IDT79RV5000250G [IDT]

MULTI-ISSUE 64-BIT MICROPROCESSOR; 多种64位微处理器
IDT79RV5000250G
型号: IDT79RV5000250G
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

MULTI-ISSUE 64-BIT MICROPROCESSOR
多种64位微处理器

微处理器
文件: 总15页 (文件大小:289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
79RC5000  
MULTI-ISSUE  
64-BIT MICROPROCESSOR  
Large, efficient on-chip caches  
32KB Instruction Cache, 32KB Data Cache  
2-set associative in each cach  
Virtually indexed and physically tagged to minimize cache  
flushes  
Write-back and write-through selectable on a per page basis  
Critical word first cache miss processing  
Supports back-to-back loads and stores in any combination at  
full pipeline rate  
Dual issue super-scalar execution core  
250 MHz frequency  
Dual issue floating-point ALU operations with other instruction  
classes  
Traditional 5-stage pipeline, minimizes load and branch laten-  
cies  
Single-cycle repeat rate for most floating point ALU  
operations  
High-performance memory system  
High level of performance for a variety of applications  
Large primary caches integrated on-chip  
Secondary cache control interface on-chip  
High-frequency 64-bit bus interface runs up to 125MHz  
Aggregate bandwidth of on-chip caches, system interface of  
5.6GB/s  
High-performance write protocols for graphics and data  
communications  
High-performance 64-bit integer unit achieves 330 dhrystone  
MIPS (dhrystone 2.1)  
Ultra high-performance floating-point accelerator, directly  
implementing single- and double-precision operations  
achieves 500mflops  
Extremely large on-chip primary cache  
On-chip secondary cache controller  
Compatible with a variety of operating systems  
MIPS-IV 64-bit ISA for improved computation  
Windows™ CE  
Numerous MIPS-compatible real-time operating systems  
Compound floating-point operations for 3D graphics and  
floating-point DSP  
Conditional move operations  
Uses input system clock, with processor pipeline clock  
multiplied by a factor of 2-8  
Large on-chip TLB  
Industrial and commercial temperature range  
Active power management, including use of WAIT operation  
Phase Lock Loop  
Instruction Set A  
Instruction Select  
Data Set A  
Data Tag A  
Store Buffer  
DTLB Physical  
SysAD  
Integer Instruction Register  
FP Instruction Register  
Address Buffer  
Instruction Tag A  
ITLB Physical  
Write Buffer  
Read Buffer  
Data Set B  
DBus  
Instruction Set B  
IntIBus  
Instruction Tag B  
FPIBus  
Control  
AuxTag  
Joint TLB  
Tag  
Load Aligner  
Floating Point Register File  
Unpacker/Packer  
Integer Register File  
Integer/Address Adder  
Coprocessor 0  
Data TLB Virtual  
DVA  
System/Memory  
Control  
Floating Point  
MAdd,Add,Sub, Cvt  
Div, SqRt  
Shifter/Store Aligner  
IVA  
PC Incrementer  
Branch Adder  
Logic Unit  
ABus  
Instruction TLB Virtual  
Program Counter  
Integer Multiply, Divide  
The IDT logo is a registered trademark and RC32134, RC32364, RC64145, RC64474, RC64475, RC4650, RC4640, RC4600,RC4700 RC3081, RC3052, RC3051, RC3041, RISController, and RISCore are trade-  
marks of Integrated Device Technology, Inc.  
1 of 15  
April 10, 2001  
DSC 5719  
2001 Integrated Device Technology, Inc.  
79RC5000  
The RC5000 serves many performance critical embedded applica-  
tions, such as high-end internetworking systems, color printers, and  
graphics terminals.  
The RC5000 implements the MIPS-IV 64-bit ISA, including CP1 and  
CP1X functional units (and their instruction set).  
The RC5000 is optimized for high-performance applications, with  
special emphasis on system bandwidth and floating point operations,  
through integration of high-performance computational units and a high-  
performance memory hierarchy. For this class of application, the result  
is a relatively low-cost CPU capable of approximately 330 Dhrystone  
MIPS.  
The RC5000 is a limited dual-issue machine that utilizes a traditional  
5-stage integer pipeline. This basic integer pipeline of the RC5000 is  
illustrated in Figure 1. The integer instruction execution speed is tabu-  
lated (in number of pipeline clocks) as follows:  
IDT’s objectives in offering the RC5000 include:  
Offering a high performance upgrade path to existing embedded  
Load  
2
1
customers in the internetworking, office automation and  
visualization markets.  
Store  
2
1
Providing a significant improvement in the floating- point  
performance currently available in a moderately priced MIPS  
CPU.  
MULT/MULTU  
DMULT/DMULTU  
DIV/DIVU  
DDIV/DDIVU  
Other Integer ALU  
Branch  
8
8
12  
36  
68  
1
12  
36  
68  
1
Providing improvements in the memory hierarchy of desktop  
systems by using large primary caches and integrating a  
secondary cache controller.  
Enabling improvements in performance through the use of the  
MIPS-IV ISA.  
2
2
Jump  
2
2
Table 1 Integer Instruction Execution Speed  
The RC5000 recognizes two general classes of instructions for multi-  
issue:  
The RC5000s short pipeline keeps the load and branch latencies  
very low. The caches contain special logic that allows any combination  
of loads and stores to execute in back-to-back cycles without requiring  
pipeline slips or stalls. (This assumes that the operation does not miss  
in the cache.)  
Floating-point ALU  
All others  
These instruction classes are pre-decoded by the RC5000, as they  
are brought on-chip. The pre-decoded information is stored in the  
instruction cache.  
Assuming that there are no pending resource conflicts, the RC5000  
can issue one instruction per class per pipeline clock cycle. Note that  
this broad separation of classes insures that there are no data depen-  
dencies to restrict multi-issue.  
However, long-latency resources in either the floating-point ALU (e.g.  
DIV or SQRT instructions) or instructions in the integer unit (such as  
multiply) can restrict the issue of instructions. Note that the R5000 does  
not perform out-of-order or speculative execution; instead, the pipeline  
slips until the required resource becomes available.  
There are no alignment restrictions on dual-issue instruction pairs.  
The RC5000 fetches two instructions from the cache per cycle. Thus, for  
optimal performance, compilers should attempt to align branch targets  
to allow dual-issue on the first target cycle, since the instruction cache  
only performs aligned fetches.  
2 of 15  
April 10, 2001  
79RC5000  
I0  
I1  
I2  
1I  
2I  
1R  
1I  
2R  
2I  
1A  
1R  
1I  
2A  
2R  
2I  
1D  
1A  
1R  
2D  
2A  
2R  
1W  
1D  
1A  
2W  
2D  
2A  
1W  
1D  
2W  
2D  
1
W
I3  
I4  
1I  
2I  
1R  
1I  
2R  
2I  
1A  
1R  
2A  
2R  
1D  
1A  
one cycle  
Figure 1 R5000 Integer Pipeline Stages  
Key to Figure  
1I-1R  
2I  
Instruction cache access  
Instruction virtual to physical address translation  
Data cache access and load align  
Data virtual to physical address translation  
Virtual to physical address translation  
Register file read  
2A-2D  
1D  
1D-2D  
2R  
2R  
Bypass calculation  
2R  
Instruction decode  
2R  
Branch address calculation  
Issue or slip decision  
1A  
1A-2A  
1A  
Integer add, logical, shift  
Data virtual address calculation  
Store align  
2A  
1A  
Branch decision  
2W  
Register file write  
3 of 15  
April 10, 2001  
79RC5000  
where P is the maximum power consumption at hot temperature,  
calculated by using the maximum ICC specification for the device.  
Typical values for CA at various airflows are shown in Table 1.  
The RC5000 contains the following computational units:  
Integer ALU. The RC5000 implements a full, single-cycle 64-bit ALU  
for all integer ALU functions other than multiply and divide. Bypassing is  
used to support back-to-back ALU operations at the full pipeline rate,  
without requiring stalls for data dependencies.  
CA  
Airflow (ft/min)  
PGA  
0
200 400  
600  
3
800  
2.5  
2.5  
1000  
16  
14  
7
6
5
4
2
2
Integer Multiply/Divide Unit. This unit is separated from the primary  
ALU, to allow these longer latency operations to run in parallel with other  
operations. The pipeline stalls only if an attempt to access the HI or LO  
registers is made before the operation completes.  
BGA  
3
Table 2 Thermal Resistance (ýCA) at Various Airflows  
Note: The RC5000 implements advanced power manage-  
ment to substantially reduce the average power dissipation of  
the device. This operation is described in the IDT79RV5000  
RISC Microprocessor Reference Manual.  
Floating-point ALU. This unit is responsible for all CP1/CP1X ALU  
operations other than DIV/SQRT. The unit is pipelined to allow a single-  
cycle repeat rate for single-precision operations  
Floating-point DIV/SQRT unit. This unit is separated from the other  
floating-point ALU, so that these long latency operations do not prevent  
the issue of other floating point operations.  
Per the RC5000 Documentation errata, Revision 1.0, dated February  
1999 and per the RC5000 Device errata, dated February 1999, mode  
bits 20, 33 and 37 must be set to 1.  
In addition, the RC5000 implements separate logical units to imple-  
ment loads, stores, and branches.  
The input clock operates in a frequency range of 33MHz to 100MHz.  
The pipeline frequency for the RC5000 is 2 to 8 times the input clock (up  
to the maximum for the speed grade of CPU).  
January 1996: Corrected pin list for Clock/Control, Initialization, and  
Secondary Cache interfaces in Pin Description section. Changed pins  
AA19 and AA21 from Vcc to Vss in Advance Pin-Out section.  
March 1997: Upgraded data sheet status from Preliminaryto Final.  
Added section on thermal considerations. Added section on absolute  
maximum ratings.  
The RC5000 utilizes special packaging techniques, to improve the  
thermal properties of high-speed processors. The RC5000 is packaged  
using cavity down packaging in a 223-pin PGA package with integral  
thermal slug, and a 272-pin BGA package. These packages effectively  
dissipate the power of the CPU, increasing device reliability.  
June 1997: Revised Power Consumption and System Interface  
Parameters.  
September 1997: Added user notation on Boot Mode Bits 20 and 33  
The RC5000 utilizes an all-aluminum package with the die attached  
to a normal copper lead frame mounted to the aluminum casing. Due to  
the heat-spreading effect of the aluminum, the package allows for an  
efficient thermal transfer between the die and the case. The aluminum  
offers less internal resistance from one end of the package to the other,  
reducing the temperature gradient across the package and therefore  
presenting a greater area for convection and conduction to the PCB for  
a given temperature. Even nominal amounts of airflow will dramatically  
reduce the junction temperature of the die, resulting in cooler operation.  
for 200 MHz frequency.  
June 1998: Added 250 MHz. Changed naming conventions.  
June 1999: Added 267 MHz and 300 MHz.  
October 28, 1999: Added industrial temperature data and revised  
package designation code in the Ordering Information section.  
March 23, 2000: Expanded the data presentation in the System  
Interface Parameters table and revised the values in this table.  
April 10, 2001: In the Data Output and Data Output Hold categories  
of the System Interface Parameters table, changed values in the Min  
column for all speeds from 1.5 and 1.0 to 0.  
The RC5000 is guaranteed in a case temperature range of 0° to  
+85° C. The type of package, speed (power) of the device, and airflow  
conditions affect the equivalent ambient temperature conditions that will  
meet this specification.  
The equivalent allowable ambient temperature, TA, can be calculated  
using the thermal resistance from case to ambient ( CA) of the given  
package.  
The following equation relates ambient and case temperatures:  
TA = TC - P * CA  
4 of 15  
April 10, 2001  
79RC5000  
64  
8
2
SysAD(63:0)  
SysADC(7:0)  
SysCmd(8:0)  
SysCmdP  
ValidIn*  
ScWord (1:0)  
ScTCE*  
9
ScTDE*  
ScTOE*  
ScCLR*  
ValidOut*  
ExtRqst*  
ScDCE*  
ScDOE*  
Release*  
RdRdy*  
ScCWE*  
ScLine (15:0)  
16  
WrRdy*  
ScMATCH  
ScVALID  
RC5000  
Logic  
6
SysClock  
VccP  
Int (5:0)*  
NMI*  
Symbol  
VssP  
34  
34  
Vcc  
Vss  
BigEndian  
ModeClock  
ModeIN  
VccOk  
ColdReset*  
Reset*  
JTDI  
JTDO  
JTMS  
JTCK  
Figure 2 RC5000 Logic Symbol Diagram  
5 of 15  
April 10, 2001  
79RC5000  
The RC5000 implements a bus similar to that of the RC4700. Table 2 lists and describes the RC5000 signals.  
System interface  
ExtRqst*  
Release*  
RdRdy*  
WrRdy*  
ValidIn*  
Input  
External Request.  
Signals that the system interface needs to submit an external request.  
Output Release Interface.  
Signals that the processor is releasing the system interface to slave state  
Input  
Input  
Input  
Read Ready.  
Signals that an external agent can now accept a processor read.  
Write Ready.  
Signals that an external agent can now accept a processor write request.  
Valid Input.  
Signals that an external agent is now driving a valid address or data on the SysAD bus and a valid command or data identifier on the  
SysCmd bus.  
ValidOut*  
Output Valid Output.  
Signals that the processor is now driving a valid address or data on the SysAD bus and a valid command or data identifier on the  
SysCmd bus.  
SysAD(63:0)  
Input/ System Address/Data bus.  
Output A 64-bit address and data bus for communication between the processor and an external agent.  
SysADC(7:0) Input/ System Address/Data check bus.  
Output An 8-bit bus containing parity check bits for the SysAD bus during data bus cycles.  
SysCmd(8:0) Input/ System Command/data identifier bus.  
Output A 9-bit bus for command and data identifier transmission between the processor and an external agent.  
SysCmdP  
Input/ Reserved System Command/data identifier bus parity.  
Output For the RC5000, unused on input and zero on output.  
Clock/control interface  
SysClock  
Input  
Input  
Input  
Master Clock.  
Master clock input at the bus frequency. The pipeline clock is derived by multiplying this clock up.  
VCCP  
Quiet VCC for PLL.  
Quiet VCC for the internal phase locked loop.  
VSSP  
Quiet VSS for PLL.  
Quiet VSS for the internal phase locked loop.  
Interrupt interface  
Int(5:0)*  
Input  
Interrupt.  
Six general processor interrupts, bit-wise ORed with bits 5:0 of the interrupt register.  
NMI*  
Input  
Non-maskable interrupt. Non-maskable interrupt, ORed with bit 6 of the interrupt register.  
JTAG interface:  
JTDI  
Input  
Input  
JTAG Data In.  
Connected directly to JTDO. No JTAG implemented; should be pulled High.  
JTCK  
JTAG Clock Input.  
Unused input; should be pulled High.  
Table 3: RC5000 Signal Names and Descriptions (Page 1 of 2)  
6 of 15  
April 10, 2001  
79RC5000  
JTDO  
JTMS  
Output JTAG Data Out.  
Connected directly to JTDI. If no external scan used, this is a no connect.  
Input  
JTAG Command.  
Unused input. Should be pulled High.  
Initialization interface:  
VCCOk  
Input  
VCC is OK.  
When asserted, this signal indicates to the RC5000 that the power supply has been above Vcc minimum for more than100 milliseconds  
and will remain stable. The assertion of VCCOk initiates the reading of the boot-time mode control serial stream.  
ColdReset*  
Reset*  
Input  
Input  
Cold Reset.  
This signal must be asserted for a power on reset or a cold reset. ColdReset must be de-asserted synchronously with SysClock.  
Reset.  
This signal must be asserted for any reset sequence. It may be asserted synchronously or asynchronously for a cold reset, or syn chro-  
nously to initiate a warm reset. Reset must be synchronously de-asserted with SysClock.  
ModeClock  
ModeIn  
Output Boot Mode Clock.  
Serial boot-mode data clock output at the system clock frequency divided by two hundred and fifty six.  
Input  
Boot Mode Data In.  
Serial boot-mode data input.  
BigEndian  
Input  
Endian mode select.  
Allows the system to change the processor addressing mode without rewriting the mode ROM. If endianness is to be specified by using  
the BigEndian pin, program mode ROM bit 8 to 0; if endianness is to be specified by the mode ROM, ground the BigEndian pin.  
Secondary cache interface:  
ScCLR* Output Secondary Cache Block Clear.  
Clears all valid bits in those Tag RAMs which support this function.  
ScCWE*(1:0) Output Secondary Cache Write Enable.  
Asserted during writes to the secondary cache  
ScDCE*(1:0)  
ScDOE*  
Output Data RAM Chip Enable.  
Chip Enable for Secondary Cache Data RAM  
Input  
Data RAM Output Enable.  
Asserted by the external agent to enable data onto the SysAD bus  
ScLine (15:0) Output Data RAM Output Enable.  
Cache line index for secondary cache  
ScMATCH  
ScTCE*  
ScTDE*  
ScTOE*  
Input  
Secondary cache Tag Match.  
Asserted by Tag RAM on Secondary cache tag match  
Output Secondary cache Tag RAM Chip Enable.  
Chip enable for secondary cache tag RAM.  
Output Secondary cache Tag RAM Data Enable.  
Data Enable for Secondary Cache Tag RAM.  
Output Secondary cache Tag RAM Output Enable.  
Tag RAM Output enable for Secondary Cache Tag RAMs  
ScWord (1:0) Input/ Secondary cache Word Index.  
Output Determines correct double-word of Secondary cache Index  
ScValid  
Input/ Secondary cache Valid.  
Output Always driven by the CPU except during a cache probe operation, when it is driven by the tag RAM.  
Table 3: RC5000 Signal Names and Descriptions (Page 2 of 2)  
7 of 15  
April 10, 2001  
79RC5000  
Note: Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
1
1
V
Terminal Voltage with respect to GND 0.5 to +4.6  
0.5 to +4.6  
V
TERM  
T
Operating Temperature (case)  
Case Temperature Under Bias  
Storage Temperature  
0 to +85  
-40 to +85  
°C  
°C  
°C  
mA  
mA  
C
T
55 to +125  
55 to +125  
55 to +125  
55 to +125  
BIAS  
T
STG  
2
3
I
DC Input Current  
20  
20  
IN  
4
5
I
DC Output Current  
50  
50  
OUT  
1. IN minimum = 2.0V for pulse width less than 15ns. VIN should not exceed VCC +0.5 Volts.  
2. .When VIN < 0V or VIN > VCC.  
3. .When VIN < 0V or VIN > VCC.  
4. Not more than one output should be shorted at a time. Duration of the short should not exceed 30 seconds.  
5. Not more than one output should be shorted at a time. Duration of the short should not exceed 30 seconds.  
Commercial  
Industrial  
0°C to +85°C (Case)  
0V  
0V  
3.3V±5%  
3.3V±5%  
-40°C to +85°C (Case)  
(V = 3.3V± 5%; T  
= 0°C to +85°C for commercial or T  
= -40°C to +85°C for industrial)  
case  
CC  
case  
Note: Boot Mode Bits 20, 33 and 37 must be set to 1for all frequencies  
Min  
100  
3
Max  
180  
Min  
100  
3
Max  
200  
100  
30  
Min  
100  
3
Max  
250  
125  
30  
Pipeline Clock Frequency  
SysClock HIGH  
PCLk  
t
ns  
SCHIGH  
SysClock LOW  
t
3
3
3
ns  
SCLOW  
SysClock Frequency  
SysClock Period  
33  
11.1  
90  
33  
10  
33  
8
MHz  
ns  
t
30  
SCP  
1
SysClock Rise Time  
t
2.5  
2.5  
256  
2
2
ns  
SCRise  
1
SysClock Fall Time  
t
2
2
ns  
SCFall  
ModeClock Period  
t
256  
256  
ns  
ModeCKP  
t
t
t
SCP  
SCP  
SCP  
1. Rise and Fall times are measured between 10% and 90%  
8 of 15  
April 10, 2001  
 
79RC5000  
Min  
Max  
Min  
Max  
Min  
Max  
Load Derate  
C
2
2
2
ns/25pF  
LD  
Note: 50 pf loading on external output signals  
Min  
Max  
7
Min  
Max  
Min  
Max  
4.7  
5
1
1
1
Data Output  
t
t
= Max mode  
= 10 (fastest, 100%)  
= 11 (83%)  
0
0
5
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DO  
14..13  
14..13  
14..13  
14..13  
14..13  
14..13  
14..13  
14..13  
= Min  
DM  
1
1
1
mode  
0
8
0
7
0
1
1
1
mode  
= 00 (67%)  
0
9
0
9
0
6
1
1
1
mode  
= 01 (slowest, 50%)  
= 10 (fastest)  
= 11 (83%)  
0
11  
0
11  
0
7
1
Data Output Hold  
t
mode  
mode  
mode  
mode  
0
0
0
DOH  
0
0
0
= 00 (67%)  
0
0
0
= 01 (slowest)  
0
0
0
t
t
= 3ns  
= 3ns  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
DS  
rise  
Data Input  
t
fall  
t
DH  
1. Guaranteed by design.  
Min Max Min  
Max Min  
Max  
Mode Data Setup  
Mode Data Hold  
t
4
0
4
0
4
0
ns  
ns  
Master Clock Cycle  
Master Clock Cycle  
DS  
t
DH  
9 of 15  
April 10, 2001  
 
79RC5000  
(V = 3.3V± 5%; T  
= 0°C to +85°C for commercial or T = -40°C to +85°C for industrial)  
case  
cc  
case  
Min  
Max  
0.1V  
Min  
Max  
0.1V  
Min  
Max  
0.1V  
VOL  
VOH  
|IOUT|= 20uA  
|IOUT|= 4mA  
VCC  
VCC  
VCC  
- 0.1V  
- 0.1V  
- 0.1V  
VOL  
VOH  
VIL  
0.4V  
0.4V  
0.4V  
2.4V  
0.5V  
2.4V  
2.4V  
0.2VCC 0.5V  
0.2VCC 0.5V  
0.2VCC  
VIH  
0.7VCC VCC +  
0.5V  
0.7VCC VCC +  
0.5V  
0.7VCC VCC +  
0.5V  
IIN  
±10uA  
10pF  
10pF  
10pF  
20uA  
±10uA  
10pF  
10pF  
10pF  
20uA  
±10uA 0 VIN VCC  
CIN  
10pF  
10pF  
10pF  
20uA  
CIO  
Cclk  
I/OLEAK  
Input/Output Leakage  
Max  
Max  
Max  
System Condition  
180/45MHz  
120mA  
200/50MHz  
120mA  
250/62.5MHz  
120mA C = 50 pF  
L
I
Standby  
Active  
cc  
1100mA  
1300mA  
1800mA  
C = 50pF  
L
Pipelined writes or write re-issue  
o
T = 25 C  
c
10 of 15  
April 10, 2001  
79RC5000  
The RC5000 is available in two packages, the 223-pin CPGA and the 272-ball SBGA. The 223-pin CPGA package is shown in Figure 2 and Table  
3; information on the SBGA package is shown in Figure 3 and Table 4.  
V
U
T
R
P
N
M
L
K
223-Pin CPGA  
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18  
Figure 3 RC5000 223-pin CPGA Pin Orientation (Bottom View)  
11 of 15  
April 10, 2001  
79RC5000  
A2  
Vcc  
C5  
SysADC[6]  
SysAD[16]  
SysAD[50]  
SysAD[22]  
SysAD[24]  
SysAD[28]  
SysAD[62]  
SysAD[44]  
SysAD[10]  
SysAD[38]  
SysAD[4]  
SysAD[34]  
SysAD[2]  
Vss  
E18  
F1  
Vcc  
K17  
K18  
L1  
VssP  
R6  
SysAD[51]  
SysAD[55]  
SysAD[27]  
SysAD[31]  
SysAD[43]  
SysAD[39]  
SysAD[35]  
SysAD[1]  
ScWord[1]  
ScLine[0]  
ScLine[3]  
ScLine[6]  
Vss  
U9  
SysAD[63]  
SysAD[13]  
SysAD[11]  
SysAD[9]  
SysAD[37]  
SysAD[3]  
ScWord[0]  
Vcc  
A3  
Vss  
C6  
Vcc  
Vss  
R7  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
V1  
A4  
Vcc  
C7  
F2  
Reserved  
ScValid  
INT[1]*  
ScDCE[0]*  
ScCWE[0]*  
ScTDE*  
Vss  
Vss  
R8  
A5  
Vss  
C8  
F3  
L2  
SysCmd[8]  
SysCmd[7]  
SysCmd[5]  
ScLine[12]  
ScLine[14]  
ScLine[15]  
Vcc  
R9  
A6  
Vss  
C9  
F4  
L3  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
T1  
A7  
Vcc  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
D1  
F15  
F16  
F17  
F18  
G1  
L4  
A8  
Vss  
L15  
L16  
L17  
L18  
M1  
M2  
M3  
M4  
M15  
M16  
M17  
M18  
N1  
A9  
Vcc  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
B1  
Vss  
Vss  
Vcc  
Vss  
Vss  
Vss  
G2  
Reserved  
Reserved  
Reserved  
ScCLR*  
ScTCE*  
ModeIn  
Vcc  
Vcc  
Vss  
Vcc  
G3  
SysCmd[6]  
SysCmd[4]  
SysCmd[1]  
ScLine[8]  
ScLine[10]  
ScLine[13]  
Vss  
V2  
Vss  
Vss  
G4  
V3  
Vcc  
Vss  
G15  
G16  
G17  
G18  
H1  
Vss  
V4  
Vss  
Vcc  
Vss  
T2  
SysAD[15]  
SysAD[47]  
SysAD[17]  
SysAD[19]  
SysAD[23]  
SysAD[57]  
SysAD[29]  
Vcc  
V5  
Vss  
Vss  
D2I  
D3  
INT3*  
T3  
V6  
Vcc  
Vss  
INT5*  
T4  
V7  
Vss  
Vss  
D4  
Release*  
Vcc  
Vcc  
T5  
V8  
Vcc  
B2  
Vss  
D5  
H2  
Reserved  
Reserved  
Reserved  
VccOK  
ModeClock  
SysClock  
Vss  
Vss  
T6  
V9  
Vss  
B3  
Vcc  
D6  
SysADC[2]  
SysAD[48]  
SysAD[52]  
SysAD[56]  
SysAD[60]  
SysAD[14]  
SysAD[42]  
SysAD[8]  
SysAD[36]  
ColdReset*  
SysAD[0]  
ScTOE*  
Vcc  
H3  
N2  
SysCmd[3]  
SysCmd[2]  
SysADC[7]  
ScLine[5]  
ScLine[7]  
ScLine[11]  
Vcc  
T7  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
Vcc  
B4  
SysADC[4]  
SysADC[0]  
SysAD[18  
SysAD[20]  
SysAD[54]  
SysAD[26]  
0SysAD[58]  
SysAD[30]  
SysAD[46]  
SysAD[12]  
SysAD[40]  
SysAD[6]  
Vss  
D7  
H4  
N3  
T8  
Vss  
B5  
D8  
H15  
H16  
H17  
H18  
J1  
N4  
T9  
Vcc  
B6]  
B7]  
B8  
D9  
N15  
N16  
N17  
N18  
P1  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
U1  
SysAD[45]  
SysAD[41]  
SysAD[7]  
SysAD[5]  
SysAD[33]  
Reset*  
Vss  
D10  
D11  
D12S  
D13  
D14  
D15  
D16  
D17  
D18  
E1  
Vcc  
Vss  
B9  
Vss  
Vss  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
C1  
J2  
WrRdy*  
ValidIn*  
ExtReq*  
JTDO  
Vcc  
Vcc  
J3  
P2  
SysCmd[0]  
SysCmdP  
SysADC[1]  
ScLine[2]  
ScLine[4]  
ScLine[9]  
Vss  
Vss  
J4  
P3  
ScLine[1]  
Vcc  
J15  
J16  
J17  
J18  
K1  
P4  
JTDI  
P15  
P16  
P17  
P18  
R1  
Vcc  
JTCK  
Vcc  
Vss  
Vcc  
U2  
Vcc  
Vcc  
E2  
INT[0]*  
Vcc  
U3  
Vss  
Vcc  
E3  
INT[2]*  
K2  
ScMatch  
RdRdy*  
cDOE*  
JTMS  
Vcc  
U4  
SysAD[21]  
SysAD[53]  
SysAD[25]  
SysAD[59]  
SysAD[61]  
Vcc  
E4  
NT[4]*  
K3  
R2  
SysADC[5]  
SysADC[3]  
BigEndian  
SysAD[49]  
U5  
C2  
Vcc  
E15  
E16  
E17  
SysAD[32]  
ScDCE[1]*  
ScCWE[1]*  
K4S  
K15  
K16  
R3  
U6  
C3  
ValidOut*  
NMI*  
R4  
U7  
C4  
VccP  
R5  
U8  
12 of 15  
April 10, 2001  
79RC5000  
21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
272-Ball SBGA  
M
N
P
R
T
U
V
W
Y
AA  
Figure 4 Ball Grid Array Package (Bottom View)  
13 of 15  
April 10, 2001  
79RC5000  
Pkg Pin Function  
Pkg Pin Function  
Pkg Pin Function  
Pkg Pin Function  
Pkg Pin Function  
Pkg Pin Function  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
A1  
Vss  
B5  
SysAD0  
ScTOE*  
ScCLR*  
ScTDE*  
D9  
Vss  
J2  
SysAD46  
SysAD14  
Vss  
P21  
R1  
SysAD55  
Vss  
W1  
Vss  
Vcc  
B6  
D10  
D11  
D12  
Vcc  
J3  
W2  
Vcc  
Vss  
B7  
Vccp  
J4  
R2  
SysAD18  
SysAD48  
Vcc  
W3  
Vcc  
ValidOut*  
Vss  
B8  
Vcc  
J18  
J19  
J20  
J21  
K1  
Vss  
R3  
W4  
Vcc  
B9  
ModeClock D13  
Vss  
SysAD9  
SysAD41  
Vss  
R4  
W5  
Int*5  
Int*0  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
C1  
JTDI  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
E1  
Vcc  
R18  
R19  
R20  
R21  
T1  
Vcc  
W6  
Int*4  
Vss  
JTCK  
N/C  
Vcc  
SysAD53  
SysAD23  
Vss  
W7  
Int*1  
Reserved  
Vss  
Vss  
SysAD60  
SysAD30  
SysAD62  
Vcc  
W8  
Reserved  
Reserved  
Reserved  
ValidIn*  
ScDOE*  
SysCmd7  
SysCmd4  
SysCmd1  
SysADC7  
SysADC5  
SysAD47  
BigEndian  
Vcc  
ScLine14  
ScLine10  
ScLine9  
ScLine6  
ScLine3  
ScLine1  
Vcc  
Vcc  
K2  
W9  
WrRdy*  
Vss  
Vss  
K3  
SysAD16  
SysADC0  
SysADC2  
Vss  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
Y1  
Vcc  
K4  
T2  
ScMatch  
Vss  
Vcc  
K18  
K19  
K20  
K21  
L1  
Vcc  
T3  
Vcc  
SysAD11  
SysAD43  
SysAD13  
Vss  
T4  
SysCmd6  
Vss  
Vss  
T18  
T19  
T20  
T21  
U1  
Vss  
E2  
SysAD36  
SysAD4  
Vcc  
SysAD19  
SysAD51  
SysAD21  
Vss  
SysCmd2  
Vss  
Vcc  
E3  
Vcc  
E4  
L2  
SysAD58  
SysAD28  
Vcc  
SysADC3  
Vss  
Vss  
E18  
E19  
Vcc  
L3  
C2  
Vcc  
ScWord1  
ScWord0  
Vss  
L4  
U2  
SysADC4  
SysADC6  
Vcc  
Vcc  
C3  
ColdReset* E20  
L18  
L19  
L20  
L21  
M1  
M2  
M3  
M4  
M18  
M19  
M20  
M21  
N1  
Vcc  
U3  
Vss  
C4  
SysAD34  
ScDCE*1  
ScDCE*0  
ScCWE*0  
ScTCE*  
ModeIn  
JTDO  
Vssp  
E21  
F1  
SysAD45  
SysAD63  
Vss  
U4  
Vss  
Vss  
C5  
SysAD8  
SysAD38  
SysAD6  
Vss  
U18  
U19  
U20  
U21  
V1  
Vcc  
Vcc  
A2  
Vcc  
C6  
F2  
SysAD17  
SysAD49  
Vss  
Y2  
Vcc  
A3  
Vss  
C7  
F3  
SysAD26  
SysAD56  
SysAD24  
Vcc  
Y3  
Vcc  
A4  
SysAD32  
Vss  
C8  
F4  
Y4  
Release*  
Int*3  
A5  
C9  
F18  
F19  
F20  
F21  
G1  
Vss  
Vcc  
Y5  
A6  
ScCWE*1  
Vss  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
D1  
SysAD1  
SysAD33  
SysAD3  
Vss  
V2  
Vcc  
Y6  
Int*2  
A7  
Vcc  
V3  
Vcc  
Y7  
ScValid  
Reserved  
Reserved  
Reserved  
ExtRqst*  
RdRdy*  
SysCmd8  
SysCmd5  
SysCmd3  
SysCmd0  
SysCmdP  
SysADC1  
SysAD15  
Vcc  
A8  
VCCOK  
Vss  
JTMS  
SysAD29  
SysAd61  
SysAD31  
Vss  
V4  
Vss  
Y8  
A9  
ScLine13  
ScLine11  
ScLine8  
ScLine5  
ScLine4  
ScLine0  
Reset*  
Vcc  
V5  
NMI*  
Vss  
Y9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
B1  
MasterClk  
Vss  
G2  
SysAD10  
SysAD40  
Vcc  
V6  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
G3  
V7  
Vcc  
ScLine15  
Vss  
G4  
N2  
SysAD54  
SysAD22  
Vss  
V8  
Vcc  
G18  
G19  
G20  
G21  
H1  
Vcc  
N3  
V9  
Vss  
ScLine12  
Vss  
SysAD35  
SysAD5  
Vss  
N4  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
Vcc  
N18  
N19  
N20  
N21  
P1  
Vss  
Vcc  
ScLine7  
Vss  
SysAD27  
SysAD59  
Vss  
Vcc  
Vss  
SysAD42  
SysAD44  
SysAD12  
Vcc  
Vss  
ScLine2  
Vss  
Vcc  
H2  
Vcc  
D2  
Vcc  
H3  
SysAD50  
SysAD52  
SysAD20  
Vcc  
Vcc  
Vcc  
D3  
Vcc  
H4  
P2  
Vss  
Vss  
D4  
Vss  
H18  
H19  
H20  
H21  
J1  
Vcc  
P3  
Vcc  
Vcc  
Vcc  
D5  
Vcc  
SysAD7  
SysAD39  
SysAD37  
Vss  
P4  
Vss  
B2  
Vcc  
D6  
Vss  
P18  
P19  
P20  
Vcc  
Vcc  
B3  
Vcc  
D7  
Vcc  
SysAD25  
SysAD57  
Vcc  
B4  
SysAD2  
D8  
Vcc  
Vcc  
14 of 15  
April 10, 2001  
79RC5000  
IDT79  
YY  
XXXX  
999  
A
A
Operating  
Voltage  
Device  
Type  
Speed  
Package  
Temp range/  
Process  
Blank Commercial Temperature  
(0°C to +85°C Case)  
Industrial Temperature  
(-40°C to +85°C Case)  
I
G
223-ball CPGA  
BS272 272-ball SBGA  
180 MHz Pipeline  
200 MHz Pipeline  
250 MHz Pipeline  
180  
200  
250  
5000 Multi-Issue  
64-bit Microprocessor  
RV  
3.3+/-5%  
IDT79RV5000 - 180, 200MHz  
IDT79RV5000 - 180, 200, 250MHz  
IDT79RV5000 - 180, 200MHz  
G
CPGA package  
SBGA package  
SBGA package  
BS272  
BS272 I  
CORPORATE HEADQUARTERS  
2975 Stender Way  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-6116  
fax: 408-330-1748  
for Tech Support:  
email: rischelp@idt.com  
phone: 408-492-8208  
www.idt.com  
The IDT logo is a registered trademark of Integrated DeviceTechnology, Inc.  
15 of 15  
April 10, 2001  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY