IDT75T43100S66BS304 [IDT]

Microprocessor Circuit, CMOS, PBGA304, 31 X 31 MM, LOW PROFILE, THERMALLY ENHANCED, SBGA-304;
IDT75T43100S66BS304
型号: IDT75T43100S66BS304
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Microprocessor Circuit, CMOS, PBGA304, 31 X 31 MM, LOW PROFILE, THERMALLY ENHANCED, SBGA-304

外围集成电路
文件: 总46页 (文件大小:441K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Advance  
Information  
IDT75T43100  
IP Co-PROCESSOR  
32K Entries  
Features  
Abstract  
32K x72 bit Data Cells and 32K x72 bit Mask Cells  
TheIDT75T43100isdesignedtobeusedinapplicationsthatrequire  
high speed data searching such as routers, high layer switching and  
applications involvedinthe convergence ofvoice, data andvideo.  
IDT’s IP Co-Processors (IPCs) expedite multi level routing of IP  
(InternetProtocol)andincludesonchiplogictofacilitatevarioustypesof  
IPheaderlookups andprocessingoftheresults.  
Fullternarycontentaddressablememory  
36/72/144/288multiplewidthlookups  
66Msustainedlookups persecondat72and144widthlookups  
Synchronouspipelineoperation  
Dualbusinterface  
Thefeaturesofthisdeviceaddresstheperformancerequirementsof  
communicationsystems,whichcanrequireasustainedbandwidthof tens  
ofmillionsoflookupspersecond. IDT’sIPCo-Processorisdesignedto  
provide a scalable solution to one of the major bottlenecks facing the  
bandwidthchallengeofInternettraffic.  
Cascadable to8devices withnoglue logicorlatencypenalty  
GluelessinterfacetostandardZBT™or  
SynchronousPipelinedBurstSRAMs  
BoundaryScanJTAGInterface(IEEE1149.1compliant)  
2.5V core power supply  
User selectable 3.3V or 2.5V I/O supply  
1.5Vmatchsupply  
PackagedinaJEDECstandard,thermallyenhanced,  
low profile 304 Ball Grid Array (BGA)  
Overview  
IDT’s75T43100isahighperformancepipelined,synchronous 32K  
x72 IP Co-Processor (IPC). It utilizes content addressable memory  
(CAM)technologytoperformpatternrecognitionfunctions. Eachlocation  
intheIPChasbothaDataentryandanassociatedMaskentrywiththe  
total array size of 32K x72 Data entries and 32K x72 Mask entries.  
The IDT75T43100 has a 72-bit bi-directional bus, which is a 15-bit  
multiplexed address and 72-bit data bus that can support 66 million  
sustainedsearchespersecond.  
Thisdevicewasdevelopedforawiderangeofcommunicationand  
networkingapplications,givingittheabilitytosupporttherequirementsof  
multiplenetworks. IPC'sareusedinapplicationsthatrequirehighspeed  
datasearchingrouters,highlayerswitchingandintheconvergenceof  
voice, data, and video. IDT's IPC increases the throughput for the  
demandingnetworkingandInternetsystems.  
75T43100  
S66BS304  
The IDT75T43100 utilizes IDT’s latest high-performance 0.18 u  
CMOSprocessingtechnologyandis packagedinaJEDECStandard,  
thermally enhanced, low profile, 304 Ball Grid Array (BGA).  
532 5 d00  
MAY 2001  
1
©2001IntegratedDeviceTechnology,Inc.  
DSC-5325/00  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
BlockDiagram  
CONFIGOUT  
RDACK  
CONFIGIN  
Configuration Registers  
MATCHIN [6:0]  
CE OE  
/
and  
WE  
Ram Control Circuits  
VALID  
CLK2X  
HITACK  
÷ 2  
CCLK  
PHASEN  
RST  
REQSTB  
INST  
R/W  
Decode  
CMD [3:0]  
P
R
Command  
Bus  
G M R  
and  
I
S
CMD [6:4]  
O
R
I
I
S R R  
De c o de  
Z
E
Index  
Bus  
INDX  
[19:0]  
T
Y
32K X 72  
L
O
G
I
E
N
C
O
D
E
R
D
E
C
O
D
E
C
Address  
A0 - A14  
Request  
Bus  
REQDATA  
[71:0]  
Bypass  
MATCHOUT  
DATA  
[71:0]  
Global Mask Registers  
Search Result Registers  
5325 drw 01  
TMS  
TDI  
JTAG  
TDO  
TCK  
TRST  
2
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
DatasheetFeatures  
Figure 1.0B - ASIC / IP Co-Processor configuration  
SystemConfigurationsandFunctionalHighlights  
SignalDescriptionsandPinout  
DCOperatingCharacteristics  
RegisterDescription  
ASIC  
or  
- ConfigurationRegisters  
IDT  
- ReplyWidthRegisters(RWRs)  
- SearchResultRegisters(SRRs)  
- GlobalMaskRegisters(GMRs)  
IPCo-Processor  
FPGA  
A5325 drw 02b  
BusDescription  
- CommandBusFormat  
- GMRandSRRSelect  
- RequestBusFormat  
- IndexBus Format  
FunctionalHighlights  
Data and Mask Array  
TheIDT75T43100has32Kx72Datacell  
entries and 32K x 72 associated Mask cell  
entriesasshowninFig.1.1. Thiscombination  
of Data and Mask cell entries enables the  
IDT75T43100tostore0,1orX,makingitafull  
ternary array IP Co-Processor. During a  
lookupoperation,botharraysareusedalong  
withaGlobalMaskRegistertofindamatchto  
a requested data word.  
- AdditionalSignals  
Mask  
Data  
Initialization  
ACOperatingCharacteristics  
TimingDiagrams  
SequenceDiagrams  
JTAGInterfaceSpecifications  
PackageDiagramOutline  
32K x 72  
OrderingInformation  
Figure 1.1  
A5325 drw 03  
SystemConfigurations  
TheIDT75T43100isdesignedtofulfilltheneedsofvarioustypesof  
Networking systems. In solutions requiring data searching such as  
routers,anetworkinterfaceasshowninFig1.0Amayberealized.Here  
theIDTIPCo-Processor(IPC)interfacesdirectlytoanASIC/FPGA for  
lookupsandroutesanindextoanassociatedSRAMdevice,thatsupplies  
thenexthopaddressviaanSRAMDataBustotheASIC.TheIPCalso  
provides the required control signals to directly hookup to ZBT™ or  
SynchronousPipelineBurstSRAM.  
Bus Interface  
The IP Co-Processor utilizes a dual bus interface consisting of the  
Request Bus and the Index Bus.  
The72bitbi-directionalRequestBusfunctionsasamultiplexedaddress  
anddatabus,which performsthewritingandreadingof IPCo-Processor  
resources, as wellas presentinglookupdata tothe device.  
TheIndexBusisanindependentunidirectionalbuswhichdrivesthe  
result of the lookup (or index) to either an SRAM device or an ASIC. In  
addition to driving the Index, the IPC also drives the associated SRAM  
control signals (CE/OE, and WE) for either ZBT™ or Synchronous  
PipelineBurst SRAMdevices.  
Figure 1.0A ASIC / IP Co-Processor / SRAM configuration  
Readingdata,maskorregisterentrieswillalwaysresultin72bitsofdata  
drivenonthe RequestBus. Writes willalsobe 72bits ofdata.  
ASIC  
Sync  
IDT  
or  
or  
IPCo-Processor  
ZBT SRAM  
FPGA  
Command Bus  
A5325 drw02a  
TheIDT75T43100carriesa7-bitCommandBus,whichloadsspecific  
instructionsintotheIPCo-Processor.Theseinclude:  
Read or Write  
AReadorWriteinstructionplacedontheCommandBusoperateson  
aspecifieddataentry,maskentry,orregister. Duringtheinitiationofa  
Readcommand,theRequestBuswillbedrivenwithanaddress,afixed  
numberofclockcycleslaterthissamebuswillbedrivenwith therespective  
databack. DuringtheinitiationofaWritecommand,theRequestBuswill  
receivetheaddressduringthe1stcyclefollowedbytherespectivedata  
on the 2nd cycle. All reads and writes are 72-bit entities.  
IDT’sIPCcanalsobeconfiguredwithoutusingtheSRAMinterface  
as shown in Fig. 1.0B Here the IDT75T43100 processes the lookups  
submittedbythecontrollerandfeedstheresultdirectlybacktotheASIC/  
FPGA.Inthismanner, thefullcapabilitiesoftheIPCarefullyutilizedwithout  
requiring the use of an external SRAM.  
The IPC provides the user control of the associated handshake  
signalstoadapttoeitherconfiguration.  
6.42  
3
SystemConfigurationsandFunctionalHighlights  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
FunctionalHighlightscontinued  
Registers  
TheIDT75T43100canalsoprovidetheaddressandcontrolsignals  
for a read or write to an associated SRAM memory. The IPC pipelines  
the address from the Request Bus to the Index Bus, driving it out to the  
associatedSRAM. TheASIC/FPGAhandlesthepipeliningofthedatato  
andfromtheSRAM.  
TheIDT75T43100utilizes31registerstoprovideadditionalfeatures  
and convenience. There are four basic types of registers supported:  
- 4ConfigurationRegisters  
- 4ReplywidthRegisters (RWRs)  
- 8SearchResultRegisters (SRRs)  
SRAM No Wait Read  
AnSRAMNoWaitRead is a ReadinstructiontoanexternalSRAM  
that can be pipelined within a series of operations. A standard Read  
instruction to an external SRAM requires the read to complete prior to  
submitting the next instruction. However, the SRAM No Wait Read  
instructiondoesnotrequiretheusertowaitforaReadtocomplete. The  
nextinstructioncanbeloadedsequentiallyonthefollowingcycle.  
Lookup  
Alookupcanberequestedin72-bit,144-bitor288-bitwidths. A36-bit  
lookup can be accomplished by using GMRs 10 and 11, refer to the  
applicationnote(AN-270),"Implementingx36-bitLookups". TheCom-  
- 15GlobalMaskRegisters(GMRs)  
GMRsareprovidedtosupportLookupinstructionstomaskindividual  
bits during a search. Initialization of the IPC uses the Configuration  
RegisterstodefinethetimingofoutputsandtheSRAMinterfaceconfigu-  
ration. The Configuration registers are also used to specify certain  
parameterswhentheIDT75T43100isusedinamultipleIPCimplemen-  
tation.  
Furtherdetailsofeachtypeofregisterandtheirspecificimplementation  
arediscussedinthesectionstitledundertheirrespectiveregistertype. Also  
refer to the Command Bus Format, GMR and SRR Select" and  
Initialization”sectionsforaddressingandsetupoftheseregisters.  
mandBusidentifiesthespecificregisterstobeusedwithaparticularlookup.  
All the instructions and associated commands are described in the  
Command Bus Format" and "GMR and SRRSelect” sections. Please  
refertothesesectionsforfurtherdefinitionoftheinstructioncode.  
SRAM Interface  
TheIDT75T43100 providesallrequiredaddressandcontrolsignals  
foragluelessSRAMinterface.Whentheuserreadsfromorwritestothe  
externalSRAM,theIPCprovidesapipelinedbypasspaththattakesthe  
19AddressbitsofftheRequestBusanddrivesthemtotheIndexBus. Refer  
totheRequestBusFormatandtheIndexBusFormatformoreinformation.  
TheASIC/FPGAhandlesthepipeliningofthedatatoandfromtheSRAM.  
Controlsignaltimingisprogrammedtoaccommodatestandard ZBT  
SRAMs,aswellasSynchronousPipelinedBurstSRAMs.Moredetailed  
information,alongwithhowtoconfigurethisinterfaceisdiscussedinthe  
Initialization”section.  
Width Capability  
TheIDT75T43100iscapableofperforminglookupsorcomparisons  
ondatastructuresof72bits,144bitsand288bits. Theinternalmemory  
bankofthedevicecanbeusedinthreestandardwidtharrays,asshown  
in Figure 1.2.  
- 32K x72  
- 16K x144  
- 8K x288  
Figure 1.2  
32K X 72  
16K X 144  
8K X 288  
A5325 drw 03a  
4
FunctionalHighlights  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
SignalDescriptions  
Symbol  
Pin Function  
# Pins  
I/O  
Description  
IPC Buses:  
The Command Bus defines the operation to be performed by the IPC. It also specifies the  
lookup type and Global Mask Register to select. It is qualified by the Request Strobe signal to  
define a valid IPC operation.  
Command  
Bus  
CMD  
REQDATA  
INDX  
7
72  
20  
1
Input  
Input/Output The Request Bus is a multiplexed address/data bus used to perform reads (and writes) from  
Three State (to) the IPC, and to present search data for lookups.  
Request Bus  
Index Bus  
This bus is used to drive the address of an external SRAM, or feedback Lookup result  
information directly to the IPC's controller. Bits [14:0] of the Index Bus contain the encoded  
location at which the compare was found.  
Output  
Three State  
This input signifies a valid input request. It is an active high signal that indicates the start of an  
IPC operation cycle, it must be active for two CLK2X cycles.  
REQSTB  
Request Strobe  
Input  
IPC and SRAM Control:  
This is an active high signal that is sent back with data being read from the IPC on the Request  
Data Bus, or with data being read from the associated external SRAM. In the case of SRAM  
Read  
Acknowledge  
Read, RDACK is sent with the Index, or up to six cycles after the Index as defined by the  
Pipeline Delay (PD) field. In a depth expanded configuration, only the last (lowest priority) IPC  
RDACK  
1
Output  
device in the IPC system must have the LC bit set and will drive the RDACK signal. Refer to  
System Configuration Register for details on the PD and LC bits.  
This is an active high signal that is sent with the Index, or up to six CLK2X cycles after the Index  
as defined by the Pipeline Delay (PD) field. In a depth expanded configuration, only the last  
(lowest priority) IPC device in the IPC system musthave the LC bit set and will drive the HITACK  
signal. This signal will be driven low if there was no match, high if a match was found. Refer  
to System Configuration Register for details on the PD and the LC bits.  
Match  
Acknowledge  
HITACK  
VALID  
1
1
Output  
Output  
This is an active high signal that is sent with the Index, or up to six CLK2X cycles after the Index  
as defined by the Pipeline Delay (PD) field. In a depth expanded configuration, only the last  
(lo west priority) IPC device in the IPC syste m must have the LC bit set and will drive the VALID  
signal. It will be driven high upon the completion of a lookup, even if the lookup did not result  
in a hit. Refer to System Configuration Register for details on the PD and LC bits.  
Valid  
Lookup Bit  
This is an active low output signal that is driven along with the Index Bus. It is connected to the  
CE input pin of a ZBTSRAM or to the OE pin of a PBSRAM. In a depth expanded configuration,  
only the last (lowest priority) IPC device in the IPC group must have the LS bit set and will drive  
the CE/OE signal. Refer to System Configuration Register for details on the LS bit.  
Output  
Three State  
Chip Enable/  
Output Enable  
1
1
CE / OE  
This is an active low output signal which is driven along with the Index bus. It may be used to  
Output  
assert the WE pin of an external SRAM. In a depth expanded configuration, only the last (lowest  
Write Enable  
WE  
Three State priority) IPC device in the IPC group must have the LS bit set and will drive the WE signal.  
Refer to System Configuration Register for details on the LS bit.  
Clock and Initialization:  
CLK2X  
Clock Input  
1
1
Input  
Input  
All inputs and outputs are referenced to the positive edge of this clock.  
Clock Phase  
Enable  
This signal is used to generate an internal clock at ½ the frequency of CLK2X. A similar external  
clock may be optionally generated by the user to clock the external synchronous SRAM.  
PHASEN  
This pin is used to set the Device ID internally at power up and whenever the RST pin is held  
low. In a depth expanded configuration, only the first device in the IPC system needs to be  
set high.  
Configuration  
Address  
CONFIGIN  
CONFIGOUT  
RST  
1
1
1
Input  
Ouput  
Input  
This pin is used at power up and when RST is active to set the Device ID. In a depth expanded  
configuration, the CONFIGOUT signal is connected to the CONFIGIN signal of the next  
subsequent downstream IPC device.  
Configuration  
Address  
This pin must be active (low) during power up. This will force all outputs to a high impedence  
condition, as well as clearing the IPC enable (EN) bit in the System Configuration Register. This  
function does not initialize the contents of the IPC entries.  
Reset  
B5325 tbl 01  
6.42  
5
SignalDescriptionsandPinout  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
SignalDescriptionscontinued  
Description  
Symbol  
Pin Function # Pins  
I/O  
Depth Expansion:  
Match Output is an active high signal that is driven one cycle before the Index is driven on the  
bus. This signal signifies that a match has occurred in the IPC. The Match Output signal is active  
high and is fed into a Match Input line of all lower priority IPC(s).The Match Output signal is  
reference to 2.5V operating characteristic, regardless of selected VDDQ.  
Match  
Output  
MATCHOUT  
1
7
Output  
Input  
The Match Input signal is driven by all upstream Match Output signals. This indicates to all down  
stream IPCs that a hit in a higher priority IPC has occurred. This will prevent a lower priority IPC  
from driving the Index bus if a higher priority IPC encountered a match.  
Match  
Input  
MATCHIN  
JTAG Signals:  
Te s t Mo d e  
Select  
JTAG instruction input. This is 1149 compliant and has Input levels the same as the other input  
pins of the device. If set at 2.5V or 3.3V VDDQ This pin has an internal pullup  
TMS  
TDI  
1
1
1
1
1
Input  
Input  
JTAG data input. This pin has an internal pullup  
Test Data Input  
Te s t Data  
Output  
Output  
Tristate  
JTAG Data output pin. This pin is driven on the high to low edge of Test Clock.  
TDO  
TCK  
A maximum of 10Mhz test clock. This pin has an internal pullup  
Test Clock  
Input  
Input  
Asynchronous JTAG Reset. This is an active low signal that will reset only JTAG associated  
logic. This will have no affect on the other IPC functional logic. This pin has an internal pullup  
JTAG Reset  
TRST  
Power Supply:  
VDD  
Core Power  
I/O Power  
Match Power  
I/O Power  
Ground  
29  
26  
46  
1
Supply  
Supply  
Supply  
Input  
2.5V core power supply pins for the device  
2.5V or 3.3V I/O supply voltages for the device  
VDDQ  
VMATCH  
1.5V match supply voltage for the device  
This is a DC signal that defines the output drive to be either 3.3V or 2.5V. To select 3.3V output  
VDDQ Select  
drive set V  
Select Low (Vss), for 2.5V output drive set V Select High (V ).  
DDQ DDQ  
DDQ  
Vss  
Other:  
DNU  
69  
Supply  
Common ground pins for IPC supply voltages  
Do Not Use  
No Connect  
9
1
N/A  
N/A  
Do not connect these pins  
This pin is not connected to the die, can be left floating or connected to Vss to minimize thermal  
impedance  
NC  
B5325 tbl 01a  
6
SignalDescriptionsandPinout  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
Pin Configuration -304 Ball Grid Array  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
REQ  
DATA  
18  
REQ  
DATA  
0
VDDQ  
VMATCH VMATCH VMATCH  
VMATCH  
A
B
C
D
E
F
A
B
C
D
E
F
VSS VSS VSS  
VDD  
VSS VDD VSS VSS VSS  
VSS  
VSS  
VDD TRST VSS VSS VSS  
REQ REQ REQ  
DATA DATA DATA VMATCH VDDQ  
19  
REQ REQ  
VDDQ DATA DATA  
VMATCH VMATCH VMATCH  
VMATCH  
VMATCH  
VMATCH  
DNU  
TDI VSS VSS VSS  
VSS VSS VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
16  
REQ REQ REQ REQ REQ REQ REQ  
DATA DATA DATA DATA DATA DATA DATA VDDQ  
14  
3
1
REQ  
DATA  
21  
VMATCH VMATCH VMATCH  
VSS VSS  
VDD  
VSS VDD TMS VSS VSS  
17  
15  
12  
10  
8
6
4
REQ REQ  
REQ  
REQ REQ REQ REQ REQ REQ  
CONFIG  
RD-  
ACK  
VDDQ  
VMATCH  
SELECT  
DATA DATA VDDQ DATA VDDQ VMATCH DATA DATA DATA DATA DATA DATA  
VMATCH  
TCLK  
TDO NC  
IN  
24  
23  
20  
13  
11  
9
7
5
2
REQ REQ  
DATA DATA  
REQ  
DATA  
22  
HIT  
ACK  
VA LID  
VDD  
VDD  
RST  
26  
25  
REQ  
DATA  
28  
REQ  
CE/  
OE  
DATA VDDQ  
27  
VDDQ  
VDD  
VDD  
WE  
REQ REQ  
DATA DATA VDDQ DATA  
REQ  
CONFIG  
OUT  
VDDQ  
G
H
J
DNU DNU  
G
H
J
31  
30  
29  
VMATCH VMATCH VMATCH  
REQ REQ  
VMATCH VMATCH VMATCH  
VSS  
VSS  
VDDQ DATA DATA  
VDDQ  
DNU DNU  
VDD  
VDD  
33  
32  
REQ REQ  
DATA DATA  
INDX  
17  
REQ-  
STB  
INDX INDX  
K
K
VDD  
VDD  
19  
18  
35  
34  
75T43100  
CMD CMD CMD  
INDX  
16  
INDX  
15  
304-BGA  
VDDQ  
L
M
N
L
M
N
VSS  
VSS  
4
5
6
VSS VDD  
VDD MATCH  
OUT  
VSS  
DNU  
CMD CLK-  
INDX  
14  
2X  
2
PHA- CMD CMD  
INDX  
VSS  
VDDQ  
VSS  
SEN  
3
1
13  
REQ REQ  
DATA DATA  
CMD  
0
INDX INDX  
10  
INDX  
12  
P
P
VDD  
VDD  
11  
36  
37  
REQ REQ  
VDDQ DATA DATA  
INDX INDX  
VDDQ  
R
T
U
R
T
U
VDD  
VDD  
8
9
38  
39  
VMATCH VMATCH VMATCH  
VMATCH VMATCH VMATCH  
VSS  
VSS  
REQ REQ  
DATA DATA VDDQ DATA  
REQ  
INDX  
5
INDX INDX  
6
VDDQ  
7
40  
41  
42  
REQ  
DATA  
43  
REQ  
DATA VDDQ  
44  
INDX  
3
INDX  
4
VDDQ  
V
W
V
W
VDD  
VDD  
REQ REQ  
DATA DATA  
45  
REQ  
DATA  
49  
MATCH  
IN  
5
INDX INDX  
VDD  
VDD  
1
2
46  
REQ REQ  
REQ  
REQ REQ REQ REQ REQ REQ  
MATCH MATCH MATCH  
INDX  
0
DATA DATA VDDQ DATA VDDQ VMATCH DATA DATA DATA DATA DATA DATA  
VMATCH  
VMATCH  
VMATCH  
VMATCH  
VMATCH  
IN  
2
IN  
4
IN  
6
Y
DNU  
DNU  
DNU  
Y
VSS  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
47  
48  
51  
58  
REQ REQ REQ REQ REQ REQ REQ  
DATA DATA DATA DATA DATA DATA DATA VDDQ  
60  
62  
64  
66  
69  
REQ  
DATA  
50  
MATCH  
VMATCH VMATCH VMATCH  
VMATCH VMATCH VMATCH  
VMATCH VMATCH VMATCH  
IN  
3
AA  
AB  
AC  
AA  
AB  
AC  
VSS VSS  
VDD  
VDD  
VSS VSS  
54  
56  
59  
61  
63  
65  
67  
REQ REQ REQ  
DATA DATA DATA VMATCH VDDQ  
52  
REQ REQ  
MATCH  
VDDQ DATA DATA  
IN  
1
VSS VSS VSS  
VSS VSS VSS  
VSS  
VSS VSS VSS  
VSS VSS VSS  
55  
57  
68  
70  
REQ  
DATA  
53  
REQ  
DATA  
71  
MATCH  
IN  
0
VDDQ  
VMATCH  
VDD  
VSS VDD VSS VSS VSS  
VSS  
13  
VSS  
17  
VDD  
19  
1
2
3
4
5
6
7
8
9
10  
11  
12  
14  
15  
16  
18  
20  
21  
22  
23  
B5325 tbl 02A  
6.42  
7
SignalDescriptionsandPinout  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
RecommendedDCOperating  
Conditions with VDDQ at 2.5V  
RecommendedDCOperating  
Conditions with VDDQ at 3.3V  
Symbol  
Parameter  
Min.  
2.375  
1.425  
2.375  
0
Typ.  
2.5  
1.5  
2.5  
Max.  
2.625  
1.575  
2.625  
0
Unit  
V
Symbol  
Parameter  
Min.  
2.375  
1.425  
3.135  
0
Typ.  
2.5  
1.5  
3.3  
Max.  
2.625  
1.575  
3.465  
0
Unit  
V
VDD  
Core Supply Voltage  
V
DD  
Core Supply Voltage  
VMATCH Match Supply Voltage  
VDDQ I/O Supply Voltage  
V
VMATCH Match Supply Voltage  
VDDQ I/O Supply Voltage  
V
V
V
VSS  
VIH  
VIH  
VIL  
Ground  
0
V
VSS  
VIH  
VIH  
VIL  
Ground  
0
V
____  
(2)  
____  
(2)  
Input High Voltage - Inputs  
Input High Voltage - I/O  
Input Low Voltage  
1.7  
VDDQ +0.3  
V
Input High Voltage - Inputs  
Input High Voltage -I/O  
Input Low Voltage  
2.0  
VDDQ + 0.3  
V
____  
____  
(2)  
____  
____  
(2)  
1.7  
VDDQ +0.3  
0.7  
V
2.0  
VDDQ + 0.3  
0.8  
V
-0.3(1)  
V
-0.3(1)  
V
C5325 tbl 01  
C5325 tbl 02  
NOTES:  
NOTES:  
1. VIL (min.) = –1.0V for pulse width less than tCYC/2, once per cycle.  
1. VIL (min.) = –1.0V for pulse width less than tCYC/2, once per cycle.  
2. VIH (max.) = VDDQ+1.0V for pulse width less than tCYC/2, once per cycle.  
2. VIH (max.) = VDDQ+1.0V for pulse width less than tCYC/2, once per  
cycle.  
AbsoluteMaximumRatings(1)  
RecommendedOperating  
TemperatureandSupplyVoltage  
Symbol  
Parameter  
Commercial  
Unit  
VTERM  
VDD Terminal Voltage  
with Respect to GND  
V
-0.5 to 3.575  
(VDD)  
Symbol  
Parameter  
Cas e Te mpe rature  
Ambie nt Te mpe rature  
Ground  
Commercial  
0°C to 90  
0°C to 70  
0
Unit  
°C  
°C  
V
(2)  
tc  
VTERM  
(VDDQ)  
VDDQ Terminal Voltage  
with Respect to GND  
V
V
V
-0.5 to V  
+0.5  
DDQ  
Te mpe rature  
tA  
(2)  
VTERM  
(INPUTS)  
Input Terminal Voltage  
with Respect to GND  
V
S S  
-0.5 to V  
+0.5  
+0.5  
DDQ  
V
DD  
Core Supply Voltage  
2.5V ± 5%  
2.5 ± 5%  
3.3V ± 5%  
1.5V±75mV  
V
(2)  
VTERM  
(I/O)  
I/O Terminal Voltage with  
Respect to GND  
-0.5 to V  
DDQ  
V
DDQ  
I/O Supp ly Voltage  
V
TBIAS  
TSTG  
PT  
Temperature Under Bias  
Storage Temperature  
Power Dissipation  
-55 to +125  
-55 to +125  
TBD  
oC  
oC  
W
V
MATCH  
Match Supply Voltage  
V
C5325 tbl 04  
IOUT  
DC Output Current  
50  
mA  
304BGACapacitance  
(TA = +25°C, f = 1.0MHz)  
C5325 tbl 03  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated  
in the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability.  
2. This is a steady-state DC parameter that applies after the power supply has  
reached its nominal operating value. Power sequencing is not necessary;  
however, the voltage on any input or I/O pin cannot exceed VDDQ during power  
supply ramp up.  
Symbol  
CIN  
Parameter(1)  
Input Capacitance  
I/O Capacitance  
Conditions  
VIN = 0V  
Max. Unit  
7
7
pF  
CI/O  
VOUT = 0V  
pF  
C5325 tbl05  
NOTE:  
1. This parameter is guaranteed by device characterization, but not production  
tested.  
8
DCOperatingCharacteristic  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
TemperatureandSupplyVoltageRange  
(VDD = 2.5V ±5%, VDDQ= 2.5V ± 5% or VDDQ = 3.3V ± 5%)  
Symbol  
Parameter  
Input Leakage Current  
Test Conditions  
DD = 2.625V, VIN = 0V to VDD  
Min.  
Max.  
Unit  
____  
|ILI  
|ILI  
|ILO  
VDDQ=2.5V)(2)  
VDDQ=2.5V)(2)  
VDDQ=3.3V)  
VDDQ=3.3V)  
|
V
5
µA  
(1)  
____  
JTAG Input Le akage Curre nt  
Output Leakage Current  
|
V
DD = 2.625V, VIN = 0V to VDD  
30  
5
µA  
V
OUT = 0V to VDDQ, Outputs in High  
|
____  
____  
Impe dance state  
µA  
V
V
OL  
(
Output Low Voltage  
I
OL = +6mA, VDDQ = 2.375V  
OH = -6mA, VDDQ = 2.375V  
OL = +8mA, VDDQ = 3.135V  
OH = -8mA, VDDQ = 3.135V  
0.4  
____  
V
OH  
OL  
OH  
(
Output High Voltage  
Output Low Voltage  
Output High Voltage  
I
2.0  
V
V
____  
V
(
I
0.4  
____  
V
(
I
2.4  
V
C5325 tbl 06  
NOTE:  
1. The TMS, TDI, TCK, and TRST pins will be internally pulled to VDD if it is not actively driven in the application.  
2. The MATCHOUT signal is referenced to 2.5V operating characteristics, regardless of selected VDDQ.  
DC Electrical Characteristics Over the Operating  
TemperatureandSupplyVoltageRange(1)  
(VDD = 2.5V ±5%, VDDQ= 2.5V ± 5% or VDDQ = 3.3V ±5%)  
Symbol  
Parameter  
Test Conditions  
66MLookups/sec 50MLookups/sec  
Unit  
Outputs Open,  
Operating Core Power  
Supply Current  
DD  
I
1
DD  
V
= 2.625V,  
2,900  
2,400  
mA  
(2)  
IN  
IH  
IL  
MAX  
V > V or < V , f = f  
Outputs Open,  
3.3V VDDQ Supply  
2.5V VDDQ Supply  
250  
200  
250  
200  
mA  
mA  
(2)  
Operating I/O  
Power  
Supply Current  
DDQ  
V
IN IH IL  
= 3.465V, V > V or < V , f=fMAX  
DD  
I
2
Outputs Open,  
(2)  
DDQ  
V
IN IH IL  
= 2.625V, V > V or < V , f=fMAX  
Operating Match Power  
Supply Current  
Outputs Open,  
MATCH  
I
1,700  
1,500  
mA  
(2)  
MATCH  
IN IH IL  
= 1.575V, V > V or < V , f=fMAX  
V
C5325 tbl 07  
NOTES:  
1. All values are maximum guaranteed values.  
2. At f = fMAX, inputs are cycling at the maximum frequency.  
6.42  
9
DCOperatingCharacteristics  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
RegisterDescription  
TheIDT75T43100utilizes31registerstoprovideadditionalfeatures  
andconvenience. Alltheregistersandtheirrespectiveaddressesare  
shown in Table 2.0.  
There are fourbasictypes ofregisters:  
- 4ConfigurationRegisters  
- 4ReplyWidthRegisters(RWRs)  
- 8SearchResultRegisters (SRRs)  
- 15GlobalMaskRegisters(GMRs)  
Theseregistersarediscussedinthefollowingsections.  
Table 2.0 Register Addressing  
Address  
0000 0000  
0000 0001  
0000 0010  
Register  
Function  
Address  
0001 0000  
0001 0001  
0001 0010  
Register  
Function  
Global Mask Register 10  
Global Mask Register 11  
Global Mask Register 12  
72 bit Lookup / Write  
72 bit Lookup / Write  
72 bit Lookup / Write  
Identification Register  
Size Register  
Read only  
Read only  
Depth Expansion Register  
Device Initialization  
0001 0011  
Global Mask Register 13  
72 bit Lookup  
0000 0011 System Configuration Register  
Device Initialization  
Device Operation  
Device Operation  
Device Operation  
Device Operation  
0001 0100  
0001 0101  
0001 0110  
0010 0000  
0010 0001  
0010 0100  
0010 0101  
0011 0000  
0011 0001  
0011 0010  
0011 0011  
Global Mask Register 14  
Global Mask Register 15  
Global Mask Register 16  
Global Mask Register 20  
Global Mask Register 21  
Global Mask Register 24  
Global Mask Register 25  
Global Mask Register 30  
Global Mask Register 31  
Global Mask Register 32  
Global Mask Register 33  
72 bit Lookup  
72 bit Lookup  
72 bit Lookup  
144 bit Lookup  
144 bit Lookup  
144 bit Lookup  
144 bit Lookup  
288 bit Lookup  
288 bit Lookup  
288 bit Lookup  
288 bit Lookup  
0000 0100  
0000 0101  
0000 0110  
0000 0111  
Reply Width Register 0  
Reply Width Register 1  
Reply Width Register 2  
Reply Width Register 3  
0000 1000  
0000 1001  
0000 1010  
0000 1011  
0000 1100  
0000 1101  
0000 1110  
0000 1111  
Search Result Register 0  
Search Result Register 1  
Search Result Register 2  
Search Result Register 3  
Search Result Register 4  
Search Result Register 5  
Search Result Register 6  
Search Result Register 7  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
D5325 tbl 01a  
D5325 tbl 01  
10  
RegisterDescription  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
Identification Register (IDR)  
Address [0000 0000]  
DepthExpansionRegister(DER)  
Address [0000 0010]  
TheIdentificationRegisterisa32-bitreadonlyregister. Theinformation  
The Depth Expansion Register is a 32-bit read only register. The  
stored in the Identification Register is encoded in the device during information stored in the Depth Expansion Register is hardware con-  
manufacturing. Bits 0-7 are used for the die Revision code. The first trolledbytheuseratpowerup. TheCONFIGIN signalisusedtosetthe  
released revision code for the 75T43100 is 0000 0001, this code will DeviceID. Inadepthexpandedconfiguration, eachIPCdevicewillhave  
changewitheachnewrevision.Bits8-15definetheIDTImplementation auniqueDeviceIDthatrepresents its positionintheIPCsystem. Bits  
number, the 75T43100code is "00000001". Bits 16-31are designated 0-7are usedtodefine the IPCpositioninthe depthexpansion. Bits 8-  
IDT's manufacturers ID code, 0000 0000 1011 0011” as assigned by 31 are Reserved and will read as zero's. Figure 2.6c shows the bit  
JEDEC. Figure 2.6a shows the bit assignments for the Identification assignmentsfortheDepthExpansionRegister.  
Register.  
Figure 2.6a IDR Format  
Figure 2.6c DER Format  
31  
8
7
0
31  
16 15  
8
7
0
Re se rve d(1)  
De vice ID  
Mfgr. #  
Impl. #  
Re v. #  
D5325 tbl 02c  
D5325 tbl 02a  
NOTE:  
1. All reserved bits are read as "0's".  
Internal Test Register (ITR)  
Address [0000 0001]  
TheInternalTestRegisterisa32-bitreadonlyregister. Theinformation  
stored in the Internal Test Register is encoded in the device during  
manufacturingandisusedbytheIPCdeviceforinternaloperationsonly.  
There is noneedforthe usertouse this registerfornormaloperationof  
the IPC device. The register can be read and the hex code will read as  
following 0x0008 0040. Figure 2.6b shows the Internal Test Register  
Format.  
Figure 2.6b ITR Format  
31  
0
Fo r Inte rnal Ope ratio n Only  
D5325 tbl 02b  
6.42  
11  
ConfigurationRegisters  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
Reply Width Registers (RWRs)  
There are four 64-bit read/write Reply Width Registers. The four  
RWRsaddressesarelistedinTable2.1. Eachregisterisdividedintofive  
fields. Thereisonefieldassignedforeachofthelookupwidthsasshown  
inFigure2.6d. Bits[31:24]areusedfor288-bitlookups;bits[7:0]areused  
for144-bitlookups;and bits[15:8]areusedfor72-bitlookups. Thelower  
fivebitsoftherequestedLookupwidthareusedtospecifyIndexBusbits  
[19:15] for the specify Lookup operation. The other two fields are  
reserved,theReservedBits[63:32]and[23:16]needtobewrittento0's  
forproper operation ofthe device.  
Figure 2.6d RWR Format  
63  
32 31  
24 23  
16 15  
8
7
0
Re se rve d(1)  
x288 Width  
Re se rve d(1)  
x72 Width  
x144 Width  
D5325 tbl 04a  
NOTE:  
1. All reserved bits should be set to "0's".  
During a Lookup operation, bits [65:64] at the Request Bus are  
usedtoselectwhichofthefourRWRswillsupplytheinformationofthe  
requested Lookup to the Index Bus. Table 2.1 shows how the Reply  
WidthRegistersareselected. Inmultiplewidthdatalookupi.e.,144/  
288, onlythe last(orleastsignificant)wordofthe Lookupdata is used  
todefinewhichRWRtouse.  
Table 2.1 RWR Addresses  
Request Data of Lookup  
Address  
Register  
Bit 65  
0
Bit 64  
0
0000 0100  
Reply Width Register 0  
0000 0101  
0000 0110  
0000 0111  
Reply Width Register 1  
Reply Width Register 2  
Reply Width Register 3  
0
1
1
1
0
1
D5325 tbl 04b  
12  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
System Configuration Register (SCR)  
Address [0000 0011]  
The System Configuration Register is a 40-bit read/write register  
dividedupintoninefieldsusedtoconfiguretheIPC. TheSCRdefinesthe  
system Pipeline Delay (PD), IPC configuration (LC, IPC Grp), SRAM  
configuration (SR, LS) and IPC Enable (EN). These functions are  
describedbelow. Figure2.7shows thebitassignments fortheSystem  
ConfigurationRegister.  
Figure 2.7System Configuration Register Format  
39  
32 31  
30  
29  
28  
27  
12 11  
5 4  
2 1  
0
Reserved  
EN  
SR  
LS  
LC  
Reserved  
IPC Grp  
Reserved  
PD  
D5325 tbl 03  
Reserved Bits [39:32]  
Thesebitsarereservedforfutureupgrades. Thesebitsshouldbe  
setto"0".  
Reserved Bits [27:12]  
Thesebitsarereservedforfutureupgrades. Thesebitsshouldbe  
setto"0".  
EN is the IPC Enable Bit [31].  
IPC Grp is the IPC group Bits [11:5].  
This bit is cleared to a 0 when RST is pulled low, which forces the  
ThesesevenbitsallowtheusertodefinetheIPCgroupswithinthe  
outputsonIndexBustogointotri-state.TheIndexBusremainstri-stated IPCsystem. AnIPCsystemcanhaveuptoeightIPC'sinonesystem. An  
untiltheenablebitissetto1. InadditionCE/OE,WE,VALID,HITACK IPCgroupisdefinedaseitherasingledeviceormultipledevicesthatare  
andMATCHOUTsignalswillallremainun-drivenuntilENissettoa1. hooked up to a specific bank of SRAM. For the case of a single device  
(one group within an IPC system), bits [14:8] should be set to "0". For  
multipledevices,refertotheInitializationApplicationNote(AN-269)forthe  
settingofthesesevenbits.  
SR is the SRAM type Bit [30].  
ThisbitdefinesthetypeofSRAMdrivenbytheIPC. A1”inthisbit  
means that ZBT SRAM is on the Index Bus and a 0 means that  
Synchronous SRAM is on the Index Bus.  
Reserved Bits [4:2]  
Thesebitsarereservedforfutureupgrades. Thesebitsshouldbe  
setto"0".  
LS is the Last SRAM Bit [29].  
TheLSbitdefines whichdeviceintheIPCgroupwilldrivetheCE/  
OEandWEsignalstotheassociatedSRAM. Italsodefaultsthisdevice PD is the Pipeline Delay Bits [1:0].  
todrivingtheIndexBus whenthereis noongoingoperationpreventing  
ThesebitsallowtheusertosetthepipelinedelayfortheVALIDand  
theIndexBusfromfloating.Thisbitissettoa"1"intheIPCthatisthelast HITACKsignals. Thiswilldefinethenumberofadditionalclockcyclesafter  
(lowestpriority)deviceintheIPCgroupandisthesoledeviceintheIPC theIndexissentbeforetheVALIDandHITACKsignalswillbedriven. In  
grouptohavethisbitset. AnIPCgroupisdefinedaseitherasingledevice the case ofSRAMRead, PDwillalsodefine whenthe RDACKsignalis  
ormultipledevices thatarehookeduptoaspecificbankofSRAM.  
driven. Eachpipelinedelayconsistsof2CLK2Xcycles. Thisallowsthe  
usertoeitherreceivethesesignalswiththeIndexordelaythesesignals  
two,fourorsixCLK2XclockcyclesaftertheIndexfortheSRAMreadcycle.  
00 = Driven with Index  
LC is the Last IPC Bit [28].  
TheLCbitdefineswhichofthedevicesintheIPCsystemwilldrive  
theRDACK,VALID,andHITACKsignals.Thisbitissettoa"1"inthedevice  
thatisthelast(lowestpriority)deviceintheIPCsystemandisthesoledevice  
tohavethisbitset. AnIPCsystemcanhaveuptoeightIPC'sinonesystem.  
01 = 1 pipeline delay (2 CLK2X cycles)  
10 = 2 pipeline delays (4 CLK2X cycles)  
11 = 3 pipeline delays (6 CLK2X cycles)  
6.42  
13  
ConfigurationRegisters  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
SearchResultRegisters (SRRs)  
Table 2.3 - SRRs Addresses  
Address  
0000 1000  
0000 1001  
0000 1010  
0000 1011  
0000 1100  
0000 1101  
0000 1110  
0000 1111  
Register  
Function  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
TheIPCo-Processorcontainseight32bitreadonlySearchResult  
Registers touse forstorage ofthe resultingIndexofa search.  
TheSearchResultRegistercontainsinformationstoredbytheIPC  
after a Lookup is completed. This informationincludes the 15-bit Index  
result,theLookupType,andiftheLookupresultedinavalidhit. Figure  
2.8showsthebitassignmentsforaSRR.  
Bits0-15areusedfortheIndexoftheassociatedsearchresult. Bits  
16-27arereservedandthesebits willreturnto"0"onareadcommand.  
Bits 28-30definetheLookuptypeas showninTable2.2. Bit31is used  
todefineifavalidhitwasdetected,a"1"signalsthataLookupresultedin  
a validhit.  
Search Result Register 0  
Search Result Register 1  
Search Result Register 2  
Search Result Register 3  
Search Result Register 4  
Search Result Register 5  
Search Result Register 6  
Search Result Register 7  
The user can also read the contents of a particular Search Result  
Register by directly using the address shown in Table 2.3.  
D5325 tbl 05c  
Figure 2.8 - SRR Format  
31  
30  
28 27  
16  
15  
14  
13  
0
(2)  
(2)  
Valid Hit  
Lookup Type  
Reserved(1)  
A
14  
A
13  
A
13  
Index  
A
0
D5325 tbl 05a  
NOTE:  
1. All reserved bits are read as "0's".  
2. Address 13 will be read on Bit 13 and Bit 14.  
Table 2.2 - Lookup Type  
Result Register [30:28]  
Lookup Type  
bit 30  
bit 29  
bit 28  
0
1
1
0
0
1
1
0
0
x288 Lookup  
x72 Lookup  
x144 Lookup  
All other bit combinations are  
reserved  
X
X
X
D5325 tbl 05b  
SearchResultRegistersareusedwithLookupinstructions.During  
theinitiationoftheLookupinstructions,CMDbits[6:4]oftheCommandBus  
willidentifywhichofthe8Resultregisterswillbeusedtostoretheresulted  
Index. Table 3.2shows howthe SearchResultRegisters are selected.  
14  
SearchResultRegisters  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
Table 2.5 GMRs Addresses  
Global Mask Registers (GMRs)  
Thereareatotaloffifteen72bitread/writeGlobalMaskRegistersin  
the IPCthatare usedduringLookupandWrite operations.  
ForlookupsiftheGMRbitissettoa1thiswillenablethecompareto  
lookatthisbit,ifthebitissettoa0thisbitbecomesaXordontcarebit  
inthelookup.  
ForwritingifthebitintheGMRissettoa1thedatapresentedonthe  
devicedatapinswillbewrittenintothedesiredlocation. IftheGMRbitis  
set to a 0, the data that already exists in this stored location will remain  
unchanged. All writes are 72 bit only and will use only GMRs 10, 11 or  
12.  
Address  
0001 0000  
0001 0001  
0001 0010  
Register  
Function  
Global Mask Register 10  
Global Mask Register 11  
Global Mask Register 12  
72 bit Lookup / Write  
72 bit Lookup / Write  
72 bit Lookup / Write  
0001 0011  
Global Mask Register 13  
72 bit Lookup  
0001 0100  
0001 0101  
0001 0110  
0010 0000  
0010 0001  
0010 0100  
0010 0101  
0011 0000  
0011 0001  
0011 0010  
0011 0011  
Global Mask Register 14  
Global Mask Register 15  
Global Mask Register 16  
Global Mask Register 20  
Global Mask Register 21  
Global Mask Register 24  
Global Mask Register 25  
Global Mask Register 30  
Global Mask Register 31  
Global Mask Register 32  
Global Mask Register 33  
72 bit Lookup  
72 bit Lookup  
72 bit Lookup  
144 bit Lookup  
144 bit Lookup  
144 bit Lookup  
144 bit Lookup  
288 bit Lookup  
288 bit Lookup  
288 bit Lookup  
288 bit Lookup  
Table 2.4 shows the mask functions for the Lookup and Write  
operations. TheusercanalsoreadthecontentsofaparticularGlobalMask  
Register by directly using the address shown in Table 2.5.  
Table 2.4 Mask Function  
Operation  
Mask Bit Values  
Function  
1
Compare Bit  
Lookup  
0
1
0
X, Don't Care  
Write to Bit  
Write  
D5325 tbl 01a  
Bit Unaltered  
D5325 tbl 08a  
TheGMRsareselectedusingtheCMDbits[3:0]andCMDbits[6:4]  
oftheCommandBus. RefertotheCommandBusformoredetail. Table  
3.1shows howtheGlobalMaskRegisters areselected.  
6.42  
15  
GlobalMaskRegisters  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
BusDescription  
Table 3.0 Instruction Set  
The IPC utilizes the Command Bus to load the specific operational  
instructions. TheCommandBusisa7-bitbuswhichisusedtospecifythe  
operationoftheIPCo-Processor.  
CMD [3:0]  
Instruction  
0010  
0011  
x72 Lookup Pe rforms a x72 lookup in the IPC array.  
x144 Lookup Pe rforms a x144 lookup in the IPC array.  
TheIPCutilizestwobusinterfacesfordataflow:theRequestBus,and  
theIndexBus. TheRequestBusisa72-bitbususedforreadingandwriting  
IPCentriesandpresentingLookupdatatothedevice. TheIndexBusis  
a20-bitbus,whichis usedtodrivetheresultoftheLookup(orIndex)to  
either a SRAM or an ASIC.  
Write to Data ce lls , Write to Mas k Ce lls ,  
Write  
0100  
Write to Re giste rs , Write to Exte rnal SRAM  
Re ads of Data ce lls, Re ad of Mask Ce lls ,  
Re ad  
0101  
1010  
Command Bus  
Re ad of Re giste rs , Re ad of Exte rnal SRAM  
Request Bus  
x288 Lookup Pe rforms a x288 lookup in the IPC array.  
Index Bus  
This ins truction allows for a dire ct acce s s to  
the ass ociate d SRAM on the Inde x Bus . In  
this cas e no acce s s to the IPC core will be  
A Request Strobe is used to define the start of an IPC operation  
sequence. Please refer to the "Instruction/Command Bus Timing  
Diagrams" which illustrates the timing for a generic IPC operation.  
Additionalsignalsarealsoprovidedforinitialization,SRAMcontrolsand  
fordepthexpansion.  
SRAM No  
1011  
made . An acce ss through this path will  
Wait Re ad  
mimic the same de lays of the IPC to allow  
for SRAM acce s s e s to be pipe line d with  
re s t of the IPC functio ns .  
XXXX  
Re se rved  
All othe r bit combinations are re s e rve d.  
CommandBus  
E5325 tbl 02  
The Command Bus is used to specify the operation of the IP Co-  
Processor. It is divided into two fields, as illustrated in Fig 3.0. The  
Instruction field (CMD[3:0]) is used to designate the required Lookup,  
Write,ReadortheSRAMNoWaitRead. TheGMRandSRRSelectfield  
(CMD[6:4])isusedtoaccessbothaGlobalMaskRegisterandaSearch  
ResultRegisterfortherequestedLookup.  
Figure 3.0 Command Bus Format  
6
4 3  
0
GMR and SRR Select  
Instruction  
E5325 tbl 01  
Instruction Field  
The Instruction field consists of 4 bits, and defines 6 commands as  
showninTable 3.0. The Lookupcommands are operationalinnature,  
whereas the Read, Write and SRAM No Wait Read commands are  
primarilyusedfortablemaintenance. Theoperationalcommandsutilize  
additionalbitsintheCommandBustodefinetheSearchResultRegister  
andGlobalMaskRegister,whilethemaintenancecommandsignorethese  
additionalbitfields. However,thereisoneexceptionwhendoingaWrite  
InstructiontotheDataorMaskcells,theadditionalbitsCMD[6:4]areused  
toselecttheGlobalMaskRegisters. AswithallCMOSinputsthesepins  
should always be driven (or pulled up), and never be left floating.  
GMR and SRR Select Field  
TheGMRandSRRselect fieldconsistsof3bitsthatdefinewhichof  
theGlobalMaskRegisterandSearchResultRegisterareused. Table  
3.1defineswhichGMRscanbeselectedforeachLookupmode.Table  
3.2defines whichSRRs canbe selectedtostore the Indexresult.  
16  
Bus Description & Command Bus Format  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
GMR and SRR Select  
Table 3.2 SRR Select  
(2nd CLK2X rising edge)  
TheCommandBusbits[6:4] areusedfortwofunctions. Onefunction  
istospecifywhichGlobalMaskRegister(s) tousefortheWrite(Data/Mask)  
andLookupcommands. TheotherfunctionistospecifywhichSearch  
ResultRegister(SRR)willstoretheresultingIndexofthesearch.  
TheCommandBusbits[6:4]aresampledontherisingedgeofeach  
CLK2X. The Global Mask Register(s) are selected on the 1st CLK2X  
cycle,followedbytheSearchResultRegistersonthe2ndCLK2Xcycle.  
TheGlobalMaskregistersareusedtomaskoutthespecifiedbitsin  
theRequestBuswhenperforminglookupsandwrites. For72-bitlookups  
thereare8scenarios(7GMRsand1NoMask),for144-bitlookupsthere  
are3scenariosand for288-bitlookupsthereare2scenarios available.  
All writes are 72-bit only and will use GMRs 10, 11 and 12 only.  
TheSearchResultRegistersareusedtostoretheresultingIndexof  
asuccessfullookupasspecifiedbytheCommandBusduringaLookup  
command. Asubsequent IndirectWrite(orRead) commandcanspecify  
whichSearchResultRegisterwillsupplytheaddressforthe(Data/Mask)  
array.  
Selected  
Mode  
CMD [3:0]  
CMD [6:4]  
SRR Selected  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
SRR 0  
SRR 1  
SRR 2  
SRR 3  
SRR 4  
SRR 5  
SRR 6  
SRR 7  
SRR 0  
SRR 1  
SRR 2  
SRR 3  
SRR 4  
SRR 5  
SRR 6  
SRR 7  
SRR 0  
SRR 1  
SRR 2  
SRR 3  
SRR 4  
SRR 5  
SRR 6  
SRR 7  
x72 bit  
Lookup  
0010  
x144 bit  
Lookup  
0011  
Table 3.1 GMR Select  
(1st CLK2X rising edge)  
Selected  
Mode  
CMD [3:0] CMD [6:4]  
GMR Selected  
000  
001  
010  
GMR 10 (use for Write)  
GMR 11 (use for Write)  
GMR 12 (use for Write)  
GMR 13  
011  
x72 bit  
Lookup  
0010  
100  
GMR 14  
x288 bit  
Lookup  
1010  
101  
110  
111  
000  
GMR 15  
GMR 16  
No Mask  
GMR 20, GMR 21  
GMR 24, GMR 25  
No Mask  
x144 bit  
Lookup  
E5325 tbl 04  
0011  
1010  
001  
111  
XXX  
All other bit combinations are  
reserved  
000  
111  
GMR 30, GMR 31, GMR 32, GMR 33  
No Mask  
x288 bit  
Lookup  
XXX  
All other bit combinations are  
reserved  
E5325 tbl 03a  
6.42  
17  
GMR and SRR Select  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
RequestBus  
TheRequestBusisa72-bitbus.Oneofitstwomainfuncitionsistosupply  
the data forthe Lookupcommand. The orderofthe data suppliedfora  
72-bit,144-bitand288-bitLookupcommandsisspecifiedinFigure3.1.  
Figure 3.1 Request Bus for Lookup Commands  
71  
0
Available for 2 Clk2x Cycles  
72 Bit Lookup  
143  
287  
72 71  
0
Available in 1st Clk2x Cycle  
Available in 2nd Clk2x Cycle  
144 Bit Lookup  
216 215  
144 143  
72 71  
0
1st Clk2x  
2nd Clk2x  
3rd Clk2x  
4th Clk2x  
288 Bit Lookup  
E5325 tbl 05  
ForallotherReadandWriteCommands,theRequestBusisusedto  
specifytheaddressfollowedbytherelevantdata.  
For Read and Write commands of the Data cells, Mask cells and  
Registers. TheformatoftheRequestBusisillustratedinthetoppartof  
Figure 3.2. Each of the fields are described on the next page.  
ForSRAMRead,SRAMWriteandSRAMNoWaitReadcommands,  
theformatoftheRequestBusisillustratedinthebottompartofFigure3.2.  
Note:Forallcommands,theSAMEADDRESSmustbedrivenonRequest  
Bus Bit14andRequestBus Bit15.  
Figure 3.2 Format of Address for Request Bus  
INSTRUCTION TYPE  
71  
34 33  
26 25  
24 23  
22  
21  
20  
17 16  
15 14  
1
0
d(1)  
0
Read & Writes  
of Data, Mask  
& Registers  
Access  
Typ e  
GMR  
Select  
0:Direct  
1:Indirect  
SRR  
Address  
(2)  
Reserved(1)  
Reserved(1)  
Device ID  
A14 A13  
Reserve  
(2)  
Select  
A13  
A0  
71  
34 33  
26 25  
24 23  
21 20  
16 15 14  
SRAM Read,  
Write and No  
Wait Read  
Access  
Typ e  
Address  
Address  
(3)  
Device ID  
Reserved(1)  
A14  
(3)  
A19  
A15  
A14  
A0  
E5325 tbl 06  
NOTES:  
1. Reserved bits should be set to "0's".  
2. For Read and Write commands of Data, Mask and Registers, Address 13 must be driven on Bit 14 and Bit 15.  
3. For SRAM Write, SRAM Read and SRAM No Wait Read commands, Address 14 must be driven on Bit 14 and Bit 15.  
18  
RequestBusFormat  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
Device ID  
Table 3.8 GMR Select  
ThisfeatureisneededwhenusingmultipleIPCsfordepthexpansion.  
The Device ID is defined at power up and automatically assigned after  
Reset. Table3.6showswhichIPCisaccessedusingDeviceIDfield. In  
thecaseofaReadofalltheIPC's,onlyIPC0willdrivetheRequestBus.  
Request Bus  
GMR Select for a Write Operation  
Bit 23  
Bit 22  
0
0
1
1
0
1
0
1
GMR 10  
GMR 11  
Table 3.6 Device ID  
GMR 12  
Request Bus  
IPC Device  
No Masking  
Accessed  
bit 33 bit 32 bit 31 bit 30 bit 29 bit 28 bit 27 bit 26  
E5325 tbl 10  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
1
0
1
Direct/Indirect  
If0,indicatesthattheaddresstothe(Data/Mask)arraywillcomefrom  
theAddressfieldoftheRequestDatabus. If1,indicatesthattheaddress  
to the (Data/Mask) array will come from the Search Result Register as  
specifiedintheSRRSelectfieldoftheRequestBus.  
2
3
4
SRR Select  
5
ThisfieldisonlyusedforIndirectaddressing. ItspecifieswhichSearch  
ResultRegisterwillbeusedtosupplytheaddresstothe(Data/Mask)array  
as shown in Table 3.9.  
6
7
All  
Table 3.9 SRR Select  
All other bit  
combinations  
are reserved  
X
X
X
X
X
X
X
X
Request Bus  
SRR Select  
Bit 20 Bit 19 Bit 18 Bit 17  
E5325 tbl 07  
Access Type  
There are four possible access types: a) Data array; b) Mask array; c)  
SRAM; and, d) Register, as specified in Table 3.7.  
0
0
0
0
0
0
0
0
X
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
X
SRR 0  
SRR 1  
SRR 2  
Table3.7 AccessType  
SRR 3  
SRR 4  
Request Bus  
Access Type  
Bit 25  
SRR 5  
Bit 24  
SRR 6  
SRR 7  
0
0
1
1
0
1
0
1
Internal IPC Reg  
Data Array  
All other bit combinations are reserved  
E5325 tbl 11  
Mask Array  
External SRAM  
E5325 tbl 08  
Address  
GMR Select  
ThisfieldspecifiestheaddressoftheAccessTypewhenusingDirect  
addressing(asspecifiedbytheDirect/Indirectbit). Theaddressmaybe  
usedtoaccessthe(Data/Mask)array,externalSRAM,oraninternalIPC  
register. TheaddressdecodemapoftheinternalIPCregistersisfound  
in Table 2.0.  
ThisfieldisonlyusedtospecifywhichofthethreeGMRswillbeused  
inawriteoperation. Therearefourpossibleoptions ofGMRstousefor  
a write operation, as shown in Table 3.8.  
InaWriteoperation,theGMRselecteddefineswhichbitsinthearray  
willbeupdated.ForeachbitintheselectedGMRthatissettoa1,data  
fromtheRequestBuscorrespondingtothisbitlocationwillbewritteninto  
thearray.ForallotherbitsintheselectedGMRthatarea0,datainthe  
arraycorrespondingtothisbitlocationwillremainunchanged.  
6.42  
19  
RequestBusFormat  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
IndexBus  
TheIndexBusisa20-bitbusdividedintotwofields.Itconsistsofthe CONFIGOUT  
following: a) ADDRESS; and b) RWB as illustrated in Fig 3.4.  
Inadepthexpandedconfiguration,theCONFIGOUTsignalisused  
to set the Device ID in the following downstream IPC devices. The  
ADDRESSBits [14:0]  
This is the location where the resulting Index is placed from the CONFIGOUT signal is connected to the CONFIGIN signal of the next  
requestedsearch. TheADDRESSfieldcontainstheencodedlocationat subsequentdownstreamdeviceintheIPCsystem.  
whichthecomparewasfoundforLookupcommand. Itisusedtoaccess  
thecorrespondingassociativememoryinanexternalSRAM. Whenwide CLK2X  
lookupsareperformed,thecorrespondingleastsignificantbitswillalways  
be zero (bit 0 for 144-bit, bits 1:0 for 288-bit).  
RWBBits[19:15]  
TheCLK2XistheclockthatoperatestheIPCdevice.Itshouldrunat  
twice the lookupfrequency(133MHzfor66Mlookups/sec).  
TheRWBbitsareassociatedwiththeLookuprequested. Theseare Phase Enable (PHASEN)  
thefivelowerbitsoftherequestedLookupwidththatareprogrammedin  
theReplyWidthRegisters.  
ThePhaseEnablesignalisusedtosynchronizetheinternalIPCclock  
totheclockoftheexternalSRAM.PleaserefertotheClockTimingdiagram  
foranillustrationofthissignal.  
Figure 3.4 Index Bus  
Reset (RST)  
19  
15 14  
0
TheResetsignalinitializestheIPCdevice.Itmustbelow,andremain  
lowfor32CLK2XcyclesafteravalidclockhasbeengeneratedtotheIPC  
device.  
RWB  
ADDRESS  
E5325 tbl 09  
Bypass Mode  
Read Acknowledge signal (RDACK)  
WheninstructingtheIPCtodoaSRAMWrite,SRAMRead,orSRAM  
NoWaitRead,theIPCwillgrabthe19AddressbitsofftheRequestBus  
anddirectlypassthemto theIndexBus. TheIPCautomaticallyaddsthe  
appropriatenumberofpipelinedelaysneededtoinsurethattheinstruction  
hasthesamepipelinedelaysasanyotherinstruction.  
TheReadAcknowledgesignalisusedtoidentifythecycletimeofvalid  
databeingdrivenduetoaRead(IPCreg,DataorMaskarray,orexternal  
SRAM)command. Inthe case ofSRAMRead, RDACKis sentwiththe  
IndexoruptothreePipelineDelays(PD)aftertheIndex. Note:thissignal  
isnotgeneratedinconjunctionwithanSRAMNoWaitReadcommand.  
Chip Enable/Output Enable signal (CE/OE)  
TheChipEnable/OutputEnablesignalisdesignedtobeconnectedto  
theOEpinonSingleCycleDe-selectpipelinedburstSRAMs(PBSRAMs),  
and the CE pin on ZBT SRAMs and Double Cycle De-select pipelined  
burstSRAMs(PBSRAMs).  
Additional Signals  
Match Output (MATCHOUT)  
The Match Output signal is used for depth expanding multiple IPC  
devices.ItisdrivenonecyclebeforetheIndexBusisdriven,andshould  
be connected to a Match Input pin on all lower priority IPC devices. All  
downstreamIPCdevicesusethissignaltopreventthemfromdrivingthe  
Index Bus.  
Write Enable signal (WE)  
TheWriteEnablesignalisdesignedtobeconnecteddirectlytotheWE  
pin on PBSRAMs and ZBT SRAMs.  
Valid signal (VALID)  
Match Input (MATCHIN 0-6)  
TheValidsignalindicateswhenaLookupcommandhascompleted  
regardlessofwhetherthelookupresultedinamatch.Thetimingforthis  
signalisprogrammablebasedonthePDbitintheSystemConfiguration  
Register.ItcanbeassertedasearlyasconcurrentlywiththeIndex,orup  
to three Pipeline Delays (PD) after the Index.  
There are seven Match Input signals that correspond to the seven  
(possible)upstreamIPCdevices.WhenusingtheIPCinamultipledepth  
expanded configuration, each upstream IPC device must prevent the  
lower priority downstream IPC device from driving the external SRAM  
(and control signals) if a match was found in lower priority and higher  
prioritydevice(s)whenperforminga lookupoperation.  
Match Acknowledge signal (HITACK)  
TheMatchAcknowledgesignalindicateswhenaLookupcommand  
resultedinamatch.Thetimingforthissignalisprogrammablebasedon  
thePDbitintheSystemConfigurationRegister.Itcanbeassertedasearly  
asconcurrentlywiththeIndex,oruptothreePipelineDelays(PD)after  
the Index.  
CONFIGIN  
The CONFIGIN signal is used to set the Device ID in the Depth  
ExpansionRegister. ThisisdoneatpoweruporwhenevertheRSTpin  
is held Low. Only the first device in the IPC system should have its  
CONFIGIN signal set high. In a depth expanded configuration, the  
CONFIGINsignalisconnectedtotheCONFIGOUTsignaloftheprevious  
upstreamdeviceintheIPCsystem.  
20  
Index Bus Format and Additional Signals  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
Initialization  
Hot Reset  
Ahotresetconditionoccurswhentheresetpinispulledlow,sometime  
TheIPCrequires thattheResetsignal(RST)beactive(Low)upon  
powerupandremainlowuntilboththepowersuppliesandtheclocksignals after the device had been in use and no power sequencing has taken  
becomestable.Inaddition,atpowerup theJTAGReset(TRST)pinmust place. TheRSTpinshouldbeheldlowfortenclockcycles tocomplete  
also be low. The IPC will respond to the RST signal in both an the proper re-initialization. In this case the data in the memory is not  
asynchronous andsynchronous manner.  
corrupted. HoweverthestatestoredintheDepthExpansionRegisterand  
At Reset, the IPC will respond to the reset by asynchronously tri- SystemConfigurationRegister must bere-initialized. Thesetworegisters  
statingtheI/Opinsandoutputpins,whichpreventsbuscontentionfrom willbeclearedduetotheapplicationoftheresetsignal. AfterRSTpingoes  
occurring between IPC devices or the IPC and another device.  
highwaitsixteenCLK2XcyclestoallowfortheDeviceExpansionRegister  
TheIPCwillcomeoutofaresetconditionsynchronously. TheIPC tobere-configured,nextre-initializetheSystemConfigurationRegisterto  
requirestheRSTsignaltobeactive(Low)andtheCLK2XandPHASEN thedesiredstateandresumeoperation. The registersandData andMask  
signalsbestableforthirty-twoclockcyclestoinsureproperinitialization. Arrays are affected by a Hot Reset as shown in Table 4.1.  
The internallogicofthe IPCis dependentonthe clocktobe presentfor  
thedevicetobeinitialized. Thiswillaffectinternalstatemachinesandcertain  
registers.  
Table 4.1 Condition after Hot Reset  
Array / Register  
De pth Expans ion Re giste r  
Data and Mask Arrays  
Contents  
Mus t be Re-programme d  
Not affe cte d  
Cold Reset  
Acoldresetconditionoccurswheneverpoweristobeappliedtothe  
IPC. Inthis case the IPCwillhave nodefineddata ineitherthe Data or  
Mask arrays. In addition the Depth Expansion Register, Global Mask  
Registers,andSearchResultRegisters willalsohaveundefineddata.  
ResethasnoaffectontheIdentificationandSizeRegisters.The registers  
andData andMaskArraysareaffectedbyaColdResetasshowninTable  
4.0.  
Global Mask Re gis te rs  
Reply Width Re giste rs  
Not affe cte d  
A ll b its s e t to '0'  
Mus t be Re-programme d  
Sys te m Configuration Re giste r  
Se arch Re sults Re gis te rs  
Not affe cte d  
Not affe cte d  
Ide ntification Re giste r  
Size Re giste r  
Table 4.0 Condition after Cold Reset  
F5325 tbl 01b  
Array / Register  
Contents  
Unde fine d  
Mus t be programme d  
De pth Expans ion Registe r  
Unde fine d  
Mus t be programme d  
Data and Mask Arrays  
Global Mask Re gisters  
Re ply Width Re gis te rs  
Unde fine d  
Mus t be programme d  
Unde fine d  
Mus t be programme d  
Syste m Configuration Registe r  
Se arch Re sults Re gisters  
Unde fine d  
Ide ntification Re giste r  
Size Re gister  
Not affe cte d  
F5325 tb l 01a  
6.42  
21  
Initialization  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
Initialization Sequence of a Single Device  
Step 1  
Step 5  
After RST goes high wait 16 CLK2X cycles to allow for the internal  
The Global Mask Registers (GMRs) also do not have any defined  
initializedstate. IftheuserintendsonusingtheGMRsthentheappropriate  
register(s)mustbeinitialized. IftheuserdoesnotintendonusingtheGMRs,  
noinitializationisrequired.  
circuitrytoconfiguretheDeviceExpansionRegister.  
Step 2  
TheusermustinitiallysettheLC bitintheSystemConfigurationRegister  
tostartthehandshakingofsignalsbacktotheASIC/FPGA. Thisenables Step 6  
theRDACK,HITACKandVALID signalstobedriven. TheEnable(EN)  
The Reply Width Registers (RWRs) also do not have any defined  
bitintheSystemConfigurationRegisterisinitiallyresettozero. IftheASIC/ initializedstate. Ifthereisaneedtousetheseregistersthentheusermust  
FPGAdoesnotrequirethehandshakesignalsduringinitializationthenthe initializetheappropriateregister(s). Iftheuserdoesnotintendonusing  
LCbitdoesnothavetobeenableduntiltheSystemConfigurationRegister theRWRs,noinitializationisrequired.  
isconfigured.  
Step 7  
Step 3  
ThefinalprocedureistoupdatetheSystemConfigurationRegisterto  
The user must initialize the entire Data array with 0s. It should be enablethedeviceforoperation. TheIndexBuswillremainintri-stateuntil  
realizedthatiftheentirearrayisnotinitializedtoaknownstateafalsematch theENbitissettoa"1"intheSystemConfigurationRegister. AftertheSCR  
mightberealizedatanun-initializedlocation.  
is configuredthe device is readyforoperation.  
Step 4  
Note:  
The user must initialize the entire Mask array with 1’s. It should be  
The Search Result Registers will be dynamically changing as the  
realizedthatiftheentirearrayisnotinitializedtoaknownstateafalsematch deviceisused. InfacttheSearchResultRegistersarereadonlyregisters  
mightberealizedatanun-initializedlocation.  
andcannotbeinitializedthroughaIPCwriteoperation. Itisimportantto  
realizethattheseregistersinitializeinarandomstateandshouldnotbe  
useduntilaftertheyhavebeenupdatedfromapreviousLookupoperation.  
Foramoreindepthprocedureonhowtoinitializeasingledeviceor  
multipledevicesrefertotheapplicationnote(AN-269),"InitializationofIDT  
75T43100 IP Co-Processor."  
Table4.2InitializationSequence  
Step 1  
Step 2  
Step 3  
Step 4  
Step 5  
Step 6  
Step 7  
Wait 16 CLK2X cycles  
Designate Last IPC by setting LC bit in SCR  
Write 0's to Data Array  
Write 1's to Mask Array  
Configure the GMRs that are to be used  
Configure the RWRs if needed  
Finish the Configuration of the SCR  
F5325 tbl 02  
22  
Initialization  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
AC Electrical Characteristics  
(VDD = 2.5V +/-5%, TA = 0 TO 70°C)  
66M Lookups  
50M Lookups  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
Clock Parameters  
____  
____  
____  
____  
CYC  
t
CLK2X Cycle Time  
7.5  
3.0  
10  
ns  
ns  
(1)  
CLK2X High Pulse Width  
CLK2X Low Puls e Width  
3.0  
t
CH  
____  
____  
(1)  
CL  
3.0  
3.0  
ns  
t
Output Parameters  
t
CRD  
Clock High toIPC Re ad Valid Data  
Clock High to Data Change  
1.0  
1.0  
5.0  
1.0  
1.0  
5.0  
ns  
ns  
____  
____  
t
CDC  
____  
____  
(2)  
CLZ  
Clo ck Hig h to Outp ut Active  
Clock High to Data High-Z  
0
0
ns  
ns  
t
(2)  
CHZ  
1.0  
3.5  
1.0  
3.7  
t
t
CRAK  
Clock High to RDACK Active  
Clock High to Inde x Valid  
Clock High to Match Data Valid  
Clock High to Data Valid  
1.0  
5.0  
5.0  
5.0  
5.0  
1.0  
5.0  
5.0  
5.0  
5.0  
ns  
ns  
ns  
ns  
____  
____  
t
CIV  
t
CMDV  
1.0  
1.0  
1.0  
1.0  
t
CDV(3)  
Set Up Parameters  
____  
____  
____  
____  
t
S U  
Input Se tup Tim e  
1.8  
2.3  
1.8  
2.3  
ns  
ns  
t
S R  
RST Se tup Time  
Hold Parameters  
____  
____  
____  
____  
t
H
Input Hold Tim e  
0.5  
0.5  
0.5  
0.5  
ns  
t
HR  
ns  
RST Hold Time  
H5325 tbl 01  
NOTES:  
1. Measured as HIGH above VIH and Low below VIL.  
2. Transitionismeasured +200mVfromsteady-state.Thisparameterisguaranteedbydevicecharacterization,butnotproductiontested.  
3. This parameterapplies tothe CE/OE, WE, HITACKandVALIDsignals.  
AC Test Conditions  
(VDDQ = 2.5V / 3.3V)  
AC Test Load  
V ddq/2  
Input Pulse Levels  
0 to V  
DDQ  
50 OH M  
Z0  
= 50 Ohm  
Input Rise/Fall Times  
1.5ns  
(V /2)  
H 532 5 drw 0 0  
Input Timing Reference Levels  
Output Timing Reference Levels  
AC Test Load  
DDQ  
(V /2)  
DDQ  
See Figure  
H5325 tbl 03  
6.42  
23  
ACOperatingCharacteristics  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
ClockTiming  
t
t
15  
t
t
t
t
t
t
13  
(CLOCKs)  
14  
8
9
10  
11  
12  
tCH  
tCYC  
CCL2X  
tCL  
tSU  
tSU  
PHASEN  
tH  
t
H
CCLK(1)  
tSR  
RST  
(Note 2)  
tHR  
H5325 drw01  
NOTES:  
1. CCLK is an internal signal not seen by the user.  
2. See Reset/Initialization Sequence Diagram for reset.  
24  
TimingDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
Instruction/CommandBusTiming  
t
t
t
t
(Instruction Timing)  
0
1
2
3
CLK2X  
(1)  
CCLK  
Note 2  
t
t
SU  
SU  
.
Note 4  
REQSTB  
CMD[3:0]  
CMD[6:4]  
t
H
t
SU  
t
SU  
COMMAND  
Note 4  
t
H
t
t
t
SU  
SU  
SU  
SRR  
REGISTER  
GMR  
REGISTER  
Note 4  
t
H
t
H
t
t
t
SU  
SU  
SU  
72 BIT  
DATA B  
(Note 3)  
72 BIT  
DATA A  
72 BIT  
DATA C  
REQDATA  
t
t
H
H
H5325d02  
NOTES:  
1. CCLK is an internal signal not seen by the user.  
2. The Request Strobe needs to be High at t1. It does not initiate a new command. However  
at time t2 it will be sampled and if High will initiate a new command.  
3. For an IPC Writes and 72 bit Lookups, Data B is ignored.  
4. Depending on the current and following operations these signals are driven High, Low  
or Don't Care.  
6.42  
25  
TimingDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
Output Timing (with IPC Read)  
t
t
t
t
t
t
t
t
t
t
9
(IPC READ)  
0
1
2
3
4
5
6
7
8
CLK2X  
CCLK  
t
SU  
REQSTB  
CMD[3:0]  
CMD[6:4]  
t
H
t
SU  
IPC R E AD  
t
H
t
t
(
CHZ  
(MAX.)  
CRD  
t
)
MAX.  
SU  
Read Data  
REQDATA  
Address  
t
t
H
t
CLZ  
(MIN.)  
CDC  
(MIN.)  
INDX  
tCRACK  
(
)
MAX.  
RDACK  
tCRACK  
(MIN.)  
H5325 drw 03  
Don't Care  
Driven HIGH or LOW, but to an indeterminate state.  
LOW impedance state.  
26  
TimingDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
Output Timing (with ZBT SRAM)  
(OUTPUT TIMING for  
all commands except  
IPC Read and Write)  
t
t
t
t
t
t
t
t
16  
t
t
t
17  
8
9
10  
11  
12  
13  
14  
18  
15  
CLK2X  
(1)  
CCLK  
tCIV  
(MAX.)  
VALID INDEX  
NOTE 2  
INDX  
NOTE 2  
tCDC  
(MIN.)  
tCMDV  
(MAX.)  
.
MATCHOUT  
tCMDV  
(MIN.)  
tCDV  
(MAX.)  
(4)  
CE/OE  
tCDV  
(MIN.)  
tCDV  
(MAX.)  
NOTE 3  
WE  
tCDV  
(MIN.)  
(NOTE 5)  
SRAM READ or  
WRITE DATA  
SRAMDATA  
t
CR AK  
(MA X.)  
(7)  
NOTE 3  
NOTE 3  
NOTE 3  
RDACK  
tCRAK  
(MIN.)  
tCDV  
(MAX.)  
HITACK  
tCDC  
(MIN.)  
Pipeline Delay (PD)  
(NOTE 6)  
PD=0  
PD=1  
PD=2  
PD=3  
tCDV  
(MAX.)  
VALID  
tCDC  
(MIN.)  
H5325 d04  
NOTES:  
1. CCLK is an internal signal not seen by the user.  
2. The Index Bus is driven but to an indeterminate state.  
3. Signal will drive LOW or HIGH depending on command; see sequence diagram for state.  
4. This pin will be tied to the CE input of ZBT and OE input will be tied LOW.  
5. Refer to the SRAM datasheet for timing specifications.  
6. HITACK and VALID signals can be valid based on the rising edge of CLK2X at time tCDV dependent on the Pipeline Delay (PD) value that  
is programmed into the System Configuration Register (SCR). These signals will drive for 2 CLK2X cycles. A PD value of 3 is shown for  
clarity. Typically, the PD would be set to 2.  
7. RDACK signal can be valid based on the rising edge of CLK2X, at time tCRAK, dependent on the Pipeline Delay (PD)  
value that is programmed into the System Configuration Register (SCR). This signal will drive for 2 CLK2X cycles. A PD value of 3 is shown  
for clarity. Typically, the PD would be set to 2.  
6.42  
27  
TimingDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
Output Timing (with Synchronous Pipeline Burst)  
28  
TimingDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
Reset/InitializationSequence  
6.42  
29  
SequenceDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
IPC Read (Register, Data, Mask)  
30  
SequenceDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
IPC Write (Register, Data, Mask)  
t
t
t
t
t
t
t
t
7
(IPC WRITE)  
CLK2X  
0
1
2
3
4
5
6
(1)  
CCLK  
REQSTB  
CMD[3:0]  
CMD6:4]  
REQDATA  
INDX  
NOTE 3  
IPC WRITE  
COMMAND  
NEXT COMMAND  
NEXT COMMAND  
ADDRESS OR DATA  
WRITE ADDRESS  
WRITE DATA  
NOTE 2  
RDACK  
HITACK  
VALID  
I5325 drw03  
NOTES:  
1. CCLK is an internal signal not seen by the user.  
2. The Index Bus is driven, but to an indeterminate state.  
3. Next command can be initiated as early as the cycle t4.  
6.42  
31  
SequenceDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
SRAM Read (ZBT)  
32  
SequenceDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
SRAM Write (ZBT)  
6.42  
33  
SequenceDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
SRAM No Wait Read (ZBT)  
34  
SequenceDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
SRAMRead(PBSRAM)  
6.42  
35  
SequenceDiagrams  
IDT75T43100  
IP Co-Processor 32K Entries  
Advance Information  
Commercial Temperature Ranges  
B
SRAM Write (PBSRAM)  
36  
SequenceDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
SRAM No Wait Read (PBSRAM)  
6.42  
37  
SequenceDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
72-Bit Lookup (with ZBT SRAM)(5)  
38  
SequenceDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
144-Bit Lookup (with ZBT SRAM)(5)  
6.42  
39  
SequenceDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
288-Bit Lookup (with ZBT SRAM)(5)  
40  
SequenceDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
72 Bit Lookup Followed by an IPC Write (with ZBT SRAM)(5)  
6.42  
41  
SequenceDiagrams  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
JTAGInterfaceSpecification  
JCYC  
t
t
JR  
JF  
t
t
JCL  
t
JCH  
TCK  
Device Inputs(1)/  
TDI/TMS  
tJDC  
tJS  
tJH  
Device Outputs(2)/  
TDO  
t
JRSR  
tJCD  
3)  
(
x
TRST  
M5325 drw 01  
t
JRST  
NOTES:  
1. Device inputs = All device inputs except TDI, TMS and TRST.  
2. Device outputs = All device outputs except TDO.  
3. During power up, TRST should be driven low.  
JTAG AC Electrical  
Characteristics(1,2,3,4)  
Symbol  
Parameter  
JTAG Clock Input Period  
JTAG Clock HIGH  
JTAG Clock Low  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
JTAG Reset  
Min.  
100  
40  
Max.  
Units  
ns  
____  
____  
____  
ScanRegisterSizes  
JCYC  
t
JCH  
t
ns  
Register Name  
Bit Size  
JCL  
t
40  
ns  
Instruction (IR)  
Bypass (BYR)  
4
1
3(1)  
ns  
____  
JR  
t
3(1)  
ns  
____  
JF  
t
JTAG Identification (JIDR)  
Boundary Scan (BSR)  
32  
____  
JRST  
t
100  
ns  
Note (1)  
____  
I5325 tbl 03  
JRSR  
t
JTAG Reset Recovery  
JTAG Data Output  
JTAG Data Output Hold  
JTAG Setup  
100  
ns  
____  
JCD  
t
20  
ns  
NOTE:  
____  
1. The Boundary Scan Descriptive Language (BSDL) file for this device is available  
by contacting your local IDT sales representative.  
JDC  
t
0
ns  
____  
____  
JS  
t
15  
15  
ns  
JH  
t
JTAG Hold  
ns  
I5325 tbl 01  
NOTES:  
1. Guaranteed by design.  
2. AC Test Load (stated earlier in this document) on external output signals.  
3. Refer to AC Test Conditions stated earlier in this document.  
4. JTAG operations occur at one speed (10MHz). The base device may run at  
any speed specified in this datasheet.  
42  
JTAGInterfaceSpecification  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
JTAG Identification Register Definitions  
Instruction Field  
Revision Number (31:28)  
Value  
0x1  
Description  
Reserved for version number  
Defines IDT part number  
IDT Device ID (27:12)  
0x200  
0x33  
1
IDT JEDEC ID (11:1)  
Allows unique identification of device vendor as IDT  
Indicates the presence of an ID register  
ID Register Indicator Bit (Bit 0)  
I5325 tbl 02  
AvailableJTAGInstructions  
Instruction  
Description  
OPCODE  
Forces contents of the boundary scan cells onto the device outputs(1).  
Places the boundary scan register (BSR) between TDI and TDO.  
EXTEST  
0000  
Places the boundary scan register (BSR) between TDI and TDO.  
SAMPLE allows data from device inputs(2) and outputs(1) to be captured  
in the boundary scan cells and shifted serially through TDO. PRELOAD  
allows data to be input serially into the boundary scan cells via the TDI.  
SAMPLE/PRELOAD  
0001  
Loads the JTAG ID register (JIDR) with the vendor ID code and places  
the register between TDI and TDO.  
DEVICE_ID  
HIGHZ  
0010  
0011  
Places the bypass register (BYR) between TDI and TDO. Forces all  
device output drivers to a High-Z state.  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0100  
0101  
0110  
0111  
Several combinations are reserved. Do not use codes other than those  
identified for EXTEST, SAMPLE/PRELOAD, DEVICE_ID, HIGHZ, CLAMP,  
VALIDATE and BYPASS instructions.  
Uses BYR. Forces contents of the boundary scan cells onto the device  
outputs. Places the bypass register (BYR) between TDI and TDO.  
CLAMP  
1000  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
1001  
1010  
1011  
1100  
Same as above.  
Automatically loaded into the instruction register whenever the TAP  
controller passes through the CAPTURE-IR state. The lower two bits '01'  
are mandated by the IEEE std. 1149.1 specification.  
VALIDATE  
1101  
RESERVED  
BYPASS  
Same as above.  
1110  
1111  
The BYPASS instruction is used to truncate the boundary scan register  
as a single bit in length.  
I5325 tbl 04  
NOTES:  
1. Device outputs = All device outputs except TDO.  
2. Device inputs = All device inputs except TDI, TMS and TRST.  
6.42  
43  
JTAGInterfaceSpecification  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
Package Diagram Outline - 304 Ball Grid Array  
44  
PackageDiagramOutline  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
OrderingInformation  
IDT XXX  
Device  
S
XX  
X
X
Power  
Speed  
Package  
Type  
BS304  
304 Ball Grid Array (BGA)  
50  
66  
Mega Lookups per second  
75T43100  
,
L5325 drw 01  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
for Tech Support:  
ipchelp@idt.com  
800-754-4555  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
45  
OrderingInformation  
IDT75T43100  
Advance Information  
IP Co-Processor 32K Entries  
Commercial Temperature Ranges  
RevisionHistory  
REV  
DATE  
PAGES  
DESCRIPTION  
00  
05/04/2001  
1 - 46  
Advance Information Datasheet, Public Release  
46  
RevisionHistory  

相关型号:

IDT75T43100S66BSI

Telecom Circuit, CMOS, PBGA304
IDT

IDT75T54100S50BS304

Microprocessor Circuit, CMOS, PBGA304, 31 X 31 MM, LOW PROFILE, THERMALLY ENHANCED, SBGA-304
IDT

IDT75T54100S66BS304

Microprocessor Circuit, CMOS, PBGA304, 31 X 31 MM, LOW PROFILE, THERMALLY ENHANCED, SBGA-304
IDT

IDT76ALVCH16823PA

3.3V CMOS 18-BIT BUS-INTERFACE FLIPFLOP WITH 3-STATE OUTPUTS AND BUS-HOLD
IDT

IDT76LVC162374APA

3.3V CMOS 16-BIT EDGE TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O, BUS-HOLD
IDT

IDT76LVC162374APF

3.3V CMOS 16-BIT EDGE TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O, BUS-HOLD
IDT

IDT76LVC162374APV

3.3V CMOS 16-BIT EDGE TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O, BUS-HOLD
IDT

IDT77010

Data Path Interface to Utopia Level 1 Translation Device
ETC

IDT77010L155PQF

Data Path Interface to Utopia Level 1 Translation Device
ETC

IDT77010L155PQFG

ATM Network Interface, 1-Func, PQFP80, 12 X 12 X 1.40 MM, PLASTIC, QFP-80
IDT

IDT77010PQF

ATM Network Interface, 1-Func, PQFP80, 12 X 12 MM, 1.40 MM HEIGHT, PLASTIC, QFP-80
IDT

IDT77101L25STQFP

ATM Network Interface, 1-Func, CMOS, PQFP64, 10 X 10 MM, STQFP-64
IDT