), H(4,14), J14, K14, L14, M13, N(10-13),  
P(10-13), T(15,16)  
GND  
DNC  
GroundPin  
INPUT  
A(8,9), B(8,9), C(8,9), D(8,9), E4, G(7-10,13), H(7-10,13), J(4,7-10,13), K(7-10,13), L13, N(8,9),  
P(4,8,9), R(8,9), T(8,9)  
DoNotConnect  
A3,B(1-3,15,16),C(1,2,14-16),D(1-3,14-16),E(1,15,16),K2,M(1-3,15,16),N(1-3,14-16),P(1,2,14-16),  
R(1,2,15,16)  
8
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
ABSOLUTEMAXIMUMRATINGS  
CAPACITANCE(TA = +25°C, f = 1.0MHz)  
Parameter(1)  
Conditions  
Max.  
Unit  
Symbol  
Rating  
Commercial  
–0.5to+3.6(2)  
Unit  
Symbol  
VTERM  
TerminalVoltage  
with respect to GND  
V
CIN  
Input  
Capacitance  
VIN = 0V  
10(3)  
pF  
(2,3)  
TSTG  
IOUT  
StorageTemperature  
DCOutputCurrent  
–55 to +125  
–50 to +50  
°C  
mA  
(1,2)  
COUT  
Output  
Capacitance  
VOUT = 0V  
10  
pF  
NOTES:  
NOTES:  
1. With output deselected, (OE VIH).  
2. Characterized values, not currently tested.  
3. CIN for Vref is 20pF.  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
2. Compliant with JEDEC JESD8-5. VCC terminal only.  
RECOMMENDEDDCOPERATINGCONDITIONS  
Symbol  
VCC  
Parameter  
Min.  
2.375  
0
Typ.  
2.5  
0
Max.  
2.625  
0
Unit  
V
SupplyVoltage  
SupplyVoltage  
GND  
V
VIH  
InputHighVoltage  
LVTTL  
eHSTL  
HSTL  
1.7  
VREF+0.2  
VREF+0.2  
3.45  
V
V
V
VIL  
InputLowVoltage  
LVTTL  
eHSTL  
HSTL  
-0.3  
0.7  
VREF-0.2  
VREF-0.2  
V
V
V
VREF  
(HSTL only)  
VoltageReferenceInput eHSTL  
HSTL  
0.8  
0.68  
0.9  
0.75  
1.0  
0.9  
V
V
TA  
OperatingTemperatureCommercial  
OperatingTemperatureIndustrial  
0
70  
85  
°C  
°C  
TA  
-40  
NOTE:  
1. VREF is only required for HSTL or eHSTL inputs. VREF should be tied LOW for LVTTL operation.  
DCELECTRICALCHARACTERISTICS  
(Commercial: VCC = 2.5V ± 0.125V, TA = 0°C to +70°C;Industrial: VCC = 2.5V ± 0.125V, TA = -40°C to +85°C)  
Symbol  
ILI  
Parameter  
Min.  
–10  
–10  
Max.  
10  
Unit  
InputLeakageCurrent  
OutputLeakageCurrent  
µA  
µA  
V
V
V
ILO  
10  
(5)  
VOH  
OutputLogic1Voltage, IOH = –8 mA @VDDQ = 2.5V ± 0.125V (LVTTL)  
IOH = –8 mA @VDDQ = 1.8V ± 0.1V (eHSTL)  
VDDQ-0.4  
VDDQ-0.4  
VDDQ-0.4  
IOH = –8 mA @VDDQ = 1.5V ± 0.1V (HSTL)  
VOL  
OutputLogic0Voltage, IOL = 8 mA @VDDQ = 2.5V ± 0.125V (LVTTL)  
IOL = 8 mA @VDDQ = 1.8V ± 0.1V (eHSTL)  
0.4V  
0.4V  
0.4V  
V
V
V
IOL = 8 mA @VDDQ = 1.5V ± 0.1V (HSTL)  
ICC1(1,2)  
ICC2(1)  
Active VCC Current (VCC = 2.5V)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
20  
60  
60  
mA  
mA  
mA  
Standby VCC Current (VCC = 2.5V) I/O = LVTTL  
10  
50  
50  
mA  
mA  
mA  
I/O = HSTL  
I/O = eHSTL  
NOTES:  
1. Both WCLK and RCLK toggling at 20MHz. Data inputs toggling at 10MHz. WCS = HIGH, REN or RCS = HIGH.  
2. Typical ICC1 calculation: for LVTTL I/O ICC1 (mA) = 0.6mA x fs, fs = WCLK frequency = RCLK frequency (in MHz)  
for HSTL or eHSTL I/O ICC1 (mA) = 38mA + (0.7mA x fs), fs = WCLK frequency = RCLK frequency (in MHz)  
3. Typical IDDQ calculation: With Data Outputs in High-Impedance: IDDQ (mA) = 0.15mA x fs  
With Data Outputs in Low-Impedance: IDDQ (mA) = (CL x VDDQ x fs x 2N)/2000  
fs = WCLK frequency = RCLK frequency (in MHz), VDDQ = 2.5V for LVTTL; 1.5V for HSTL; 1.8V for eHSTL, N = Number of outputs switching.  
tA = 25°C, CL = capacitive load (pf)  
4. Total Power consumed: PT = [(VCC x ICC) + (VDDQ x IDDQ)].  
5. Outputs are not 3.3V tolerant.  
9
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
ACELECTRICALCHARACTERISTICS(1)  
(Commercial: VCC = 2.5V ± 5%, TA = 0°C to +70°C;Industrial: VCC = 2.5V ± 5%, TA = -40°C to +85°C)  
Commercial  
Commercial  
Com’l & Ind’l(2)  
Commercial  
IDT72T2098L4  
IDT72T2098L5  
IDT72T2098L6-7 IDT72T2098L10  
IDT72T20108L4 IDT72T20108L5 IDT72T20108L6-7 IDT72T20108L10  
IDT72T20118L4 IDT72T20118L5 IDT72T20118L6-7 IDT72T20118L10  
IDT72T20128L4 IDT72T20128L5 IDT72T20128L6-7 IDT72T20128L10  
0
0
0
Symbol  
fS1  
Parameter  
Clock Cycle Frequency SDR  
Clock Cycle Frequency DDR  
DataAccessTime  
Min.  
0.6  
0.6  
4
Max.  
250  
150  
3.2  
3.2  
10  
Min.  
0.6  
0.6  
5
Max.  
200  
150  
3.6  
3.6  
10  
Min.  
0.6  
0.6  
6.7  
6.7  
2.8  
2.8  
2.8  
2.8  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
100  
45  
45  
15  
5
Max.  
150  
150  
3.8  
3.8  
10  
Min.  
0.6  
0.6  
10  
10  
4.5  
4.5  
4.5  
4.5  
3.0  
0.5  
3.0  
0.5  
3.0  
0.5  
100  
45  
45  
15  
5
Max.  
100  
100  
4.5  
4.5  
10  
Unit  
MHz  
MHz  
ns  
fS2  
Unit  
MHz  
ns  
tA  
tASO  
DataAccessSerialOutputTime  
Clock Cycle Time SDR  
Clock Cycle Time DDR  
Clock High Time SDR  
Clock High Time DDR  
Clock Low Time SDR  
Clock Low Time DDR  
DataSetupTime  
ns  
tCLK1  
tCLK2  
tCLKH1  
tCLKH2  
tCLKL1  
tCLKL2  
tDS  
ns  
ns  
6.7  
1.8  
2.8  
1.8  
2.8  
1.2  
0.5  
1.2  
0.5  
1.2  
0.5  
100  
45  
6.7  
2.3  
2.8  
2.3  
2.8  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
100  
45  
45  
15  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
DataHoldTime  
ns  
ns  
tENS  
EnableSetupTime  
ns  
ns  
tENH  
EnableHoldTime  
ns  
ns  
tWCSS  
tWCSH  
fC  
WCSsetuptime  
WCSholdtime  
Clock Cycle Frequency (SCLK)  
ns  
MHz  
ns  
ns  
MHz  
ns  
ns  
tSCLK  
tSCKH  
tSCKL  
tSDS  
Serial Clock Cycle  
10  
12  
15  
15  
ns  
Serial Clock High  
ns  
ns  
Serial Clock Low  
45  
ns  
ns  
SerialDataInSetup  
Serial Data In Hold  
15  
ns  
ns  
tSDH  
5
ns  
ns  
tSENS  
tSENH  
tRS  
SerialEnableSetup  
5
5
5
5
ns  
ns  
SerialEnableHold  
ResetPulseWidth(3)  
5
5
5
5
ns  
ns  
30  
30  
15  
4
30  
15  
4
30  
15  
4
ns  
µs  
ns  
tRSS  
ResetSetupTime  
15  
ns  
tHRSS  
tRSR  
HSTLResetSetupTime  
ResetRecoveryTime  
ResettoFlagandOutputTime  
4
µs  
ns  
ns  
10  
10  
0
10  
0
10  
0
ns  
tRSF  
0
ns  
ns  
(4)  
tOLZ  
OutputEnabletoOutputinLowZ  
OutputEnabletoOutputValid  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.6  
3.2  
3.2  
3.2  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
4
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
4.3  
3.8  
3.8  
3.8  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
5
ns  
ns  
tOE  
3.5  
3.5  
4
4
5
7
ns  
ns  
(4)  
tOHZ  
OutputEnabletoOutputinHighZ  
ns  
ns  
tWFF  
tREF  
Write Clock to FF or IR  
Read Clock to EF or OR  
WriteClocktoProgrammableAlmost-FullFlag  
ReadClocktoProgrammableAlmost-EmptyFlag  
RCLK to Echo RCLK output  
ns  
ns  
ns  
ns  
tPAFS  
tPAES  
tERCLK  
tCLKEN  
tRCSLZ  
tRCSHZ  
tSKEW1  
tSKEW2  
tSKEW3  
NOTES:  
ns  
ns  
ns  
ns  
ns  
ns  
RCLK to Echo REN output  
RCLK to Active from High-Z  
3.6  
3.6  
3.6  
4.5  
4.5  
4.5  
ns  
ns  
ns  
ns  
(4)  
RCLK to High-Z  
ns  
ns  
Skew time between RCLK and WCLK for EF/OR and FF/IR  
SkewtimebetweenRCLK&WCLKforEF/OR &FF/IR inDDRmode  
Skew time between RCLK and WCLK for PAE and PAF  
ns  
4
5
7
ns  
ns  
5
6
8
ns  
1. All AC timings apply to both IDT Standard mode and First Word Fall Through mode.  
2. Industrial temperature range product for the 6-7ns speed grade is available as a standard device. All other speed grades are available by special order.  
3. Pulse widths less than minimum values are not allowed.  
4. Values guaranteed by design, not currently tested.  
10  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
HSTL  
AC TEST LOADS  
1.5V AC TEST CONDITIONS  
VDDQ/2  
InputPulseLevels  
0.25to1.25V  
0.4ns  
50  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
0.75  
Z0 = 50Ω  
I/O  
VDDQ/2  
5996 drw04  
NOTE:  
1. VDDQ = 1.5V±.  
Figure 2a. AC Test Load  
EXTENDEDHSTL  
1.8V AC TEST CONDITIONS  
6
5
4
3
2
1
InputPulseLevels  
0.4 to 1.4V  
0.4ns  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
0.9  
VDDQ/2  
NOTE:  
1. VDDQ = 1.8V±.  
20 30 50 80 100  
Capacitance (pF)  
200  
5996 drw04a  
Figure 2b. Lumped Capacitive Load, Typical Derating  
2.5VLVTTL  
2.5V AC TEST CONDITIONS  
InputPulseLevels  
GND to 2.5V  
1ns  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
VCC/2  
VDDQ/2  
NOTE:  
1. For LVTTL VCC = VDDQ.  
11  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
OUTPUT ENABLE & DISABLE TIMING  
Output  
Enable  
Output  
Disable  
V
IH  
OE  
VIL  
tOE &  
tOLZ  
tOHZ  
Output  
Normally  
LOW  
V
2
CC  
V
2
CC  
100mV  
100mV  
100mV  
V
OL  
V
OH  
CC  
Output  
Normally  
HIGH  
VCC  
100mV  
V
2
2
5996 drw04b  
NOTES:  
1. REN is HIGH.  
2. RCS is LOW.  
READ CHIP SELECT ENABLE & DISABLE TIMING  
V
IH  
tENH  
RCS  
VIL  
tENS  
RCLK  
tRCSHZ  
tRCSLZ  
Output  
Normally  
LOW  
V
2
CC  
V
2
CC  
100mV  
100mV  
100mV  
V
OL  
V
OH  
CC  
Output  
Normally  
HIGH  
VCC  
100mV  
V
2
2
5996 drw04c  
NOTES:  
1. REN is HIGH.  
2. OE is LOW.  
12  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
If the FIFO is full, the first read operation will cause FF to go HIGH.  
Subsequent read operations will cause PAF to go HIGH at the conditions  
FUNCTIONALDESCRIPTION  
TIMING MODES: IDT STANDARD vs FIRST WORD FALL THROUGH describedinTable3.Iffurtherreadoperationsoccur,withoutwriteoperations,  
PAE will go LOW when there are n words in the FIFO, where n is the empty  
offsetvalue.ContinuingreadoperationswillcausetheFIFOtobecomeempty.  
WhenthelastwordhasbeenreadfromtheFIFO,theEFwillgoLOWinhibiting  
further read operations. REN is ignored when the FIFO is empty.  
WhenconfiguredinIDTStandardmode,theEFandFFoutputsaredouble  
register-bufferedoutputs.IDTStandardmodeisavailablewhenthedeviceis  
configuredinbothSingleDataRatemodeandDoubleDataRatemode.  
Relevanttimingdiagrams forIDTStandardmodecanbefoundinFigure  
10, 11, 12, 13, 14, 15, 16, 17, 18 and 23.  
(FWFT) MODE  
TheIDT72T2098/72T20108/72T20118/72T20128supporttwodifferent  
timing modes of operation: IDT Standard mode or First Word Fall Through  
(FWFT)mode.Theselectionofwhichmodewilloperateisdeterminedduring  
MasterReset,bythestateoftheFWFTinput.  
If,atthetimeofMasterReset,FWFTisLOW,thenIDTStandardmodewill  
be selected. This mode uses the EmptyFlag(EF)toindicate whetherornot  
thereareanywordspresentintheFIFO.ItalsousestheFullFlagfunction(FF)  
to indicate whether or not the FIFO has any free space for writing. In IDT  
Standardmode, everywordreadfromthe FIFO, includingthe first, mustbe  
requested using the Read Enable (REN) and RCLK.  
FIRST WORD FALL THROUGH MODE (FWFT)  
Inthismode,thestatusflags,IR,PAF,PAE,andORoperateinthemanner  
outlined in Table 5. To write data into the FIFO, WEN must be LOW. Data  
presentedtothe DATAINlines willbe clockedintothe FIFOonsubsequent  
transitionsofWCLK.Afterthefirstwriteisperformed,theOutputReady(OR)  
flagwillgoLOW.SubsequentwriteswillcontinuetofilluptheFIFO.PAEwillgo  
HIGHaftern+2words havebeenloadedintotheFIFO,wherenis theempty  
offsetvalue.ThedefaultsettingforthesevaluesarestatedinthefootnoteofTable  
2.Thisparameterisalsouserprogrammable.SeesectiononProgrammable  
FlagOffsetLoading.  
If, at the time of Master Reset, FWFT is HIGH, then FWFT mode will be  
selected.ThismodeusesOutputReady(OR)toindicatewhetherornotthere  
isvaliddataatthedataoutputs(Qn).ItalsousesInputReady(IR)toindicate  
whether or not the FIFO has any free space for writing. In the FWFT mode,  
thefirstwordwrittentoanemptyFIFOgoesdirectlytoQnafterthreeRCLKrising  
edges,REN=LOWisnotnecessary.Subsequentwordsmustbeaccessed  
using the Read Enable (REN) and RCLK.  
Varioussignals,bothinputandoutputsignalsoperatedifferentlydepending  
onwhichtimingmodeisineffect.  
Again, ifnoreads are performed, the PAF willgoLOWafter(D-m)writes  
totheFIFO.Ifx20Inputorx20OutputbusWidthisselected,(D-m) = (32,769-m)  
writesfortheIDT72T2098,(65,537-m)writesfortheIDT72T20108,(131,073-m)  
writes fortheIDT72T20118and(262,145-m)writes fortheIDT72T20128.If  
bothx10Inputandx10Outputbus Widths areselected,(D-m)=(65,537-m)  
writes for the IDT72T2098, (131,073-m) writes for the IDT72T20108,  
(262,145-m) writes for the IDT72T20118 and (524,289-m) writes for the  
IDT72T20128.Theoffsetmisthefulloffsetvalue.Thedefaultsettingforthese  
values arestatedinthefootnoteofTable3.  
WhentheFIFOisfull,theInputReady(IR)flagwillgoHIGH,inhibitingfurther  
writeoperations.Ifnoreadsareperformedafterareset,IRwillgoHIGHafter  
DwritestotheFIFO.Ifx18Inputorx18OutputbusWidthisselected,D = 32,769  
writesfortheIDT72T2098,65,537writesfortheIDT72T20108,131,073writes  
fortheIDT72T20118and262,145writesfortheIDT72T20128.Ifbothx10Input  
andx10OutputbusWidthsareselected,D=65,537writesfortheIDT72T2098,  
131,073writesfortheIDT72T20108,262,145writesfortheIDT72T20118and  
524,289writesfortheIDT72T20128,respectively.Notethattheadditionalword  
inFWFTmodeisduetothecapacityofthememoryplusoutputregister.  
IftheFIFOisfull,thefirstreadoperationwillcausetheIRflagtogoLOW.  
SubsequentreadoperationswillcausethePAFtogoHIGHattheconditions  
describedinTable5.Iffurtherreadoperationsoccur,withoutwriteoperations,  
thePAEwillgoLOWwhentherearen+1wordsintheFIFO,wherenistheempty  
offsetvalue.ContinuingreadoperationswillcausetheFIFOtobecomeempty.  
Whenthelastwordhas beenreadfromtheFIFO,OR willgoHIGHinhibiting  
further read operations. REN is ignored when the FIFO is empty.  
When configured in FWFT mode, the OR flag output is triple register-  
buffered,andtheIRflagoutputisdoubleregister-buffered.FWFTmodeisonly  
available whenthe device is configuredinSingle Data Rate mode.  
Relevanttimingdiagrams forFWFTmodecanbefoundinFigure19,20,  
21, 22, and 24.  
IDT STANDARD MODE  
Inthismode,thestatusflags,FF,PAF,PAE,andEFoperateinthemanner  
outlinedinTable4.TowritedataintototheFIFO,WriteEnable(WEN)must  
beLOW.DatapresentedtotheDATAINlineswillbeclockedintotheFIFOon  
subsequent transitions of the Write Clock (WCLK). After the first write is  
performed,theEmptyFlag(EF)willgoHIGH.Subsequentwriteswillcontinue  
tofilluptheFIFO.TheProgrammableAlmost-Emptyflag(PAE)willgoHIGH  
aftern + 1wordshavebeenloadedintotheFIFO,wherenistheemptyoffset  
value.ThedefaultsettingforthesevaluesarelistedinTable2.Thisparameter  
isalsouserprogrammable.SeesectiononProgrammableFlagOffsetLoading.  
ContinuingtowritedataintotheFIFOwillcausetheProgrammableAlmost-  
Fullflag(PAF)togoLOW. Again, ifnoreads are performed, the PAF willgo  
LOW after (D-m) writes to the FIFO. If x20 Input or x20 Output bus Width is  
selected,(D-m) = (32,768-m)writesfortheIDT72T2098,(65,536-m)writes  
for the IDT72T20108, (131,072-m) writes for the IDT72T20118 and  
(262,144-m)writesfortheIDT72T20128.Ifbothx10Inputandx10Outputbus  
Widthsareselected,(D-m) = (65,536-m)writesfortheIDT72T2098,(131,072-m)  
writes for the IDT72T20108, (262,144-m) writes for the IDT72T20118 and  
(524,288-m)writesfortheIDT72T20128.Theoffsetm”isthefulloffsetvalue.  
ThedefaultsettingforthesevaluesarelistedinTable3.Thisparameterisalso  
userprogrammable.SeethesectiononProgrammableFlagOffsetLoading.  
WhentheFIFOisfull,theFullFlag(FF)willgoLOW,inhibitingfurtherwrite  
operations.Ifnoreadsareperformedafterareset,FFwillgoLOWafterDwrites  
tothe FIFO. Ifthe x20Inputorx20Outputbus Widthis selected, D=32,768  
writesfortheIDT72T2098,65,536writesfortheIDT72T20108,131,072writes  
for the IDT72T20118 and 262,144 writes for the IDT72T20128. If both x10  
Input and x10 Output bus Widths are selected, D = 65,536 writes for the  
IDT72T2098, 131,072 writes for the IDT72T20108, 262,144 writes for the  
IDT72T20118 and 524,288 writes for the IDT72T20128, respectively.  
13  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
willloaddatafromtheSIinputintotheoffsetregisters.SCLKrunsatanominal  
speedof10MHzatthemaximum.Theprogrammingsequencestartswithone  
bitforeachSCLKrisingedge,startingwiththeEmptyOffsetLSBandending  
withtheFullOffsetMSB.ThetotalnumberofbitsperdeviceislistedinFigure  
3, Programmable Flag Offset Programming Sequence. See Figure 25,  
LoadingofProgrammableFlagRegisters,forthetimingdiagramforthismode.  
ThePAEandPAFcanshowavalidstatusonlyafterthecompletesetofbits(for  
alloffsetregisters)hasbeenentered.Theregisterscanbereprogrammedas  
longasthecompletesetofnewoffsetbitsisentered.  
TABLE 3 — DEFAULT PROGRAMMABLE  
FLAG OFFSETS  
IDT72T2098, 72T20108, 72T20118, 72T20128  
FSEL1  
FSEL0  
Offsets n,m  
H
L
H
L
H
H
L
L
255  
127  
63  
7
InadditiontoloadingoffsetvaluesintotheFIFO,itisalsopossibletoread  
thecurrentoffsetvalues.Similartoloadingoffsetvalues,setSRENLOWand  
therisingedgeofSCLKwillsenddatafromtheoffsetregistersouttotheSOoutput  
port.Wheninitializingareadtotheoffsetregisters,datawillbereadstartingfrom  
thefirstlocationintheregister,regardlessofwhereitwaslastread.  
Figure3,ProgrammableFlagOffsetProgrammingSequence,summarizes  
thecontrolpinsandsequenceforprogrammingoffsetregistersandreadingand  
writingintotheFIFO.  
NOTES:  
1. n = empty offset for PAE.  
2. m = full offset for PAF.  
PROGRAMMING FLAG OFFSETS  
FullandEmptyFlagoffsetvaluesareuserprogrammable.TheIDT72T2098/  
72T20108/72T20118/72T20128 have internal registers for these offsets.  
TherearefourselectabledefaultoffsetvaluesduringMasterReset.Theseoffset  
valuesareshowninTable3.Theoffsetvaluescanalsobeprogrammedserially  
intotheFIFO.Toloadoffsetvalues,setSENLOWandtherisingedgeofSCLK  
The offset registers may be programmed (and reprogrammed) any time  
after Master Reset. Valid programming ranges are from 0 to D-1.  
TABLE 4 STATUS FLAGS FOR IDT STANDARD MODE  
IW = OW = x10  
IDT72T2098  
IDT72T20108  
IDT72T20118  
IDT72T20118  
IDT72T20128  
IDT72T20128  
IW OW or  
IDT72T20108  
FF PAF PAE EF  
IDT72T2098  
IW = OW = x20  
0
0
0
0
0
H
H
H
H
L
H
H
H
L
L
L
L
1 to n(1)  
1 to n(1)  
1 to n(1)  
1 to n(1)  
1 to n(1)  
H
H
H
H
Number of  
Words in  
FIFO  
(32,769) to (65,536-(m+1))  
(16,385) to (32,768-(m+1))  
(65,537) to (131,072-(m+1)) (131,073) to (262,144-(m+1))  
(262,145) to (524,288-(m+1))  
(524,288-m) to 524,287  
524,288  
H
H
H
(262,144-m) to 262,143  
(131,072-m) to 131,071  
(32,768-m) to 32,767  
32,768  
(65,536-m) to 65,535  
65,536  
131,072  
262,144  
L
NOTE:  
1. See table 3 for values for n, m.  
TABLE 5 STATUS FLAGS FOR FWFT MODE  
IW = OW = x10  
IDT72T2098  
IDT72T20108  
IDT72T20118  
IDT72T20118  
IDT72T20128  
IDT72T20128  
IW OW or  
IDT72T20108  
IR PAF PAE OR  
IDT72T2098  
IW = OW = x20  
0
0
0
0
0
L
L
L
H
H
H
L
L
H
L
1 to n(1)  
1 to n(1)  
(32,770) to (65,537-(m+1))  
(65,537-m) to 65,536  
65,537  
1 to n(1)  
1 to n(1)  
1 to n(1)  
Number of  
Words in  
FIFO  
(16,386) to (32,764-(m+1))  
(65,538) to (131,073-(m+1)) (131,074) to (262,145-(m+1)) (262,146) to (524,289-(m+1))  
H
H
H
L
(32,764-m) to 32,768  
32,769  
(131,073-m) to 131,072  
131,073  
(262,145-m) to 262,144  
262,145  
(524,289-m) to 524,288  
524,289  
L
L
L
L
L
H
5996 drw05  
NOTE:  
1. See table 3 for values for n, m.  
2. Number of Words in FIFO = FIFO Depth + Output Register.  
3. FWFT mode available only in Single Data Rate mode.  
14  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
IDT72T2098  
IDT72T20108  
IDT72T20118  
IDT72T20128  
SCLK  
WSDR RSDR WEN  
X X 1  
REN  
SEN  
SREN  
WCLK RCLK  
x10 to x10 Mode  
All Other Modes  
X
X
1
0
1
Serial Write to registers:  
In SDR Mode:  
Serial Write to registers:  
In SDR Mode:  
30 bits for the IDT72T2098  
32 bits for the IDT72T20108  
34 bits for the IDT72T20118  
36 bits for the IDT72T20128  
32 bits for the IDT72T2098  
34 bits for the IDT72T20108  
36 bits for the IDT72T20118  
38 bits for the IDT72T20128  
1 bit for each rising SCLK edge  
Starting with Empty Offset (LSB)  
Ending with Full Offset (MSB)  
1 bit for each rising SCLK edge  
Starting with Empty Offset (LSB)  
Ending with Full Offset (MSB)  
Serial Write to registers:  
In DDR Mode:  
Serial Write to registers:  
In DDR Mode:  
28 bits for the IDT72T2098  
30 bits for the IDT72T20108  
32 bits for the IDT72T20118  
34 bits for the IDT72T20128  
30 bits for the IDT72T2098  
32 bits for the IDT72T20108  
34 bits for the IDT72T20118  
36 bits for the IDT72T20128  
1 bit for each rising SCLK edge  
Starting with Empty Offset (LSB)  
Ending with Full Offset (MSB)  
1 bit for each rising SCLK edge  
Starting with Empty Offset (LSB)  
Ending with Full Offset (MSB)  
x10 to x10 Mode  
All Other Modes  
X
X
1
1
1
0
X
X
Serial Read from registers:  
In SDR Mode:  
Serial Read From registers:  
In SDR Mode:  
30 bits for the IDT72T2098  
32 bits for the IDT72T20108  
34 bits for the IDT72T20118  
36 bits for the IDT72T20128  
32 bits for the IDT72T2098  
34 bits for the IDT72T20108  
36 bits for the IDT72T20118  
38 bits for the IDT72T20128  
1 bit for each rising SCLK edge  
Starting with Empty Offset (LSB)  
Ending with Full Offset (MSB)  
1 bit for each rising SCLK edge  
Starting with Empty Offset (LSB)  
Ending with Full Offset (MSB)  
Serial Read from registers:  
In DDR Mode:  
Serial Read from registers:  
In DDR Mode:  
30 bits for the IDT72T2098  
32 bits for the IDT72T20108  
34 bits for the IDT72T20118  
36 bits for the IDT72T20128  
28 bits for the IDT72T2098  
30 bits for the IDT72T20108  
32 bits for the IDT72T20118  
34 bits for the IDT72T20128  
1 bit for each rising SCLK edge  
Starting with Empty Offset (LSB)  
Ending with Full Offset (MSB)  
1 bit for each rising SCLK edge  
Starting with Empty Offset (LSB)  
Ending with Full Offset (MSB)  
Write Memory (DDR)  
Write Memory (SDR)  
Read Memory (DDR)  
1
0
1
1
1
1
1
0
0
0
1
1
1
1
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Read Memory (SDR)  
No Operation  
X
X
1
1
X
X
X
X
X
5996 drw06  
NOTES:  
1. The programming sequence applies to both IDT Standard and FWFT modes.  
2. When the input or output ports are in DDR mode, the depth is reduced by half but the overall density remains the same. For example, the IDT72T2098 in SDR mode is  
32,768 x 20/65,536 x 10 = 655,360, in DDR mode the configuration becomes 16,384 x 40/32,768 x 20 = 655,360. In both cases, the total density are the same.  
Figure 3. Programmable Flag Offset Programming Sequence  
15  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
RETRANSMIT FROM MARK OPERATION  
23,RetransmitfromMarkinDoubleDataRateMode,fortherelevanttiming  
The Retransmit from Mark feature allows FIFO data to be read repeatedly diagram.  
starting at a user-selected position. The FIFO is first put into retransmit mode  
During FWFT mode the FIFO is put into retransmit mode by a rising RCLK  
that will “mark” a beginning word and also set a pointer that will prevent edge when the MARK input is HIGH and OR is LOW. The rising RCLK edge  
ongoing FIFO write operations from over-writing retransmit data. The retrans- marks the data present in the FIFO output register as the first retransmit data.  
mit data can be read repeatedly any number of times from the marked” The data is marked in pairs. The FIFO remains in retransmit mode until a  
position. The FIFO can be taken out of retransmit mode at any time to allow rising RCLK edge occurs while MARK is LOW.  
normal device operation. The mark” position can be selected any number of  
times, each selection over-writing the previous mark location.  
Once a marked location has been set, a retransmit can be initiated by a  
rising RCLK edge while the Retransmit input (RT) is LOW. REN must be  
In Double Data Rate, data is always marked in pairs. That is, the unit of data HIGH (reads disabled) before bringing RT LOW. The device indicates the  
read on the rising and falling edge of WCLK. If the data marked was read on start of retransmit setup by setting OR HIGH, preventing read operations.  
the falling edge of RCLK, then the marked data will be the unit of data read from  
When OR goes LOW, retransmit setup is complete and on the next rising  
the rising and falling edge of that particular RCLK edge. Refer to Figure 23, RCLK edge (RT goes HIGH), the contents of the first retransmit location are  
Retransmit from Mark in Double Data Rate Mode, for the timing diagram in loaded onto the output register. Since FWFTmode is selected, the first word  
this mode. Retransmit operation is available in both IDT standard and FWFT appears on the outputs regardless of REN, a LOW on REN is not required for  
modes.  
the first word. Reading all subsequent words requires a LOW on REN to  
During IDT standard mode the FIFO is put into retransmit mode by a Low- enable the rising RCLK edge. See Figure 24, Retransmit from Mark (FWFT  
to-High transition on RCLK when the MARK input is HIGH and EF is HIGH. mode) for the relevant timing diagram.  
The rising RCLK edge marks the data present in the FIFO output register as  
Before a retransmit can be performed, there must be at least 1280 bits (or  
the first retransmit data. Again, the data is marked in pairs. Thus if the data 160 bytes) of data between the write pointer and mark location.That is, 20 bits  
marked was read on the falling edge of RCLK, the first part of retransmit will x64 for the x20 mode and 10 bits x128 for the x10 mode. Also, once the Mark  
read out the data read on the rising edge of RCLK, followed by the data on the is set, the write pointer will not increment past the marked location, preventing  
falling edge (the marked data). The FIFO remains in retransmit mode until a overwrites of retransmit data.  
rising edge on RCLK occurs while MARK is LOW.  
Once a marked location has been set, a retransmit can be initiated by a HSTL/LVTTL I/O  
rising edge on RCLK while the Retransmit input (RT) is LOW. REN must be  
This device supports both LVTTL and HSTL logic levels on the input and  
HIGH (reads disabled) before bringing RT LOW. The device indicates the start outputsignals.IfLVTTLisdesired,aLOWontheHSTLpinwillsettheinputs  
of retransmit setup by setting EF LOW, also preventing reads. WhenEF goes andoutputstoLVTTLmode.IfHSTLisdesired,aHIGHontheHSTLpinwill  
HIGH, retransmit setup is complete and read operations may begin starting settheinputsandoutputstoHSTLmode.VREFistheinputvoltagereference  
with the first unit of data at the MARK location. Since IDT standard mode is usedinHSTLmode.TypicallyalogicHIGHinHSTLwouldbeVref+0.2Vand  
selected, every word read including the first marked” word following a re- alogicLOWwouldbeVREF0.2V.Table6illustrateswhichpinsareandare  
transmit setup requires a LOW on REN.  
notassociatedwiththisfeature.NotethatallStaticPins”mustbetiedtoVccor  
Note,writeoperationsmaycontinueasnormalduringallretransmitfunctions, GND. These pins are LVTTL only and are purely device configuration pins.  
howeverwriteoperationstothemarked”locationwillbeprevented.SeeFigure  
TABLE 6 — I/O CONFIGURATION  
HSTL SELECT  
STATIC PINS  
HIGH = HSTL  
LOW = LVTTL  
LVTTL ONLY  
Write Port  
Read Port  
Signal Pins  
Static Pins  
Dn (I/P)  
Qn (O/P)  
RCLK (I/P)  
REN (I/P)  
RCS (I/P)  
MARK (I/P)  
OE (I/P)  
EF/OR (O/P)  
PAF (O/P)  
SCLK (I/P)  
SI (I/P)  
TRST (I/P)  
IW (I/P)  
OW (I/P)  
WCLK (I/P)  
WEN (I/P)  
WCS (I/P)  
TDI (I/P)  
PAE (O/P)  
SO (O/P)  
MRS (I/P)  
PRS (I/P)  
TCK (I/P)  
TMS (I/P)  
TDO (O/P)  
SEN (I/P)  
SREN (I/P)  
HSTL (I/P)  
FSEL1 (I/P)  
FSEL0 (I/P)  
FWFT (I/P)  
WSDR (I/P)  
RSDR (I/P)  
FF/IR (O/P)  
ERCLK (O/P)  
EREN (O/P)  
RT (I/P)  
16  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
If FWFT mode has been selected, the OR flag will go HIGH on the rising  
edge of RCLK that retransmit was initiated. OR will return LOW on the next  
rising edge of RCLK, which signifies that retransmit setup is complete. Under  
FWFT mode, the contents in the marked memory location will be loaded onto  
the output register on the next rising edge of RCLK.To access all subsequent  
data, a read operation will be required.  
Subsequent retransmit operations may be performed, each time the read  
pointer returning to the marked” location. See Figure 24, Retransmit from  
Mark (FWFT Mode) for the relevant timing diagram.  
SIGNAL DESCRIPTION  
INPUTS:  
DATA IN (D0 – Dn)  
Data inputs for 20-bit wide data, (D0 D19), or data inputs for 10-bit wide  
data (D0 D9).  
CONTROLS:  
MASTER RESET (MRS)  
A Master Reset is accomplished whenever theMRS input is taken to a LOW  
state. Thisoperationsetstheinternalreadandwritepointerstothefirstlocation  
of the RAM array. PAE will go LOW and PAF will go HIGH.  
If FWFT is LOW during Master Reset then IDT Standard mode along with  
EF and FF are selected. EF will go LOW and FF will go HIGH, If FWFT is  
HIGH, then the First Word Fall Through (FWFT) mode, along with IR and OR  
are selected. OR will go HIGH and IR will go LOW.  
MARK  
The MARK input is used to select Retransmit mode of operation. On a rising  
edge of RCLK while MARK is HIGH will mark the memory location of the data  
currently present on the output register, in addition placing the device in  
retransmit mode. Note, there must be a minimum of 1280 bits (or 160 bytes) of  
data between the write pointer and mark location. That is, 20 bits x64 for the  
x20 mode and 10 bits x128 for the x10 mode. Also, once the MARK is set, the  
write pointer will not increment past the marked” location until the MARK is  
deasserted. This prevents overwriting” of retransmit data.  
All control settings such as OW, IW, WSDR, RSDR, FSEL0 and FSEL1 are  
defined during the Master Reset cycle.  
During a Master Reset the output register is initialized to all zeros. A Master  
Reset is required after power up before a write operation can take place. MRS  
is asynchronous.  
The MARK input must remain HIGH during the whole period of retransmit  
mode, a falling edge of RCLK while MARK is LOW will take the device out of  
retransmit mode and into normal mode. Any number of MARK locations can  
be set during FIFO operation, only the last marked location taking effect. Once  
a mark location has been set the write pointer cannot be incremented past this  
marked location. During retransmit mode write operations to the device may  
continue without hindrance.  
See Figure 8, Master Reset Timing, for the relevant timing diagram.  
PARTIALRESET (PRS)  
A Partial Reset is accomplished whenever the PRS input is taken to a LOW  
state. As in the case of the Master Reset, the internal read and write pointers  
are set to the first location of the RAM array. PAE goes LOW and PAF goes  
HIGH.  
Whichever mode was active at the time of Partial Reset will remain active  
after Partial Reset. If IDT Standard Mode is active, then FF will go HIGH and  
EF will go LOW. If the First Word FallThrough mode is active, thenOR will go  
HIGH and IR will go LOW.  
Following Partial Reset, all values held in the offset registers remain un-  
changed. The output register is initialized to all zeroes. PRS is asynchronous.  
Partial Reset is useful for resetting the read and write pointers to zero without  
affectingthevaluesoftheprogrammableflagoffsetsandthetimingmodeofthe  
FIFO.  
FIRST WORD FALL THROUGH (FWFT)  
During Master Reset, the state of the FWFT input determines whether the  
device will operate in IDT Standard mode or First Word Fall Through (FWFT)  
mode.  
If, at the time of Master Reset, FWFTis LOW, then IDT Standard mode will  
be selected. This mode uses the Empty Flag (EF) to indicate whether or not  
there are any words present in the FIFO memory. It also uses the Full Flag  
function (FF) to indicate whether or not the FIFO memory has any free space  
for writing. In IDT Standard mode, every word read from the FIFO, including  
the first, must be requested using the Read Enable (REN) and RCLK.  
If, at the time of Master Reset, FWFT is HIGH, then FWFT mode will be  
selected. This mode uses Output Ready (OR) to indicate whether or not there  
is valid data at the outputs (Qn) to be read. It also uses Input Ready (IR) to  
indicate whether or not the FIFO memory has any free space for writing. In the  
FWFT mode, the first word written to an empty FIFO goes directly to Qn after  
three RCLK rising edges, bringing REN LOW is not necessary. Subsequent  
words must be accessed using the Read Enable (REN) and RCLK. Note that  
FWFT mode can only be used when the device is configured to Single Data  
Rate (SDR) mode.  
See Figure 9, Partial Reset Timing, for the relevant timing diagram.  
RETRANSMIT (RT)  
The Retransmit (RT) input is used in conjunction with the MARK input.  
Together they provide a means by which data previously read out of the FIFO  
can be reread any number of times. When the retransmit operation is selected  
(i.e. after data has been marked), a rising edge on RCLK while RT is LOW will  
reset the read pointer back to the memory location set by the user via the  
MARK input.  
If IDT Standard mode has been selected, the EF flag will go LOW on the  
rising edge of RCLK that retransmit was initiated (i.e. rising edge of RCLK  
while RT is LOW). EF will go back to HIGH on the next rising edge of RCLK,  
which signifies that retransmit setup is complete. The next read operation will  
access data from the marked” memory location.  
Subsequent retransmit operations may be performed, each time the read  
pointer returning to the marked” location. See Figure 23, Retransmit from  
Mark in Double Data Rate Mode (IDT Standard Mode) for the relevant timing  
diagram.  
WRITE CLOCK (WCLK)  
A write cycle is initiated on the rising and/or falling edge of the WCLK input.  
If the Write Single Data Rate (WSDR) pin is selected, data will be written only  
on the rising edge of WCLK, provided that WEN and WCS are LOW. If the  
WSDR is not selected, data will be written on both the rising and falling edge of  
WCLK, provided that WEN and WCS are LOW. Data setup and hold times  
must be met with respect to the LOW-to-HIGH transition of the WCLK. It is  
permissible to stop the WCLK. Note that while WCLK is idle, the FF, IR, and  
17  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
PAF flags will not be updated. The write and read clocks can either be Word to fall through to the output register.All subsequent words require that a  
independent or coincident.  
read operation to be executed using REN and RCS. The LOW-to-HIGH  
transition of RCLK after the last word has been read from the FIFO will make  
Output Ready (OR) go HIGH with a true read (RCLK with REN and RCS  
WRITE ENABLE (WEN)  
When the WEN input is LOW, data may be loaded into the FIFO RAM array LOW), inhibiting further read operations. REN is ignored when the FIFO is  
on the rising edge of every WCLK cycle if the device is not full. Data is stored empty.  
in the RAM array sequentially and independently of any ongoing read opera-  
tion.  
When WEN is HIGH, no new data is written in the RAM array on each  
WCLK cycle.  
READ SINGLE DATARATE (RSDR)  
When the Read Single Data Rate pin is LOW, the read port will be set to  
Single Data Rate mode. In this mode, all read operations are based only on  
To prevent data overflow in the IDT Standard mode, FF will go LOW, the rising edge of RCLK, provided that REN and RCS are LOW. When RSDR  
inhibiting further write operations. Upon the completion of a valid read cycle, is HIGH, the read port will be set to Double Data Rate mode. In this mode, all  
FF will go HIGH, allowing a write to occur. The FF is updated by two WCLK read operations are based on both the rising and falling edge of RCLK,  
cycles + tSKEW after the RCLK cycle.  
provided that REN and RCS are LOW, on the rising edge of RCLK.  
To prevent data overflow in the FWFT mode, IR will go HIGH, inhibiting  
further write operations. Upon the completion of a valid read cycle, IR will go SERIAL CLOCK (SCLK)  
LOW, allowing a write to occur. The IR flag is updated by two WCLK cycles +  
The serial clock is used to load and read data in the programmable offset  
registers. Data from the Serial Input (SI) can be loaded into the offset registers  
tSKEW after the valid RCLK cycle.  
WEN is ignored when the FIFO is full in either IDT Standard mode or on the rising edge of SCLK provided that SEN is LOW. Data can be read from  
FWFT.  
the offset registers via the Serial Output (SO) on the rising edge of SCLK  
provided that SREN is LOW. The serial clock can operate at a maximum  
frequency of 10MHz and its parameters are different than the FIFO system  
WRITE SINGLE DATA RATE (WSDR)  
When the Write Single Data Rate pin is LOW, the write port will be set to clock.  
Single Data Rate mode. In this mode, all write operations are based only on  
the rising edge of WCLK, provided that WEN and WCS are LOW. When SERIAL ENABLE (SEN)  
WSDR is HIGH, the read port will be set to Double Data Rate mode. In this  
The SEN input is an enable used for serial programming of the program-  
mode, all write operations are based on both the rising and falling edge of mable offset registers. It is used in conjunction with SI and SCLK when pro-  
WCLK, provided that WEN and WCS are LOW, on the rising edge of WCLK. gramming the offset registers. When SEN is LOW, data at the Serial In (SI)  
input can be loaded into the offset register, one bit for each LOW-to-HIGH  
READ CLOCK (RCLK)  
transition of SCLK.  
A read cycle is initiated on the rising and/or falling edge of the RCLK input.  
When SEN is HIGH, the offset registers retain the previous settings and no  
If the Read Single Data Rate (RSDR) pin is selected, data will be read only on offsets are loaded. SEN functions the same way in both IDT Standard and  
the rising edge of RCLK, provided that REN and RCS are LOW. If the RSDR FWFT modes.  
is not selected, data will be read on both the rising and falling edge of WCLK,  
provided thatREN andRCS are LOW, on the rising edge of RCLK. Setup and SERIAL READ ENABLE (SREN)  
hold times must be met with respect to the LOW-to-HIGH transition of the  
The SREN output is an enable used for reading the value of the program-  
RCLK. It is permissible to stop the RCLK. Note that while RCLK is idle, theEF/ mable offset registers. It is used in conjunction with SI and SCLK when reading  
OR and PAE flags will not be updated. Write and Read Clocks can be inde- fromtheoffsetregisters. WhenSRENisLOW, datacanbereadoutoftheoffset  
pendent or coincident.  
register from the SO output, one bit for each LOW-to-HIGH transition of SCLK.  
When SREN is HIGH, the reading of the offset registers will stop. When-  
ever SREN is activated values in the offset registers are read starting from the  
READ ENABLE (REN)  
When Read Enable is LOW, data is loaded from the RAM array into the first location in the offset registers and not from where the last offset value was  
output register on the rising edge of every RCLK cycle if the device is not read. SREN functions the same way in both IDT Standard and FWFT modes.  
empty.  
When the REN input is HIGH, the output register holds the previous data SERIAL IN (SI)  
and no new data is loaded into the output register. The data outputs Q0-Qn  
maintain the previous data value.  
This pin acts as a serial input for loading PAE and PAF offsets into the  
programmable offset registers. It is used in conjunction with the Serial Clock  
In IDT Standard mode, every word accessed at Qn, including the first word (SCLK) and the Serial Enable (SEN). Data from this input can be loaded into  
written to an empty FIFO, must be requested using REN provided that the the offset register, one bit for each LOW-to-HIGH transition of SCLK provided  
Read Chip Select (RCS) is LOW. When the last word has been read from the thatSEN is LOW.  
FIFO, the Empty Flag (EF) will go LOW, inhibiting further read operations.  
REN is ignored when the FIFO is empty. Once a write is performed, EF will go SERIAL OUT (SO)  
HIGH allowing a read to occur. Both RCS and REN must be active LOW for  
data to be read out on the rising edge of RCLK.  
This pin acts as a serial output for reading the values of the PAE and PAF  
offsets in the programmable offset registers. It is used in conjunction with the  
In FWFT mode, the first word written to an empty FIFO automatically goes Serial Clock (SCLK) and the Serial Enable Output (SREN). Data from the  
to the outputs Qn, on the third valid LOW-to-HIGH transition of RCLK + tSKEW offset register can be read out using this pin, one-bit for each LOW-to-HIGH  
after the first write. REN and RCS do not need to be asserted LOW for the First transition of SCLK provided that SREN is LOW.  
18  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
OUTPUT ENABLE (OE)  
OUTPUTS:  
When Output Enable is LOW, the parallel output buffers receive data from  
the output register. When OE is HIGH, the output data bus (Qn) goes into a  
high-impedance state. During Master or Partial Reset the OE is the only input  
that can place the output data bus into high-impedance. During reset the RCS  
input can be HIGH or LOW and has no effect on the output data bus.  
DATA OUT (Q0-Q19)  
(Q0 – Q19) are data outputs for 20-bit wide data, or (Q0 – Q9) are data  
outputs for 10-bit wide data.  
FULL FLAG (FF/IR)  
Thisisadualpurposepin.InIDTStandardmode,theFullFlag(FF)function  
is selected. When the FIFO is full, FF will go LOW, inhibiting further write  
operations. WhenFF is HIGH, the FIFOis notfull. Ifnoreads are performed  
afterareset(eitherMRS orPRS), FF willgoLOWafterDwrites totheFIFO.  
Ifx20Inputorx20Outputbuswidthisselected,D=32,768fortheIDT72T2098,  
65,536fortheIDT72T20108,131,072fortheIDT72T20118and262,144for  
theIDT72T20128.Ifbothx10Inputandx10Outputbuswidthsareselected,  
D = 65,536forthe IDT72T2098, 131,072forthe IDT72T20108, 262,144for  
the IDT72T20118 and 524,288 for the IDT72T20128. See Figure 10, Write  
Cycle and Full Flag Timing (IDT Standard Mode), for the relevant timing  
information.  
In FWFT mode, the Input Ready (IR) function is selected. IR goes LOW  
whenmemoryspace is available forwritingindata. Whenthere is nolonger  
anyfreespaceleft,IRgoesHIGH,inhibitingfurtherwriteoperations.Ifnoreads  
areperformedafterareset(eitherMRSorPRS),IRwillgoHIGHafterD writes  
totheFIFO.Ifx20Inputorx20OutputbusWidthisselected,D = 32,769forthe  
IDT72T2098,65,537fortheIDT72T20108,131,073fortheIDT72T20118and  
262,145fortheIDT72T20128.Ifbothx10Inputandx10OutputbusWidthsare  
selected, D = 65,537 for the IDT72T2098, 131,073 for the IDT72T20108,  
262,145fortheIDT72T20118and524,289fortheIDT72T20128.SeeFigure  
19,WriteTiming(FWFTMode),fortherelevanttiminginformation.  
The IR status not only measures the contents of the FIFO memory, but also  
counts the presence of a word in the output register. Thus, in FWFTmode, the  
total number of writes necessary to deassert IR is one greater than needed to  
assert FF in IDT Standard mode.  
READ CHIP SELECT (RCS)  
The Read Chip Select input provides synchronous control of the Read  
output port. When RCS goes LOW, the next rising edge of RCLK causes the  
Qn outputs to go to the low-impedance state. WhenRCS goes HIGH, the next  
RCLK rising edge causes the Qn outputs to return to high-impedance. During  
a Master or Partial Reset theRCS input has no effect on the Qn output bus, OE  
is the only input that provides high-impedance control of the Qn outputs. IfOE  
is LOW, the Qn data outputs will be low-impedance regardless of RCS until the  
first rising edge of RCLK after a reset is complete. Then if RCS is HIGH the  
data outputs will go to high-impedance.  
The RCS input does not effect the operation of the flags. For example, when  
the first word is written to an empty FIFO, theEF will still go from LOW to HIGH  
based on a rising edge of RCLK, regardless of the state of the RCS input.  
Also, when operating the FIFO in FWFT mode the first word written to an  
empty FIFO will still be clocked through to the output register based on RCLK,  
regardless of the state of RCS. For this reason the user should pay extra  
attention when a data word is written to an empty FIFO in FWFT mode. If RCS  
is HIGH when an empty FIFO is written into, the first word will fall through to the  
output register but will not be available on the Qn outputs because they are in  
high-impedance. TheusermusttakeRCS activeLOWtoaccessthisfirstword,  
placing the output bus in low-impedance. REN must remain HIGH for at least  
one cycle after RCS has gone LOW. A rising edge of RCLK with RCS and  
REN LOW will read out the next word. Care must be taken so as not to lose the  
first word written to an empty FIFO when RCS is HIGH. Refer to Figure 22,  
RCS and REN Read Operation (FWFT Mode). The RCS pin must also be  
active (LOW) in order to perform a Retransmit. See Figure 18 for Read Cycle  
and Read Chip Select Timing (IDT Standard Mode). See Figure 21 for Read  
Cycle and Read Chip Select Timing (FWFT Mode).  
FF/IR is synchronous and updated on the rising edge of WCLK. FF/IR are  
double register-buffered outputs.  
Note,whenthedeviceisinRetransmitmode,thisflagisacomparisonofthe  
writepointertothemarked”location.Thisdiffersfromnormalmodewherethis  
flagis acomparisonofthewritepointertothereadpointer.  
WRITE CHIP SELECT (WCS)  
The WCS disables all Write Port inputs (data only) if it is held HIGH. To  
perform normal operations on the write port, the WCS must be enabled.  
EMPTY FLAG (EF/OR)  
Thisisadual-purposepin.IntheIDTStandardmode,theEmptyFlag(EF)  
functionisselected.WhentheFIFOisempty,EFwillgoLOW,inhibitingfurther  
readoperations.WhenEFisHIGH,theFIFOisnotempty.SeeFigure12,Read  
Cycle, EmptyFlagandFirstWordLatencyTiming(IDTStandardMode),for  
therelevanttiminginformation.  
InFWFTmode,theOutputReady(OR)functionisselected.ORgoesLOW  
atthesametimethatthefirstwordwrittentoanemptyFIFOappearsvalidon  
theoutputs.ORstaysLOWaftertheRCLKLOWtoHIGHtransitionthatshiftsthe  
lastwordfromtheFIFOmemorytotheoutputs.ORgoesHIGHonlywithatrue  
read(RCLKwithREN=LOW).Thepreviousdatastaysattheoutputs,indicating  
the last word was read. Further data reads are inhibited untilOR goes LOW  
again. See Figure 20, Read Timing (FWFT Mode), for the relevant timing  
information.  
HSTL SELECT (HSTL)  
The inputs that were listed in Table 6 can be setup to be either HSTL or  
LVTTL. If HSTL is HIGH, then HSTL operation of those signals will be se-  
lected. If HSTLis LOW , then LVTTLwill be selected.  
BUS-MATCHING (IW, OW)  
The pins IW, and OW are used to define the input and output bus widths.  
DuringMasterReset, thestateofthesepinsisusedtoconfigurethedevicebus  
sizes. See Table 1 for control settings.All flags will operate on the word/byte  
size boundary as defined by the selection of bus width. See Table 7 for Bus-  
Matching Write to Read Ratio.  
EF/OR is synchronous and updated on the rising edge of RCLK.  
In IDT Standard mode, EF is a double register-buffered output. In FWFT  
mode,ORisatripleregister-bufferedoutput.  
FLAG SELECT BITS (FSEL0 and FSEL1)  
Thesepinswillselectthefourdefaultoffsetvaluesforthe PAE and PAFflags  
during Master Reset. The four possible settings are listed onTable 3. Note that  
the status of these inputs should not change after Master Reset.  
19  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
PROGRAMMABLE ALMOST-FULL FLAG (PAF)  
See Figure 30, Programmable Almost-EmptyFlagTiming(IDTStandard  
The Programmable Almost-Full flag (PAF) will go LOW when the FIFO andFWFTMode),fortherelevanttiminginformation.  
reaches the almost-full condition. In IDT Standard mode, if no reads are  
performedafterreset(MRS),PAFwillgoLOWafter(D-m)wordsarewritten ECHO READ CLOCK (ERCLK)  
totheFIFO.Ifx20Inputorx20Outputbuswidthisselected,PAFwillgoLOW  
The Echo Read Clock output is provided in both HSTLand LVTTLmode,  
after (32,768-m) writes for the IDT72T2098, (65,536-m) writes for the selectable via HSTL. The ERCLK is a free-running clock output, it will always  
IDT72T20108, (131,072-m) writes for the IDT72T20118 and (262,144-m) follow the RCLK input regardless of REN and RCS.  
writes fortheIDT72T20128.Ifbothx10Inputandx10Outputbus widths are  
The ERCLK output follows the RCLK input with an associated delay. This  
selected, PAF will go LOW after (65,536-m) writes for the IDT72T2098, delay provides the user with a more effective read clock source when reading  
(131,072-m) writes for the IDT72T20108, (262,144-m) writes for the data from the Qn outputs. This is especially helpful at high speeds when  
IDT72T20118 and (524,288-m) writes for the IDT72T20128, respectively. variables within the device may cause changes in the data access times.  
Theoffsetm”isthefulloffsetvalue.Thedefaultsettingforthisvalueislistedin These variations in access time maybe caused by ambient temperature, sup-  
Table 3.  
ply voltage, or device characteristics. The ERCLK output also compensates  
InFWFTmode, ifx20Inputorx20Outputbuswidthisselected,PAFwillgo for any trace length delays between the Qn data outputs and receiving de-  
LOW after (32,769-m) writes for the IDT72T2098, (65,537-m) writes for the vices inputs.  
IDT72T20108, (131,073-m) writes for the IDT72T20118 and (262,145-m)  
Any variations effecting the data access time will also have a corresponding  
writes fortheIDT72T20128.Ifbothx10Inputandx10Outputbus widths are effect on the ERCLK output produced by the FIFO device, therefore the  
selected, PAF will go LOW after (65,537-m) writes for the IDT72T2098, ERCLK output level transitions should always be at the same position in time  
(131,073-m) writes for the IDT72T20108, (262,145-m) writes for the relative to the data outputs. Note, that ERCLK is guaranteed by design to be  
IDT72T20118 and (524,289-m) writes for the IDT72T20128, respectively. slower than the slowest Qn, data output. Refer to Figure 4, Echo Read Clock  
Theoffset misthefulloffsetvalue.Thedefaultsettingforthisvalueislistedin and Data Output Relationship, Figure 27, Echo Read Clock & Read Enable  
Table 3.  
SeeFigure29,ProgrammableAlmost-FullFlagTiming(IDTStandardand REN Operation for timing information.  
FWFTMode),fortherelevanttiminginformation.  
Note,whenthedeviceisinRetransmitmode,thisflagisacomparisonofthe ECHO READ ENABLE (EREN)  
Operation in Double Data Rate Mode and Figure 28, Echo RCLK & Echo  
writepointertothemarked”location.Thisdiffersfromnormalmodewherethis  
flagis acomparisonofthewritepointertothereadpointer.  
TheEchoReadEnableoutputisprovidedinbothHSTLandLVTTLmode,  
selectableviaHSTL.  
The EREN output is provided to be used in conjunction with the ERCLK  
output and provides the reading device with a more effective scheme for  
PROGRAMMABLEALMOST-EMPTYFLAG(PAE)  
TheProgrammableAlmost-Emptyflag(PAE)willgoLOWwhentheFIFO reading data from the Qn output port at high speeds. The EREN output is  
reachesthealmost-emptycondition.InIDTStandardmode,PAEwillgoLOW controlled by internal logic that behaves as follows: The EREN output is active  
whenthere are nwords orless inthe FIFO. The offsetn”is the emptyoffset LOW for the RCLK cycle that a new word is read out of the FIFO. That is, a  
value.ThedefaultsettingforthisvalueisstatedinthefootnoteofTable3.  
InFWFTmode, the PAE willgoLOWwhenthere are n+1words orless in are active, LOW and the FIFO is NOTempty.  
theFIFO.Thedefaultsettingforthis valueis statedinTable3.  
rising edge of RCLK will causeEREN to go active, LOW if both REN and RCS  
RCLK  
tERCLK  
tERCLK  
ERCLK  
t
A
t
D
tD  
t
A
Q
SLOWEST(3)  
5996 drw07  
NOTES:  
1. REN is LOW.  
2. tERCLK > tA, guaranteed by design.  
3. Qslowest is the data output with the slowest access time, tA.  
4. Time, tD is greater than zero, guaranteed by design.  
5. REN = RCS = OE = 0.  
Figure 4. Echo Read Clock and Data Output Relationship  
20  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
TABLE 7 — BUS-MATCHING WRITE TO READ RATIO  
ONE WRITE TO ONE READ (1:1)  
x20 DDR Input to x20 DDR Output  
x20 SDR Input to x20 SDR Output  
Configuration  
Configuration  
WSDR  
H
RSDR  
H
IW  
L
OW  
L
WSDR  
L
RSDR  
L
IW  
L
OW  
L
SDR Write Clock x20 Data In  
SDR Read Clock x20 Data Out  
DDR Write Clock x20 Data In  
DDR Read Clock x20 Data Out  
Positive Edge 1 D[19:0] <= W1 Positive Edge 1 Q[19:0] <= W1  
Positive Edge 1 D[19:0] <= W1 Positive Edge 1 Q[19:0] <= W1  
Negative Edge 1 D[19:0] <= W2 Negative Edge 1 Q[19:0] <= W2  
x20 SDR Input to x10 DDR Output  
x10 DDR Input to x20 SDR Output  
Configuration  
Configuration  
WSDR  
L
RSDR  
H
IW  
L
OW  
H
WSDR  
H
RSDR  
L
IW  
H
OW  
L
DDR Write Clock x10 Data In  
SDR Read Clock x20 Data Out  
SDR Write Clock x20 Data In  
DDR Read Clock x10 Data Out  
Positive Edge 1 D[9:0] <= B1  
Negative Edge 1 D[9:0] <= B2  
Positive Edge 1 Q[19:10] <= B1  
Positive Edge 1 Q[9:0] <= B2  
Positive Edge 1 D[19:10] <= B1 Positive Edge 1 Q[9:0] <= B1  
Positive Edge 1 D[9:0] <= B2  
Negative Edge 1 Q[9:0] <= B2  
x10 SDR Input to x10 SDR Output  
x10 DDR Input to x10 DDR Output  
Configuration  
Configuration  
WSDR  
L
RSDR  
L
IW  
H
OW  
H
WSDR RSDR  
IW  
H
OW  
H
H
H
DDR Write Clock x10 Data In  
DDR Read Clock x10 Data Out  
SDR Write Clock x10 Data In  
SDR Read Clock x10 Data Out  
Positive Edge 1 D[9:0] <= B1  
Negative Edge 1 D[9:0] <= B2  
Positive Edge 1 Q[9:0] <= B1  
Negative Edge 1 Q[9:0] <= B2  
Positive Edge 1 D[9:0] <= B1 Positive Edge 1 Q[9:0] <= B1  
ONE WRITE TO TWO READ (1:2)  
x20 DDR Input to x20 SDR Output  
x20 SDR Input to x10 SDR Output  
Configuration  
Configuration  
WSDR  
L
RSDR  
L
IW  
L
OW  
H
WSDR RSDR  
IW  
L
OW  
L
H
L
DDR Write Clock x20 Data In  
SDR Read Clock x20 Data Out  
SDR Write Clock x20 Data In  
SDR Read Clock x10 Data Out  
Positive Edge 1 D[19:0] <= W1  
Negative Edge 1 D[19:0] <= W2  
Positive Edge 1 Q[19:0] <= W1  
Positive Edge 2 Q[19:0] <= W2  
Positive Edge 1 D[19:10] <= B1 Positive Edge 1 Q[9:0] <= B1  
Positive Edge 1 D[9:0] <= B2  
Positive Edge 2 Q[9:0] <= B2  
x20 DDR Input to x10 DDR Output  
Configuration  
x10 DDR Input to x10 SDR Output  
WSDR RSDR  
IW  
L
OW  
H
Configuration  
H
H
WSDR  
H
RSDR  
L
IW  
H
OW  
H
DDR Write Clock x20 Data In  
DDR Read Clock x10 Data Out  
Positive Edge 1 D[19:10] <= B1 Positive Edge 1 Q[9:0] <= B1  
Positive Edge 1 D[9:0] <= B2 Negative Edge 1 Q[9:0] <= B2  
Negative Edge 1 D[19:10] <= B3 Positive Edge 2 Q[9:0] <= B3  
Negative Edge 1 D[9:0] <= B4 Negative Edge 2 Q[9:0] <= B4  
DDR Write Clock x10 Data In  
SDR Read Clock x10 Data Out  
Positive Edge 1 D[19:10] <= B1 Positive Edge 1 Q[9:0] <= B1  
Negative Edge 1 D[9:0] <= B2 Positive Edge 2 Q[9:0] <= B2  
21  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
TABLE 7 — BUS-MATCHING WRITE TO READ RATIO (CONTINUED)  
ONE WRITE TO FOUR READ (1:4)  
x20 DDR Input to x10 SDR Output  
Configuration  
WSDR  
H
RSDR  
L
IW  
L
OW  
L
DDR Write Clock x20 Data In  
SDR Read Clock x10 Data Out  
Positive Edge 1 D[19:10] <= B1 Positive Edge 1 Q[9:0] <= B1  
Positive Edge 1 D[9:0] <= B2 Positive Edge 2 Q[9:0] <= B2  
Negative Edge 1 D[19:10] <= B3 Positive Edge 3 Q[9:0] <= B3  
Negative Edge 1 D[9:0] <= B4 Positive Edge 4 Q[9:0] <= B4  
TWO WRITE TO ONE READ (2:1)  
x20 SDR Input to x20 DDR Output  
x10 DDR Input to x20 DDR Output  
Configuration  
Configuration  
WSDR  
L
RSDR  
H
IW  
L
OW  
L
WSDR  
H
RSDR  
H
IW  
H
OW  
L
DDR Write Clock x10 Data In  
DDR Read Clock x20 Data Out  
SDR Write Clock x20 Data In  
DDR Read Clock x20 Data Out  
Positive Edge 1 D[9:0] <= B1 Positive Edge 1 Q[19:10] <= B1  
Negative Edge 1 D[9:0] <= B2 Postive Edge 1 Q[9:0] <= B2  
Positive Edge 1 D[19:0] <=W1 Positive Edge 1 Q[19:0] <= W1  
Positive Edge 2 D[19:0] <=W2 Negative Edge 1 Q[19:0] <= W2  
Positive Edge 2 D[9:0] <= B3 Negative Edge 1 Q[19:10] <= B3  
Negative Edge 2 D[9:0] <= B4 Negative Edge 1 Q[9:0] <= B4  
x10 SDR Input to x20 SDR Output  
x10 SDR Input to x10 DDR Output  
Configuration  
Configuration  
WSDR  
L
RSDR  
L
IW  
H
OW  
L
WSDR  
L
RSDR  
H
IW  
H
OW  
H
DDR Write Clock x10 Data In  
SDR Read Clock x10 Data Out  
SDR Write Clock x10 Data In  
SDR Read Clock x20 Data Out  
Positive Edge 1 D[9:0] <= B1 Positive Edge 1 Q[9:0] <= B1  
Positive Edge 2 D[9:0] <= B3 Negative Edge 1 Q[9:0] <= B3  
Positive Edge 1 D[19:10] <= B1 Positive Edge 1 Q[19:10] <= B1  
Positive Edge 2 D[9:0] <= B2  
Positive Edge 1 Q[9:0] <= B2  
FOUR WRITE TO ONE READ (4:1)  
x10 SDR Input to x20 DDR Output  
Configuration  
WSDR  
L
RSDR  
H
IW  
H
OW  
L
SDR Write Clock x10 Data In  
DDR Read Clock x20 Data Out  
Positive Edge 1 D[9:0] <= B1  
Positive Edge 2 D[9:0] <= B2  
Positive Edge 3 D[9:0] <= B3  
Positive Edge 4 D[9:0] <= B4  
Positive Edge 1 Q[19:10] <= B1  
Positive Edge 1 Q[9:0] <= B2  
Negative Edge 1 Q[19:0] <= B3  
Negative Edge 1 Q[9:0] <= B4  
22  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
TABLE 8 — TSKEW MEASUREMENT  
Data Port  
Status Flags  
TSKEW Measurement  
Configuration  
DDR Input  
to  
EF & PAE  
Negative Edge WCLK to  
Positive Edge RCLK  
DDR Output  
FF & PAF  
EF & PAE  
Negative Edge RCLK to  
Positive Edge WCLK  
DDR Input  
to  
Negative Edge WCLK to  
Positive Edge RCLK  
SDR Output  
FF & PAF  
EF & PAE  
Positive Edge RCLK to  
Positive Edge WCLK  
SDR Input  
to  
Positive Edge WCLK to  
Positive Edge RCLK  
DDR Output  
FF & PAF  
EF & PAE  
Negative Edge RCLK to  
Positive Edge WCLK  
SDR Input  
to  
Positive Edge WCLK to  
Positive Edge RCLK  
SDR Output  
FF & PAF  
Positive Edge RCLK to  
Positive Edge WCLK  
23  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
JTAGTIMINGSPECIFICATION  
tTCK  
t4  
t1  
t2  
TCK  
t3  
TDI/  
TMS  
tDS  
tDH  
TDO  
TDO  
tDO  
t6  
TRST  
5996 drw08  
Notes to diagram:  
t1 = tTCKLOW  
t2 = tTCKHIGH  
t5  
t3 = tTCKFALL  
t4 = tTCKRISE  
t5 = tRST (reset pulse width)  
t6 = tRSR (reset recovery)  
Figure 5. Standard JTAG Timing  
JTAG  
ACELECTRICALCHARACTERISTICS  
(vcc = 2.5V ± 5%; Tcase = 0°C to +85°C)  
Parameter  
Symbol  
Test  
Conditions  
SYSTEMINTERFACEPARAMETERS  
Min. Max. Units  
IDT72T2098  
IDT72T20108  
IDT72T20118  
IDT72T20128  
JTAGClockInputPeriod tTCK  
-
-
-
-
-
-
-
100  
40  
40  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
JTAGClockHIGH  
JTAGClockLow  
tTCKHIGH  
tTCKLOW  
tTCKRISE  
tTCKFALL  
tRST  
-
Parameter  
Symbol Test Conditions Min. Max. Units  
JTAGClockRiseTime  
JTAGClockFallTime  
JTAGReset  
5(1)  
5(1)  
-
(1)  
DataOutput  
tDO  
-
20  
-
ns  
ns  
ns  
-
(1)  
DataOutputHold tDOH  
0
50  
50  
DataInput  
tDS  
tDH  
trise=3ns  
tfall=3ns  
10  
10  
-
-
JTAG Reset Recovery  
tRSR  
-
NOTE:  
1. 50pf loading on external output signals.  
NOTE:  
1. Guaranteed by design.  
24  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
TheStandardJTAGinterfaceconsistsoffourbasicelements:  
JTAGINTERFACE  
Test Access Port (TAP)  
TAPcontroller  
Instruction Register (IR)  
Data Register Port (DR)  
Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to  
support the JTAG boundary scan interface. The IDT72T2098/72T20108/  
72T20118/72T20128incorporatesthenecessarytapcontrollerandmodified  
padcellstoimplementtheJTAG facility.  
NotethatIDTprovidesappropriateBoundaryScanDescriptionLanguage  
programfilesforthesedevices.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
The Figure belowshows the standardBoundary-ScanArchitecture  
DeviceID Reg.  
Mux  
Boundary Scan Reg.  
Bypass Reg.  
TDO  
TDI  
T
A
clkDR, ShiftDR  
UpdateDR  
P
TMS  
TAP  
TCLK  
Cont-  
roller  
TRST  
Instruction Decode  
clklR, ShiftlR  
UpdatelR  
Instruction Register  
Control Signals  
5996 drw09  
Figure 6. Boundary Scan Architecture  
THETAPCONTROLLER  
TEST ACCESS PORT (TAP)  
TheTapcontrollerisasynchronousfinitestatemachinethatrespondsto  
TMSandTCLKsignalstogenerateclockandcontrolsignalstotheInstruction  
andDataRegisters forcaptureandupdateofdata.  
The Tap interface is a general-purpose port that provides access to the  
internaloftheprocessor. Itconsistsoffourinputports(TCLK,TMS,TDI,TRST)  
and one output port (TDO).  
25  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
1
Test-Logic  
Reset  
0
1
0
1
1
Run-Test/  
Idle  
Select-  
DR-Scan  
Select-  
IR-Scan  
0
0
1
1
Capture-DR  
Capture-IR  
0
0
0
0
Shift-DR  
Shift-IR  
1
1
1
1
Input = TMS  
Exit1-IR  
EXit1-DR  
0
0
0
0
Pause-DR  
Pause-IR  
1
1
Exit2-IR  
Exit2-DR  
0
0
1
1
Update-DR  
Update-IR  
1
0
1
0
5996 drw10  
NOTES:  
1. Five consecutive TCK cycles with TMS = 1 will reset the TAP.  
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).  
3. TAP controller must be reset before normal FIFO operations can begin.  
Figure 7. TAP Controller State Diagram  
Capture-IRInthiscontrollerstate,theshiftregisterbankintheInstruction  
RegisterparallelloadsapatternoffixedvaluesontherisingedgeofTCK.The  
lasttwosignificantbits arealways requiredtobe01.  
Shift-IR In this controller state, the instruction register gets connected  
betweenTDIandTDO,andthecapturedpatterngetsshiftedoneachrisingedge  
ofTCK.TheinstructionavailableontheTDIpinisalsoshiftedintotheinstruction  
register.  
Exit1-IRThisisacontrollerstatewhereadecisiontoentereitherthePause-  
IRstateorUpdate-IRstateismade.  
Pause-IRThis state is providedinordertoallowthe shiftingofinstruction  
registertobetemporarilyhalted.  
Exit2-DRThisisacontrollerstatewhereadecisiontoentereithertheShift-  
IRstateorUpdate-IRstateismade.  
Update-IRInthiscontrollerstate,theinstructionintheinstructionregisteris  
latchedintothelatchbankoftheInstructionRegisteroneveryfallingedgeof  
TCK.Thisinstructionalsobecomesthecurrentinstructiononceitislatched.  
Capture-DRInthiscontrollerstate,thedataisparallelloadedintothedata  
registersselectedbythecurrentinstructionontherisingedgeofTCK.  
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These  
controllerstates are similartothe Shift-IR, Exit1-IR, Pause-IR, Exit2-IRand  
Update-IRstatesintheInstructionpath.  
Refer to the IEEE Standard Test Access Port Specification (IEEE Std.  
1149.1)forthefullstatediagram  
AllstatetransitionswithintheTAPcontrolleroccurattherisingedgeofthe  
TCLKpulse. TheTMSsignallevel(0or1)determinesthestateprogression  
thatoccursoneachTCLKrisingedge. TheTAPcontrollertakesprecedence  
overtheFIFOmemoryandmustberesetafterpowerupofthedevice. See  
TRSTdescriptionformoredetailsonTAPcontrollerreset.  
Test-Logic-ResetAlltestlogicisdisabledinthiscontrollerstateenablingthe  
normaloperationoftheIC.TheTAPcontrollerstatemachineisdesignedinsuch  
awaythat,nomatterwhattheinitialstateofthecontrolleris,theTest-Logic-Reset  
statecanbeenteredbyholdingTMSathighandpulsingTCKfivetimes.This  
is the reason why the Test Reset (TRST) pin is optional.  
Run-Test-IdleInthiscontrollerstate,thetestlogicintheICisactiveonlyif  
certaininstructionsarepresent.Forexample,ifaninstructionactivatestheself  
test,thenitwillbeexecutedwhenthecontrollerentersthisstate.Thetestlogic  
intheICis idles otherwise.  
Select-DR-ScanThis is a controllerstate where the decisiontoenterthe  
DataPathortheSelect-IR-Scanstateismade.  
Select-IR-Scan This is a controller state where the decision to enter the  
InstructionPathismade.TheControllercanreturntotheTest-Logic-Resetstate  
otherwise.  
26  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
THE INSTRUCTION REGISTER  
JTAG INSTRUCTION REGISTER  
TheInstructionregisterallowsinstructiontobeseriallyinputintothedevice  
whentheTAPcontrollerisintheShift-IRstate. Theinstructionisdecodedto  
performthefollowing:  
TheInstructionregisterallowsaninstructiontobeshiftedinseriallyintothe  
processor at the rising edge of TCLK.  
TheInstructionis usedtoselectthetesttobeperformed,orthetestdata  
registertobeaccessed,orboth. Theinstructionshiftedintotheregisterislatched  
atthecompletionoftheshiftingprocesswhentheTAPcontrollerisatUpdate-  
IRstate.  
Theinstructionregistermustcontain4bitinstructionregister-basedcells  
whichcanholdinstructiondata. Thesemandatorycellsarelocatednearestthe  
serialoutputstheyaretheleastsignificantbits.  
Selecttestdataregistersthatmayoperatewhiletheinstructionis  
current. Theothertestdataregistersshouldnotinterferewithchip  
operationandtheselecteddataregister.  
Definetheserialtestdataregisterpaththatisusedtoshiftdatabetween  
TDI and TDO during data register scanning.  
TheInstructionRegisterisa4bitfield(i.e.IR3,IR2,IR1,IR0)todecode16  
differentpossibleinstructions. Instructionsaredecodedasfollows.  
Hex  
Value  
Instruction  
Function  
TESTDATAREGISTER  
TheTestDataregistercontainsthreetestdataregisters:theBypass,the  
Boundary Scan register and Device ID register.  
Theseregistersareconnectedinparallelbetweenacommonserialinput  
andacommonserialdataoutput.  
0x02  
0x01  
0x03  
0x0F  
IDCODE  
SelectChipIdentificationdataregister  
SelectBoundaryScanRegister  
JTAG  
SAMPLE/PRELOAD  
HI-IMPEDANCE  
BYPASS  
SelectBypassRegister  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescription,refertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
Table 8. JTAG Instruction Register Decoding  
Thefollowingsectionsprovideabriefdescriptionofeachinstruction. For  
acompletedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
TEST BYPASS REGISTER  
TheregisterisusedtoallowtestdatatoflowthroughthedevicefromTDI  
toTDO. Itcontainsasinglestageshiftregisterforaminimumlengthinserialpath.  
Whenthebypassregisterisselectedbyaninstruction,theshiftregisterstage  
is settoa logiczeroonthe risingedge ofTCLKwhenthe TAPcontrolleris in  
theCapture-DRstate.  
IDCODE  
TheoptionalIDCODEinstructionallowstheICtoremaininitsfunctionalmode  
andselectstheoptionaldeviceidentificationregistertobeconnectedbetween  
TDIandTDO.Thedeviceidentificationregisterisa32-bitshiftregistercontaining  
information regarding the IC manufacturer, device type, and version code.  
Accessingthedeviceidentificationregisterdoesnotinterferewiththeoperation  
oftheIC.Also,accesstothedeviceidentificationregistershouldbeimmediately  
available,viaaTAPdata-scanoperation,afterpower-upoftheICorafterthe  
TAPhasbeenresetusingtheoptionalTRSTpinorbyotherwisemovingtothe  
Test-Logic-Resetstate.  
The operation of the bypass register should not have any effect on the  
operationofthedeviceinresponsetotheBYPASSinstruction.  
THE BOUNDARY-SCAN REGISTER  
TheBoundaryScanRegisterallowsserialdataTDIbeloadedintoorread  
outoftheprocessorinput/outputports. TheBoundaryScanRegisterisapart  
oftheIEEE1149.1-1990StandardJTAGImplementation.  
SAMPLE/PRELOAD  
THE DEVICE IDENTIFICATION REGISTER  
TherequiredSAMPLE/PRELOADinstructionallows theICtoremainina  
normalfunctionalmodeandselectstheboundary-scanregistertobeconnected  
betweenTDIandTDO.Duringthisinstruction,theboundary-scanregistercan  
beaccessedviaadatescanoperation,totakeasampleofthefunctionaldata  
entering and leaving the IC.  
The Device IdentificationRegisteris a ReadOnly32-bitregisterusedto  
specify the manufacturer, part number and version of the processor to be  
determinedthroughtheTAPinresponsetotheIDCODEinstruction.  
IDT JEDEC ID number is 0xB3. This translates to 0x33 when the parity  
is droppedinthe11-bitManufacturerIDfield.  
FortheIDT72T2098/72T20108/72T20118/72T20128,thePartNumber  
fieldcontainsthefollowingvalues:  
HIGH-IMPEDANCE  
TheoptionalHigh-Impedanceinstructionsetsalloutputs(includingtwo-state  
aswellasthree-statetypes)ofanICtoadisabled(high-impedance)stateand  
selects the one-bit bypass register to be connected between TDI and TDO.  
Duringthisinstruction,datacanbeshiftedthroughthebypassregisterfromTDI  
toTDOwithoutaffectingtheconditionoftheICoutputs.  
Device  
Part# Field  
04AB  
IDT72T2098  
IDT72T20108  
IDT72T20118  
IDT72T20128  
04AA  
04A9  
04A8  
BYPASS  
The required BYPASS instruction allows the IC to remain in a normal  
functional mode and selects the one-bit bypass register to be connected  
between TDI and TDO. The BYPASS instruction allows serial data to be  
transferredthroughtheICfromTDItoTDOwithoutaffectingtheoperationof  
theIC.  
31(MSB)  
28 27  
12 11  
1 0(LSB)  
Version (4 bits) Part Number (16-bit) Manufacturer ID (11-bit)  
0X0  
0X33  
1
IDT72T2098/108/118/128JTAGDeviceIdentificationRegister  
27  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
tRS  
MRS  
REN  
t
RSR  
RSR  
t
RSS  
RSS  
t
t
WEN  
t
RSS  
RSS  
RSS  
tRSR  
FWFT(2)  
t
FSEL0(2)  
FSEL1  
,
t
OW, IW(2)  
tHRSS  
HSTL(2  
t
RSS  
t
RSR  
RSR  
WSDR(2)  
tRSS  
t
RSDR(2)  
t
RSS  
RSS  
RT  
t
SEN  
tRSS  
SREN  
EF/OR  
FF/IR  
t
RSF  
If FWFT = HIGH, OR = HIGH  
If FWFT = LOW, EF = LOW  
t
RSF  
If FWFT = LOW, FF = HIGH  
If FWFT = HIGH, IR = LOW  
t
RSF  
RSF  
PAE  
PAF  
t
tRSF  
OE = HIGH  
OE = LOW  
Q0 - Qn  
5996 drw11  
NOTE:  
1. During Master Reset the High-Impedance control of the Qn data outputs is provided by OE only, RCS can be HIGH or LOW until the first rising edge of RCLK after Master Reset  
is complete.  
2. The status of these pins are latched in when the Master Reset pulse is LOW.  
Figure 8. Master Reset Timing  
28  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
tRS  
PRS  
REN  
tRSS  
tRSR  
tRSS  
tRSR  
WEN  
RT  
tRSS  
t
RSS  
RSS  
SEN  
t
SREN  
If FWFT = HIGH, OR = HIGH  
If FWFT = LOW, EF = LOW  
If FWFT = LOW, FF = HIGH  
If FWFT = HIGH, IR = LOW  
t
RSF  
EF/OR  
t
RSF  
FF/IR  
PAE  
PAF  
t
RSF  
t
RSF  
t
RSF  
OE = HIGH  
OE = LOW  
Q0 - Qn  
5995 drw12  
NOTE:  
1. During Partial Reset the High-Impedance control of the Qn data outputs is provided by OE only, RCS can be HIGH or LOW until the first rising edge of RCLK after Master Reset  
is complete.  
Figure 9. Partial Reset Timing  
29  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
tCLK1  
tCLKH1  
NO WRITE  
tCLKL1  
NO WRITE  
2
WCLK  
1
1
(1)  
2
(1)  
tSKEW1  
tDH  
tSKEW1  
tDS  
tDH  
tDS  
DX+1  
DX  
D0  
- D19  
tWFF  
tWFF  
tWFF  
tWFF  
FF  
WEN  
RCLK  
tENS  
tENS  
tENH  
tENH  
REN  
RCS  
tENS  
t
A
tA  
Q0  
- Q19  
NEXT DATA READ  
DATA READ  
5996 drw13  
tRCSLZ  
NOTES:  
1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that FF will go HIGH (after one WCLK cycle plus tWFF). If the time between the  
rising edge of the RCLK and the rising edge of the WCLK is less than tSKEW1, then the FF deassertion may be delayed one extra WCLK cycle.  
2. OE = LOW, EF = HIGH.  
3. WCS = LOW.  
4. WCLK must be free running for FF to update.  
Figure 10. Write Cycle and Full Flag Timing (IDT Standard Mode)  
30  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
31  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
tCLK1  
tCLKH1  
tCLKL1  
1
2
RCLK  
REN  
EF  
tENS  
tENS  
tENH  
tENH  
tENS  
t
ENH  
NO OPERATION  
NO OPERATION  
tREF  
tREF  
tREF  
t
A
tA  
tA  
D0  
LAST WORD  
D1  
LAST WORD  
Q
0
- Q19  
tOLZ  
tOHZ  
tOLZ  
tOE  
OE  
WCLK  
WEN  
(1)  
SKEW1  
t
tENS  
tENH  
tENH  
tENS  
tWCSS  
tWCSH  
WCS  
tDS  
tDH  
tDH  
tDS  
D0  
D1  
D0 - D19  
5996 drw15  
NOTES:  
1. tSKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that EF will go HIGH (after one RCLK cycle plus tREF). If the time between the  
rising edge of WCLK and the rising edge of RCLK is less than tSKEW1, then EF deassertion may be delayed one extra RCLK cycle.  
2. First data word latency = tSKEW1 + 1*TRCLK + tREF.  
3. RCS is LOW.  
4. RCLK must be free running for EF to update.  
Figure 12. Read Cycle, Output Enable, Empty Flag and First Data Word Latency (IDT Standard Mode)  
32  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
33  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
34  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
35  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
36  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
37  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
2
1
RCLK  
tENS  
REN  
RCS  
tENS  
tENS  
tENS  
tENH  
tREF  
tREF  
EF  
tRCSHZ  
tRCSHZ  
tA  
tA  
tRCSLZ  
tRCSLZ  
LAST DATA-1  
LAST DATA  
Q0 - Qn  
t
SKEW1(1)  
WCLK  
tENS  
tENH  
WEN  
tDS  
tDH  
Dn  
Dx  
5996 drw21  
NOTES:  
1. tSKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that EF will go HIGH (after one RCLK cycle plus tREF). If the time between the  
rising edge of WCLK and the rising edge of RCLK is less than tSKEW1, then EF deassertion may be delayed one extra RCLK cycle.  
2. First data word latency = tSKEW1 + 1*TRCLK + tREF.  
3. OE is LOW.  
4. RCLK must be free running for EF to update.  
Figure 18. Read Cycle and Read Chip Select (IDT Standard Mode)  
38  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
39  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
40  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
41  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
ERN  
CRS  
42  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
43  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
44  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
t
SCLK  
tSCKH  
t
SCKL  
SENS  
SCLK  
tSENH  
t
tENH  
SEN  
tSDH  
t
SDS  
BIT X(1)  
BIT 1  
BIT 1  
BIT X(1)  
SI  
5996 drw28  
EMPTY OFFSET  
FULL OFFSET  
NOTE:  
1. In SDR mode, X = 16 for the IDT72T2098, X = 17 for the IDT72T20108, X = 18 for the IDT72T20118, X = 19 for the IDT72T20128 for X10 mode. X = 15 for the IDT72T2098,  
X = 16 for the IDT72T20108, X = 17 for the IDT72T20118, X = 18 for the IDT72T20128 for all other modes.  
2. In DDR mode, X = 15 for the IDT72T2098, X = 16 for the IDT72T20108, X = 17 for the IDT72T20118, X = 18 for the IDT72T20128 for X10 to X10 mode. X = 14 for the IDT72T2098,  
X = 15 for the IDT72T20108, X = 16 for the IDT72T20118, X = 17 for the IDT 72T20128 for all other modes.  
Figure 25. Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)  
t
SCLK  
tSCKH  
t
SCKL  
SENS  
SCLK  
tSENH  
t
tENH  
SREN  
t
SOA  
t
SOA  
BIT X(1)  
BIT X(1)  
BIT 0  
BIT 0  
SO  
EMPTY OFFSET  
FULL OFFSET  
5996 drw29  
NOTE:  
1. In SDR mode, X = 15 for the IDT72T2098, X = 17 for the IDT72T20108, X = 18 for the IDT72T20118, X = 19 for the IDT72T20128 for X10 mode. X = 15 for the IDT72T2098,  
X = 16 for the IDT72T20108, X = 17 for the IDT20118, X = 18 for the IDT72T20128 for all other modes.  
2. In DDR mode, X = 15 for the IDT72T2098, X = 16 for the IDT72T20108, X = 17 for the IDT72T20118, X = 18 for the IDT20128, for X10 to X10 mode. X = 14 for the IDT72T72098,  
X = 15 for the IDT72T20108, X = 16 for the IDT72T20118, X = 17 for the IDT72T20128 for all other modes.  
3. Offset register values are always read starting from the first location in the offset register upon initiating SREN.  
Figure 26. Reading of Programmable Flag Registers (IDT Standard and FWFT Modes)  
45  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
46  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
WCLK  
tENS  
tENH  
WEN  
tDS  
t
DH  
tDS  
t
DH  
tDS  
tDH  
Wn+1  
Wn+2  
Wn+3  
D0 - Dn  
tSKEW1  
1
2
RCLK  
b
e
h
a
d
g
c
i
f
tERCLK  
ERCLK  
tENS  
tENH  
REN  
RCS  
tENS  
tCLKEN  
tCLKEN  
tCLKEN  
tCLKEN  
EREN  
Qn  
tA  
tA  
t
RCSLZ  
HIGH-Z  
Wn+1  
Wn+2  
Wn+3  
tREF  
tREF  
OR  
tA  
tA  
tA  
O/P  
Reg.  
Wn  
Last Word  
Wn+1  
Wn+2  
Wn+3  
5996 drw31  
NOTE:  
1. The O/P Register is the internal output register. Its contents are available on the Qn output bus only when RCS and OE are both active, LOW, that is the bus is not in High-  
Impedance state.  
2. OE is LOW.  
Cycle:  
a&b. At this point the FIFO is empty, OR is HIGH.  
RCS and REN are both disabled, the output bus is High-Impedance.  
c.  
Word Wn+1 falls through to the output register, OR goes active, LOW.  
RCS is HIGH, therefore the Qn outputs are High-Impedance. EREN goes LOW to indicate that a new word has been placed on the output register.  
EREN goes HIGH, no new word has been placed on the output register on this cycle.  
No Operation.  
RCS is LOW on this cycle, therefore the Qn outputs go to Low-Impedance and the contents of the output register (Wn+1) are made available.  
NOTE: In FWFT mode is important to take RCS active LOW at least one cycle ahead of REN, this ensures the word (Wn+1) currently in the output register is made  
available for at least one cycle.  
d.  
e.  
f.  
g.  
h.  
i.  
REN goes active LOW, this reads out the second word, Wn+2.  
EREN goes active LOW to indicate a new word has been placed into the output register.  
Word Wn+3 is read out, EREN remains active, LOW indicating a new word has been read out.  
NOTE: Wn+3 is the last word in the FIFO.  
This is the next enabled read after the last word, Wn+3 has been read out. OR flag goes HIGH and EREN goes HIGH to indicate that there is no new word available.  
3. OE is LOW.  
4. The truth table for EREN is shown below:  
RCLK  
OR  
RCS  
REN  
EREN  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
0
1
1
1
1
Figure 28. Echo RCLK and Echo REN Operation (FWFT Mode Only)  
47  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
tCLKL1  
tCLKL1  
WCLK  
WEN  
PAF  
1
2
2
1
tENS  
tENH  
tPAFS  
tPAFS  
D - m words in FIFO(2)  
D-(m+1) words  
in FIFO(2)  
D - (m +1) words in FIFO(2)  
t
SKEW3(3)  
RCLK  
tENH  
tENS  
5996 drw32  
REN  
NOTES:  
1. m = PAF offset.  
2. D = maximum FIFO Depth.  
In IDT Standard mode: if x20 Input or x20 Output bus Width is selected, D = 32,768 for the IDT72T2098, 65,536 for the IDT72T20108, 131,072 for the IDT72T20118, 262,144 for  
the IDT72T20128. If both x10 Input and x10 Output bus Widths are selected, D = 65,536 for the IDT72T2098, 131,072 for the IDT72T20108, 262,144 for the IDT72T20118, 524,288  
for the IDT72T20128.  
In FWFT mode: if x20 Input or x20 Output bus Width is selected, D = 32,769 for the IDT72T2098, 65,537 for the IDT72T20108, 131,073 for the IDT72T20118, 262,145 for the IDT72T20128.  
If both x10 Input and x10 Output bus Widths are selected, D = 65,537 for the IDT72T2098, 131,073 for the IDT72T20108, 262,145 for the IDT72T20118, 524,289 for the IDT72T20128.  
3. PAF is asserted and updated on the rising edge of WCLK only.  
4. tSKEW3 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that PAF will go HIGH (after one WCLK cycle plus tPAFS). If the time between the  
rising edge of RCLK and the rising edge of WCLK is less than tSKEW3, then the PAF deassertion time may be delayed one extra WCLK cycle.  
5. RCS = LOW.  
Figure 29. Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)  
tCLKH1  
tCLKL1  
WCLK  
tENS  
tENH  
WEN  
PAE  
n words in FIFO(2)  
n + 1 words in FIFO(3)  
,
n
words in FIFO(2)  
n + 1 words in FIFO(3)  
SKEW3(4)  
,
n + 1 words in FIFO(2)  
n + 2 words in FIFO(3)  
,
tPAES  
tPAES  
t
1
2
1
2
RCLK  
tENS  
tENH  
5996 drw33  
REN  
NOTES:  
1. n = PAE offset.  
2. For IDT Standard Mode.  
3. For FWFT Mode.  
4. PAE is asserted and updated on the rising edge of RCLK only.  
5. tSKEW3 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that PAE will go HIGH (after one RCLK cycle plus tPAES). If the time between the  
rising edge of WCLK and the rising edge of RCLK is less than tSKEW3, then the PAE deassertion may be delayed one extra RCLK cycle.  
6. RCS = LOW.  
Figure 30. Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)  
48  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
avoidedbycreatingcomposite flags, thatis, ANDingEF ofeveryFIFO, and  
separately ANDing FF of every FIFO. In FWFT mode, composite flags can  
be created by ORing OR of every FIFO, and separately ORing IR of every  
FIFO.  
Figure 31 demonstrates a width expansion using two IDT72T2098/  
72T20108/72T20118/72T20128devices. D0 -D19 fromeachdevice forma  
40-bitwideinputbusandQ0-Q19fromeachdeviceforma40-bitwideoutput  
bus. Any word width can be attained by adding additional IDT72T2098/  
72T20108/72T20118/72T20128devices.  
OPTIONALCONFIGURATIONS  
WIDTH EXPANSION CONFIGURATION  
Wordwidthmaybe increasedsimplybyconnectingtogetherthe control  
signalsofmultipledevices. Statusflagscanbedetectedfromanyonedevice.  
TheexceptionsaretheEFandFFfunctionsinIDTStandardmodeandtheIR  
andORfunctionsinFWFTmode. BecauseofvariationsinskewbetweenRCLK  
andWCLK, itis possible forEF/FF deassertionandIR/OR assertiontovary  
byonecyclebetweenFIFOs. InIDTStandardmode,suchproblems canbe  
SERIAL CLOCK (SCLK)  
PARTIAL RESET (PRS)  
MASTER RESET (MRS)  
FIRST WORD FALL THROUGH  
(FWFT)  
RETRANSMIT (RT)  
Dm+1 - Dn  
m + n  
m
n
D0 - Dm  
DATA IN  
READ CLOCK (RCLK)  
READ CHIP SELECT (RCS)  
WRITE CLOCK (WCLK)  
READ ENABLE (REN)  
WRITE ENABLE (WEN)  
IDT  
IDT  
OUTPUT ENABLE (OE)  
PROGRAMMABLE (PAE)  
72T2098  
72T20108  
72T20118  
72T20128  
72T2098  
72T20108  
72T20118  
72T20128  
#1  
FULL FLAG/INPUT READY (FF/IR)  
(1)  
GATE  
EMPTY FLAG/OUTPUT READY (EF/OR) #1  
EMPTY FLAG/OUTPUT READY (EF/OR) #2  
(1)  
GATE  
FULL FLAG/INPUT READY (FF/IR) #2  
PROGRAMMABLE (PAF)  
FIFO  
#1  
FIFO  
#2  
m + n  
n
Qm+1 - Qn  
DATA OUT  
m
5996 drw34  
Q0 - Qm  
NOTES:  
1. Use an AND gate in IDT Standard mode, an OR gate in FWFT mode.  
2. Do not connect any output control signals directly together.  
3. FIFO #1 and FIFO #2 must be the same depth, but may be different word widths.  
Figure 31. Block Diagram of Width Expansion  
For the x20 Input or x20 Output bus Width: 32,768 x 20, 65,536 x 20, 131,072 x 20 and 262,144 x 20  
For both x10 Input and x10 Output bus Widths: 65,536 x 10, 131,072 x 10, 262,144 x 10 and 524,288 x 10  
49  
IDT72T2098/108/118/128 2.5V HIGH-SPEED TeraSync™ DDR/SDR FIFO 20-BIT/10-BIT CONFIGURATIONS  
32K x 20/64K x 10, 64K x 20/128K x 10, 128K x 20/256K x 10, 256K x 20/512K x 10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURERANGES  
FWFT  
TRANSFER CLOCK  
FWFT  
FWFT  
WRITE CLOCK  
WRITE ENABLE  
READ CLOCK  
RCLK  
WCLK  
WEN  
IR  
RCLK  
WCLK  
IDT  
IDT  
READ CHIP SELECT  
RCS  
OR  
WEN  
72T2098  
72T20108  
72T20118  
72T20128  
72T2098  
72T20108  
72T20118  
72T20128  
READ ENABLE  
REN  
INPUT READY  
REN  
RCS  
OUTPUT READY  
IR  
OR  
OUTPUT ENABLE  
OE  
OE  
GND  
n
DATA OUT  
n
n
DATA IN  
Dn  
Qn  
Qn  
Dn  
5996 drw35  
Figure 32. Block Diagram of Depth Expansion in Single Data Rate Mode  
For the x20 Input or x20 Output bus Width: 65,536 x 20, 131,072 x 20, 262,144 x 20 and 524,288 x 20  
For both x10 Input and x10 Output bus Widths: 131,072 x 10, 262,144 x 10, 524,288 x 10 and 1,048,576 x 10  
DEPTH EXPANSION CONFIGURATION IN SINGLE DATA RATE  
(FWFT MODE ONLY)  
for each individual FIFO:  
(N – 1)*(4*transfer clock) + 3*TRCLK  
The IDT72T2098 can easily be adapted to applications requiring depths  
greaterthan32,768whenthe x20Inputorx20Outputbus widthis selected,  
65,536fortheIDT72T20108,131,072fortheIDT72T20118and262,144for  
the IDT72T20128. When both x10 Input and x10 Output bus widths are  
selected, depths greater than 65,536 can be adapted for the IDT72T2098,  
131,072fortheIDT72T20108,262,144fortheIDT72T20118and524,288for  
theIDT72T20128.InFWFTmode,theFIFOscanbeconnectedinseries(the  
dataoutputsofoneFIFOconnectedtothedatainputsofthenext)withnoexternal  
logicnecessary.Theresultingconfigurationprovidesatotaldepthequivalent  
tothesumofthedepthsassociatedwitheachsingleFIFO.Figure32showsa  
depth expansion using two IDT72T2098/72T20108/72T20118/72T20128  
devices.  
whereNisthenumberofFIFOsintheexpansionandTRCLKistheRCLKperiod.  
Note that extra cycles should be added for the possibility that the tSKEW1  
specificationisnotmetbetweenWCLKandtransferclock,orRCLKandtransfer  
clock,fortheORflag.  
The"rippledown"delayisonlynoticeableforthefirstwordwrittentoanempty  
depthexpansionconfiguration. Therewillbenodelayevidentforsubsequent  
wordswrittentotheconfiguration.  
The first free location created by reading from a full depth expansion  
configurationwill"bubbleup"fromthelastFIFOtothepreviousoneuntilitfinally  
movesintothefirstFIFOofthechain. Eachtimeafreelocationiscreatedinone  
FIFOofthechain,thatFIFO'sIRlinegoesLOW,enablingtheprecedingFIFO  
towrite a wordtofillit.  
CareshouldbetakentoselectFWFTmodeduringMasterResetforallFIFOs  
inthedepthexpansionconfiguration.Also,thedevices mustbeoperatingin  
SingleDataRatemodesincethatistheonlymodeavailableinFWFT.Thefirst  
wordwrittentoanemptyconfigurationwillpassfromoneFIFOtothenext("ripple  
down")untilitfinallyappearsattheoutputsofthelastFIFOinthechainnoread  
operationisnecessarybuttheRCLKofeachFIFOmustbefree-running. Each  
timethedatawordappearsattheoutputsofoneFIFO,thatdevice'sORlinegoes  
LOW, enabling a write to the next FIFO in line.  
Forafullexpansionconfiguration,theamountoftimeittakesforIRofthefirst  
FIFOinthechaintogoLOWafterawordhasbeenreadfromthelastFIFO is  
the sumofthe delays foreachindividualFIFO:  
(N – 1)*(3*transfer clock) + 2 TWCLK  
where N is the number of FIFOs in the expansion and TWCLK is the WCLK  
period. NotethatextracyclesshouldbeaddedforthepossibilitythatthetSKEW1  
specificationisnotmetbetweenRCLKandtransferclock,orWCLKandtransfer  
clock,fortheIRflag.  
TheTransferClocklineshouldbetiedtoeitherWCLKorRCLK,whichever  
isfaster. Boththeseactionsresultindatamoving,asquicklyaspossible,tothe  
endofthechainandfreelocations tothebeginningofthechain.  
Foranemptyexpansionconfiguration,theamountoftimeittakesforORof  
thelastFIFOinthechaintogoLOW(i.e.validdatatoappearonthelastFIFO's  
outputs)afterawordhasbeenwrittentothefirstFIFOisthesumofthedelays  
50  
ORDERINGINFORMATION  
IDT  
XXXXX  
X
XX  
X
X
Process /  
Temperature  
Range  
Device Type  
Power  
Speed  
Package  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
BLANK  
I(1)  
Plastic Ball Grid Array (PBGA, BB208-1)  
BB  
Commercial Only  
Commercial Only  
4
5
Clock Cycle Time (tCLK)  
Speed in Nanoseconds  
Commercial and Industrial  
Commercial Only  
6-7  
10  
L
Low Power  
72T2098  
32,768 x 20/65,536 x 10 2.5V High-Speed TeraSyncTM DDR/SDR FIFO  
72T20108 65,536 x 20/131,072 x 10 2.5V High-Speed TeraSyncTM DDR/SDR FIFO  
72T20118 131,072 x 20/262,144 x 10 2.5V High-Speed TeraSyncTM DDR/SDR FIFO  
72T20128 262,144 x 20/524,288 x 10 2.5V High-Speed TeraSyncTM DDR/SDR FIFO  
5996 drw36  
NOTE:  
1. Industrial temperature range product for the 6-7ns speed grade is available as a standard device. All other speed grades are available by special order.  
DATASHEETDOCUMENTHISTORY  
03/01/2002  
04/08/2002  
04/24/2002  
05/24/2002  
11/21/2002  
02/11/2003  
03/20/2003  
12/17/2003  
pgs. 1, 4, 6, 8, 9, and 22.  
pgs. 1, 8, 9, 11, 32-35, 41, 45-47, and 50.  
pgs. 19, and 27.  
pgs. 2, 6-9, and 12.  
pgs. 1, and 10.  
pgs. 7, 8, and 26.  
pgs. 24, 26, 27, and 43.  
pgs. 10, 30-33, 35-37, 43, and 48.  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
408-330-1753  
email:FIFOhelp@idt.com  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
51  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY