IDT82V3202NLGBLANK [IDT]

EBU WAN PLL; EBU WAN PLL
IDT82V3202NLGBLANK
型号: IDT82V3202NLGBLANK
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

EBU WAN PLL
EBU WAN PLL

文件: 总117页 (文件大小:1439K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EBU WAN PLL  
IDT82V3202  
Version 5  
September 11, 2009  
6024 Silver Creek Valley Road, San Jose, CA 95138  
Telephone: (800) 345-7015 • TWX: 910-338-2070 • FAX: (408) 284-2775  
Printed in U.S.A.  
© 2009 Integrated Device Technology, Inc.  
DISCLAIMER  
Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best pos-  
sible product. IDT does not assume any responsibility for use of any circuitry described other than the circuitry embodied in an IDT product. The Company makes no representations that circuitry  
described herein is free from patent infringement or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, patent rights or other  
rights, of Integrated Device Technology, Inc.  
LIFE SUPPORT POLICY  
Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is exe-  
cuted between the manufacturer and an officer of IDT.  
1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sustain life and whose failure to perform, when properly used in  
accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.  
2. A critical component is any components of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its  
safety or effectiveness.  
Table of Contents  
FEATURES.............................................................................................................................................................................. 9  
HIGHLIGHTS.................................................................................................................................................................................................... 9  
MAIN FEATURES ............................................................................................................................................................................................ 9  
OTHER FEATURES......................................................................................................................................................................................... 9  
APPLICATIONS....................................................................................................................................................................... 9  
DESCRIPTION....................................................................................................................................................................... 10  
FUNCTIONAL BLOCK DIAGRAM........................................................................................................................................ 11  
1 PIN ASSIGNMENT ........................................................................................................................................................... 12  
2 PIN DESCRIPTION .......................................................................................................................................................... 14  
3 FUNCTIONAL DESCRIPTION ......................................................................................................................................... 18  
3.1 RESET ........................................................................................................................................................................................................... 18  
3.2 MASTER CLOCK .......................................................................................................................................................................................... 18  
3.3 INPUT CLOCKS & FRAME SYNC SIGNALS ............................................................................................................................................... 19  
3.3.1 Input Clocks .................................................................................................................................................................................... 19  
3.3.2 Frame SYNC Input Signals ............................................................................................................................................................ 19  
3.4 INPUT CLOCK PRE-DIVIDER ...................................................................................................................................................................... 20  
3.5 INPUT CLOCK QUALITY MONITORING ..................................................................................................................................................... 21  
3.5.1 Activity Monitoring ......................................................................................................................................................................... 21  
3.5.2 Frequency Monitoring ................................................................................................................................................................... 22  
3.6 DPLL INPUT CLOCK SELECTION .............................................................................................................................................................. 23  
3.6.1 External Fast Selection .................................................................................................................................................................. 23  
3.6.2 Forced Selection ............................................................................................................................................................................ 24  
3.6.3 Automatic Selection ....................................................................................................................................................................... 24  
3.7 SELECTED INPUT CLOCK MONITORING .................................................................................................................................................. 25  
3.7.1 DPLL Locking Detection ................................................................................................................................................................ 25  
3.7.1.1 Fast Loss .......................................................................................................................................................................... 25  
3.7.1.2 Coarse Phase Loss .......................................................................................................................................................... 25  
3.7.1.3 Fine Phase Loss ............................................................................................................................................................... 25  
3.7.1.4 Hard Limit Exceeding ....................................................................................................................................................... 25  
3.7.2 Locking Status ............................................................................................................................................................................... 25  
3.7.3 Phase Lock Alarm .......................................................................................................................................................................... 25  
3.8 SELECTED INPUT CLOCK SWITCH ........................................................................................................................................................... 27  
3.8.1 Input Clock Validity ........................................................................................................................................................................ 27  
3.8.2 Selected Input Clock Switch ......................................................................................................................................................... 27  
3.8.2.1 Revertive Switch ............................................................................................................................................................... 27  
3.8.2.2 Non-Revertive Switch ....................................................................................................................................................... 27  
3.8.3 Selected / Qualified Input Clocks Indication ................................................................................................................................ 27  
3.9 SELECTED INPUT CLOCK STATUS VS. DPLL OPERATING MODE ....................................................................................................... 29  
3.10 DPLL OPERATING MODE ........................................................................................................................................................................... 31  
3.10.1 Six Operating Modes ..................................................................................................................................................................... 31  
3.10.1.1 Free-Run Mode ................................................................................................................................................................ 31  
3.10.1.2 Pre-Locked Mode ............................................................................................................................................................. 31  
3.10.1.3 Locked Mode .................................................................................................................................................................... 31  
3.10.1.3.1 Temp-Holdover Mode .................................................................................................................................... 31  
3.10.1.4 Lost-Phase Mode ............................................................................................................................................................. 31  
3.10.1.5 Holdover Mode ................................................................................................................................................................. 31  
Table of Contents  
3
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
3.10.1.5.1 Automatic Instantaneous ............................................................................................................................... 32  
3.10.1.5.2 Automatic Slow Averaged ............................................................................................................................. 32  
3.10.1.5.3 Automatic Fast Averaged .............................................................................................................................. 32  
3.10.1.5.4 Manual ........................................................................................................................................................... 32  
3.10.1.5.5 Holdover Frequency Offset Read .................................................................................................................. 32  
3.10.1.6 Pre-Locked2 Mode ........................................................................................................................................................... 32  
3.11 DPLL OUTPUT .............................................................................................................................................................................................. 34  
3.11.1 PFD Output Limit ............................................................................................................................................................................ 34  
3.11.2 Frequency Offset Limit .................................................................................................................................................................. 34  
3.11.3 PBO ................................................................................................................................................................................................. 34  
3.11.4 Four Paths of T0 DPLL Outputs .................................................................................................................................................... 34  
3.12 T0 / T4 APLL ................................................................................................................................................................................................. 36  
3.13 OUTPUT CLOCKS & FRAME SYNC SIGNALS ........................................................................................................................................... 36  
3.13.1 Output Clocks ................................................................................................................................................................................. 36  
3.13.2 Frame SYNC Output Signal ........................................................................................................................................................... 38  
3.14 INTERRUPT SUMMARY ............................................................................................................................................................................... 40  
3.15 T0 SUMMARY ............................................................................................................................................................................................... 40  
3.16 LINE CARD APPLICATION .......................................................................................................................................................................... 41  
4 I2C PROGRAMMING INTERFACE .................................................................................................................................. 42  
4.1 FUNCTION DESCRIPTION ........................................................................................................................................................................... 42  
4.1.1 Data Transfer Format ..................................................................................................................................................................... 43  
4.1.1.1 Slave-receiver Mode (Write) ............................................................................................................................................. 43  
4.1.1.2 Slave-transmitter Mode (Read) ........................................................................................................................................ 43  
4.1.2 Address Assignment ..................................................................................................................................................................... 44  
4.2 TIMING DEFINITION ..................................................................................................................................................................................... 44  
5 JTAG ................................................................................................................................................................................ 46  
6 PROGRAMMING INFORMATION .................................................................................................................................... 47  
6.1 REGISTER MAP ............................................................................................................................................................................................ 47  
6.2 REGISTER DESCRIPTION ........................................................................................................................................................................... 51  
6.2.1 Global Control Registers ............................................................................................................................................................... 51  
6.2.2 Interrupt Registers ......................................................................................................................................................................... 58  
6.2.3 Input Clock Frequency & Priority Configuration Registers ....................................................................................................... 62  
6.2.4 Input Clock Quality Monitoring Configuration & Status Registers ........................................................................................... 67  
6.2.5 T0 DPLL Input Clock Selection Registers .................................................................................................................................... 75  
6.2.6 T0 DPLL State Machine Control Registers .................................................................................................................................. 77  
6.2.7 T0 DPLL & T0/T4 APLL Configuration Registers ........................................................................................................................ 79  
6.2.8 Output Configuration Registers .................................................................................................................................................... 90  
6.2.9 PBO & Phase Offset Control Registers ........................................................................................................................................ 93  
6.2.10 Synchronization Configuration Registers ................................................................................................................................... 94  
7 THERMAL MANAGEMENT ............................................................................................................................................. 95  
7.1 JUNCTION TEMPERATURE ........................................................................................................................................................................ 95  
7.2 EXAMPLE OF JUNCTION TEMPERATURE CALCULATION ..................................................................................................................... 95  
7.3 HEATSINK EVALUATION ............................................................................................................................................................................ 95  
7.4 VFQFPN EPAD THERMAL RELEASE PATH .............................................................................................................................................. 96  
8 ELECTRICAL SPECIFICATIONS .................................................................................................................................... 97  
8.1 ABSOLUTE MAXIMUM RATING .................................................................................................................................................................. 97  
8.2 RECOMMENDED OPERATION CONDITIONS ............................................................................................................................................ 97  
8.3 I/O SPECIFICATIONS ................................................................................................................................................................................... 98  
8.3.1 CMOS Input / Output Port .............................................................................................................................................................. 98  
8.3.2 PECL / LVDS Output Port ............................................................................................................................................................ 100  
8.3.2.1 PECL Output Port ........................................................................................................................................................... 100  
8.3.2.2 LVDS Output Port ........................................................................................................................................................... 101  
8.4 JITTER & WANDER PERFORMANCE ....................................................................................................................................................... 102  
Table of Contents  
4
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
8.5 OUTPUT WANDER GENERATION ............................................................................................................................................................ 105  
8.6 INPUT / OUTPUT CLOCK TIMING ............................................................................................................................................................. 106  
8.7 OUTPUT CLOCK TIMING ........................................................................................................................................................................... 107  
PACKAGE DIMENSIONS.................................................................................................................................................... 112  
ORDERING INFORMATION................................................................................................................................................ 117  
DATASHEET DOCUMENT HISTORY................................................................................................................................. 117  
5
September 11, 2009  
List of Tables  
Table 1: Pin Description ............................................................................................................................................................................................. 14  
Table 2: Related Bit / Register in Chapter 3.2 ........................................................................................................................................................... 18  
Table 3: Related Bit / Register in Chapter 3.3 ........................................................................................................................................................... 19  
Table 4: Related Bit / Register in Chapter 3.4 ........................................................................................................................................................... 20  
Table 5: Related Bit / Register in Chapter 3.5 ........................................................................................................................................................... 22  
Table 6: Input Clock Selection ................................................................................................................................................................................... 23  
Table 7: External Fast Selection ................................................................................................................................................................................ 23  
Table 8: ‘n’ Assigned to the Input Clock ..................................................................................................................................................................... 24  
Table 9: Related Bit / Register in Chapter 3.6 ........................................................................................................................................................... 24  
Table 10: Coarse Phase Limit Programming (the selected input clock of 2 kHz, 4 kHz or 8 kHz) .............................................................................. 25  
Table 11: Coarse Phase Limit Programming (the selected input clock of other than 2 kHz, 4 kHz and 8 kHz) .......................................................... 25  
Table 12: Related Bit / Register in Chapter 3.7 ........................................................................................................................................................... 26  
Table 13: Related Bit / Register in Chapter 3.8 ........................................................................................................................................................... 28  
Table 14: T0 DPLL Operating Mode Control ............................................................................................................................................................... 29  
Table 15: Related Bit / Register in Chapter 3.9 ........................................................................................................................................................... 30  
Table 16: Frequency Offset Control in Temp-Holdover Mode ..................................................................................................................................... 31  
Table 17: Frequency Offset Control in Holdover Mode ............................................................................................................................................... 32  
Table 18: Holdover Frequency Offset Read ................................................................................................................................................................ 32  
Table 19: Related Bit / Register in Chapter 3.10 ......................................................................................................................................................... 33  
Table 20: Related Bit / Register in Chapter 3.11 ......................................................................................................................................................... 35  
Table 21: Related Bit / Register in Chapter 3.12 ......................................................................................................................................................... 36  
Table 22: Outputs on OUT1 & OUT2 if Derived from T0 DPLL Outputs ..................................................................................................................... 36  
Table 23: Outputs on OUT1 & OUT2 if Derived from T0/T4 APLL .............................................................................................................................. 37  
Table 24: Frame Sync Input Signal Selection .............................................................................................................................................................. 38  
Table 25: Synchronization Control ............................................................................................................................................................................... 38  
Table 26: Related Bit / Register in Chapter 3.13 ......................................................................................................................................................... 39  
Table 27: Related Bit / Register in Chapter 3.14 ......................................................................................................................................................... 40  
Table 28: Definition of S/Sr and P Conditions ............................................................................................................................................................. 42  
Table 29: Timing Definition for Standard Mode and Fast Mode(1) .............................................................................................................................. 45  
Table 30: JTAG Timing Characteristics ....................................................................................................................................................................... 46  
Table 31: Register List and Map .................................................................................................................................................................................. 47  
Table 32: Power Consumption and Maximum Junction Temperature ......................................................................................................................... 95  
Table 33: Thermal Data ............................................................................................................................................................................................... 95  
Table 34: Absolute Maximum Rating ........................................................................................................................................................................... 97  
Table 35: Recommended Operation Conditions .......................................................................................................................................................... 97  
Table 36: CMOS Input Port Electrical Characteristics ................................................................................................................................................. 98  
Table 37: CMOS Input Port with Internal Pull-Up Resistor Electrical Characteristics .................................................................................................. 98  
Table 38: CMOS Input Port with Internal Pull-Down Resistor Electrical Characteristics ............................................................................................. 98  
Table 39: CMOS Output Port Electrical Characteristics .............................................................................................................................................. 99  
Table 40: PECL Output Port Electrical Characteristics .............................................................................................................................................. 100  
Table 41: LVDS Output Port Electrical Characteristics .............................................................................................................................................. 101  
Table 42: Output Clock Jitter Generation .................................................................................................................................................................. 102  
Table 43: Output Clock Phase Noise ......................................................................................................................................................................... 103  
Table 44: Input Jitter Tolerance (155.52 MHz) .......................................................................................................................................................... 103  
Table 45: Input Jitter Tolerance (1.544 MHz) ............................................................................................................................................................ 103  
Table 46: Input Jitter Tolerance (2.048 MHz) ............................................................................................................................................................ 103  
Table 47: Input Jitter Tolerance (8 kHz) .................................................................................................................................................................... 104  
List of Tables  
6
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Table 48: T0 DPLL Jitter Transfer & Damping Factor ............................................................................................................................................... 104  
Table 49: Input/Output Clock Timing ......................................................................................................................................................................... 106  
Table 50: Output Clock Timing .................................................................................................................................................................................. 107  
7
September 11, 2009  
List of Figures  
Figure 1. Functional Block Diagram ............................................................................................................................................................................ 11  
Figure 2. Pin Assignment (NL68 Top View) ................................................................................................................................................................ 12  
Figure 3. Pin Assignment (TQFP 64 Top View) .......................................................................................................................................................... 13  
Figure 4. Pre-Divider for An Input Clock ..................................................................................................................................................................... 20  
Figure 5. Input Clock Activity Monitoring ..................................................................................................................................................................... 21  
Figure 6. External Fast Selection ................................................................................................................................................................................ 23  
Figure 7. T0 Selected Input Clock vs. DPLL Automatic Operating Mode ................................................................................................................... 29  
Figure 8. On Target Frame Sync Input Signal Timing ................................................................................................................................................. 38  
Figure 9. 0.5 UI Early Frame Sync Input Signal Timing .............................................................................................................................................. 38  
Figure 10. 0.5 UI Late Frame Sync Input Signal Timing .............................................................................................................................................. 39  
Figure 11. 1 UI Late Frame Sync Input Signal Timing ................................................................................................................................................. 39  
Figure 12. Line Card Application ................................................................................................................................................................................. 41  
Figure 13. Data Transfer on the I2C-bus ..................................................................................................................................................................... 42  
Figure 14. Slave-receiver Mode ................................................................................................................................................................................... 43  
Figure 15. Slave-transmitter Mode .............................................................................................................................................................................. 43  
Figure 16. Address Assignment ................................................................................................................................................................................... 44  
Figure 17. Timing Definition of I2C-bus ....................................................................................................................................................................... 44  
Figure 18. JTAG Interface Timing Diagram ................................................................................................................................................................. 46  
Figure 19. Assembly for Expose Pad thermal Release Path (Side View) ................................................................................................................... 96  
Figure 20. Recommended PECL Output Port Line Termination ................................................................................................................................ 100  
Figure 21. Recommended LVDS Output Port Line Termination ................................................................................................................................ 101  
Figure 22. Output Wander Generation ...................................................................................................................................................................... 105  
Figure 23. Input / Output Clock Timing ...................................................................................................................................................................... 106  
Figure 24. 68-Pin NL Package Dimensions (a) (in Millimeters) ................................................................................................................................. 112  
Figure 25. 68-Pin NL Package Dimensions (b) (in Millimeters) ................................................................................................................................. 113  
Figure 26. 64-Pin EDG Package Dimensions (a) (in Millimeters) .............................................................................................................................. 114  
Figure 27. 64-Pin EDG Package Dimensions (b) (in Millimeters) .............................................................................................................................. 115  
Figure 28. EDG64 Recommended Land Pattern with Exposed Pad (in Millimeters) ................................................................................................. 116  
List of Figures  
8
September 11, 2009  
EBU WAN PLL  
IDT82V3202  
Supports three types of input clock sources: recovered clock from  
STM-N or OC-n, PDH network synchronization timing and external  
synchronization reference timing  
Provides two 2 kHz, 4 kHz or 8 kHz frame sync input signals, and  
an 8 kHz frame sync output signal  
Provides two input clocks whose frequency cover from 2 kHz to  
155.52 MHz  
Provides two output clocks whose frequency cover from 1 Hz to  
622.08 MHz  
FEATURES  
HIGHLIGHTS  
The first single PLL chip:  
- Features 0.1 Hz to 560 Hz bandwidth  
- Exceeds GR-253-CORE (OC-12) and ITU-T G.813 (STM-16/  
Option I) jitter generation requirements  
- Provides node clocks for Cellular and WLL base-station (GSM  
and 3G networks)  
- Provides clocks for DSL access concentrators (DSLAM), espe-  
cially for Japan TCM-ISDN network timing based ADSL equip-  
ments  
Provides output clocks for BITS, GPS, 3G, GSM, etc.  
Supports CMOS input/output and PECL/LVDS output technologies  
Supports master clock calibration  
Supports Line Card application  
Meets Telcordia GR-1244-CORE, GR-253-CORE, ITU-T G.812,  
ITU-T G.813 and ITU-T G.783 criteria  
MAIN FEATURES  
Provides an integrated single-chip solution for Synchronous Equip-  
ment Timing Source, including Stratum 3, SMC, 4E and 4 clocks  
Employs DPLL and APLL to feature excellent jitter performance  
and minimize the number of the external components  
Supports Forced or Automatic operating mode switch controlled by  
an internal state machine; the primary operating modes are Free-  
Run, Locked and Holdover  
OTHER FEATURES  
2
I C programming interface  
IEEE 1149.1 JTAG Boundary Scan  
Single 3.3 V operation with 5 V tolerant CMOS I/Os  
68-pin VFQFPN package and 64-pin TQFP package, Green pack-  
age options available  
Supports programmable DPLL bandwidth (0.1 Hz to 560 Hz in 11  
steps) and damping factor (1.2 to 20 in 5 steps)  
-5  
-8  
APPLICATIONS  
Supports 1.1X10 ppm absolute holdover accuracy and 4.4X10  
BITS / SSU  
SMC / SEC (SONET / SDH)  
ppm instantaneous holdover accuracy  
Supports PBO to minimize phase transients on T0 DPLL output to  
be no more than 0.61 ns  
Supports phase absorption when phase-time changes on T0  
selected input clock are greater than a programmable limit over an  
interval of less than 0.1 seconds  
Limits the phase and frequency offset of the outputs  
Supports manual and automatic selected input clock switch  
Supports automatic hitless selected input clock switch on clock fail-  
ure  
DWDM cross-connect and transmission equipments  
Central Office Timing Source and Distribution  
Core and access IP switches / routers  
Gigabit and Terabit IP switches / routers  
IP and ATM core switches and access equipments  
Cellular and WLL base-station node clocks  
Broadband and multi-service access equipments  
Any other telecom equipments that need synchronous equipment  
system timing  
IDT and the IDT logo are trademarks of Integrated Device Technology, Inc.  
9
September 11, 2009  
2009 Integrated Device Technology, Inc.  
DSC-6981/5  
IDT82V3202  
EBU WAN PLL  
performance without being affected by operating conditions or silicon  
process variations.  
DESCRIPTION  
The IDT82V3202 is an integrated, single-chip solution for the Syn-  
chronous Equipment Timing Source for Stratum 3, SMC, 4E and 4  
clocks in SONET / SDH equipments, DWDM and Wireless base station,  
such as GSM, 3G, DSL concentrator, Router and Access Network appli-  
cations.  
If the DPLL outputs are processed by T0/T4 APLL, the outputs of the  
device will be in a better jitter/wander performance.  
The device provides programmable DPLL bandwidths: 0.1 Hz to 560  
Hz in 11 steps and damping factors: 1.2 to 20 in 5 steps. Different set-  
tings cover all SONET / SDH clock synchronization requirements.  
The device supports three types of input clock sources: recovered  
clock from STM-N or OC-n, PDH network synchronization timing and  
external synchronization reference timing.  
A high stable input is required for the master clock in different appli-  
cations. The master clock is used as a reference clock for all the internal  
circuits in the device. It can be calibrated within ±741 ppm.  
An input clock is automatically or manually selected for DPLL lock-  
ing. The DPLL supports three primary operating modes: Free-Run,  
Locked and Holdover. In Free-Run mode, the DPLL refers to the master  
clock. In Locked mode, the DPLL locks to the selected input clock. In  
Holdover mode, the DPLL resorts to the frequency data acquired in  
Locked mode. Whatever the operating mode is, the DPLL gives a stable  
2
All the read/write registers are accessed only through an I C pro-  
gramming interface.  
The device can be used typically in Line Card application.  
Description  
10  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
FUNCTIONAL BLOCK DIAGRAM  
Figure 1. Functional Block Diagram  
Functional Block Diagram  
11  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
1
PIN ASSIGNMENT  
AGND  
IC1  
AGND1  
VDDA1  
NC  
1
2
3
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
RST  
SCL  
AD2  
AD1  
AD0  
IC10  
4
5
6
7
8
INT_REQ  
OSCI  
NC  
IC9  
TMS  
DGND5  
VDDD5  
VDDD5  
DGND1  
VDDD1  
VDDD3  
DGND3  
DGND2  
VDDD2  
FF_SRCSW  
VDDA2  
AGND2  
IC2  
IDT82V3202  
(NL68)  
9
10  
11  
12  
13  
14  
15  
16  
17  
TRST  
VDDD5  
IC8  
IC7  
EX_SYNC2  
Figure 2. Pin Assignment (NL68 Top View)  
Pin Assignment  
12  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AGND  
IC1  
AGND1  
VDDA1  
INT_REQ  
OSCI  
1
2
3
RST  
SCL  
AD2  
AD1  
AD0  
IC10  
4
5
6
7
8
IC9  
TMS  
DGND5  
VDDD5  
VDDD5  
DGND1  
VDDD1  
VDDD3  
DGND3  
DGND2  
VDDD2  
FF_SRCSW  
VDDA2  
AGND2  
IC2  
IDT82V3202  
(TQFP 64)  
9
10  
11  
12  
13  
14  
15  
16  
TRST  
VDDD5  
IC8  
IC7  
EX_SYNC2  
Figure 3. Pin Assignment (TQFP 64 Top View)  
Pin Assignment  
13  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
2
PIN DESCRIPTION  
Table 1: Pin Description  
Pin No.  
(NL68)  
Pin No.  
(TQFP 64)  
Description 1  
Name  
I/O  
Type  
Global Control Signal  
OSCI: Crystal Oscillator Master Clock  
A nominal 12.8000 MHz clock provided by a crystal oscillator is input on this pin. It is the  
OSCI  
7
6
I
CMOS  
master clock for the device.  
FF_SRCSW: External Fast Selection Enable  
During reset, this pin determines the default value of the EXT_SW bit (b4, 0BH) . The  
2
EXT_SW bit determines whether the External Fast Selection is enabled.  
High: The default value of the EXT_SW bit (b4, 0BH) is ‘1’ (External Fast selection is  
enabled);  
I
Low: The default value of the EXT_SW bit (b4, 0BH) is ‘0’ (External Fast selection is dis-  
abled).  
After reset, this pin selects an input clock for the T0 DPLL if the External Fast selection is  
FF_SRCSW  
14  
13  
pull-  
down  
CMOS  
enabled:  
High: IN1_CMOS is selected.  
Low: IN2_CMOS is selected.  
After reset, the input on this pin takes no effect if the External Fast selection is disabled.  
SONET/SDH: SONET / SDH Frequency Selection  
I
During reset, this pin determines the default value of the IN_SONET_SDH bit (b2, 09H):  
High: The default value of the IN_SONET_SDH bit is ‘1’ (SONET);  
Low: The default value of the IN_SONET_SDH bit is ‘0’ (SDH).  
After reset, the value on this pin takes no effect.  
SONET/SDH  
68  
51  
64  
48  
pull-  
down  
CMOS  
CMOS  
RST: Reset  
I
RST  
A low pulse of at least 50 µs on this pin resets the device. After this pin is high, the device will  
still be held in reset state for 500 ms (typical).  
pull-up  
Frame Synchronization Input Signal  
EX_SYNC1: External Sync Input 1  
I
A 2 kHz, 4 kHz or 8 kHz signal is input on this pin.  
EX_SYNC1  
EX_SYNC2  
30  
35  
28  
33  
pull-  
down  
CMOS  
I
EX_SYNC2: External Sync Input 2  
A 2 kHz, 4 kHz or 8 kHz signal is input on this pin.  
pull-  
down  
CMOS  
Input Clock  
IN1_CMOS: Input Clock 1  
I
A 2 kHz, 4 kHz, N x 8 kHz 3, 1.544 MHz (SONET) / 2.048 MHz (SDH), 6.48 MHz, 19.44 MHz,  
25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz or 155.52 MHz clock is input on this pin.  
IN1_CMOS  
IN2_CMOS  
31  
32  
29  
30  
pull-  
down  
CMOS  
CMOS  
IN2_CMOS: Input Clock 2  
A 2 kHz, 4 kHz, N x 8 kHz 3, 1.544 MHz (SONET) / 2.048 MHz (SDH), 6.48 MHz, 19.44 MHz,  
25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz or 155.52 MHz clock is input on this pin.  
I
pull-  
down  
Output Frame Synchronization Signal  
FRSYNC_8K: 8 kHz Frame Sync Output  
CMOS  
FRSYNC_8K  
18  
17  
O
O
An 8 kHz signal is output on this pin.  
Output Clock  
OUT1_POS / OUT1_NEG: Positive / Negative Output Clock 1  
OUT1_POS  
OUT1_NEG  
20  
21  
19  
20  
A 1 Hz, 400 Hz, 2 kHz, 8 kHz, 64 kHz, N x E1 4, N x T1 5, N x 13.0 MHz 6, N x 3.84 MHz 7,  
E3, T3, 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 155.52 MHz,  
311.04 MHz or 622.08 MHz clock is differentially output on this pair of pins.  
PECL/LVDS  
Pin Description  
14  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Table 1: Pin Description (Continued)  
Pin No.  
(NL68)  
Pin No.  
(TQFP 64)  
Description 1  
Name  
I/O  
Type  
OUT2: Output Clock 2  
A 1 Hz, 400 Hz, 2 kHz, 8 kHz, 64 kHz, N x E1 4, N x T1 5, N x 13.0 MHz 6, N x 3.84 MHz 7,  
E3, T3, 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz or 155.52  
MHz clock is output on this pin.  
OUT2  
59  
56  
O
CMOS  
I2C Programming Interface  
INT_REQ: Interrupt Request  
This pin is used as an interrupt request. The output characteristics are determined by the  
HZ_EN bit (b1, 0CH) and the INT_POL bit (b0, 0CH).  
INT_REQ  
6
5
O
I
CMOS  
CMOS  
AD0  
AD1  
AD2  
47  
48  
49  
44  
45  
46  
AD[2:0]: Address Input 2 to 0  
The address is input on these pins.  
SCL: Serial Clock Line  
The serial clock is input on this pin. The clock is 400 kbit/s in Fast-mode and 3.4 Mbit/s in  
High-speed mode.  
SCL  
SDA  
50  
55  
47  
52  
I
CMOS  
CMOS  
SDA: Serial Data Input/Output  
This pin is used as the input/output for the serial data.  
I/O  
JTAG (per IEEE 1149.1)  
I
TRST: JTAG Test Reset (Active Low)  
TRST  
39  
43  
37  
41  
pull-  
down  
CMOS  
CMOS  
A low signal on this pin resets the JTAG test port.  
This pin should be connected to ground when JTAG is not used.  
TMS: JTAG Test Mode Select  
The signal on this pin controls the JTAG test performance and is sampled on the rising edge  
of TCK.  
I
TMS  
pull-up  
TCK: JTAG Test Clock  
The clock for the JTAG test is input on this pin. TDI and TMS are sampled on the rising edge  
of TCK and TDO is updated on the falling edge of TCK.  
If TCK is idle at a low level, all stored-state devices contained in the test logic will indefinitely  
retain their state.  
I
TCK  
TDI  
52  
54  
53  
49  
51  
50  
pull-  
down  
CMOS  
CMOS  
CMOS  
I
TDI: JTAG Test Data Input  
The test data is input on this pin. It is clocked into the device on the rising edge of TCK.  
pull-up  
TDO: JTAG Test Data Output  
The test data is output on this pin. It is clocked out of the device on the falling edge of TCK.  
TDO pin outputs a high impedance signal except during the process of data scanning.  
This pin can indicate the interrupt of T0 selected input clock fail, as determined by the  
LOS_FLAG_ON_TDO bit (b6, 0BH). Refer to Chapter 3.8.1 Input Clock Validity for details.  
TDO  
O
Power & Ground  
VDDD1  
VDDD2  
VDDD3  
VDDD4  
VDDD5  
VDDD6  
9
8
VDDDn: 3.3 V Digital Power Supply  
Each VDDDn should be paralleled with ground through a 0.1 µF capacitor.  
13  
10  
12  
9
32  
Power  
-
34  
38, 40, 41  
57  
36, 38, 39  
54  
Pin Description  
15  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Table 1: Pin Description (Continued)  
Pin No.  
(NL68)  
Pin No.  
(TQFP 64)  
Description 1  
Name  
I/O  
Type  
VDDA1  
4
4
VDDAn: 3.3 V Analog Power Supply  
Each VDDAn should be paralleled with ground through a 0.1 µF capacitor.  
VDDA2  
15  
14  
Power  
Power  
-
-
VDDA3  
VDD_DIFF  
DGND1  
60  
23  
8
57  
22  
7
VDD_DIFF: 3.3 V Power Supply for OUT1  
DGNDn: Digital Ground  
DGND2  
DGND3  
DGND4  
DGND5  
12  
11  
33  
42  
11  
10  
31  
40  
Ground  
-
DGND6  
AGND1  
56  
3
53  
3
AGNDn: Analog Ground  
AGND2  
16  
15  
Ground  
-
AGND3  
GND_DIFF  
AGND  
61  
22  
1
58  
21  
1
Ground  
Ground  
-
-
GND_DIFF: Ground for OUT1  
AGND: Analog Ground  
Pin Description  
16  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Table 1: Pin Description (Continued)  
Pin No.  
(NL68)  
Pin No.  
(TQFP 64)  
Description 1  
Name  
I/O  
Type  
Others  
IC1  
IC2  
2
2
IC: Internal Connected  
Internal Use. These pins should be left open for normal operation.  
17  
24  
25  
26  
27  
36  
37  
44  
46  
58  
63  
64  
65  
66  
67  
19  
16  
23  
24  
25  
26  
34  
35  
42  
43  
55  
59  
60  
61  
62  
63  
IC3  
IC4  
IC5  
IC6  
IC7  
IC8  
IC9  
-
-
IC10  
IC11  
IC12  
IC13  
IC14  
IC15  
IC16  
IC17  
NC  
18  
27  
5, 28, 29, 45,  
62  
NC: Not Connected  
-
-
Note:  
1. All the unused input pins should be connected to ground; the output of all the unused output pins are don’t-care.  
2. The contents in the brackets indicate the position of the register bit/bits.  
3. N x 8 kHz: 1 < N < 19440.  
4. N x E1: N = 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64.  
5. N x T1: N = 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96.  
6. N x 13.0 MHz: N = 1, 2, 4.  
7. N x 3.84 MHz: N = 1, 2, 4, 8, 16, 10, 20, 40.  
Pin Description  
17  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
3.2  
MASTER CLOCK  
3
FUNCTIONAL DESCRIPTION  
RESET  
A nominal 12.8000 MHz clock, provided by a crystal oscillator, is  
input on the OSCI pin. This clock is provided for the device as a master  
clock. The master clock is used as a reference clock for all the internal  
circuits. A better active edge of the master clock is selected by the  
OSC_EDGE bit to improve jitter and wander performance.  
3.1  
The reset operation resets all registers and state machines to their  
default value or status.  
After power on, the device must be reset for normal operation.  
In fact, an offset from the nominal frequency may input on the OSCI  
pin. This offset can be compensated by setting the  
NOMINAL_FREQ_VALUE[23:0] bits. The calibration range is within  
±741 ppm.  
For a complete reset, the RST pin must be asserted low for at least  
50 µs. After the RST pin is pulled high, the device will still be in reset  
state for 500 ms (typical). If the RST pin is held low continuously, the  
device remains in reset state.  
The performance of the master clock should meet GR-1244-CORE,  
GR-253-CORE, ITU-T G.812 and G.813 criteria.  
Table 2: Related Bit / Register in Chapter 3.2  
Bit  
Register  
Address (Hex)  
NOMINAL_FREQ_VALUE[23:0]  
OSC_EDGE  
NOMINAL_FREQ[23:16]_CNFG, NOMINAL_FREQ[15:8]_CNFG, NOMINAL_FREQ[7:0]_CNFG  
DIFFERENTIAL_IN_OUT_OSCI_CNFG  
06, 05, 04  
0A  
Functional Description  
18  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
mined by the SONET/SDH pin: high for SONET and low for SDH. After  
reset, the input signal on the SONET/SDH pin takes no effect.  
3.3  
INPUT CLOCKS & FRAME SYNC SIGNALS  
Altogether two clocks and two frame sync signals are input to the  
3.3.2  
FRAME SYNC INPUT SIGNALS  
device.  
Two 2 kHz, 4 kHz or 8 kHz frame sync signals are input on the  
EX_SYNC1 and EX_SYNC2 pins respectively. They are CMOS inputs.  
The input frequency should match the setting in the SYNC_FREQ[1:0]  
bits. The frame sync signals are only valid for the OC-n clock (6.48 MHz,  
19.44 MHz, 38.88 MHz and 77.76 MHz) input.  
3.3.1  
INPUT CLOCKS  
The device provides two CMOS input clock ports: IN1_CMOS and  
IN2_CMOS.  
According to the input clock source, the following clock sources are  
supported:  
Only one of the two frame sync input signals is used for frame sync  
output signal synchronization. Refer to Chapter 3.13.2 Frame SYNC  
Output Signal for details.  
T1: Recovered clock from STM-N or OC-n  
T2: PDH network synchronization timing  
T3: External synchronization reference timing  
Table 3: Related Bit / Register in Chapter 3.3  
The clock sources can be from T1, T2 or T3.  
Bit  
Register  
Address (Hex)  
For SDH and SONET networks, the default frequency is different.  
SONET / SDH frequency selection is controlled by the IN_SONET_SDH  
bit. During reset, the default value of the IN_SONET_SDH bit is deter-  
IN_SONET_SDH  
SYNC_FREQ[1:0]  
INPUT_MODE_CNFG  
09  
Functional Description  
19  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Once the division factor is set for the input clock selected by the  
PRE_DIV_CH_VALUE[3:0] bits, it is valid until a different division factor  
is set for the same input clock. The division factor is calculated as fol-  
lows:  
3.4  
INPUT CLOCK PRE-DIVIDER  
Each input clock is assigned an internal Pre-Divider. The Pre-Divider  
is used to divide the clock frequency down to the DPLL required fre-  
quency, which is no more than 38.88 MHz. For each input clock, the  
DPLL required frequency is set by the corresponding IN_FREQ[3:0] bits.  
Division Factor = (the frequency of the clock input to the DivN  
Divider ÷ the frequency of the DPLL required clock set by the  
IN_FREQ[3:0] bits) - 1  
If the input clock is of 2 kHz, 4 kHz or 8 kHz, the Pre-Divider is  
bypassed automatically and the corresponding IN_FREQ[3:0] bits  
should be set to match the input frequency; the input clock can be  
inverted, as determined by the IN_2K_4K_8K_INV bit.  
The DivN Divider can only divide the input clock whose frequency is  
lower than (<) 155.52 MHz.  
When the Lock 8k Divider is used, the input clock is divided down to  
8 kHz automatically.  
Each Pre-Divider consists of a DivN Divider and a Lock 8k Divider, as  
shown in Figure 4.  
The Pre-Divider configuration and the division factor setting depend  
on the input clock on one of the clock input pin and the DPLL required  
clock. Here is an example:  
Either the DivN Divider or the Lock 8k Divider can be used or both  
can be bypassed, as determined by the DIRECT_DIV bit and the  
LOCK_8K bit.  
The input clock on the IN2_CMOS pin is 155.52 MHz; the DPLL  
required clock is 6.48 MHz by programming the IN_FREQ[3:0] bits of  
register IN2_CMOS_CNFG to ‘0010’. Do the following to divide the input  
clock:  
When the DivN Divider is used, the division factor setting should  
observe the following order:  
1. Select an input clock by the PRE_DIV_CH_VALUE[3:0] bits;  
2. Write the lower eight bits of the division factor to the  
PRE_DIVN_VALUE[7:0] bits;  
Use the DivN Divider to divide the clock down to 6.48 MHz:  
Set the PRE_DIV_CH_VALUE[3:0] bits to ‘0011’;  
Set the DIRECT_DIV bit in Register IN2_CMOS_CNFG to ‘1’  
and the LOCK_8K bit in Register IN2_CMOS_CNFG to ‘0’;  
155.52 ÷ 6.48 = 24; 24 - 1 = 23, so set the  
PRE_DIVN_VALUE[14:0] bits to ‘10111’.  
3. Write the higher eight bits of the division factor to the  
PRE_DIVN_VALUE[14:8] bits.  
Pre-Divider  
DIRECT_DIV bit  
LOCK_8K bit  
input clock  
DivN Divider  
DPLL required clock  
Lock 8k Divider  
Figure 4. Pre-Divider for An Input Clock  
Table 4: Related Bit / Register in Chapter 3.4  
Bit  
Register  
Address (Hex)  
IN_FREQ[3:0]  
DIRECT_DIV  
IN1_CMOS_CNFG, IN2_CMOS_CNFG  
16, 17  
LOCK_8K  
IN_2K_4K_8K_INV  
PRE_DIV_CH_VALUE[3:0]  
PRE_DIVN_VALUE[14:0]  
FR_SYNC_CNFG  
PRE_DIV_CH_CNFG  
74  
23  
PRE_DIVN[14:8]_CNFG, PRE_DIVN[7:0]_CNFG  
25, 24  
Functional Description  
20  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
responding BUCKET_SEL[1:0] bits. Each leaky bucket configuration  
consists of four elements: upper threshold, lower threshold, bucket size  
and decay rate.  
3.5  
INPUT CLOCK QUALITY MONITORING  
The qualities of the input clocks are always monitored in the following  
aspects:  
Activity  
The bucket size is the capability of the accumulator. If the number of  
the accumulated events reach the bucket size, the accumulator will stop  
increasing even if further events are detected. The upper threshold is a  
point above which a no-activity alarm is raised. The lower threshold is a  
point below which the no-activity alarm is cleared. The decay rate is a  
certain period during which the accumulator decreases by 1 if no event  
is detected.  
Frequency  
The qualified clocks are available for T0 DPLL selection. The T0  
selected input clock has to be monitored further. Refer to Chapter 3.7  
Selected Input Clock Monitoring for details.  
3.5.1  
ACTIVITY MONITORING  
The leaky bucket configuration is programmed by one of four groups  
of register bits: the BUCKET_SIZE_n_DATA[7:0] bits, the UPPER_  
THRESHOLD_n_DATA[7:0] bits, the LOWER_THRESHOLD_n_  
DATA[7:0] bits and the DECAY_RATE_n_DATA[1:0] bits respectively; ‘n’  
is 0 ~ 3.  
Activity is monitored by using an internal leaky bucket accumulator,  
as shown in Figure 5.  
Each input clock is assigned an internal leaky bucket accumulator.  
The input clock is monitored for each period of 128 ms and the internal  
leaky bucket accumulator increases by 1 when an event is detected; it  
decreases by 1 if no event is detected within the period set by the decay  
rate. The event is that an input clock drifts outside (>) ±500 ppm with  
respect to the master clock within a 128 ms period.  
The no-activity alarm status of the input clock is indicated by the  
INn_CMOS_NO_ACTIVITY_ALARM bit (n = 1 or 2).  
The input clock with a no-activity alarm is disqualified for clock selec-  
tion for T0 DPLL.  
There are four configurations (0 - 3) for a leaky bucket accumulator.  
The leaky bucket configuration for an input clock is selected by the cor-  
clock signal with events  
clock signal with no event  
Input Clock  
Decay  
Rate  
Bucket Size  
Upper Threshold  
Leaky Bucket Accumulator  
No-activity Alarm Indication  
Lower Threshold  
0
Figure 5. Input Clock Activity Monitoring  
Functional Description  
21  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
3.5.2  
FREQUENCY MONITORING  
The input clock with a frequency hard alarm is disqualified for clock  
selection for T0 DPLL.  
Frequency is monitored by comparing the input clock with a refer-  
ence clock. The reference clock can be derived from the master clock or  
the output of T0 DPLL, as determined by the FREQ_MON_CLK bit.  
In addition, if the input clock is 2 kHz, 4 kHz or 8 kHz, its clock edges  
with respect to the reference clock are monitored. If any edge drifts out-  
side ±5%, the input clock is disqualified for clock selection for T0 DPLL.  
The input clock is qualified if any edge drifts inside ±5%. This function is  
supported only when the IN_NOISE_WINDOW bit is ‘1’.  
A frequency hard alarm threshold is set for frequency monitoring. If  
the FREQ_MON_HARD_EN bit is ‘1’, a frequency hard alarm is raised  
when the frequency of the input clock with respect to the reference clock  
is above the threshold; the alarm is cleared when the frequency is below  
the threshold.  
The frequency of each input clock with respect to the reference clock  
can be read by doing the following step by step:  
1. Select an input clock by setting the IN_FREQ_READ_CH[3:0]  
bits;  
The frequency hard alarm threshold can be calculated as follows:  
Frequency Hard Alarm Threshold (ppm) = (ALL_FREQ_HARD_  
THRESHOLD[3:0] + 1) X FREQ_MON_FACTOR[3:0]  
2. Read the value in the IN_FREQ_VALUE[7:0] bits and calculate  
as follows:  
If the FREQ_MON_HARD_EN bit is ‘1’, the frequency hard alarm  
Input Clock Frequency (ppm)  
FREQ_MON_FACTOR[3:0]  
= IN_FREQ_VALUE[7:0] X  
status  
of  
the  
input  
clock  
is  
indicated  
by  
the  
INn_CMOS_FREQ_HARD_ALARM bit (n = 1 or 2). When the  
FREQ_MON_HARD_EN bit is ‘0’, no frequency hard alarm is raised  
even if the input clock is above the frequency hard alarm threshold.  
Note that the value set by the FREQ_MON_FACTOR[3:0] bits  
depends on the application.  
Table 5: Related Bit / Register in Chapter 3.5  
Bit  
Register  
Address (Hex)  
BUCKET_SIZE_n_DATA[7:0] (3 n 0)  
UPPER_THRESHOLD_n_DATA[7:0] (3 n 0)  
LOWER_THRESHOLD_n_DATA[7:0] (3 n 0)  
DECAY_RATE_n_DATA[1:0] (3 n 0)  
BUCKET_SEL[1:0]  
BUCKET_SIZE_0_CNFG ~ BUCKET_SIZE_3_CNFG  
UPPER_THRESHOLD_0_CNFG ~ UPPER_THRESHOLD_3_CNFG  
LOWER_THRESHOLD_0_CNFG ~ LOWER_THRESHOLD_3_CNFG  
DECAY_RATE_0_CNFG ~ DECAY_RATE_3_CNFG  
33, 37, 3B, 3F  
31, 35, 39, 3D  
32, 36, 3A, 3E  
34, 38, 3C, 40  
16, 17  
IN1_CMOS_CNFG, IN2_CMOS_CNFG  
INn_CMOS_NO_ACTIVITY_ALARM (n = 1 or 2)  
INn_CMOS_FREQ_HARD_ALARM (n = 1 or 2)  
FREQ_MON_CLK  
IN1_IN2_CMOS_STS  
MON_SW_PBO_CNFG  
44  
0B  
FREQ_MON_HARD_EN  
ALL_FREQ_HARD_THRESHOLD[3:0]  
FREQ_MON_FACTOR[3:0]  
ALL_FREQ_MON_THRESHOLD_CNFG  
FREQ_MON_FACTOR_CNFG  
PHASE_MON_PBO_CNFG  
IN_FREQ_READ_CH_CNFG  
IN_FREQ_READ_STS  
2F  
2E  
78  
41  
42  
IN_NOISE_WINDOW  
IN_FREQ_READ_CH[3:0]  
IN_FREQ_VALUE[7:0]  
Functional Description  
22  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
quality monitoring (refer to Chapter 3.5 Input Clock Quality Monitoring)  
do not affect input clock selection.  
3.6  
DPLL INPUT CLOCK SELECTION  
The EXT_SW bit and the T0_INPUT_SEL[3:0] bits determine the  
The T0 input clock selection is determined by the FF_SRCSW pin  
after reset (this pin determines the default value of the EXT_SW bit dur-  
ing reset, refer to Chapter 2 Pin Description), the  
input clock selection, as shown in Table 6:  
Table 6: Input Clock Selection  
Control Bits  
IN1_CMOS_SEL_PRIORITY[3:0]  
bits  
and  
the  
IN2_CMOS_SEL_PRIORITY[3:0] bits, as shown in Figure 6 and  
Table 7:  
Input Clock Selection  
EXT_SW  
T0_INPUT_SEL[3:0]  
1
don’t-care  
other than 0000  
0000  
External Fast selection  
Forced selection  
IN1_CMOS_SEL_PRIORITY[3:0] bits  
0
Automatic selection  
FF_SRCSW pin  
IN1_CMOS  
External Fast selection is done between IN1_CMOS and  
IN2_CMOS.  
attempted to be  
locked in T0 DPLL  
Forced selection is done by setting the related registers.  
Automatic selection is done based on the results of input clocks qual-  
ity monitoring and the related registers configuration.  
IN2_CMOS  
The selected input clock is attempted to be locked by T0 DPLL.  
3.6.1  
EXTERNAL FAST SELECTION  
IN2_CMOS_SEL_PRIORITY[3:0] bits  
In External Fast selection, only IN1_CMOS and IN2_CMOS are  
available for selection. Refer to Figure 6. The results of input clocks  
Figure 6. External Fast Selection  
Table 7: External Fast Selection  
Control Pin & Bits  
the Selected Input Clock  
FF_SRCSW (after reset)  
IN1_CMOS_SEL_PRIORITY[3:0]  
IN2_CMOS_SEL_PRIORITY[3:0]  
high  
low  
other than 0000  
don’t-care  
don’t-care  
IN1_CMOS  
IN2_CMOS  
other than 0000  
Functional Description  
23  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
3.6.2  
FORCED SELECTION  
The  
priority  
is  
configured  
by  
the  
corresponding  
INn_CMOS_SEL_PRIORITY[3:0] bits (n = 1 or 2). If more than one  
qualified input clock is available and has the same priority, the input  
clock with the smaller ‘n’ is selected. See Table 8 for the ‘n’ assigned to  
the input clock.  
In Forced selection, the selected input clock is set by the  
T0_INPUT_SEL[3:0] bits. The results of input clocks quality monitoring  
(refer to Chapter 3.5 Input Clock Quality Monitoring) do not affect the  
input clock selection.  
Table 8: ‘n’ Assigned to the Input Clock  
3.6.3  
AUTOMATIC SELECTION  
Input Clock  
‘n’ Assigned to the Input Clock  
In Automatic selection, the input clock selection is determined by its  
validity and priority. The validity depends on the results of input clock  
quality monitoring (refer to Chapter 3.5 Input Clock Quality Monitoring).  
In the qualified input clocks, the one with the higher priority is selected.  
IN1_CMOS  
IN2_CMOS  
1
3
Table 9: Related Bit / Register in Chapter 3.6  
Bit  
Register  
Address (Hex)  
EXT_SW  
MON_SW_PBO_CNFG  
T0_INPUT_SEL_CNFG  
0B  
50  
27  
T0_INPUT_SEL[3:0]  
INn_CMOS_SEL_PRIORITY[3:0] (n = 1 or 2)  
IN1_IN2_CMOS_SEL_PRIORITY_CNFG  
Functional Description  
24  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
3.7.1.3  
Fine Phase Loss  
3.7  
SELECTED INPUT CLOCK MONITORING  
The T0 DPLL compares the selected input clock with the feedback  
signal. If the phase-compared result exceeds the fine phase limit pro-  
grammed by the PH_LOS_FINE_LIMT[2:0] bits, a fine phase loss is trig-  
gered. It is cleared once the phase-compared result is within the fine  
phase limit.  
The quality of the selected input clock is always monitored (refer to  
Chapter 3.5 Input Clock Quality Monitoring) and the DPLL locking status  
is always monitored.  
3.7.1  
DPLL LOCKING DETECTION  
The following events is always monitored:  
Fast Loss;  
Coarse Phase Loss;  
Fine Phase Loss;  
The occurrence of the fine phase loss will result in T0 DPLL unlocked  
if the FINE_PH_LOS_LIMT_EN bit is ‘1’.  
3.7.1.4  
Hard Limit Exceeding  
Hard Limit Exceeding.  
Two limits are available for this monitoring. They are DPLL soft limit  
and DPLL hard limit. When the frequency of the DPLL output with  
respect to the master clock exceeds the DPLL soft / hard limit, a DPLL  
soft / hard alarm will be raised; the alarm is cleared once the frequency  
is within the corresponding limit. The occurrence of the DPLL soft alarm  
does not affect the T0 DPLL locking status. The DPLL soft alarm is indi-  
cated by the corresponding T0_DPLL_SOFT_FREQ_ALARM bit. The  
occurrence of the DPLL hard alarm will result in T0 DPLL unlocked if the  
FREQ_LIMT_PH_LOS bit is ‘1’.  
3.7.1.1  
Fast Loss  
A fast loss is triggered when the selected input clock misses 2 con-  
secutive clock cycles. It is cleared once an active clock edge is detected.  
The occurrence of the fast loss will result in T0 DPLL unlocked if the  
FAST_LOS_SW bit is ‘1’.  
3.7.1.2  
Coarse Phase Loss  
The T0 DPLL compares the selected input clock with the feedback  
signal. If the phase-compared result exceeds the coarse phase limit, a  
coarse phase loss is triggered. It is cleared once the phase-compared  
result is within the coarse phase limit.  
The DPLL soft limit is set by the DPLL_FREQ_SOFT_LIMT[6:0] bits  
and can be calculated as follows:  
DPLL Soft Limit (ppm) = DPLL_FREQ_SOFT_LIMT[6:0] X 0.724  
The DPLL hard limit is set by the DPLL_FREQ_HARD_LIMT[15:0]  
bits and can be calculated as follows:  
When the selected input clock is of 2 kHz, 4 kHz or 8 kHz, the coarse  
phase limit depends on the MULTI_PH_8K_4K_2K_EN bit, the  
WIDE_EN bit and the PH_LOS_COARSE_LIMT[3:0] bits. Refer to  
Table 10. When the selected input clock is of other frequencies but 2  
kHz, 4 kHz and 8 kHz, the coarse phase limit depends on the WIDE_EN  
bit and the PH_LOS_COARSE_LIMT[3:0] bits. Refer to Table 11.  
DPLL Hard Limit (ppm) = DPLL_FREQ_HARD_LIMT[15:0] X 0.0014  
3.7.2  
LOCKING STATUS  
The DPLL locking status depends on the locking monitoring results.  
The DPLL is in locked state if none of the following events is triggered  
during 2 seconds; otherwise, the DPLL is unlocked.  
Fast Loss (the FAST_LOS_SW bit is ‘1’);  
Table 10: Coarse Phase Limit Programming (the selected input  
clock of 2 kHz, 4 kHz or 8 kHz)  
Coarse Phase Loss (the COARSE_PH_LOS_LIMT_EN bit is  
‘1’);  
Fine Phase Loss (the FINE_PH_LOS_LIMT_EN bit is ‘1’);  
DPLL Hard Alarm (the FREQ_LIMT_PH_LOS bit is ‘1’).  
MULTI_PH_8K_4K  
WIDE_EN  
Coarse Phase Limit  
_2K_EN  
0
don’t-care  
±1 UI  
±1 UI  
0
1
If the FAST_LOS_SW bit, the COARSE_PH_LOS_LIMT_EN bit, the  
FINE_PH_LOS_LIMT_EN bit or the FREQ_LIMT_PH_LOS bit is ‘0’, the  
DPLL locking status will not be affected even if the corresponding event  
is triggered. If all these bits are ‘0’, the DPLL will be in locked state in 2  
seconds.  
1
set by the PH_LOS_COARSE_LIMT[3:0] bits  
Table 11: Coarse Phase Limit Programming (the selected input  
clock of other than 2 kHz, 4 kHz and 8 kHz)  
The DPLL locking status is indicated by the T0_DPLL_LOCK bit.  
WIDE_EN  
Coarse Phase Limit  
3.7.3  
PHASE LOCK ALARM  
0
1
±1 UI  
set by the PH_LOS_COARSE_LIMT[3:0] bits  
A phase lock alarm will be raised when the selected input clock can  
not be locked in T0 DPLL within a certain period. This period can be cal-  
culated as follows:  
The occurrence of the coarse phase loss will result in T0 DPLL  
unlocked if the COARSE_PH_LOS_LIMT_EN bit is ‘1’.  
Period (sec.) = TIME_OUT_VALUE[5:0] X MULTI_FACTOR[1:0]  
The phase lock alarm is indicated by the corresponding  
INn_CMOS_PH_LOCK_ALARM bit (n = 1 or 2).  
Functional Description  
25  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
The phase lock alarm can be cleared by the following two ways, as  
selected by the PH_ALARM_TIMEOUT bit:  
Be cleared when a ‘1’ is written to the corresponding  
INn_CMOS_PH_LOCK_ALARM bit;  
Be cleared after the period (= TIME_OUT_VALUE[5:0] X  
MULTI_FACTOR[1:0] in second) which starts from when the  
alarm is raised.  
The selected input clock with a phase lock alarm is disqualified for T0  
DPLL locking.  
Table 12: Related Bit / Register in Chapter 3.7  
Bit  
Register  
Address (Hex)  
FAST_LOS_SW  
PH_LOS_FINE_LIMT[2:0]  
FINE_PH_LOS_LIMT_EN  
MULTI_PH_8K_4K_2K_EN  
WIDE_EN  
PHASE_LOSS_FINE_LIMIT_CNFG  
5B  
5A  
PHASE_LOSS_COARSE_LIMIT_CNFG  
PH_LOS_COARSE_LIMT[3:0]  
COARSE_PH_LOS_LIMT_EN  
T0_DPLL_SOFT_FREQ_ALARM  
T0_DPLL_LOCK  
OPERATING_STS  
52  
65  
DPLL_FREQ_SOFT_LIMT[6:0]  
FREQ_LIMT_PH_LOS  
DPLL_FREQ_SOFT_LIMIT_CNFG  
DPLL_FREQ_HARD_LIMIT[15:8]_CNFG,  
DPLL_FREQ_HARD_LIMIT[7:0]_CNFG  
DPLL_FREQ_HARD_LIMT[15:0]  
67, 66  
08  
TIME_OUT_VALUE[5:0]  
MULTI_FACTOR[1:0]  
PHASE_ALARM_TIME_OUT_CNFG  
INn_CMOS_PH_LOCK_ALARM (n = 1 or 2)  
PH_ALARM_TIMEOUT  
IN1_IN2_CMOS_STS  
INPUT_MODE_CNFG  
44  
09  
Functional Description  
26  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Conditions of the qualified input clocks available for T0 selection are  
as the following:  
3.8  
SELECTED INPUT CLOCK SWITCH  
If the input clock is selected by External Fast selection or by Forced  
1
Valid, i.e., the INn_CMOS bit is ‘1’;  
Priority enabled, i.e., the corresponding INn_CMOS_SEL  
_PRIORITY[3:0] bits are not ‘0000’.  
selection, it can be switched by setting the related registers (refer to  
Chapter 3.6.1 External Fast Selection & Chapter 3.6.2 Forced Selection)  
any time. In this case, whether the input clock is qualified for DPLL lock-  
ing does not affect the clock switch.  
The input clock is disqualified if any of the above conditions is not  
satisfied.  
When the input clock is selected by Automatic selection, the input  
clock switch depends on its validity and priority. If the current selected  
input clock is disqualified, a new qualified input clock may be switched  
to.  
In summary, the selected input clock can be switched by:  
External Fast selection;  
Forced selection;  
Revertive switch;  
Non-Revertive switch.  
3.8.1  
INPUT CLOCK VALIDITY  
For the input clocks, the validity depends on the results of input clock  
quality monitoring (refer to Chapter 3.5 Input Clock Quality Monitoring).  
When all of the following conditions are satisfied, the input clock is valid;  
otherwise, it is invalid.  
3.8.2.1  
Revertive Switch  
In Revertive switch, the selected input clock is switched when  
another qualified input clock with a higher priority than the current  
selected input clock is available.  
No no-activity alarm (the INn_CMOS_NO_ACTIVITY_ALARM  
bit is ‘0’);  
No frequency hard alarm (the INn_CMOS_FREQ_HARD_  
ALARM bit is ‘0’);  
If the IN_NOISE_WINDOW bit is ‘1’, all the edges of the input  
clock of 2 kHz, 4 kHz or 8 kHz drift inside ±5%; if the  
IN_NOISE_WINDOW bit is ‘0’, this condition is ignored.  
No phase lock alarm, i.e., the INn_CMOS_PH_LOCK_ALARM  
bit is ‘0’;  
If the ULTR_FAST_SW bit is ‘1’, the T0 selected input clock  
misses less than (<) 2 consecutive clock cycles; if the  
ULTR_FAST_SW bit is ‘0’, this condition is ignored.  
The selected input clock is switched if any of the following is satis-  
fied:  
The selected input clock is disqualified;  
Another qualified input clock with a higher priority than the  
selected input clock is available.  
A qualified input clock with the higher priority is selected by revertive  
switch. If more than one qualified input clock is available and has the  
same priority, the input clock with the smaller ‘n’ is selected. See Table 8  
for the ‘n’ assigned to each input clock.  
3.8.2.2  
Non-Revertive Switch  
1
The validities of the input clocks are indicated by the INn_CMOS bit  
In Non-Revertive switch, the T0 selected input clock is not switched  
when another qualified input clock with a higher priority than the current  
selected input clock is available. In this case, the selected input clock is  
switched and a qualified input clock with the higher priority is selected  
only when the T0 selected input clock is disqualified. If more than one  
qualified input clock is available and has the same priority, the input  
clock with the smaller ‘n’ is selected. See Table 8 for the ‘n’ assigned to  
each input clock.  
(n = 1 or 2). When the input clock validity changes (from ‘valid’ to ‘invalid’  
2
or from ‘invalid’ to ‘valid’), the INn_CMOS bit will be set. If the  
3
INn_CMOS bit is ‘1’, an interrupt will be generated.  
When the T0 selected input clock has failed, i.e., the validity of the T0  
selected input clock changes from ‘valid’ to ‘invalid’, the  
1
2
T0_MAIN_REF_FAILED bit will be set. If the T0_MAIN_REF_FAILED  
bit is ‘1’, an interrupt will be generated. This interrupt can also be indi-  
cated by hardware - the TDO pin, as determined by the  
LOS_FLAG_TO_TDO bit. When the TDO pin is used to indicate this  
interrupt, it will be set high when this interrupt is generated and will  
remain high until this interrupt is cleared.  
3.8.3  
The  
CURRENTLY_SELECTED_INPUT[3:0] bits.  
SELECTED / QUALIFIED INPUT CLOCKS INDICATION  
selected input clock is indicated by the  
The qualified input clocks with the two highest priorities are indicated  
by the HIGHEST_PRIORITY_VALIDATED[3:0] bits and the  
SECOND_HIGHEST_PRIORITY_VALIDATED[3:0] bits respectively. If  
more than one input clock has the same priority, the input clock with the  
smaller ‘n’ is indicated by the HIGHEST_PRIORITY_VALIDATED[3:0]  
bits. See Table 8 for the ‘n’ assigned to the input clock.  
3.8.2  
SELECTED INPUT CLOCK SWITCH  
Revertive and Non-Revertive switches are supported, as selected by  
the REVERTIVE_MODE bit.  
The difference between Revertive and Non-Revertive switches is  
that whether the selected input clock is switched when another qualified  
input clock with a higher priority than the current selected input clock is  
available for selection. In Non-Revertive switch, input clock switch is  
minimized.  
When the device is configured in Automatic selection and Revertive  
switch is enabled, the input clock indicated by the  
CURRENTLY_SELECTED_INPUT[3:0] bits is the same as the one indi-  
cated by the HIGHEST_PRIORITY_VALIDATED[3:0] bits; otherwise,  
they are not the same.  
Functional Description  
27  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Table 13: Related Bit / Register in Chapter 3.8  
Bit  
Register  
Address (Hex)  
4A  
INn_CMOS 1 (n = 1 or 2)  
INn_CMOS 2 (n = 1 or 2)  
INn_CMOS 3 (n = 1 or 2)  
INn_CMOS_NO_ACTIVITY_ALARM (n = 1 or 2)  
INn_CMOS_FREQ_HARD_ALARM (n = 1 or 2)  
INn_CMOS_PH_LOCK_ALARM (n = 1 or 2)  
IN_NOISE_WINDOW  
INPUT_VALID1_STS  
INTERRUPTS1_STS, INTERRUPTS2_STS  
INTERRUPTS1_ENABLE_CNFG, INTERRUPTS2_ENABLE_CNFG  
0D, 0E  
10, 11  
IN1_IN2_CMOS_STS  
44  
PHASE_MON_PBO_CNFG  
MON_SW_PBO_CNFG  
INTERRUPTS2_STS  
78  
0B  
0E  
ULTR_FAST_SW  
LOS_FLAG_TO_TDO  
T0_MAIN_REF_FAILED 1  
T0_MAIN_REF_FAILED 2  
REVERTIVE_MODE  
INTERRUPTS2_ENABLE_CNFG  
INPUT_MODE_CNFG  
11  
09  
27  
INn_CMOS_SEL_PRIORITY[3:0] (n = 1 or 2)  
CURRENTLY_SELECTED_INPUT[3:0]  
HIGHEST_PRIORITY_VALIDATED[3:0]  
SECOND_HIGHEST_PRIORITY_VALIDATED[3:0]  
IN1_IN2_CMOS_SEL_PRIORITY_CNFG  
PRIORITY_TABLE1_STS  
PRIORITY_TABLE2_STS  
4E  
4F  
Functional Description  
28  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
3.9  
SELECTED INPUT CLOCK STATUS VS. DPLL  
OPERATING MODE  
Table 14: T0 DPLL Operating Mode Control  
T0_OPERATING_MODE[2:0]  
T0 DPLL Operating Mode  
Automatic  
T0 DPLL supports three primary operating modes: Free-Run, Locked  
and Holdover, and three secondary, temporary operating modes: Pre-  
Locked, Pre-Locked2 and Lost-Phase. The operating mode of T0 DPLL  
can be switched automatically or by force, as controlled by the  
T0_OPERATING_MODE[2:0] bits.  
000  
001  
010  
100  
101  
110  
111  
Forced - Free-Run  
Forced - Holdover  
Forced - Locked  
Forced - Pre-Locked2  
Forced - Pre-Locked  
Forced - Lost-Phase  
When the operating mode is switched by force, the operating mode  
switch is under external control and the status of the selected input clock  
takes no effect to the operating mode selection. The forced operating  
mode switch is applicable for special cases, such as testing.  
When the operating mode is switched automatically, the operation of  
the internal state machine is shown in Figure 7.  
When the operating mode is switched automatically, the internal  
state machine for T0 automatically determine the operating mode.  
Whether the operating mode is under external control or is switched  
automatically, the current operating mode is always indicated by the  
T0_DPLL_OPERATING_MODE[2:0] bits. When the operating mode  
The T0 DPLL operating mode is controlled by the  
T0_OPERATING_MODE[2:0] bits, as shown in Table 14:  
1
switches, the T0_OPERATING_MODE  
bit will be set. If the  
2
T0_OPERATING_MODE bit is ‘1’, an interrupt will be generated.  
1
Free-Run mode  
3
2
Pre-Locked  
4
mode  
5
Locked  
mode  
6
10  
Holdover  
mode  
9
8
7
11  
Pre-Locked2  
mode  
12  
15  
Lost-Phase  
mode  
13  
14  
Figure 7. T0 Selected Input Clock vs. DPLL Automatic Operating Mode  
Functional Description  
29  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Notes to Figure 7:  
1. Reset.  
2. An input clock is selected.  
3. The T0 selected input clock is disqualified AND No qualified input clock is available.  
4. The T0 selected input clock is switched to another one.  
5. The T0 selected input clock is locked (the T0_DPLL_LOCK bit is ‘1’).  
6. The T0 selected input clock is disqualified AND No qualified input clock is available.  
7. The T0 selected input clock is unlocked (the T0_DPLL_LOCK bit is ‘0’).  
8. The T0 selected input clock is locked again (the T0_DPLL_LOCK bit is ‘1’).  
9. The T0 selected input clock is switched to another one.  
10. The T0 selected input clock is locked (the T0_DPLL_LOCK bit is ‘1’).  
11. The T0 selected input clock is disqualified AND No qualified input clock is available.  
12. The T0 selected input clock is switched to another one.  
13. The T0 selected input clock is disqualified AND No qualified input clock is available.  
14. An input clock is selected.  
15. The T0 selected input clock is switched to another one.  
The causes of Item 4, 9, 12, 15 - ‘the T0 selected input clock is  
switched to another one’ - are: (The T0 selected input clock is disquali-  
fied AND Another input clock is switched to) OR (In Revertive switch, a  
qualified input clock with a higher priority is switched to) OR (The T0  
selected input clock is switched to another one by External Fast selec-  
tion or Forced selection).  
Refer to Chapter 3.8.2 Selected Input Clock Switch for details about  
T0 input clock qualification.  
Table 15: Related Bit / Register in Chapter 3.9  
Bit  
Register  
Address (Hex)  
T0_OPERATING_MODE[2:0]  
T0_DPLL_OPERATING_MODE[2:0]  
T0_DPLL_LOCK  
T0_OPERATING_MODE_CNFG  
53  
52  
OPERATING_STS  
T0_OPERATING_MODE 1  
T0_OPERATING_MODE 2  
INTERRUPTS2_STS  
0E  
11  
INTERRUPTS2_ENABLE_CNFG  
Functional Description  
30  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
3.10.1.1 Free-Run Mode  
3.10  
DPLL OPERATING MODE  
In Free-Run mode, the T0 DPLL output refers to the master clock  
and is not affected by any input clock. The accuracy of the T0 DPLL out-  
put is equal to that of the master clock.  
The T0 DPLL gives a stable performance in different applications  
without being affected by operating conditions or silicon process varia-  
tions. It integrates a PFD (Phase & Frequency Detector), a LPF (Low  
Pass Filter) and a DCO (Digital Controlled Oscillator), which forms a  
closed loop. If no input clock is selected, the loop is not closed, and the  
PFD and LPF do not function.  
3.10.1.2 Pre-Locked Mode  
In Pre-Locked mode, the T0 DPLL output attempts to track the  
selected input clock.  
The PFD detects the phase error, including the fast loss, coarse  
phase loss and fine phase loss (refer to Chapter 3.7.1.1 Fast Loss to  
Chapter 3.7.1.3 Fine Phase Loss). The averaged phase error of the T0  
DPLL feedback with respect to the selected input clock is indicated by  
the CURRENT_PH_DATA[15:0] bits. It can be calculated as follows:  
Averaged Phase Error (ns) = CURRENT_PH_DATA[15:0] X 0.61  
The Pre-Locked mode is a secondary, temporary mode.  
3.10.1.3 Locked Mode  
In Locked mode, the T0 selected input clock is locked. The phase  
and frequency offset of the T0 DPLL output track those of the T0  
selected input clock.  
The LPF filters jitters. Its 3 dB bandwidth and damping factor are pro-  
grammable. A range of bandwidths and damping factors can be set to  
meet different application requirements. Generally, the lower the damp-  
ing factor is, the longer the locking time is and the more the gain is.  
In this mode, if the T0 selected input clock is in fast loss status and  
the FAST_LOS_SW bit is ‘1’, the T0 DPLL is unlocked (refer to  
Chapter 3.7.1.1 Fast Loss) and will enter Lost-Phase mode when the  
operating mode is switched automatically; if the T0 selected input clock  
is in fast loss status and the FAST_LOS_SW bit is ‘0’, the T0 DPLL lock-  
ing status is not affected and the T0 DPLL will enter Temp-Holdover  
mode automatically.  
The DCO controls the DPLL output. The frequency of the DPLL out-  
put is always multiplied on the basis of the master clock. The phase and  
frequency offset of the DPLL output may be locked to those of the  
selected input clock. The current frequency offset with respect to the  
master clock is indicated by the CURRENT_DPLL_FREQ[23:0] bits, and  
can be calculated as follows:  
3.10.1.3.1 Temp-Holdover Mode  
The T0 DPLL will automatically enter Temp-Holdover mode with a  
selected input clock switch or no qualified input clock available when the  
operating mode switch is under external control.  
Current Frequency Offset (ppm) = CURRENT_DPLL_FREQ[23:0] X  
0.000011  
In Temp-Holdover mode, the T0 DPLL has temporarily lost the  
selected input clock. The T0 DPLL operation in Temp-Holdover mode  
and that in Holdover mode are alike (refer to Chapter 3.10.1.5 Holdover  
Mode) except the frequency offset acquiring methods. See  
Chapter 3.10.1.5 Holdover Mode for details about the methods. The  
method is selected by the TEMP_HOLDOVER_MODE[1:0] bits, as  
shown in Table 16:  
3.10.1  
The T0 DPLL loop is closed except in Free-Run mode and Holdover  
mode.  
SIX OPERATING MODES  
For a closed loop, different bandwidths and damping factors can be  
used depending on DPLL locking stages: starting, acquisition and  
locked.  
In the first two seconds when the T0 DPLL attempts to lock to the  
selected input clock, the starting bandwidth and damping factor are  
used. They are set by the T0_DPLL_START_BW[4:0] bits and the  
T0_DPLL_START_DAMPING[2:0] bits respectively.  
Table 16: Frequency Offset Control in Temp-Holdover Mode  
TEMP_HOLDOVER_MODE[1:0] Frequency Offset Acquiring Method  
00  
01  
10  
11  
the same as that used in Holdover mode  
Automatic Instantaneous  
During the acquisition, the acquisition bandwidth and damping factor  
are used. They are set by the T0_DPLL_ACQ_BW[4:0] bits and the  
T0_DPLL_ACQ_DAMPING[2:0] bits respectively.  
Automatic Fast Averaged  
Automatic Slow Averaged  
When the T0 selected input clock is locked, the locked bandwidth  
and damping factor are used. They are set by the  
The device automatically controls the T0 DPLL to exit from Temp-  
Holdover mode.  
T0_DPLL_LOCKED_BW[4:0]  
bits  
and  
the  
3.10.1.4 Lost-Phase Mode  
T0_DPLL_LOCKED_DAMPING[2:0] bits respectively.  
In Lost-Phase mode, the T0 DPLL output attempts to track the  
selected input clock.  
The corresponding bandwidth and damping factor are used when the  
T0 DPLL operates in different DPLL locking stages: starting, acquisition  
and locked, as controlled by the device automatically.  
The Lost-Phase mode is a secondary, temporary mode.  
Only the locked bandwidth and damping factor can be used regard-  
less of the T0 DPLL locking stage, as controlled by the AUTO_BW_SEL  
bit.  
3.10.1.5 Holdover Mode  
In Holdover mode, the T0 DPLL resorts to the stored frequency data  
acquired in Locked mode to control its output. The T0 DPLL output is not  
Functional Description  
31  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
phase locked to any input clock. The frequency offset acquiring method  
is selected by the MAN_HOLDOVER bit, the AUTO_AVG bit and the  
FAST_AVG bit, as shown in Table 17:  
Table 17: Frequency Offset Control in Holdover Mode  
MAN_HOLDOVER  
AUTO_AVG  
FAST_AVG  
Frequency Offset Acquiring Method  
0
don’t-care  
Automatic Instantaneous  
Automatic Slow Averaged  
Automatic Fast Averaged  
Manual  
0
1
0
1
1
don’t-care  
3.10.1.5.1 Automatic Instantaneous  
3.10.1.5.5 Holdover Frequency Offset Read  
By this method, the T0 DPLL freezes at the operating frequency  
The offset value, which is acquired by Automatic Slow Averaged,  
Automatic Fast Averaged and is set by related register bits, can be read  
from the T0_HOLDOVER_FREQ[23:0] bits by setting the READ_AVG  
bit and the FAST_AVG bit, as shown in Table 18.  
-8  
when it enters Holdover mode. The accuracy is 4.4X10 ppm.  
3.10.1.5.2 Automatic Slow Averaged  
By this method, an internal IIR (Infinite Impulse Response) filter is  
employed to get the frequency offset. The IIR filter gives a 3 dB attenua-  
tion point corresponding to a period of 110 minutes. The accuracy is  
Table 18: Holdover Frequency Offset Read  
Offset Value Read from  
READ_AVG FAST_AVG  
-5  
T0_HOLDOVER_FREQ[23:0]  
1.1X10 ppm.  
0
1
don’t-care The value is equal to the one written to.  
3.10.1.5.3 Automatic Fast Averaged  
The value is acquired by Automatic Slow Averaged  
method, not equal to the one written to.  
0
By this method, an internal IIR (Infinite Impulse Response) filter is  
employed to get the frequency offset. The IIR filter gives a 3 dB attenua-  
tion point corresponding to a period of 8 minutes. The accuracy is  
The value is acquired by Automatic Fast Averaged  
method, not equal to the one written to.  
1
-5  
1.1X10 ppm.  
The frequency offset in ppm is calculated as follows:  
3.10.1.5.4 Manual  
Holdover Frequency Offset (ppm) = T0_HOLDOVER_FREQ[23:0] X  
0.000011  
By this method, the frequency offset is set by the  
-5  
T0_HOLDOVER_FREQ[23:0] bits. The accuracy is 1.1X10 ppm.  
3.10.1.6 Pre-Locked2 Mode  
The frequency offset of the T0 DPLL output is indicated by the  
CURRENT_DPLL_FREQ[23:0] bits.  
In Pre-Locked2 mode, the T0 DPLL output attempts to track the  
selected input clock.  
The device provides a reference for the value to be written to the  
T0_HOLDOVER_FREQ[23:0] bits. The value to be written can refer to  
the value read from the CURRENT_DPLL_FREQ[23:0] bits or the  
T0_HOLDOVER_FREQ[23:0] bits (refer to Chapter 3.10.1.5.5 Holdover  
Frequency Offset Read); or then be processed by external software fil-  
tering.  
The Pre-Locked2 mode is a secondary, temporary mode.  
Functional Description  
32  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Table 19: Related Bit / Register in Chapter 3.10  
Bit  
Register  
Address (Hex)  
CURRENT_PH_DATA[15:0]  
CURRENT_DPLL_PHASE[15:8]_STS, CURRENT_DPLL_PHASE[7:0]_STS  
69, 68  
CURRENT_DPLL_FREQ[23:16]_STS, CURRENT_DPLL_FREQ[15:8]_STS,  
CURRENT_DPLL_FREQ[7:0]_STS  
CURRENT_DPLL_FREQ[23:0]  
64, 63, 62  
T0_DPLL_START_BW[4:0]  
T0_DPLL_START_DAMPING[2:0]  
T0_DPLL_ACQ_BW[4:0]  
T0_DPLL_ACQ_DAMPING[2:0]  
T0_DPLL_LOCKED_BW[4:0]  
T0_DPLL_LOCKED_DAMPING[2:0]  
AUTO_BW_SEL  
T0_DPLL_START_BW_DAMPING_CNFG  
T0_DPLL_ACQ_BW_DAMPING_CNFG  
T0_DPLL_LOCKED_BW_DAMPING_CNFG  
56  
57  
58  
T0_BW_OVERSHOOT_CNFG  
59  
5B  
FAST_LOS_SW  
PHASE_LOSS_FINE_LIMIT_CNFG  
TEMP_HOLDOVER_MODE[1:0]  
MAN_HOLDOVER  
AUTO_AVG  
T0_HOLDOVER_MODE_CNFG  
5C  
FAST_AVG  
READ_AVG  
T0_HOLDOVER_FREQ[23:16]_CNFG, T0_HOLDOVER_FREQ[15:8]_CNFG,  
T0_HOLDOVER_FREQ[7:0]_CNFG  
T0_HOLDOVER_FREQ[23:0]  
5F, 5E, 5D  
Functional Description  
33  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
The last condition is specially for stratum 2 and 3E clocks. The PBO  
requirement specified in the Telcordia GR-1244-CORE is: ‘Input phase-  
time changes of 3.5 µs or greater over an interval of less than 0.1 sec-  
onds or less shall be built-out by stratum 2 and 3E clocks to reduce the  
resulting clock phase-time change to less than 50 ns. Phase-time  
changes of 1.0 µs or less over an interval of 0.1 seconds shall not be  
built-out.’ Based on this requirement, phase-time changes of more than  
1.0 µs but less than 3.5 µs that occur over an interval of less than 0.1  
seconds may or may not be built-out.  
3.11  
DPLL OUTPUT  
The DPLL output is locked to the selected input clock. According to  
the phase-compared result of the feedback and the selected input clock,  
and the DPLL output frequency offset, the PFD output is limited and the  
DPLL output is frequency offset limited.  
3.11.1  
PFD OUTPUT LIMIT  
The PFD output is limited to be within ±1 UI or within the coarse  
phase limit (refer to Chapter 3.7.1.2 Coarse Phase Loss), as determined  
by the MULTI_PH_APP bit.  
An integrated Phase Transient Monitor can be enabled by the  
PH_MON_EN bit to monitor the phase-time changes on the T0 selected  
input clock. When the phase-time changes are greater than a limit over  
an interval of less than 0.1 seconds, a PBO event is triggered and the  
phase transients on the DPLL output are absorbed. The limit is pro-  
grammed by the PH_TR_MON_LIMT[3:0] bits, and can be calculated as  
follows:  
3.11.2  
FREQUENCY OFFSET LIMIT  
The DPLL output is limited to be within the DPLL hard limit (refer to  
Chapter 3.7.1.4 Hard Limit Exceeding).  
The integral path value can be frozen when the DPLL hard limit is  
reached. This function, enabled by the T0_LIMT bit, will minimize the  
subsequent overshoot when T0 DPLL is pulling in.  
Limit (ns) = (PH_TR_MON_LIMT[3:0] + 7) X 156  
The phase offset induced by PBO will never result in a coarse or fine  
phase loss.  
3.11.3  
PBO  
When a PBO event is triggered, the phase offset of the selected input  
clock with respect to the T0 DPLL output is measured. The device then  
automatically accounts for the measured phase offset and compensates  
an appropriate phase offset into the DPLL output so that the phase tran-  
sients on the T0 DPLL output are minimized.  
3.11.4  
FOUR PATHS OF T0 DPLL OUTPUTS  
The T0 DPLL output are phase aligned with the T0 selected input  
clock every 125 µs period. T0 DPLL has four output paths as follows:  
77.76 MHz path - outputs a 77.76 MHz clock;  
16E1/16T1 path - outputs a 16E1 or 16T1 clock, as selected by  
the IN_SONET_SDH bit;  
GSM/OBSAI/16E1/16T1 path - outputs a GSM, OBSAI, 16E1 or  
16T1 clock, as selected by the T0_GSM_OBSAI_16E1_16T1_  
SEL[1:0] bits;  
A PBO event is triggered if any one of the following conditions  
occurs:  
T0 selected input clock switches (the PBO_EN bit is ‘1’);  
T0 DPLL exits from Holdover mode or Free-Run mode (the  
PBO_EN bit is ‘1’);  
Phase-time changes on the T0 selected input clock are greater  
than a programmable limit over an interval of less than 0.1 sec-  
onds (the PH_MON_PBO_EN bit is ‘1’).  
12E1/24T1/E3/T3 path - outputs a 12E1, 24T1, E3 or T3 clock,  
as selected by the T0_12E1_24T1_E3_T3_SEL[1:0] bits.  
T0 selected input clock is compared with a T0 DPLL output for DPLL  
locking. The output can only be derived from the 77.76 MHz path or the  
16E1/16T1 path. The output path is automatically selected and the out-  
put is automatically divided to get the same frequency as the T0  
selected input clock.  
For the first two conditions, the phase transients on the T0 DPLL out-  
put are minimized to be no more than 0.61 ns with PBO. The PBO can  
also be frozen at the current phase offset by setting the PBO_FREZ bit.  
When the PBO is frozen, the device will ignore any further PBO events  
triggered by the above two conditions, and maintain the current phase  
offset. When the PBO is disabled, there may be a phase shift on the T0  
DPLL output and the T0 DPLL output tracks back to 0 degree phase off-  
set with respect to the T0 selected input clock.  
T0 DPLL outputs are provided for T0/T4 APLL or device output pro-  
cess.  
Functional Description  
34  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Table 20: Related Bit / Register in Chapter 3.11  
Bit  
Register  
Address (Hex)  
MULTI_PH_APP  
T0_LIMT  
PHASE_LOSS_COARSE_LIMIT_CNFG  
T0_BW_OVERSHOOT_CNFG  
5A  
59  
PBO_EN  
MON_SW_PBO_CNFG  
0B  
PBO_FREZ  
PH_MON_PBO_EN  
PH_MON_EN  
PHASE_MON_PBO_CNFG  
78  
PH_TR_MON_LIMT[3:0]  
PH_OFFSET_EN  
PHASE_OFFSET[9:8]_CNFG  
INPUT_MODE_CNFG  
7B  
09  
IN_SONET_SDH  
T0_GSM_OBSAI_16E1_16T1_SEL[1:0]  
T0_12E1_24T1_E3_T3_SEL[1:0]  
T0_DPLL_APLL_PATH_CNFG  
55  
Functional Description  
35  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
3.12  
T0 / T4 APLL  
3.13  
OUTPUT CLOCKS & FRAME SYNC SIGNALS  
A T0 APLL and a T4 APLL are provided for a better jitter and wander  
performance of the device output clocks.  
The device supports 2 output clocks and 1 frame sync output signal  
altogether.  
The bandwidths of the T0/T4 APLL are set by the T0_APLL_BW[1:0]  
/ T4_APLL_BW[1:0] bits respectively. The lower the bandwidth is, the  
better the jitter and wander performance of the T0/T4 APLL output are.  
3.13.1  
OUTPUT CLOCKS  
The device provides 2 output clocks.  
OUT1 outputs a PECL or LVDS signal, as selected by the  
OUT1_PECL_LVDS bit. OUT2 outputs a CMOS signal.  
The input of the T0/T4 APLL can be derived from one of the T0 DPLL  
outputs, as selected by the T0_APLL_PATH[3:0] / T4_APLL_PATH[3:0]  
bits respectively.  
The outputs on OUT1 and OUT2 are variable, depending on the sig-  
nals derived from the T0 DPLL and T0/T4 APLL outputs, and the corre-  
sponding OUTn_PATH_SEL[3:0] bits (n = 1 or 2). The derived signal can  
be from the T0 DPLL and T0/T4 APLL outputs, as selected by the corre-  
sponding OUTn_PATH_SEL[3:0] bits (n = 1 or 2). If the signal is derived  
from one of the T0 DPLL outputs, please refer to Table 22 for the output  
frequency. If the signal is derived from the T0/T4 APLL output, please  
refer to Table 23 for the output frequency.  
Both the APLL and DPLL outputs are provided for selection for the  
device output.  
Table 21: Related Bit / Register in Chapter 3.12  
Bit  
Register  
Address (Hex)  
T0_APLL_BW[1:0]  
T4_APLL_BW[1:0]  
T0_APLL_PATH[3:0]  
T4_APLL_PATH[3:0]  
T0_T4_APLL_BW_CNFG  
6A  
The outputs on OUT1 and OUT2 can be inverted, as determined by  
the corresponding OUTn_INV bit (n = 1 or 2).  
T0_DPLL_APLL_PATH_CNFG  
T4_APLL_PATH_CNFG  
55  
60  
Both the output clocks derived from T0 selected input clock are  
aligned with the T0 selected input clock every 125 µs period.  
Table 22: Outputs on OUT1 & OUT2 if Derived from T0 DPLL Outputs  
outputs on OUT1 & OUT2 if derived from T0 DPLL outputs 2  
OUTn_DIVIDER[3:0]  
1
(Output Divider)  
77.76 MHz  
12E1  
16E1  
24T1  
16T1  
E3  
T3  
GSM (26 MHz) OBSAI (30.72 MHz)  
0000  
0001  
0010  
0011  
Output is disabled (output low).  
12E1  
6E1  
3E1  
2E1  
16E1  
8E1  
24T1  
12T1  
6T1  
16T1  
8T1  
E3  
T3  
13 MHz  
15.36 MHz  
0100  
0101  
0110  
4E1  
4T1  
4T1  
2E1  
E1  
3T1  
2T1  
T1  
0111  
E1  
2T1  
1000  
1001  
1010  
1011  
T1  
64 kHz  
8 kHz  
2 kHz  
400 Hz  
1Hz  
1100  
1101  
1110  
1111  
Output is disabled (output high).  
Note:  
1. n = 1 or 2. Each output is assigned a frequency divider.  
2. E1 = 2.048 MHz, T1 = 1.544 MHz, E3 = 34.368 MHz, T3 = 44.736 MHz. The blank cell means the configuration is reserved.  
Functional Description  
36  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Table 23: Outputs on OUT1 & OUT2 if Derived from T0/T4 APLL  
outputs on OUT1 & OUT2 if derived from T0/T4 APLL output 2  
OUTn_DIVIDER[3:0]  
1
(Output Divider)  
77.76 MHz X 4 12E1 X 4 16E1 X 4 24T1 X 4 16T1 X 4  
E3  
T3  
GSM (26 MHz X 2) OBSAI (30.72 MHz X 10)  
0000  
0001  
Output is disabled (output low).  
622.08 MHz 3  
311.04 MHz 3  
155.52 MHz  
77.76 MHz  
51.84 MHz  
38.88 MHz  
25.92 MHz  
19.44 MHz  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
48E1  
24E1  
12E1  
8E1  
64E1  
32E1  
16E1  
96T1  
48T1  
24T1  
16T1  
12T1  
8T1  
64T1  
32T1  
16T1  
E3  
T3  
52 MHz  
26 MHz  
13 MHz  
153.6 MHz  
76.8 MHz  
6E1  
8E1  
4E1  
8T1  
4T1  
38.4 MHz  
4E1  
3E1  
6T1  
61.44 MHz 4  
30.72 MHz 4  
15.36 MHz 4  
7.68 MHz 4  
3.84 MHz 4  
2E1  
4T1  
1010  
1011  
1100  
1101  
2E1  
E1  
3T1  
2T1  
2T1  
T1  
6.48 MHz  
E1  
T1  
1110  
1111  
Output is disabled (output high).  
Note:  
1. n = 1 or 2. Each output is assigned a frequency divider.  
2. In the APLL, the selected T0 DPLL output may be multiplied. E1 = 2.048 MHz, T1 = 1.544 MHz, E3 = 34.368 MHz, T3 = 44.736 MHz. The blank cell means the configuration is reserved.  
3. The 622.08 MHz and 311.04 MHz differential signals are only output on OUT1.  
4. The 61.44 MHz, 30.72 MHz, 15.36 MHz, 7.68 MHz and 3.84 MHz outputs are only derived from T0 APLL.  
Functional Description  
37  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
3.13.2  
FRAME SYNC OUTPUT SIGNAL  
limit, whether the selected frame sync input signal is enabled to synchro-  
nize the frame sync output signal is determined by the SYNC_BYPASS  
bit, the AUTO_EXT_SYNC_EN bit and the EXT_SYNC_EN bit. Refer to  
Table 25 for details.  
An 8 kHz frame sync signal is output on the FRSYNC_8K pin if  
enabled by the 8K_EN bit. It is a CMOS output.  
The frame sync signal is derived from the T0 APLL output and are  
aligned with the output clock. It can be synchronized to one of the two  
frame sync input signals.  
When the selected frame sync input signal is enabled to synchronize  
the frame sync output signal, it should be adjusted to align itself with the  
T0 selected input clock. Nominally, the falling edge of the selected frame  
sync input signal is aligned with the rising edge of the T0 selected input  
clock. The selected frame sync input signal may be 0.5 UI early/late or 1  
UI late due to the circuit and board wiring delays. Setting the sampling of  
the selected frame sync input signal by the SYNC_PHn[1:0] bits (n = 1  
or 2 corresponding to EX_SYNC1 or EX_SYNC2 respectively) will com-  
pensate this early/late. Refer to Figure 8 to Figure 11.  
One of the two frame sync input signals is selected, as determined  
by the SYNC_BYPASS bit and the T0 selected input clock, as shown in  
Table 24:  
Table 24: Frame Sync Input Signal Selection  
Selected Frame Sync Input  
SYNC_BYPASS T0 Selected Input Clock  
Signal  
The EX_SYNC_ALARM_MON bit indicates whether the selected  
frame sync input signal is in external sync alarm status. The external  
0
don’t-care  
IN1_CMOS  
IN2_CMOS  
none  
EX_SYNC1  
EX_SYNC1  
EX_SYNC2  
none  
1
sync alarm is indicated by the EX_SYNC_ALARM  
bit. If the  
1
2
EX_SYNC_ALARM bit is ‘1’, the occurrence of the external sync alarm  
will trigger an interrupt.  
The 8 kHz frame sync output signal can be inverted by setting the  
8K_INV bit. The frame sync output can be 50:50 duty cycle or pulsed, as  
determined by the 8K_PUL bit. When they are pulsed, the pulse width is  
defined by the period of OUT2; and they are pulsed on the position of  
the falling or rising edge of the standard 50:50 duty cycle, as selected by  
the 8K_PUL_POSITION bit.  
If the selected frame sync input signal with respect to the T0 selected  
input clock is above a limit set by the SYNC_MON_LIMT[2:0] bits, an  
external sync alarm will be raised and the selected frame sync input sig-  
nal is disabled to synchronize the frame sync output signal. The external  
sync alarm is cleared once the selected frame sync input signal with  
respect to the T0 selected input clock is within the limit. If it is within the  
Table 25: Synchronization Control  
SYNC_BYPASS  
AUTO_EXT_SYNC_EN  
EXT_SYNC_EN  
Synchronization  
don’t-care  
0
1
1
Disabled  
Enabled  
Disabled  
Enabled  
0
1
0
1
don’t-care  
T0 selected  
input clock  
T0 selected  
input clock  
Selected frame  
sync input signal  
Selected frame  
sync input signal  
Frame sync  
output signals  
Frame sync  
output signals  
Output clocks  
Output clocks  
Figure 8. On Target Frame Sync Input Signal Timing  
Figure 9. 0.5 UI Early Frame Sync Input Signal Timing  
Functional Description  
38  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
T0 selected  
input clock  
T0 selected  
input clock  
Selected frame  
Selected frame  
sync input signal  
sync input signal  
Frame sync  
Frame sync  
output signals  
output signals  
Output clocks  
Output clocks  
Figure 10. 0.5 UI Late Frame Sync Input Signal Timing  
Figure 11. 1 UI Late Frame Sync Input Signal Timing  
Table 26: Related Bit / Register in Chapter 3.13  
Bit  
Register  
Address (Hex)  
OUT1_PECL_LVDS  
OUTn_PATH_SEL[3:0] (n = 1 or 2)  
OUTn_DIVIDER[3:0] (n = 1 or 2)  
IN_SONET_SDH  
DIFFERENTIAL_IN_OUT_OSCI_CNFG  
0A  
OUT1_FREQ_CNFG, OUT2_FREQ_CNFG  
71, 6D  
AUTO_EXT_SYNC_EN  
EXT_SYNC_EN  
INPUT_MODE_CNFG  
09  
OUTn_INV (n = 1 or 2)  
8K_EN  
OUT1_INV_CNFG, OUT2_INV_CNFG  
73, 72  
8K_INV  
FR_SYNC_CNFG  
74  
8K_PUL  
8K_PUL_POSITION  
SYNC_BYPASS  
SYNC_MONITOR_CNFG  
7C  
SYNC_MON_LIMT[2:0]  
SYNC_PHn[1:0] (n = 1 or 2)  
EX_SYNC_ALARM_MON  
SYNC_PHASE_CNFG  
OPERATING_STS  
7D  
52  
0F  
EX_SYNC_ALARM 1  
EX_SYNC_ALARM 2  
INTERRUPTS3_STS  
INTERRUPTS3_ENABLE_CNFG  
12  
Functional Description  
39  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
3.14  
INTERRUPT SUMMARY  
3.15  
T0 SUMMARY  
The interrupt sources of the device are as follows:  
The main features supported by the T0 path are as follows:  
Phase lock alarm;  
T0 Input clocks validity change  
T0 selected input clock fail  
T0 DPLL operating mode switch  
External sync alarm  
Forced or Automatic input clock selection/switch;  
3 primary and 3 secondary, temporary DPLL operating modes,  
switched automatically or under external control;  
Automatic switch between starting, acquisition and locked band-  
widths/damping factors;  
Programmable DPLL bandwidths from 0.1 Hz to 560 Hz in 11  
steps;  
Programmable damping factors: 1.2, 2.5, 5, 10 and 20;  
Fast loss, coarse phase loss, fine phase loss and hard limit  
exceeding monitoring;  
Output phase and frequency offset limited;  
Automatic Instantaneous, Automatic Slow Averaged, Automatic  
Fast Averaged or Manual holdover frequency offset acquiring;  
PBO to minimize output phase transients;  
Programmable output phase offset;  
Low jitter multiple clock outputs with programmable polarity;  
Low jitter 8 kHz frame sync signal output with programmable  
pulse width and polarity;  
All of the above interrupt events are indicated by the corresponding  
interrupt status bit. If the corresponding interrupt enable bit is set, any of  
the interrupts can be reported by the INT_REQ pin. The output charac-  
teristics on the INT_REQ pin are determined by the HZ_EN bit and the  
INT_POL bit.  
Interrupt events are cleared by writing a ‘1’ to the corresponding  
interrupt status bit. The INT_REQ pin will be inactive only when all the  
pending enabled interrupts are cleared.  
In addition, the interrupt of T0 selected input clock fail can be  
reported by the TDO pin, as determined by the LOS_FLAG_TO_TDO  
bit.  
Table 27: Related Bit / Register in Chapter 3.14  
Bit  
Register  
Address (Hex)  
HZ_EN  
INT_POL  
INTERRUPT_CNFG  
0C  
0B  
LOS_FLAG_TO_TDO  
MON_SW_PBO_CNFG  
Functional Description  
40  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
3.16  
LINE CARD APPLICATION  
Clock  
Sync  
OC-n Clock  
Sync  
Master Clock  
Board  
SDH/SONET  
System  
Optical signal  
155 M, 622 M, 2.5 G,  
or 10 Gbit/s  
Chip  
e.g.  
Transciever  
TSE  
IDT82V3202  
Clock  
Sync  
Slave Clock  
Board  
......  
OC-n Line Card Board  
Backplane  
Figure 12. Line Card Application  
Functional Description  
41  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
2
4.1  
FUNCTION DESCRIPTION  
4
I C PROGRAMMING  
INTERFACE  
The timing of a complete data transfer is shown in Figure 13.  
The transfer process can be divided into three phases:  
START (S) or repeated START (Sr) condition;  
Byte data transfer condition;  
2
The I C bus interface provides access to read and write the registers  
in the IDT82V3202.  
STOP (P) condition.  
The definitions of S/Sr and P conditions are shown in Table 28:  
Table 28: Definition of S/Sr and P Conditions  
Condition  
Definition  
S/Sr  
P
A high to low transition on the SDA pin while the SCL pin is high.  
A low to high transition on the SDA pin while the SCL pin is high.  
Every byte put on the SDA line must be 8-bit long. The number of  
bytes that can be transmitted per transfer is unrestricted in theory. Each  
byte has to be followed by an acknowledge bit (ACK). So the whole data  
transfer needs a period of 9 clock cycles. The data is transferred with the  
most significant bit (MSB) first.  
P
SDA  
SCL  
acknowledgement  
signal from the slave device  
acknowledgement  
signal from receiver  
MSB  
Sr  
byte complete,  
interrupt within the Slave device  
clock line held low while  
interrupts are serviced  
9
2
3-8  
2
8
1
9
1
7
S
or  
Sr  
Sr  
or  
P
ACK  
ACK  
STOP or  
repeated START  
condition  
START or  
repeated START  
condition  
2
Figure 13. Data Transfer on the I C-bus  
I2C Programming Interface  
42  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
4.1.1  
Two kinds of data transfer formats are supported by the  
IDT82V3202:  
Slave-receiver mode (Write);  
Slave-transmitter mode (Read);  
DATA TRANSFER FORMAT  
4.1.1.1  
Slave-receiver Mode (Write)  
The Slave-receiver mode is as shown in Figure 14.  
The Master device asserts the slave address followed by the Write  
bit. The Slave device acknowledges and the Master device delivers the  
address byte. The Slave device again acknowledges before the Master  
device sends the data byte. The Slave device acknowledges each byte,  
and the entire transaction is finished with a STOP condition.  
1
7
1
1
8
1
8
1
1
S
Slave Address  
Wr  
A
Address Byte  
A
Data Byte  
A
P
S
Start Condition  
Master-to-Slave  
Slave-to-Master  
Write (bit value of 0)  
Stop Condition  
Wr  
P
A
Acknowledge (this bit position may be ‘0’ for an ACK or ‘1’ for a NACK)  
Figure 14. Slave-receiver Mode  
4.1.1.2  
Slave-transmitter Mode (Read)  
The Slave-transmitter mode is as shown in Figure 15.  
First the Master device must write an address byte to the slave  
device. Then it must follow that address byte with a repeated START  
condition to denote a read from that device’s address. The Slave device  
then returns one byte data corresponding the address. Note that there is  
no STOP condition before the repeated STRAT condition, and that a no-  
acknowledge (NACK) signifies the end of the read transfer.  
1
7
1
1
8
1
1
7
1
1
8
1
1
S
Slave Address  
Wr  
A
Address Byte  
A
Slave Address  
Rd  
A
Data Byte  
A
P
S
S
Start Condition  
P
Stop Condition  
Read (bit value of 1)  
Master-to-Slave  
Rd  
Wr  
Write (bit value of 0)  
Slave-to-Master  
A
Acknowledge (this bit position may be ‘0’ for an ACK or ‘1’ for a NACK)  
Figure 15. Slave-transmitter Mode  
I2C Programming Interface  
43  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
4.1.2  
ADDRESS ASSIGNMENT  
Each device is recognized by a unique slave address. The slave  
addressing procedure for the I2C-bus is such that the first byte after the  
START condition usually determines which slave device will be selected  
by the Master device. In this specification, the 4 MSB bits of the address  
byte are fixed and the 3 LSB bits are decided by address input pins  
AD[2:0], as shown in Figure 16.  
A6  
1
A5  
0
A4  
1
A3  
0
A2  
A1  
A0  
R/W  
AD2 AD1 AD0 1/0  
The R/W bit is used as a data transfer direction bit which is deter-  
mined by the Master device. A ‘0’ on this bit indicates a transmission  
(Write) to registers and a ‘1’ indicates a request for data (Read) from the  
registers.  
Figure 16. Address Assignment  
4.2  
TIMING DEFINITION  
The timing of I2C-bus is as shown in Figure 17.  
SDA  
tf  
tf  
tSU: DAT  
tHD: STA  
tr  
tBUF  
tSP  
tLOW  
tr  
SCL  
tSU: STO  
tHD: STA  
tSU: STA  
tHD: DAT  
S
tHIGH  
P
S
Sr  
2
Figure 17. Timing Definition of I C-bus  
I2C Programming Interface  
44  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
(1)  
Table 29: Timing Definition for Standard Mode and Fast Mode  
Standard Mode  
Fast Mode  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
SCL  
Serial clock frequency  
0
100  
0
400  
KHz  
Hold time (repeated) START condition. After this period, the  
first clock pulse is generated  
tHD; STA  
4.0  
-
0.5  
-
µs  
tLOW  
tHIGH  
LOW period of the SCL clock  
4.7  
4.0  
4.7  
5.0  
0(2)  
250  
-
1.3  
0.6  
0.6  
-
0(2)  
100(4)  
-
µs  
µs  
µs  
HIGH period of the SCL clock  
-
-
tSU; STA  
Set-up time for a repeated START condition  
-
-
Data hold time: for CBUS compatible masters for I2C-bus  
devices  
-
3.45(3)  
-
-
0.9(3)  
-
tHD; DAT  
µs  
tSU; DAT  
Data set-up time  
ns  
ns  
ns  
µs  
µs  
pF  
20 + 0.1Cb(5)  
20 + 0.1Cb(5)  
tr  
tf  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Set-up time for STOP condition  
-
-
1000  
300  
-
300  
300  
-
tSU; STO  
tBUF  
Cb  
4.0  
4.7  
-
0.6  
1.3  
-
Bus free time between a STOP and START condition  
Capacitive load for each bus line  
-
-
400  
400  
Noise margin at the LOW level for each connected device  
(Including hysteresis)  
VnL  
VnH  
tsp  
0.1VDD  
0.2VDD  
0
-
-
0.1VDD  
0.2VDD  
0
-
-
V
V
Noise margin at the HIGH level for each connected device  
(Including hysteresis)  
Pulse width of spikes which must be suppressed by the input  
filter  
50  
50  
ns  
Note:  
1. All values referred to VIHmin and VILmax levels (see Table 37)  
2. A device must Internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the fall-  
ing edge of SCL.  
3. The maximum tHD; DAT has only to be met if the device does not strech the LOW period (tLOW) of the SCL signal.  
4. A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement tSU; DAT 250 ns must then be met. This will automatically be  
the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data  
bit to the SDA line trmax + tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the SCL line is released.  
5. Cb = total capacitance of one bus line in pF. If mixed with Hs-mode device, faster fall-times according to Table 39 allowed.  
n/a = not applicable  
I2C Programming Interface  
45  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
5
JTAG  
This device is compliant with the IEEE 1149.1 Boundary Scan stan-  
dard except the following:  
The output boundary scan cells do not capture data from the  
core and the device does not support EXTEST instruction;  
The TRST pin is set low by default and JTAG is disabled in order  
to be consistent with other manufacturers.  
The JTAG interface timing diagram is shown in Figure 18.  
tTCK  
TCK  
tS  
tH  
TMS  
TDI  
tD  
TDO  
Figure 18. JTAG Interface Timing Diagram  
Table 30: JTAG Timing Characteristics  
Symbol  
Parameter  
Min  
100  
25  
Typ  
Max  
Unit  
ns  
tTCK  
tS  
TCK period  
TMS / TDI to TCK setup time  
TCK to TMS / TDI Hold Time  
TCK to TDO delay time  
ns  
tH  
25  
ns  
tD  
50  
ns  
JTAG  
46  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
6
PROGRAMMING INFORMATION  
After reset, all the registers are set to their default values. The regis-  
ters are read or written via the microprocessor interface.  
example, the write operation for the Multi-word Registers follows a fixed  
sequence. The register (04H) is configured first and the register (06H) is  
configured last. The three registers are configured continuously and  
should not be interrupted by any operation. The crystal calibration con-  
figuration will take effect after all the three registers are configured. Dur-  
ing read operation, the register (04H) is read first and the register (06H)  
is read last. The crystal calibration reading should be continuous and not  
be interrupted by any operation.  
Before any write operation, the value in register  
PROTECTION_CNFG is recommended to be confirmed to make sure  
whether the write operation is enabled. The device provides 3 register  
protection modes:  
Protected mode: no other registers can be written except register  
PROTECTION_CNFG itself;  
Fully Unprotected mode: all the writable registers can be written;  
Single Unprotected mode: one more register can be written  
besides register PROTECTION_CNFG. After write operation  
(not including writing a ‘1’ to clear a bit to ‘0’), the device auto-  
matically switches to Protected mode.  
Certain bit locations within the device register map are designated as  
Reserved. To ensure proper and predictable operation, bits designated  
as Reserved should not be written by the users. In addition, their value  
should be masked out from any testing or error detection methods that  
are implemented.  
Writing ‘0’ to the registers will take no effect if the registers are  
cleared by writing ‘1’.  
6.1  
REGISTER MAP  
Table 31 is the map of all the registers, sorted in an ascending order  
of their addresses.  
The access of the Multi-word Registers is different from that of the  
Single-word Registers. Take the registers (04H, 05H and 06H) for an  
Table 31: Register List and Map  
Address  
Reference  
Page  
Register Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(Hex)  
Global Control Registers  
00  
01  
ID[7:0] - Device ID 1  
ID[7:0]  
P 51  
P 52  
ID[15:8] - Device ID 2  
ID[15:8]  
NOMINAL_FREQ[7:0]_CNFG - Crys-  
tal Oscillator Frequency Offset Calibra-  
tion Configuration 1  
04  
05  
06  
08  
09  
0A  
NOMINAL_FREQ_VALUE[7:0]  
NOMINAL_FREQ_VALUE[15:8]  
NOMINAL_FREQ_VALUE[23:16]  
P 52  
P 52  
P 53  
P 53  
P 54  
P 55  
NOMINAL_FREQ[15:8]_CNFG - Crys-  
tal Oscillator Frequency Offset Calibra-  
tion Configuration 2  
NOMINAL_FREQ[23:16]_CNFG  
-
Crystal Oscillator Frequency Offset  
Calibration Configuration 3  
PHASE_ALARM_TIME_OUT_CNFG -  
Phase Lock Alarm Time-Out Configu- MULTI_FACTOR[1:0]  
ration  
TIME_OUT_VALUE[5:0]  
IN_SONET  
AUTO_EX  
T_SYNC_  
EN  
PH_ALAR  
M_TIMEO  
UT  
INPUT_MODE_CNFG - Input Mode  
Configuration  
EXT_SYN  
C_EN  
REVERTIV  
E_MODE  
SYNC_FREQ[1:0]  
-
_SDH  
DIFFERENTIAL_IN_OUT_OSCI_CNF  
G - Differential Input / Output Port &  
Master Clock Configuration  
OSC_EDG OUT1_PE  
-
-
-
-
-
-
E
CL_LVDS  
MON_SW_PBO_CNFG - Frequency  
Monitor, Input Clock Selection & PBO  
Control  
LOS_FLA  
G_TO_TD  
O
FREQ_MO  
N_HARD_  
EN  
FREQ_MO  
N_CLK  
ULTR_FAS  
T_SW  
PBO_FRE  
Z
0B  
7E  
EXT_SW  
PBO_EN  
-
P 56  
P 57  
PROTECTION_CNFG - Register Pro-  
tection Mode Configuration  
PROTECTION_DATA[7:0]  
Interrupt Registers  
INTERRUPT_CNFG - Interrupt Config-  
uration  
0C  
-
-
-
-
-
-
HZ_EN  
INT_POL  
P 58  
Programming Information  
47  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Table 31: Register List and Map (Continued)  
Address  
Reference  
Page  
Register Name  
(Hex)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTERRUPTS1_STS - Interrupt Status  
0D  
1
-
-
-
-
IN2_CMOS IN1_CMOS  
-
-
-
P 58  
T0_OPER T0_MAIN_  
ATING_MO REF_FAIL  
INTERRUPTS2_STS - Interrupt Status  
2
0E  
-
-
-
-
-
-
-
P 59  
DE  
ED  
INTERRUPTS3_STS - Interrupt Status EX_SYNC  
3
0F  
10  
-
-
-
-
-
-
-
-
-
P 59  
P 60  
_ALARM  
-
INTERRUPTS1_ENABLE_CNFG  
Interrupt Control 1  
-
-
-
IN2_CMOS IN1_CMOS  
T0_OPER T0_MAIN_  
ATING_MO REF_FAIL  
INTERRUPTS2_ENABLE_CNFG  
Interrupt Control 2  
11  
12  
-
-
-
-
-
-
-
-
-
P 60  
P 61  
DE  
ED  
INTERRUPTS3_ENABLE_CNFG  
Interrupt Control 3  
- EX_SYNC  
_ALARM  
-
-
-
-
Input Clock Frequency & Priority Configuration Registers  
IN1_CMOS_CNFG - CMOS Input DIRECT_D  
16  
17  
23  
24  
25  
LOCK_8K  
LOCK_8K  
-
BUCKET_SEL[1:0]  
BUCKET_SEL[1:0]  
IN_FREQ[3:0]  
IN_FREQ[3:0]  
P 62  
P 63  
P 64  
P 64  
P 65  
Clock 1 Configuration  
IV  
IN2_CMOS_CNFG - CMOS Input DIRECT_D  
Clock 2 Configuration  
IV  
-
PRE_DIV_CH_CNFG - DivN Divider  
Channel Selection  
-
-
PRE_DIV_CH_VALUE[3:0]  
PRE_DIVN[7:0]_CNFG - DivN Divider  
Division Factor Configuration 1  
PRE_DIVN_VALUE[7:0]  
PRE_DIVN[14:8]_CNFG  
Divider Division Factor Configuration 2  
-
DivN  
-
PRE_DIVN_VALUE[14:8]  
IN1_IN2_CMOS_SEL_PRIORITY_CN  
FG - CMOS Input Clock 1 & 2 Priority  
Configuration  
27  
IN2_CMOS_SEL_PRIORITY[3:0]  
IN1_CMOS_SEL_PRIORITY[3:0]  
P 66  
Input Clock Quality Monitoring Configuration & Status Registers  
FREQ_MON_FACTOR_CNFG - Fac-  
tor of Frequency Monitor Configuration  
2E  
2F  
-
-
-
-
-
-
-
-
FREQ_MON_FACTOR[3:0]  
P 67  
P 67  
ALL_FREQ_MON_THRESHOLD_CN  
FG - Frequency Monitor Threshold for  
All Input Clocks Configuration  
ALL_FREQ_HARD_THRESHOLD[3:0]  
UPPER_THRESHOLD_0_CNFG  
-
31  
32  
Upper Threshold for Leaky Bucket  
Configuration 0  
UPPER_THRESHOLD_0_DATA[7:0]  
P 68  
P 68  
LOWER_THRESHOLD_0_CNFG  
-
Lower Threshold for Leaky Bucket  
Configuration 0  
LOWER_THRESHOLD_0_DATA[7:0]  
BUCKET_SIZE_0_DATA[7:0]  
BUCKET_SIZE_0_CNFG  
- Bucket  
33  
34  
P 68  
P 69  
Size for Leaky Bucket Configuration 0  
DECAY_RATE_0_CNFG - Decay Rate  
for Leaky Bucket Configuration 0  
DECAY_RATE_0_DATA  
[1:0]  
-
-
-
-
-
-
UPPER_THRESHOLD_1_CNFG  
-
35  
36  
Upper Threshold for Leaky Bucket  
Configuration 1  
UPPER_THRESHOLD_1_DATA[7:0]  
LOWER_THRESHOLD_1_DATA[7:0]  
P 69  
P 69  
LOWER_THRESHOLD_1_CNFG  
-
Lower Threshold for Leaky Bucket  
Configuration 1  
Programming Information  
48  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Table 31: Register List and Map (Continued)  
Address  
Reference  
Page  
Register Name  
(Hex)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BUCKET_SIZE_1_CNFG  
Size for Leaky Bucket Configuration 1  
- Bucket  
37  
38  
BUCKET_SIZE_1_DATA[7:0]  
P 70  
DECAY_RATE_1_CNFG - Decay Rate  
for Leaky Bucket Configuration 1  
DECAY_RATE_1_DATA  
[1:0]  
-
-
-
-
-
-
P 70  
P 70  
UPPER_THRESHOLD_2_CNFG  
Upper Threshold for Leaky Bucket  
Configuration 2  
-
39  
UPPER_THRESHOLD_2_DATA[7:0]  
LOWER_THRESHOLD_2_CNFG  
-
3A  
Lower Threshold for Leaky Bucket  
Configuration 2  
LOWER_THRESHOLD_2_DATA[7:0]  
BUCKET_SIZE_2_DATA[7:0]  
P 71  
BUCKET_SIZE_2_CNFG  
- Bucket  
3B  
3C  
P 71  
P 71  
Size for Leaky Bucket Configuration 2  
DECAY_RATE_2_CNFG - Decay Rate  
for Leaky Bucket Configuration 2  
DECAY_RATE_2_DATA  
[1:0]  
-
-
-
-
-
-
UPPER_THRESHOLD_3_CNFG  
-
3D  
3E  
Upper Threshold for Leaky Bucket  
Configuration 3  
UPPER_THRESHOLD_3_DATA[7:0]  
P 72  
P 72  
LOWER_THRESHOLD_3_CNFG  
-
Lower Threshold for Leaky Bucket  
Configuration 3  
LOWER_THRESHOLD_3_DATA[7:0]  
BUCKET_SIZE_3_DATA[7:0]  
BUCKET_SIZE_3_CNFG  
- Bucket  
3F  
40  
P 72  
P 73  
Size for Leaky Bucket Configuration 3  
DECAY_RATE_3_CNFG - Decay Rate  
for Leaky Bucket Configuration 3  
DECAY_RATE_3_DATA  
[1:0]  
-
-
-
-
-
-
-
-
-
-
IN_FREQ_READ_CH_CNFG - Input  
Clock Frequency Read Channel  
Selection  
41  
42  
IN_FREQ_READ_CH[3:0]  
P 73  
P 73  
IN_FREQ_READ_STS - Input Clock  
Frequency Read Value  
IN_FREQ_VALUE[7:0]  
IN2_CMOS  
IN2_CMOS IN2_CMOS  
_FREQ_H _NO_ACTI  
ARD_ALA VITY_ALA  
IN1_CMOS IN1_CMOS  
_FREQ_H _NO_ACTI  
ARD_ALA VITY_ALA  
IN1_CMOS  
_PH_LOC  
K_ALARM  
IN1_IN2_CMOS_STS - CMOS Input  
Clock 1 & 2 Status  
44  
-
-
_PH_LOC  
K_ALARM  
-
P 74  
RM  
RM  
RM  
RM  
T0 DPLL Input Clock Selection Registers  
INPUT_VALID1_STS - Input Clocks  
Validity 1  
4A  
4E  
4F  
50  
-
-
-
IN2_CMOS IN1_CMOS  
-
-
P 75  
P 75  
P 76  
P 76  
PRIORITY_TABLE1_STS  
Status 1  
-
Priority  
HIGHEST_PRIORITY_VALIDATED[3:0]  
CURRENTLY_SELECTED_INPUT[3:0]  
PRIORITY_TABLE2_STS  
Status 2  
-
Priority  
SECOND_HIGHEST_PRIORITY_VALIDATED[3:0  
]
-
-
-
-
-
-
-
-
T0_INPUT_SEL_CNFG - T0 Selected  
Input Clock Configuration  
T0_INPUT_SEL[3:0]  
T0 DPLL State Machine Control Registers  
EX_SYNC  
_ALARM_  
MON  
T0_DPLL_  
SOFT_FRE  
Q_ALARM  
OPERATING_STS - DPLL Operating  
Status  
T0_DPLL_  
LOCK  
52  
53  
-
-
-
-
T0_DPLL_OPERATING_MODE[2:0]  
T0_OPERATING_MODE[2:0]  
P 77  
P 78  
T0_OPERATING_MODE_CNFG - T0  
DPLL Operating Mode Configuration  
-
-
-
Programming Information  
49  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Table 31: Register List and Map (Continued)  
Address  
Reference  
Page  
Register Name  
(Hex)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
T0 DPLL & T0/T4 APLL Configuration Registers  
T0_GSM_OBSAI_16E1 T0_12E1_24T1_E3_T3  
T0_DPLL_APLL_PATH_CNFG - T0  
DPLL & APLL Path Configuration  
55  
T0_APLL_PATH[3:0]  
P 79  
P 80  
_16T1_SEL[1:0]  
_SEL[1:0]  
T0_DPLL_START_BW_DAMPING_C  
56  
57  
58  
59  
5A  
NFG - T0 DPLL Start Bandwidth & T0_DPLL_START_DAMPING[2:0]  
T0_DPLL_START_BW[4:0]  
Damping Factor Configuration  
T0_DPLL_ACQ_BW_DAMPING_CNF  
G - T0 DPLL Acquisition Bandwidth & T0_DPLL_ACQ_DAMPING[2:0]  
Damping Factor Configuration  
T0_DPLL_ACQ_BW[4:0]  
P 81  
P 82  
P 82  
P 83  
T0_DPLL_LOCKED_BW_DAMPING_  
CNFG - T0 DPLL Locked Bandwidth & T0_DPLL_LOCKED_DAMPING[2:0]  
Damping Factor Configuration  
T0_DPLL_LOCKED_BW[4:0]  
T0_BW_OVERSHOOT_CNFG - T0  
DPLL Bandwidth Overshoot Configu-  
ration  
AUTO_BW  
_SEL  
-
-
-
T0_LIMT  
-
-
-
PHASE_LOSS_COARSE_LIMIT_CNF COARSE_  
G - Phase Loss Coarse Detector Limit PH_LOS_L WIDE_EN  
Configuration IMT_EN  
MULTI_PH  
_8K_4K_2  
K_EN  
MULTI_PH  
_APP  
PH_LOS_COARSE_LIMT[3:0]  
PHASE_LOSS_FINE_LIMIT_CNFG - FINE_PH_  
Phase Loss Fine Detector Limit Con- LOS_LIMT  
FAST_LOS  
_SW  
5B  
5C  
5D  
-
-
-
PH_LOS_FINE_LIMT[2:0]  
P 84  
P 85  
P 85  
figuration  
_EN  
T0_HOLDOVER_MODE_CNFG - T0 MAN_HOL AUTO_AV  
READ_AV TEMP_HOLDOVER_M  
FAST_AVG  
-
-
DPLL Holdover Mode Configuration  
DOVER  
G
G
ODE[1:0]  
T0_HOLDOVER_FREQ[7:0]_CNFG -  
T0 DPLL Holdover Frequency Config-  
uration 1  
T0_HOLDOVER_FREQ[7:0]  
T0_HOLDOVER_FREQ[15:8]  
T0_HOLDOVER_FREQ[23:16]  
T0_HOLDOVER_FREQ[15:8]_CNFG  
- T0 DPLL Holdover Frequency Con-  
figuration 2  
5E  
5F  
P 86  
P 86  
T0_HOLDOVER_FREQ[23:16]_CNFG  
- T0 DPLL Holdover Frequency Con-  
figuration 3  
T4_APLL_PATH_CNFG - T4 APLL  
Path Configuration  
60  
62  
63  
64  
65  
66  
67  
68  
69  
T4_APLL_PATH[3:0]  
-
CURRENT_DPLL_FREQ[7:0]  
CURRENT_DPLL_FREQ[15:8]  
CURRENT_DPLL_FREQ[23:16]  
DPLL_FREQ_SOFT_LIMT[6:0]  
DPLL_FREQ_HARD_LIMT[7:0]  
-
P 86  
P 87  
P 87  
P 87  
P 88  
P 88  
P 88  
P 89  
P 89  
CURRENT_DPLL_FREQ[7:0]_STS  
DPLL Current Frequency Status 1  
-
CURRENT_DPLL_FREQ[15:8]_STS -  
DPLL Current Frequency Status 2  
CURRENT_DPLL_FREQ[23:16]_STS  
- DPLL Current Frequency Status 3  
DPLL_FREQ_SOFT_LIMIT_CNFG - FREQ_LIM  
DPLL Soft Limit Configuration  
T_PH_LOS  
DPLL_FREQ_HARD_LIMIT[7:0]_CNF  
G - DPLL Hard Limit Configuration 1  
DPLL_FREQ_HARD_LIMIT[15:8]_CN  
FG - DPLL Hard Limit Configuration 2  
DPLL_FREQ_HARD_LIMT[15:8]  
CURRENT_PH_DATA[7:0]  
CURRENT_PH_DATA[15:8]  
CURRENT_DPLL_PHASE[7:0]_STS -  
DPLL Current Phase Status 1  
CURRENT_DPLL_PHASE[15:8]_STS  
- DPLL Current Phase Status 2  
Programming Information  
50  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Table 31: Register List and Map (Continued)  
Address  
Reference  
Page  
Register Name  
(Hex)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
T0_T4_APLL_BW_CNFG - T0 / T4  
APLL Bandwidth Configuration  
6A  
-
-
T0_APLL_BW[1:0]  
-
-
T4_APLL_BW[1:0]  
P 89  
Output Configuration Registers  
OUT2_FREQ_CNFG - Output Clock 2  
Frequency Configuration  
6D  
OUT2_PATH_SEL[3:0]  
OUT2_DIVIDER[3:0]  
OUT1_DIVIDER[3:0]  
P 90  
P 90  
P 91  
P 91  
P 92  
OUT1_FREQ_CNFG - Output Clock 1  
Frequency Configuration  
71  
OUT1_PATH_SEL[3:0]  
OUT1_INV_CNFG - Output Clock 1  
Invert Configuration  
72  
-
-
-
-
-
-
-
-
-
-
OUT1_INV  
-
-
-
OUT2_INV_CNFG - Output Clock 2  
Invert Configuration  
73  
-
-
OUT2_INV  
8K_PUL  
-
-
FR_SYNC_CNFG - Frame Sync Out- IN_2K_4K_  
put Configuration  
8K_PUL_P  
OSITION  
74  
8K_EN  
8K_INV  
8K_INV  
PBO & Phase Offset Control Registers  
PHASE_MON_PBO_CNFG - Phase  
Transient Monitor & PBO Configura-  
tion  
IN_NOISE  
_WINDOW  
PH_MON_ PH_MON_  
-
78  
PH_TR_MON_LIMT[3:0]  
P 93  
EN  
PBO_EN  
Synchronization Configuration Registers  
SYNC_MONITOR_CNFG - Sync Mon- SYNC_BY  
7C  
7D  
SYNC_MON_LIMT[2:0]  
-
-
-
-
P 94  
P 94  
itor Configuration  
PASS  
SYNC_PHASE_CNFG - Sync Phase  
Configuration  
-
-
-
SYNC_PH2[1:0]  
SYNC_PH1[1:0]  
6.2  
REGISTER DESCRIPTION  
6.2.1  
GLOBAL CONTROL REGISTERS  
ID[7:0] - Device ID 1  
Address: 00H  
Type: Read  
Default Value: 10001000  
7
6
5
4
3
2
1
0
ID7  
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
Bit  
Name  
ID[7:0]  
Description  
7 - 0  
Refer to the description of the ID[15:8] bits (b7~0, 01H).  
Programming Information  
51  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
ID[15:8] - Device ID 2  
Address: 01H  
Type: Read  
Default Value: 00010001  
7
6
5
4
3
2
1
0
ID15  
ID14  
ID13  
ID12  
ID11  
ID10  
ID9  
ID8  
Bit  
Name  
ID[15:8]  
Description  
The value in the ID[15:0] bits are pre-set, representing the identification number for the IDT82V3202.  
7 - 0  
NOMINAL_FREQ[7:0]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 1  
Address: 04H  
Type: Read / Write  
Default Value: 00000000  
7
6
5
4
3
2
1
0
NOMINAL_FRE  
Q_VALUE7  
NOMINAL_FRE  
Q_VALUE6  
NOMINAL_FRE  
Q_VALUE5  
NOMINAL_FRE  
Q_VALUE4  
NOMINAL_FRE  
Q_VALUE3  
NOMINAL_FRE  
Q_VALUE2  
NOMINAL_FRE  
Q_VALUE1  
NOMINAL_FRE  
Q_VALUE0  
Bit  
Name  
Description  
7 - 0 NOMINAL_FREQ_VALUE[7:0] Refer to the description of the NOMINAL_FREQ_VALUE[23:16] bits (b7~0, 06H).  
NOMINAL_FREQ[15:8]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 2  
Address: 05H  
Type: Read / Write  
Default Value: 00000000  
7
6
5
4
3
2
1
0
NOMINAL_FRE  
Q_VALUE15  
NOMINAL_FRE  
Q_VALUE14  
NOMINAL_FRE  
Q_VALUE13  
NOMINAL_FRE  
Q_VALUE12  
NOMINAL_FRE  
Q_VALUE11  
NOMINAL_FRE  
Q_VALUE10  
NOMINAL_FRE  
Q_VALUE9  
NOMINAL_FRE  
Q_VALUE8  
Bit  
Name  
Description  
7 - 0 NOMINAL_FREQ_VALUE[15:8] Refer to the description of the NOMINAL_FREQ_VALUE[23:16] bits (b7~0, 06H).  
Programming Information  
52  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
NOMINAL_FREQ[23:16]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 3  
Address: 06H  
Type: Read / Write  
Default Value: 00000000  
7
6
5
4
3
2
1
0
NOMINAL_FRE  
Q_VALUE23  
NOMINAL_FRE  
Q_VALUE22  
NOMINAL_FRE  
Q_VALUE21  
NOMINAL_FRE  
Q_VALUE20  
NOMINAL_FRE  
Q_VALUE19  
NOMINAL_FRE  
Q_VALUE18  
NOMINAL_FRE  
Q_VALUE17  
NOMINAL_FRE  
Q_VALUE16  
Bit  
Name  
Description  
The NOMINAL_FREQ_VALUE[23:0] bits represent a 2’s complement signed integer. If the value is multiplied by  
0.0000884, the calibration value for the master clock in ppm will be gotten.  
For example, the frequency offset on OSCI is +3 ppm. Though -3 ppm should be compensated, the calibration value is  
7 - 0 NOMINAL_FREQ_VALUE[23:16] calculated as +3 ppm:  
3 ÷ 0.0000884 = 33937 (Dec.) = 8490 (Hex);  
So ‘008490’ should be written into these bits.  
The calibration range is within ±741 ppm.  
PHASE_ALARM_TIME_OUT_CNFG - Phase Lock Alarm Time-Out Configuration  
Address: 08H  
Type: Read / Write  
Default Value: 00110010  
7
6
5
4
3
2
1
0
MULTI_FACTO  
R1  
MULTI_FACTO  
R0  
TIME_OUT_VA  
LUE5  
TIME_OUT_VA  
LUE4  
TIME_OUT_VA  
LUE3  
TIME_OUT_VA  
LUE2  
TIME_OUT_VA  
LUE1  
TIME_OUT_VAL  
UE0  
Bit  
Name  
Description  
These bits determine a factor which has a relationship with a period in seconds. A phase lock alarm will be raised if the T0  
selected input clock is not locked in T0 DPLL within this period. If the PH_ALARM_TIMEOUT bit (b5, 09H) is ‘1’, the  
phase lock alarm will be cleared after this period (starting from when the alarm is raised). Refer to the description of the  
TIME_OUT_VALUE[5:0] bits (b5~0, 08H).  
00: 2 (default)  
01: 4  
7 - 6  
MULTI_FACTOR[1:0]  
10: 8  
11: 16  
These bits represent an unsigned integer. If the value in these bits is multiplied by the value in the MULTI_FACTOR[1:0]  
bits (b7~6, 08H), a period in seconds will be gotten.  
5 - 0  
TIME_OUT_VALUE[5:0] A phase lock alarm will be raised if the T0 selected input clock is not locked in T0 DPLL within this period. If the  
PH_ALARM_TIMEOUT bit (b5, 09H) is ‘1’, the phase lock alarm will be cleared after this period (starting from when the  
alarm is raised).  
Programming Information  
53  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
INPUT_MODE_CNFG - Input Mode Configuration  
Address: 09H  
Type: Read / Write  
Default Value: 10100X10  
7
6
5
4
3
2
1
-
0
AUTO_EXT_SY  
NC_EN  
PH_ALARM_TI  
MEOUT  
IN_SONET_SD  
H
REVERTIVE_M  
ODE  
EXT_SYNC_EN  
SYNC_FREQ1  
SYNC_FREQ0  
Bit  
Name  
Description  
This bit is valid only when the SYNC_BYPASS bit (b7, 7CH) is ‘0’.  
Refer to the description of the EXT_SYNC_EN bit (b6, 09H).  
7
AUTO_EXT_SYNC_EN  
EXT_SYNC_EN  
This bit is valid only when the SYNC_BYPASS bit (b7, 7CH) is ‘0’.  
This bit, together with the AUTO_EXT_SYNC_EN bit (b7, 09H), determines whether the selected frame sync input signal is  
enabled to synchronize the frame sync output signals.  
AUTO_EXT_SYNC_EN EXT_SYNC_EN  
Synchronization  
6
don’t-care  
0
1
1
Disabled (default)  
Enabled  
0
1
Disabled  
This bit determines how to clear the phase lock alarm.  
0: The phase lock alarm will be cleared when a ‘1’ is written to the corresponding INn_CMOS_PH_LOCK_ALARM bit (n = 1  
PH_ALARM_TIMEOUT or 2) (b4/0, 44H).  
1: The phase lock alarm will be cleared after a period (= TIME_OUT_VALUE[5:0] (b5~0, 08H) X MULTI_FACTOR[1:0]  
5
(b7~6, 08H) in second) which starts from when the alarm is raised. (default)  
These bits set the frequency of the frame sync signals input on the EX_SYNC1 ~ EX_SYNC2 pins.  
00: 8 kHz (default)  
4 - 3  
SYNC_FREQ[1:0] 01: 8 kHz.  
10: 4 kHz.  
11: 2 kHz.  
This bit selects the SDH or SONET network type.  
0: SDH. The DPLL required clock is 2.048 MHz when the IN_FREQ[3:0] bits (b3~0, 16H, 17H) are ‘0001’ and the T0 DPLL  
output from the 16E1/16T1 path is 16E1.  
1: SONET. The DPLL required clock is 1.544 MHz when the IN_FREQ[3:0] bits (b3~0, 16H, 17H) are ‘0001’ and the T0  
DPLL output from the 16E1/16T1 path is 16T1.  
The default value of this bit is determined by the SONET/SDH pin during reset.  
Reserved.  
2
IN_SONET_SDH  
-
1
0
This bit selects Revertive or Non-Revertive switch.  
REVERTIVE_MODE 0: Non-Revertive switch. (default)  
1: Revertive switch.  
Programming Information  
54  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
DIFFERENTIAL_IN_OUT_OSCI_CNFG - Differential Input / Output Port & Master Clock Configuration  
Address: 0AH  
Type: Read / Write  
Default Value: XXXXX00X  
7
-
6
-
5
-
4
-
3
-
2
1
0
-
OSC_EDGE  
OUT1_PECL_LVDS  
Bit  
Name  
Description  
7 - 3  
-
Reserved.  
This bit selects a better active edge of the master clock.  
0: The rising edge. (default)  
2
OSC_EDGE  
1: The falling edge.  
This bit selects a port technology for OUT1.  
1
0
OUT1_PECL_LVDS 0: LVDS. (default)  
1: PECL.  
-
Reserved  
Programming Information  
55  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
MON_SW_PBO_CNFG - Frequency Monitor, Input Clock Selection & PBO Control  
Address: 0BH  
Type: Read / Write  
Default Value: 100X01X1  
7
6
5
4
3
2
1
-
0
FREQ_MON_C LOS_FLAG_TO  
LK _TDO  
FREQ_MON_H  
ARD_EN  
ULTR_FAST_SW  
EXT_SW  
PBO_FREZ  
PBO_EN  
Bit  
Name  
Description  
The bit selects a reference clock for input clock frequency monitoring.  
0: The output of T0 DPLL.  
1: The master clock. (default)  
7
FREQ_MON_CLK  
LOS_FLAG_TO_TDO  
ULTR_FAST_SW  
EXT_SW  
The bit determines whether the interrupt of T0 selected input clock fail - is reported by the TDO pin.  
0: Not reported. TDO pin is used as JTAG test data output which complies with IEEE 1149.1. (default)  
1: Reported. TDO pin mimics the state of the T0_MAIN_REF_FAILED bit (b6, 0EH) and does not strictly comply with IEEE  
1149.1.  
6
5
4
This bit determines whether the T0 selected input clock is valid when missing 2 consecutive clock cycles or more.  
0: Valid. (default)  
1: Invalid.  
This bit determines the T0 input clock selection.  
0: Forced selection or Automatic selection, as controlled by the T0_INPUT_SEL[3:0] bits (b3~0, 50H).  
1: External Fast selection.  
The default value of this bit is determined by the FF_SRCSW pin during reset.  
This bit is valid only when the PBO is enabled by the PBO_EN bit (b2, 0BH). It determines whether PBO is frozen at the cur-  
rent phase offset when a PBO event is triggered.  
0: Not frozen. (default)  
3
PBO_FREZ  
1: Frozen. Further PBO events are ignored and the current phase offset is maintained.  
This bit determines whether PBO is enabled when the T0 selected input clock switch or the T0 DPLL exiting from Holdover  
mode or Free-Run mode occurs.  
0: Disabled.  
1: Enabled. (default)  
2
1
PBO_EN  
-
Reserved.  
This bit determines whether the frequency hard alarm is enabled when the frequency of the input clock with respect to the  
reference clock is above the frequency hard alarm threshold. The reference clock can be the output of T0 DPLL or the mas-  
0
FREQ_MON_HARD_EN ter clock, as determined by the FREQ_MON_CLK bit (b7, 0BH).  
0: Disabled.  
1: Enabled. (default)  
Programming Information  
56  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
PROTECTION_CNFG - Register Protection Mode Configuration  
Address: 7EH  
Type: Read / Write  
Default Value: 10000101  
7
6
5
4
3
2
1
0
PROTECTION_ PROTECTION_ PROTECTION_ PROTECTION_ PROTECTION_ PROTECTION_ PROTECTION_  
DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1  
PROTECTION_  
DATA0  
Bit  
Name  
Description  
These bits select a register write protection mode.  
00000000 - 10000100, 10000111 - 11111111: Protected mode. No other registers can be written except this register.  
7 - 0  
PROTECTION_DATA[7:0] 10000101: Fully Unprotected mode. All the writable registers can be written. (default)  
10000110: Single Unprotected mode. One more register can be written besides this register. After write operation (not  
including writing a ‘1’ to clear the bit to ‘0’), the device automatically switches to Protected mode.  
Programming Information  
57  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
6.2.2  
INTERRUPT REGISTERS  
INTERRUPT_CNFG - Interrupt Configuration  
Address: 0CH  
Type: Read / Write  
Default Value: XXXXXX10  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
HZ_EN  
INT_POL  
Bit  
Name  
Description  
7 - 2  
-
Reserved.  
This bit determines the output characteristics of the INT_REQ pin.  
0: The output on the INT_REQ pin is high/low when the interrupt is active; the output is the opposite when the interrupt is inactive.  
1: The output on the INT_REQ pin is high/low when the interrupt is active; the output is in high impedance state when the interrupt  
is inactive. (default)  
1
0
HZ_EN  
This bit determines the active level on the INT_REQ pin for an active interrupt indication.  
0: Active low. (default)  
1: Active high.  
INT_POL  
INTERRUPTS1_STS - Interrupt Status 1  
Address: 0DH  
Type: Read / Write  
Default Value: XXXX11XX  
7
-
6
-
5
-
4
-
3
2
1
-
0
-
IN2_CMOS  
IN1_CMOS  
Bit  
Name  
Description  
7 - 4  
-
Reserved.  
This bit indicates the validity changes (from ‘valid’ to ‘invalid’ or from ‘invalid’ to ‘valid’) for the corresponding INn_CMOS; i.e.,  
whether there is a transition (from ‘0’ to ‘1’ or from ‘1’ to ‘0’) on the corresponding INn_CMOS bit (b3/2, 4AH). Here n is 2 or 1.  
3 - 2  
1 - 0  
INn_CMOS 0: Has not changed.  
1: Has changed. (default)  
This bit is cleared by writing a ‘1’.  
-
Reserved.  
Programming Information  
58  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
INTERRUPTS2_STS - Interrupt Status 2  
Address: 0EH  
Type: Read / Write  
Default Value: 00XXXXXX  
7
6
5
-
4
-
3
-
2
-
1
-
0
-
T0_OPERATING  
_MODE  
T0_MAIN_REF_F  
AILED  
Bit  
Name  
Description  
This bit indicates the operating mode switch for T0 DPLL; i.e., whether the value in the  
T0_DPLL_OPERATING_MODE[2:0] bits (b2~0, 52H) changes.  
7
T0_OPERATING_MODE 0: Has not switched. (default)  
1: Has switched.  
This bit is cleared by writing a ‘1’.  
This bit indicates whether the T0 selected input clock has failed. The T0 selected input clock fails when its validity  
changes from ‘valid’ to ‘invalid’; i.e., when there is a transition from ‘1’ to ‘0’ on the corresponding INn_CMOS bit (4AH).  
T0_MAIN_REF_FAILED 0: Has not failed. (default)  
6
1: Has failed.  
This bit is cleared by writing a ‘1’.  
5 - 0  
-
Reserved.  
INTERRUPTS3_STS - Interrupt Status 3  
Address: 0FH  
Type: Read / Write  
Default Value: 1XXXXXXX  
7
6
-
5
-
4
-
3
-
2
-
1
-
0
-
EX_SYNC_ALARM  
Bit  
Name  
Description  
This bit indicates whether an external sync alarm is raised; i.e., whether there is a transition from ‘0’ to ‘1’ on the  
EX_SYNC_ALARM_MON bit (b7, 52H).  
7
EX_SYNC_ALARM 0: Has not occurred.  
1: Has occurred. (default)  
This bit is cleared by writing a ‘1’.  
6 - 0  
-
Reserved.  
Programming Information  
59  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
INTERRUPTS1_ENABLE_CNFG - Interrupt Control 1  
Address: 10H  
Type: Read / Write  
Default Value: XXXX00XX  
7
-
6
-
5
-
4
-
3
2
1
-
0
-
IN2_CMOS  
IN1_CMOS  
Bit  
Name  
Description  
7 - 4  
3 - 2  
1 - 0  
-
Reserved.  
This bit controls whether the interrupt is enabled to be reported on the INT_REQ pin when the input clock validity changes (from  
‘valid’ to ‘invalid’ or from ‘invalid’ to ‘valid’), i.e., when the corresponding INn_CMOS bit (b3/2, 0DH) is ‘1’. Here n is 2 or 1.  
0: Disabled. (default)  
1: Enabled.  
INn_CMOS  
-
Reserved.  
INTERRUPTS2_ENABLE_CNFG - Interrupt Control 2  
Address: 11H  
Type: Read / Write  
Default Value: 00XXXXXX  
7
6
5
-
4
-
3
-
2
-
1
-
0
-
T0_OPERATING  
_MODE  
T0_MAIN_REF_F  
AILED  
Bit  
Name  
Description  
This bit controls whether the interrupt is enabled to be reported on the INT_REQ pin when the T0 DPLL operating mode  
switches, i.e., when the T0_OPERATING_MODE bit (b7, 0EH) is ‘1’.  
0: Disabled. (default)  
1: Enabled.  
7
T0_OPERATING_MODE  
This bit controls whether the interrupt is enabled to be reported on the INT_REQ pin when the T0 selected input clock  
has failed; i.e., when the T0_MAIN_REF_FAILED bit (b6, 0EH) is ‘1’.  
0: Disabled. (default)  
1: Enabled.  
6
T0_MAIN_REF_FAILED  
-
5 - 0  
Reserved.  
Programming Information  
60  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
INTERRUPTS3_ENABLE_CNFG - Interrupt Control 3  
Address: 12H  
Type: Read / Write  
Default Value: 0XXXXXXX  
7
6
-
5
-
4
-
3
-
2
-
1
-
0
-
EX_SYNC_ALARM  
Bit  
Name  
Description  
This bit controls whether the interrupt is enabled to be reported on the INT_REQ pin when an external sync alarm has  
occurred, i.e., when the EX_SYNC_ALARM bit (b7, 0FH) is ‘1’.  
0: Disabled. (default)  
1: Enabled.  
7
EX_SYNC_ALARM  
-
6 - 0  
Reserved.  
Programming Information  
61  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
6.2.3  
INPUT CLOCK FREQUENCY & PRIORITY CONFIGURATION REGISTERS  
IN1_CMOS_CNFG - CMOS Input Clock 1 Configuration  
Address: 16H  
Type: Read / Write  
Default Value: 00000000  
7
6
5
4
3
2
1
0
DIRECT_DIV  
LOCK_8K  
BUCKET_SEL1  
BUCKET_SEL0  
IN_FREQ3  
IN_FREQ2  
IN_FREQ1  
IN_FREQ0  
Bit  
Name  
Description  
7
DIRECT_DIV  
Refer to the description of the LOCK_8K bit (b6, 16H).  
This bit, together with the DIRECT_DIV bit (b7, 16H), determines whether the DivN Divider or the Lock 8k Divider is used for  
IN1_CMOS:  
DIRECT_DIV bit  
LOCK_8K bit  
Used Divider  
6
LOCK_8K  
0
0
1
1
0
1
0
1
Both bypassed (default)  
Lock 8k Divider  
DivN Divider  
Reserved  
These bits select one of the four groups of leaky bucket configuration registers for IN1_CMOS:  
00: Group 0; the addresses of the configuration registers are 31H ~ 34H. (default)  
5 - 4  
BUCKET_SEL[1:0] 01: Group 1; the addresses of the configuration registers are 35H ~ 38H.  
10: Group 2; the addresses of the configuration registers are 39H ~ 3CH.  
11: Group 3; the addresses of the configuration registers are 3DH ~ 40H.  
These bits set the DPLL required frequency for IN1_CMOS:  
0000: 8 kHz. (default)  
0001: 1.544 MHz (when the IN_SONET_SDH bit (b2, 09H) is ‘1’) / 2.048 MHz (when the IN_SONET_SDH bit (b2, 09H) is ‘0’).  
0010: 6.48 MHz.  
0011: 19.44 MHz.  
0100: 25.92 MHz.  
0101: 38.88 MHz.  
3 - 0  
IN_FREQ[3:0]  
0110 ~ 1000: Reserved.  
1001: 2 kHz.  
1010: 4 kHz.  
1011 ~ 1111: Reserved.  
For IN1_CMOS, the required frequency should not be set higher than that of the input clock.  
Programming Information  
62  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
IN2_CMOS_CNFG - CMOS Input Clock 2 Configuration  
Address: 17H  
Type: Read / Write  
Default Value: 00000000  
7
6
5
4
3
2
1
0
DIRECT_DIV  
LOCK_8K  
BUCKET_SEL1  
BUCKET_SEL0  
IN_FREQ3  
IN_FREQ2  
IN_FREQ1  
IN_FREQ0  
Bit  
Name  
DIRECT_DIV Refer to the description of the LOCK_8K bit (b6, 17H).  
Description  
7
This bit, together with the DIRECT_DIV bit (b7, 17H), determines whether the DivN Divider or the Lock 8k Divider is used for  
IN2_CMOS:  
DIRECT_DIV bit  
LOCK_8K bit  
Used Divider  
0
0
1
1
0
1
0
1
Both bypassed (default)  
Lock 8k Divider  
DivN Divider  
6
LOCK_8K  
Reserved  
These bits select one of the four groups of leaky bucket configuration registers for IN2_CMOS:  
00: Group 0; the addresses of the configuration registers are 31H ~ 34H. (default)  
5 - 4  
BUCKET_SEL[1:0] 01: Group 1; the addresses of the configuration registers are 35H ~ 38H.  
10: Group 2; the addresses of the configuration registers are 39H ~ 3CH.  
11: Group 3; the addresses of the configuration registers are 3DH ~ 40H.  
These bits set the DPLL required frequency for IN2_CMOS:  
0000: 8 kHz. (default)  
0001: 1.544 MHz (when the IN_SONET_SDH bit (b2, 09H) is ‘1’) / 2.048 MHz (when the IN_SONET_SDH bit (b2, 09H) is ‘0’).  
0010: 6.48 MHz.  
0011: 19.44 MHz.  
0100: 25.92 MHz.  
0101: 38.88 MHz.  
3 - 0  
IN_FREQ[3:0]  
0110 ~ 1000: Reserved.  
1001: 2 kHz.  
1010: 4 kHz.  
1011 ~ 1111: Reserved.  
For the IN2_CMOS, the required frequency should not be set higher than that of the input clock.  
Programming Information  
63  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
PRE_DIV_CH_CNFG - DivN Divider Channel Selection  
Address: 23H  
Type: Read / Write  
Default Value: XXXX0000  
7
-
6
-
5
-
4
-
3
2
1
0
PRE_DIV_CH_VALUE3 PRE_DIV_CH_VALUE2 PRE_DIV_CH_VALUE1 PRE_DIV_CH_VALUE0  
Bit  
Name  
Description  
7 - 4  
-
Reserved.  
This register is an indirect address register for Register 24H and 25H.  
These bits select an input clock. The value set in the PRE_DIVN_VALUE[14:0] bits (25H, 24H) is available for the  
selected input clock.  
0000: Reserved. (default)  
0001, 0010: Reserved.  
0011: IN1_CMOS.  
3 - 0  
PRE_DIV_CH_VALUE[3:0]  
0100: IN2_CMOS.  
0101 ~ 1111: Reserved.  
PRE_DIVN[7:0]_CNFG - DivN Divider Division Factor Configuration 1  
Address: 24H  
Type: Read / Write  
Default Value: 00000000  
7
6
5
4
3
2
1
0
PRE_DIVN_VA  
LUE7  
PRE_DIVN_VA  
LUE6  
PRE_DIVN_VA  
LUE5  
PRE_DIVN_VA  
LUE4  
PRE_DIVN_VA  
LUE3  
PRE_DIVN_VA  
LUE2  
PRE_DIVN_VA  
LUE1  
PRE_DIVN_VA  
LUE0  
Bit  
Name  
Description  
7 - 0  
PRE_DIVN_VALUE[7:0] Refer to the description of the PRE_DIVN_VALUE[14:8] bits (b6~0, 25H).  
Programming Information  
64  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
PRE_DIVN[14:8]_CNFG - DivN Divider Division Factor Configuration 2  
Address: 25H  
Type: Read / Write  
Default Value: X0000000  
7
-
6
5
4
3
2
1
0
PRE_DIVN_VAL PRE_DIVN_VAL PRE_DIVN_VAL PRE_DIVN_VAL PRE_DIVN_VAL PRE_DIVN_VAL PRE_DIVN_VAL  
UE14  
UE13  
UE12  
UE11  
UE10  
UE9  
UE8  
Bit  
Name  
Description  
7
-
Reserved.  
If the value in the PRE_DIVN_VALUE[14:0] bits is plus 1, the division factor for an input clock will be gotten. The input  
clock is selected by the PRE_DIV_CH_VALUE[3:0] bits (b3~0, 23H).  
A value from ‘0’ to ‘4BEF’ (Hex) can be written into, corresponding to a division factor from 1 to 19440. The others are  
reserved. So the DivN Divider only supports an input clock whose frequency is lower than (<) 155.52 MHz.  
6 - 0  
PRE_DIVN_VALUE[14:8]  
The division factor setting should observe the following order:  
1. Write the lower eight bits of the division factor to the PRE_DIVN_VALUE[7:0] bits;  
2. Write the higher eight bits of the division factor to the PRE_DIVN_VALUE[14:8] bits.  
Programming Information  
65  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
IN1_IN2_CMOS_SEL_PRIORITY_CNFG - CMOS Input Clock 1 & 2 Priority Configuration  
Address: 27H  
Type: Read / Write  
Default Value: 00110010  
7
6
5
4
3
2
1
0
IN2_CMOS_SE  
L_PRIORITY3  
IN2_CMOS_SE  
L_PRIORITY2  
IN2_CMOS_SE  
L_PRIORITY1  
IN2_CMOS_SE  
L_PRIORITY0  
IN1_CMOS_SE  
L_PRIORITY3  
IN1_CMOS_SE  
L_PRIORITY2  
IN1_CMOS_SE  
L_PRIORITY1  
IN1_CMOS_SE  
L_PRIORITY0  
Bit  
Name  
Description  
These bits set the priority of the corresponding IN2_CMOS.  
0000: Disable IN2_CMOS for automatic selection.  
0001: Priority 1.  
0010: Priority 2.  
0011: Priority 3. (default)  
0100: Priority 4.  
0101: Priority 5.  
0110: Priority 6.  
7 - 4  
IN2_CMOS_SEL_PRIORITY[3:0] 0111: Priority 7.  
1000: Priority 8.  
1001: Priority 9.  
1010: Priority 10.  
1011: Priority 11.  
1100: Priority 12.  
1101: Priority 13.  
1110: Priority 14.  
1111: Priority 15.  
These bits set the priority of the corresponding IN1_CMOS.  
0000: Disable IN1_CMOS for automatic selection.  
0001: Priority 1.  
0010: Priority 2. (default)  
0011: Priority 3.  
0100: Priority 4.  
0101: Priority 5.  
0110: Priority 6.  
3 - 0  
IN1_CMOS_SEL_PRIORITY[3:0] 0111: Priority 7.  
1000: Priority 8.  
1001: Priority 9.  
1010: Priority 10.  
1011: Priority 11.  
1100: Priority 12.  
1101: Priority 13.  
1110: Priority 14.  
1111: Priority 15.  
Programming Information  
66  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
6.2.4  
INPUT CLOCK QUALITY MONITORING CONFIGURATION & STATUS REGISTERS  
FREQ_MON_FACTOR_CNFG - Factor of Frequency Monitor Configuration  
Address: 2EH  
Type: Read / Write  
Default Value: XXXX1011  
7
-
6
-
5
-
4
-
3
2
1
0
FREQ_MON_F  
ACTOR3  
FREQ_MON_F  
ACTOR2  
FREQ_MON_F  
ACTOR1  
FREQ_MON_F  
ACTOR0  
Bit  
7 - 4  
Name  
Description  
-
Reserved.  
These bits determine a factor. The factor has a relationship with the frequency hard alarm threshold in ppm (refer to  
the description of the ALL_FREQ_HARD_THRESHOLD[3:0] bits (b3~0, 2FH)) and with the frequency of the input  
clock with respect to the master clock in ppm (refer to the description of the IN_FREQ_VALUE[7:0] bits (b7~0, 42H)).  
The factor represents the accuracy of the frequency monitor and should be set according to the requirements of differ-  
ent applications.  
0000: 0.0032.  
0001: 0.0064.  
0010: 0.0127.  
0011: 0.0257.  
0100: 0.0514.  
0101: 0.103.  
3 - 0  
FREQ_MON_FACTOR[3:0]  
0110: 0.206.  
0111: 0.412.  
1000: 0.823.  
1001: 1.646.  
1010: 3.292.  
1011: 3.81. (default)  
1100 - 1111: 4.6.  
ALL_FREQ_MON_THRESHOLD_CNFG - Frequency Monitor Threshold for All Input Clocks Configuration  
Address: 2FH  
Type: Read / Write  
Default Value: XXXX0011  
7
-
6
-
5
-
4
-
3
2
1
0
ALL_FREQ_HARD_ ALL_FREQ_HARD_ ALL_FREQ_HARD_ ALL_FREQ_HARD_  
THRESHOLD3 THRESHOLD2 THRESHOLD1 THRESHOLD0  
Bit  
Name  
Description  
7 - 4  
-
Reserved.  
These bits represent an unsigned integer. The frequency hard alarm threshold in ppm can be calculated as  
follows:  
3 - 0  
ALL_FREQ_HARD_THRESHOLD[3:0]  
Frequency Hard Alarm Threshold (ppm) = (ALL_FREQ_HARD_THRESHOLD[3:0] + 1) X  
FREQ_MON_FACTOR[3:0] (b3~0, 2EH)  
This threshold is symmetrical about zero.  
Programming Information  
67  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
UPPER_THRESHOLD_0_CNFG - Upper Threshold for Leaky Bucket Configuration 0  
Address: 31H  
Type: Read / Write  
Default Value: 00000110  
7
6
5
4
3
2
1
0
UPPER_THRE  
SHOLD_0_DAT  
A7  
UPPER_THRE  
SHOLD_0_DAT  
A6  
UPPER_THRE  
SHOLD_0_DAT  
A5  
UPPER_THRE  
SHOLD_0_DAT  
A4  
UPPER_THRE  
SHOLD_0_DAT  
A3  
UPPER_THRE  
SHOLD_0_DAT  
A2  
UPPER_THRE  
SHOLD_0_DAT  
A1  
UPPER_THRE  
SHOLD_0_DAT  
A0  
Bit  
Name  
Description  
These bits set an upper threshold for the internal leaky bucket accumulator. When the number of the accumu-  
lated events is above this threshold, a no-activity alarm is raised.  
7 - 0  
UPPER_THRESHOLD_0_DATA[7:0]  
LOWER_THRESHOLD_0_CNFG - Lower Threshold for Leaky Bucket Configuration 0  
Address: 32H  
Type: Read / Write  
Default Value: 00000100  
7
6
5
4
3
2
1
0
LOWER_THRE  
SHOLD_0_DAT  
A7  
LOWER_THRE  
SHOLD_0_DAT  
A6  
LOWER_THRE  
SHOLD_0_DAT  
A5  
LOWER_THRE  
SHOLD_0_DAT  
A4  
LOWER_THRE  
SHOLD_0_DAT  
A3  
LOWER_THRE  
SHOLD_0_DAT  
A2  
LOWER_THRE  
SHOLD_0_DAT  
A1  
LOWER_THRE  
SHOLD_0_DAT  
A0  
Bit  
Name  
Description  
These bits set a lower threshold for the internal leaky bucket accumulator. When the number of the accumulated  
events is below this threshold, the no-activity alarm is cleared.  
7 - 0  
LOWER_THRESHOLD_0_DATA[7:0]  
BUCKET_SIZE_0_CNFG - Bucket Size for Leaky Bucket Configuration 0  
Address: 33H  
Type: Read / Write  
Default Value: 00001000  
7
6
5
4
3
2
1
0
BUCKET_SIZE  
_0_DATA7  
BUCKET_SIZE  
_0_DATA6  
BUCKET_SIZE  
_0_DATA5  
BUCKET_SIZE  
_0_DATA4  
BUCKET_SIZE  
_0_DATA3  
BUCKET_SIZE  
_0_DATA2  
BUCKET_SIZE  
_0_DATA1  
BUCKET_SIZE  
_0_DATA0  
Bit  
Name  
Description  
These bits set a bucket size for the internal leaky bucket accumulator. If the number of the accumulated events reach  
the bucket size, the accumulator will stop increasing even if further events are detected.  
7 - 0  
BUCKET_SIZE_0_DATA[7:0]  
Programming Information  
68  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
DECAY_RATE_0_CNFG - Decay Rate for Leaky Bucket Configuration 0  
Address: 34H  
Type: Read / Write  
Default Value: XXXXXX01  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
DECAY_RATE_ DECAY_RATE_  
0_DATA1 0_DATA0  
Bit  
Name  
Description  
7 - 2  
-
Reserved.  
These bits set a decay rate for the internal leaky bucket accumulator:  
00: The accumulator decreases by 1 in every 128 ms with no event detected.  
1 - 0  
DECAY_RATE_0_DATA[1:0] 01: The accumulator decreases by 1 in every 256 ms with no event detected. (default)  
10: The accumulator decreases by 1 in every 512 ms with no event detected.  
11: The accumulator decreases by 1 in every 1024 ms with no event detected.  
UPPER_THRESHOLD_1_CNFG - Upper Threshold for Leaky Bucket Configuration 1  
Address: 35H  
Type: Read / Write  
Default Value: 00000110  
7
6
5
4
3
2
1
0
UPPER_THRE  
SHOLD_1_DAT  
A7  
UPPER_THRE  
SHOLD_1_DAT  
A6  
UPPER_THRE  
SHOLD_1_DAT  
A5  
UPPER_THRE  
SHOLD_1_DAT  
A4  
UPPER_THRE  
SHOLD_1_DAT  
A3  
UPPER_THRE  
SHOLD_1_DAT  
A2  
UPPER_THRE  
SHOLD_1_DAT  
A1  
UPPER_THRE  
SHOLD_1_DAT  
A0  
Bit  
Name  
Description  
These bits set an upper threshold for the internal leaky bucket accumulator. When the number of the accumu-  
lated events is above this threshold, a no-activity alarm is raised.  
7 - 0  
UPPER_THRESHOLD_1_DATA[7:0]  
LOWER_THRESHOLD_1_CNFG - Lower Threshold for Leaky Bucket Configuration 1  
Address: 36H  
Type: Read / Write  
Default Value: 00000100  
7
6
5
4
3
2
1
0
LOWER_THRE  
SHOLD_1_DAT  
A7  
LOWER_THRE  
SHOLD_1_DAT  
A6  
LOWER_THRE  
SHOLD_1_DAT  
A5  
LOWER_THRE  
SHOLD_1_DAT  
A4  
LOWER_THRE  
SHOLD_1_DAT  
A3  
LOWER_THRE  
SHOLD_1_DAT  
A2  
LOWER_THRE  
SHOLD_1_DAT  
A1  
LOWER_THRE  
SHOLD_1_DAT  
A0  
Bit  
Name  
Description  
These bits set a lower threshold for the internal leaky bucket accumulator. When the number of the accumulated  
events is below this threshold, the no-activity alarm is cleared.  
7 - 0  
LOWER_THRESHOLD_1_DATA[7:0]  
Programming Information  
69  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
BUCKET_SIZE_1_CNFG - Bucket Size for Leaky Bucket Configuration 1  
Address: 37H  
Type: Read / Write  
Default Value: 00001000  
7
6
5
4
3
2
1
0
BUCKET_SIZE  
_1_DATA7  
BUCKET_SIZE  
_1_DATA6  
BUCKET_SIZE  
_1_DATA5  
BUCKET_SIZE  
_1_DATA4  
BUCKET_SIZE  
_1_DATA3  
BUCKET_SIZE  
_1_DATA2  
BUCKET_SIZE  
_1_DATA1  
BUCKET_SIZE  
_1_DATA0  
Bit  
Name  
Description  
These bits set a bucket size for the internal leaky bucket accumulator. If the number of the accumulated events reach  
the bucket size, the accumulator will stop increasing even if further events are detected.  
7 - 0  
BUCKET_SIZE_1_DATA[7:0]  
DECAY_RATE_1_CNFG - Decay Rate for Leaky Bucket Configuration 1  
Address: 38H  
Type: Read / Write  
Default Value: XXXXXX01  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
DECAY_RATE_  
1_DATA1  
DECAY_RATE_  
1_DATA0  
Bit  
Name  
Description  
7 - 2  
-
Reserved.  
These bits set a decay rate for the internal leaky bucket accumulator:  
00: The accumulator decreases by 1 in every 128 ms with no event detected.  
1 - 0  
DECAY_RATE_1_DATA[1:0] 01: The accumulator decreases by 1 in every 256 ms with no event detected. (default)  
10: The accumulator decreases by 1 in every 512 ms with no event detected.  
11: The accumulator decreases by 1 in every 1024 ms with no event detected.  
UPPER_THRESHOLD_2_CNFG - Upper Threshold for Leaky Bucket Configuration 2  
Address: 39H  
Type: Read / Write  
Default Value: 00000110  
7
6
5
4
3
2
1
0
UPPER_THRE  
SHOLD_2_DAT  
A7  
UPPER_THRE  
SHOLD_2_DAT  
A6  
UPPER_THRE  
SHOLD_2_DAT  
A5  
UPPER_THRE  
SHOLD_2_DAT  
A4  
UPPER_THRE  
SHOLD_2_DAT  
A3  
UPPER_THRE  
SHOLD_2_DAT  
A2  
UPPER_THRE  
SHOLD_2_DAT  
A1  
UPPER_THRE  
SHOLD_2_DAT  
A0  
Bit  
Name  
Description  
These bits set an upper threshold for the internal leaky bucket accumulator. When the number of the accumu-  
lated events is above this threshold, a no-activity alarm is raised.  
7 - 0  
UPPER_THRESHOLD_2_DATA[7:0]  
Programming Information  
70  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
LOWER_THRESHOLD_2_CNFG - Lower Threshold for Leaky Bucket Configuration 2  
Address: 3AH  
Type: Read / Write  
Default Value: 00000100  
7
6
5
4
3
2
1
0
LOWER_THRE  
SHOLD_2_DAT  
A7  
LOWER_THRE  
SHOLD_2_DAT  
A6  
LOWER_THRE  
SHOLD_2_DAT  
A5  
LOWER_THRE  
SHOLD_2_DAT  
A4  
LOWER_THRE  
SHOLD_2_DAT  
A3  
LOWER_THRE  
SHOLD_2_DAT  
A2  
LOWER_THRE  
SHOLD_2_DAT  
A1  
LOWER_THRE  
SHOLD_2_DAT  
A0  
Bit  
Name  
Description  
These bits set a lower threshold for the internal leaky bucket accumulator. When the number of the accumu-  
lated events is below this threshold, the no-activity alarm is cleared.  
7 - 0  
LOWER_THRESHOLD_2_DATA[7:0]  
BUCKET_SIZE_2_CNFG - Bucket Size for Leaky Bucket Configuration 2  
Address: 3BH  
Type: Read / Write  
Default Value: 00001000  
7
6
5
4
3
2
1
0
BUCKET_SIZE  
_2_DATA7  
BUCKET_SIZE  
_2_DATA6  
BUCKET_SIZE  
_2_DATA5  
BUCKET_SIZE  
_2_DATA4  
BUCKET_SIZE  
_2_DATA3  
BUCKET_SIZE  
_2_DATA2  
BUCKET_SIZE  
_2_DATA1  
BUCKET_SIZE  
_2_DATA0  
Bit  
Name  
Description  
These bits set a bucket size for the internal leaky bucket accumulator. If the number of the accumulated events reach  
the bucket size, the accumulator will stop increasing even if further events are detected.  
7 - 0  
BUCKET_SIZE_2_DATA[7:0]  
DECAY_RATE_2_CNFG - Decay Rate for Leaky Bucket Configuration 2  
Address: 3CH  
Type: Read / Write  
Default Value: XXXXXX01  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
DECAY_RATE_  
2_DATA1  
DECAY_RATE_  
2_DATA0  
Bit  
Name  
Description  
7 - 2  
-
Reserved.  
These bits set a decay rate for the internal leaky bucket accumulator:  
00: The accumulator decreases by 1 in every 128 ms with no event detected.  
1 - 0  
DECAY_RATE_2_DATA[1:0] 01: The accumulator decreases by 1 in every 256 ms with no event detected. (default)  
10: The accumulator decreases by 1 in every 512 ms with no event detected.  
11: The accumulator decreases by 1 in every 1024 ms with no event detected.  
Programming Information  
71  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
UPPER_THRESHOLD_3_CNFG - Upper Threshold for Leaky Bucket Configuration 3  
Address: 3DH  
Type: Read / Write  
Default Value: 00000110  
7
6
5
4
3
2
1
0
UPPER_THRE  
SHOLD_3_DAT  
A7  
UPPER_THRE  
SHOLD_3_DAT  
A6  
UPPER_THRE  
SHOLD_3_DAT  
A5  
UPPER_THRE  
SHOLD_3_DAT  
A4  
UPPER_THRE  
SHOLD_3_DAT  
A3  
UPPER_THRE  
SHOLD_3_DAT  
A2  
UPPER_THRE  
SHOLD_3_DAT  
A1  
UPPER_THRE  
SHOLD_3_DAT  
A0  
Bit  
Name  
Description  
These bits set an upper threshold for the internal leaky bucket accumulator. When the number of the accumu-  
lated events is above this threshold, a no-activity alarm is raised.  
7 - 0  
UPPER_THRESHOLD_3_DATA[7:0]  
LOWER_THRESHOLD_3_CNFG - Lower Threshold for Leaky Bucket Configuration 3  
Address: 3EH  
Type: Read / Write  
Default Value: 00000100  
7
6
5
4
3
2
1
0
LOWER_THRE  
SHOLD_3_DAT  
A7  
LOWER_THRE  
SHOLD_3_DAT  
A6  
LOWER_THRE  
SHOLD_3_DAT  
A5  
LOWER_THRE  
SHOLD_3_DAT  
A4  
LOWER_THRE  
SHOLD_3_DAT  
A3  
LOWER_THRE  
SHOLD_3_DAT  
A2  
LOWER_THRE  
SHOLD_3_DAT  
A1  
LOWER_THRE  
SHOLD_3_DAT  
A0  
Bit  
Name  
Description  
These bits set a lower threshold for the internal leaky bucket accumulator. When the number of the accumu-  
lated events is below this threshold, the no-activity alarm is cleared.  
7 - 0  
LOWER_THRESHOLD_3_DATA[7:0]  
BUCKET_SIZE_3_CNFG - Bucket Size for Leaky Bucket Configuration 3  
Address: 3FH  
Type: Read / Write  
Default Value: 00001000  
7
6
5
4
3
2
1
0
BUCKET_SIZE  
_3_DATA7  
BUCKET_SIZE  
_3_DATA6  
BUCKET_SIZE  
_3_DATA5  
BUCKET_SIZE  
_3_DATA4  
BUCKET_SIZE  
_3_DATA3  
BUCKET_SIZE  
_3_DATA2  
BUCKET_SIZE  
_3_DATA1  
BUCKET_SIZE  
_3_DATA0  
Bit  
Name  
Description  
These bits set a bucket size for the internal leaky bucket accumulator. If the number of the accumulated events reach  
the bucket size, the accumulator will stop increasing even if further events are detected.  
7 - 0  
BUCKET_SIZE_3_DATA[7:0]  
Programming Information  
72  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
DECAY_RATE_3_CNFG - Decay Rate for Leaky Bucket Configuration 3  
Address: 40H  
Type: Read / Write  
Default Value: XXXXXX01  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
DECAY_RATE_  
3_DATA1  
DECAY_RATE_  
3_DATA0  
Bit  
Name  
Description  
7 - 2  
-
Reserved.  
These bits set a decay rate for the internal leaky bucket accumulator:  
00: The accumulator decreases by 1 in every 128 ms with no event detected.  
1 - 0  
DECAY_RATE_3_DATA[1:0] 01: The accumulator decreases by 1 in every 256 ms with no event detected. (default)  
10: The accumulator decreases by 1 in every 512 ms with no event detected.  
11: The accumulator decreases by 1 in every 1024 ms with no event detected.  
IN_FREQ_READ_CH_CNFG - Input Clock Frequency Read Channel Selection  
Address: 41H  
Type: Read / Write  
Default Value: XXXX0000  
7
-
6
-
5
-
4
-
3
2
1
0
IN_FREQ_READ IN_FREQ_READ IN_FREQ_READ IN_FREQ_READ  
_CH3  
_CH2  
_CH1  
_CH0  
Bit  
Name  
Description  
7 - 4  
-
Reserved.  
These bits select an input clock, the frequency of which with respect to the reference clock can be read.  
0000: Reserved. (default)  
0001, 0010: Reserved.  
0011: IN1_CMOS.  
3 - 0  
IN_FREQ_READ_CH[3:0]  
0100: IN2_CMOS.  
0101 ~ 1111: Reserved.  
IN_FREQ_READ_STS - Input Clock Frequency Read Value  
Address: 42H  
Type: Read  
Default Value: 00000000  
7
6
5
4
3
2
1
0
IN_FREQ_VAL  
UE7  
IN_FREQ_VAL  
UE6  
IN_FREQ_VAL  
UE5  
IN_FREQ_VAL  
UE4  
IN_FREQ_VAL  
UE3  
IN_FREQ_VAL  
UE2  
IN_FREQ_VAL  
UE1  
IN_FREQ_VAL  
UE0  
Bit  
Name  
Description  
These bits represent a 2’s complement signed integer. If the value is multiplied by the value in the  
FREQ_MON_FACTOR[3:0] bits (b3~0, 2EH), the frequency of an input clock with respect to the reference clock in ppm will  
be gotten. The input clock is selected by the IN_FREQ_READ_CH[3:0] bits (b3~0, 41H).  
7 - 0  
IN_FREQ_VALUE[7:0]  
The value in these bits is updated every 16 seconds, starting when an input clock is selected.  
Programming Information  
73  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
IN1_IN2_CMOS_STS - CMOS Input Clock 1 & 2 Status  
Address: 44H  
Type: Read  
Default Value: X110X110  
7
-
6
5
4
3
-
2
1
0
IN2_CMOS_FRE  
Q_HARD_ALAR  
M
IN2_CMOS_NO_  
ACTIVITY_ALAR  
M
IN1_CMOS_FRE  
Q_HARD_ALAR  
M
IN1_CMOS_NO_  
ACTIVITY_ALAR  
M
IN2_CMOS_PH_  
LOCK_ALARM  
IN1_CMOS_PH_  
LOCK_ALARM  
Bit  
Name  
Description  
7
-
Reserved.  
This bit indicates whether IN2_CMOS is in frequency hard alarm status.  
IN2_CMOS_FREQ_HARD_ALARM 0: No frequency hard alarm.  
1: In frequency hard alarm status. (default)  
This bit indicates whether IN2_CMOS is in no-activity alarm status.  
IN2_CMOS_NO_ACTIVITY_ALARM 0: No no-activity alarm.  
6
5
1: In no-activity alarm status. (default)  
This bit indicates whether IN2_CMOS is in phase lock alarm status.  
0: No phase lock alarm. (default)  
1: In phase lock alarm status.  
4
IN2_CMOS_PH_LOCK_ALARM  
-
If the PH_ALARM_TIMEOUT bit (b5, 09H) is ‘0’, this bit is cleared by writing ‘1’ to this bit; if the  
PH_ALARM_TIMEOUT bit (b5, 09H) is ‘1’, this bit is cleared after a period (= TIME_OUT_VALUE[5:0] (b5~0,  
08H) X MULTI_FACTOR[1:0] (b7~6, 08H) in second) which starts from when the alarm is raised.  
3
2
Reserved.  
This bit indicates whether IN1_CMOS is in frequency hard alarm status.  
IN1_CMOS_FREQ_HARD_ALARM 0: No frequency hard alarm.  
1: In frequency hard alarm status. (default)  
This bit indicates whether IN1_CMOS is in no-activity alarm status.  
IN1_CMOS_NO_ACTIVITY_ALARM 0: No no-activity alarm.  
1
0
1: In no-activity alarm status. (default)  
This bit indicates whether IN1_CMOS is in phase lock alarm status.  
0: No phase lock alarm. (default)  
1: In phase lock alarm status.  
If the PH_ALARM_TIMEOUT bit (b5, 09H) is ‘0’, this bit is cleared by writing ‘1’ to this bit; if the  
PH_ALARM_TIMEOUT bit (b5, 09H) is ‘1’, this bit is cleared after a period (= TIME_OUT_VALUE[5:0] (b5~0,  
08H) X MULTI_FACTOR[1:0] (b7~6, 08H) in second) which starts from when the alarm is raised.  
IN1_CMOS_PH_LOCK_ALARM  
Programming Information  
74  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
6.2.5  
T0 DPLL INPUT CLOCK SELECTION REGISTERS  
INPUT_VALID1_STS - Input Clocks Validity 1  
Address: 4AH  
Type: Read  
Default Value: XXXX00XX  
7
-
6
-
5
-
4
-
3
2
1
-
0
-
IN2_CMOS  
IN1_CMOS  
Bit  
Name  
Description  
7 - 4  
-
Reserved.  
This bit indicates the validity of the corresponding INn_CMOS. Here n is 2 or 1.  
3 - 2  
1 - 0  
INn_CMOS 0: Invalid. (default)  
1: Valid.  
-
Reserved.  
PRIORITY_TABLE1_STS - Priority Status 1  
Address: 4EH  
Type: Read  
Default Value: 00000000  
7
6
5
4
3
2
1
0
HIGHEST_PRI  
ORITY_VALIDA  
TED3  
HIGHEST_PRI  
ORITY_VALIDA ORITY_VALIDA  
TED2 TED1  
HIGHEST_PRI  
HIGHEST_PRI  
ORITY_VALIDA  
TED0  
CURRENTLY_S CURRENTLY_S CURRENTLY_S CURRENTLY_S  
ELECTED_INP  
UT3  
ELECTED_INP  
UT2  
ELECTED_INP  
UT1  
ELECTED_INP  
UT0  
Bit  
Name  
Description  
These bits indicate a qualified input clock with the highest priority.  
0000: No input clock is qualified. (default)  
0001, 0010: Reserved.  
0011: IN1_CMOS.  
0100: IN2_CMOS.  
7 - 4  
HIGHEST_PRIORITY_VALIDATED[3:0]  
CURRENTLY_SELECTED_INPUT[3:0]  
0101 ~ 1111: Reserved.  
These bits indicate the T0 selected input clock.  
0000: No input clock is selected. (default)  
0001, 0010: Reserved.  
3 - 0  
0011: IN1_CMOS.  
0100: IN2_CMOS.  
0101 ~ 1111: Reserved.  
Programming Information  
75  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
PRIORITY_TABLE2_STS - Priority Status 2  
Address: 4FH  
Type: Read  
Default Value: XXXX0000  
7
-
6
-
5
-
4
-
3
2
1
0
SECOND_HIGH SECOND_HIGH SECOND_HIGH SECOND_HIGH  
EST_PRIORITY EST_PRIORITY EST_PRIORITY EST_PRIORITY  
_VALIDATED3  
_VALIDATED2  
_VALIDATED1  
_VALIDATED0  
Bit  
Name  
Description  
7 - 4  
-
Reserved.  
These bits indicate a qualified input clock with the second highest priority.  
0000: No input clock is qualified. (default)  
0001, 0010: Reserved.  
3 - 0  
SECOND_HIGHEST_PRIORITY_VALIDATED[3:0]  
0011: IN1_CMOS.  
0100: IN2_CMOS.  
0101 ~ 1111: Reserved.  
T0_INPUT_SEL_CNFG - T0 Selected Input Clock Configuration  
Address: 50H  
Type: Read / Write  
Default Value: XXXX0000  
7
-
6
-
5
-
4
-
3
2
1
0
T0_INPUT_SEL3 T0_INPUT_SEL2 T0_INPUT_SEL1 T0_INPUT_SEL0  
Bit  
Name  
Description  
7 - 4  
-
Reserved.  
This bit determines T0 input clock selection. It is valid only when the EXT_SW bit (b4, 0BH) is ‘0’.  
0000: Automatic selection. (default)  
0001, 0010: Reserved.  
3 - 0  
T0_INPUT_SEL[3:0]  
0011: Forced selection - IN1_CMOS is selected.  
0100: Forced selection - IN2_CMOS is selected.  
0101 ~ 1111: Reserved.  
Programming Information  
76  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
6.2.6  
T0 DPLL STATE MACHINE CONTROL REGISTERS  
OPERATING_STS - DPLL Operating Status  
Address: 52H  
Type: Read  
Default Value: 1X0X0001  
7
6
-
5
4
-
3
2
1
0
EX_SYNC_ALA  
RM_MON  
T0_DPLL_SOFT  
_FREQ_ALARM  
T0_DPLL_LO  
CK  
T0_DPLL_OPER T0_DPLL_OPER T0_DPLL_OPER  
ATING_MODE2  
ATING_MODE1  
ATING_MODE0  
Bit  
Name  
Description  
This bit indicates whether the selected frame sync input signal is in external sync alarm status.  
0: No external sync alarm.  
1: In external sync alarm status. (default)  
7
6
EX_SYNC_ALARM_MON  
-
Reserved.  
This bit indicates whether the T0 DPLL is in soft alarm status.  
5
4
3
T0_DPLL_SOFT_FREQ_ALARM 0: No T0 DPLL soft alarm. (default)  
1: In T0 DPLL soft alarm status.  
-
Reserved.  
This bit indicates the T0 DPLL locking status.  
0: Unlocked. (default)  
T0_DPLL_LOCK  
1: Locked.  
These bits indicate the current operating mode of T0 DPLL.  
000: Reserved.  
001: Free-Run. (default)  
010: Holdover.  
2 - 0  
T0_DPLL_OPERATING_MODE[2:0] 011: Reserved.  
100: Locked.  
101: Pre-Locked2.  
110: Pre-Locked.  
111: Lost-Phase.  
Programming Information  
77  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
T0_OPERATING_MODE_CNFG - T0 DPLL Operating Mode Configuration  
Address: 53H  
Type: Read / Write  
Default Value: XXXXX000  
7
-
6
-
5
-
4
-
3
-
2
1
0
T0_OPERATING_MODE2 T0_OPERATING_MODE1 T0_OPERATING_MODE0  
Bit  
Name  
Description  
7 - 3  
-
Reserved.  
These bits control the T0 DPLL operating mode.  
000: Automatic. (default)  
001: Forced - Free-Run.  
010: Forced - Holdover.  
2 - 0  
T0_OPERATING_MODE[2:0] 011: Reserved.  
100: Forced - Locked.  
101: Forced - Pre-Locked2.  
110: Forced - Pre-Locked.  
111: Forced - Lost-Phase.  
Programming Information  
78  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
6.2.7  
T0 DPLL & T0/T4 APLL CONFIGURATION REGISTERS  
T0_DPLL_APLL_PATH_CNFG - T0 DPLL & APLL Path Configuration  
Address: 55H  
Type: Read / Write  
Default Value: 00000X0X  
7
6
5
4
3
2
1
0
T0_APLL_PATH T0_APLL_PA  
TH2  
T0_APLL_PA  
TH1  
T0_APLL_PA  
TH0  
T0_GSM_OBSAI_  
16E1_16T1_SEL1  
T0_GSM_OBSAI_  
16E1_16T1_SEL0  
T0_12E1_24T1_  
E3_T3_SEL1  
T0_12E1_24T1_  
E3_T3_SEL0  
3
Bit  
Name  
Description  
These bits select an input to the T0 APLL.  
0000: The output of T0 DPLL 77.76 MHz path. (default)  
0001: The output of T0 DPLL 12E1/24T1/E3/T3 path.  
0010: The output of T0 DPLL 16E1/16T1 path.  
0011: The output of T0 DPLL GSM/OBSAI/16E1/16T1 path.  
0100 ~ 1111: Reserved.  
7 - 4  
T0_APLL_PATH[3:0]  
These bits select an output clock from the T0 DPLL GSM/OBSAI/16E1/16T1 path.  
00: 16E1.  
01: 16T1.  
3 - 2  
T0_GSM_OBSAI_16E1_16T1_SEL[1:0] 10: GSM.  
11: OBSAI.  
The default value of the T0_GSM_OBSAI_16E1_16T1_SEL0 bit is determined by the SONET/SDH pin dur-  
ing reset.  
These bits select an output clock from the T0 DPLL 12E1/24T1/E3/T3 path.  
00: 12E1.  
01: 24T1.  
1 - 0  
T0_12E1_24T1_E3_T3_SEL[1:0]  
10: E3.  
11: T3.  
The default value of the T0_12E1_24T1_E3_T3_SEL0 bit is determined by the SONET/SDH pin during  
reset.  
Programming Information  
79  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
T0_DPLL_START_BW_DAMPING_CNFG - T0 DPLL Start Bandwidth & Damping Factor Configuration  
Address: 56H  
Type: Read / Write  
Default Value: 01101111  
7
6
5
4
3
2
1
0
T0_DPLL_STA  
RT_DAMPING2  
T0_DPLL_STA  
RT_DAMPING1  
T0_DPLL_STA  
RT_DAMPING0  
T0_DPLL_STA  
RT_BW4  
T0_DPLL_STA  
RT_BW3  
T0_DPLL_STA  
RT_BW2  
T0_DPLL_STA  
RT_BW1  
T0_DPLL_STA  
RT_BW0  
Bit  
Name  
Description  
These bits set the starting damping factor for T0 DPLL.  
000: Reserved.  
001: 1.2.  
010: 2.5.  
011: 5. (default)  
100: 10.  
7 - 5  
T0_DPLL_START_DAMPING[2:0]  
101: 20.  
110, 111: Reserved.  
These bits set the starting bandwidth for T0 DPLL.  
00XXX: Reserved.  
01000: 0.1 Hz.  
01001: 0.3 Hz.  
01010: 0.6 Hz.  
01011: 1.2 Hz.  
01100: 2.5 Hz.  
01101: 4 Hz.  
4 - 0  
T0_DPLL_START_BW[4:0]  
01110: 8 Hz.  
01111: 18 Hz. (default)  
10000: 35 Hz.  
10001: 70 Hz.  
10010: 560 Hz.  
10011 ~ 11111: Reserved.  
Programming Information  
80  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
T0_DPLL_ACQ_BW_DAMPING_CNFG - T0 DPLL Acquisition Bandwidth & Damping Factor Configuration  
Address: 57H  
Type: Read / Write  
Default Value: 01101111  
7
6
5
4
3
2
1
0
T0_DPLL_ACQ  
_DAMPING2  
T0_DPLL_ACQ  
_DAMPING1  
T0_DPLL_ACQ  
_DAMPING0  
T0_DPLL_ACQ  
_BW4  
T0_DPLL_ACQ  
_BW3  
T0_DPLL_ACQ  
_BW2  
T0_DPLL_ACQ  
_BW1  
T0_DPLL_ACQ  
_BW0  
Bit  
Name  
Description  
These bits set the acquisition damping factor for T0 DPLL.  
000: Reserved.  
001: 1.2.  
010: 2.5.  
011: 5. (default)  
100: 10.  
7 - 5  
T0_DPLL_ACQ_DAMPING[2:0]  
101: 20.  
110, 111: Reserved.  
These bits set the acquisition bandwidth for T0 DPLL.  
00XXX: Reserved.  
01000: 0.1 Hz.  
01001: 0.3 Hz.  
01010: 0.6 Hz.  
01011: 1.2 Hz.  
01100: 2.5 Hz.  
01101: 4 Hz.  
4 - 0  
T0_DPLL_ACQ_BW[4:0]  
01110: 8 Hz.  
01111: 18 Hz. (default)  
10000: 35 Hz.  
10001: 70 Hz.  
10010: 560 Hz.  
10011 ~ 11111: Reserved.  
Programming Information  
81  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
T0_DPLL_LOCKED_BW_DAMPING_CNFG - T0 DPLL Locked Bandwidth & Damping Factor Configuration  
Address: 58H  
Type: Read / Write  
Default Value: 01101111  
7
6
5
4
3
2
1
0
T0_DPLL_LOCK T0_DPLL_LOCK T0_DPLL_LOCK  
T0_DPLL_LOC  
KED_BW4  
T0_DPLL_LOC  
KED_BW3  
T0_DPLL_LOC  
KED_BW2  
T0_DPLL_LOC  
KED_BW1  
T0_DPLL_LOC  
KED_BW0  
ED_DAMPING2  
ED_DAMPING1  
ED_DAMPING0  
Bit  
Name  
Description  
These bits set the locked damping factor for T0 DPLL.  
000: Reserved.  
001: 1.2.  
010: 2.5.  
011: 5. (default)  
100: 10.  
7 - 5  
T0_DPLL_LOCKED_DAMPING[2:0]  
101: 20.  
110, 111: Reserved.  
These bits set the locked bandwidth for T0 DPLL.  
00XXX: Reserved.  
01000: 0.1 Hz.  
01001: 0.3 Hz.  
01010: 0.6 Hz.  
01011: 1.2 Hz. (default)  
01100: 2.5 Hz.  
01101: 4 Hz.  
4 - 0  
T0_DPLL_LOCKED_BW[4:0]  
01110: 8 Hz.  
01111: 18 Hz.  
10000: 35 Hz.  
10001: 70 Hz.  
10010: 560 Hz.  
10011 ~ 11111: Reserved.  
T0_BW_OVERSHOOT_CNFG - T0 DPLL Bandwidth Overshoot Configuration  
Address: 59H  
Type: Read / Write  
Default Value: 1XXX1XXX  
7
6
-
5
-
4
-
3
2
-
1
-
0
-
AUTO_BW_SEL  
T0_LIMT  
Bit  
Name  
Description  
This bit determines whether starting or acquisition bandwidth / damping factor is used for T0 DPLL.  
0: The starting and acquisition bandwidths / damping factors are not used. Only the locked bandwidth / damping factor is used  
AUTO_BW_SEL regardless of the T0 DPLL locking stage.  
1: The starting, acquisition or locked bandwidth / damping factor is used automatically depending on different T0 DPLL locking  
7
stages. (default)  
6 - 4  
3
-
Reserved.  
This bit determines whether the integral path value is frozen when the T0 DPLL hard limit is reached.  
0: Not frozen.  
1: Frozen. It will minimize the subsequent overshoot when T0 DPLL is pulling in. (default)  
T0_LIMT  
-
2 - 0  
Reserved.  
Programming Information  
82  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
PHASE_LOSS_COARSE_LIMIT_CNFG - Phase Loss Coarse Detector Limit Configuration  
Address: 5AH  
Type: Read / Write  
Default Value: 10000101  
7
6
5
4
3
2
1
0
COARSE_PH_L  
OS_LIMT_EN  
MULTI_PH_8K_  
4K_2K_EN  
PH_LOS_COA  
RSE_LIMT3  
PH_LOS_COA  
RSE_LIMT2  
PH_LOS_COA  
RSE_LIMT1  
PH_LOS_COA  
RSE_LIMT0  
WIDE_EN  
MULTI_PH_APP  
Bit  
Name  
Description  
This bit controls whether the occurrence of the coarse phase loss will result in the T0 DPLL unlocked.  
COARSE_PH_LOS_LIMT_EN 0: Disabled.  
1: Enabled. (default)  
Refer to the description of the MULTI_PH_8K_4K_2K_EN bit (b4, 5AH).  
7
6
WIDE_EN  
This bit determines whether the PFD output of T0 DPLL is limited to ±1 UI or is limited to the coarse phase limit.  
0: Limited to ±1 UI. (default)  
1: Limited to the coarse phase limit. When the selected input clock is of 2 kHz, 4 kHz or 8 kHz, the coarse phase limit depends  
on the MULTI_PH_8K_4K_2K_EN bit, the WIDE_EN bit and the PH_LOS_COARSE_LIMT[3:0] bits; when the selected input  
clock is of other frequencies but 2 kHz, 4 kHz and 8 kHz, the coarse phase limit depends on the WIDE_EN bit and the  
PH_LOS_COARSE_LIMT[3:0] bits. Refer to the description of the MULTI_PH_8K_4K_2K_EN bit (b4, 5AH) for details.  
5
MULTI_PH_APP  
This bit, together with the WIDE_EN bit (b6, 5AH) and the PH_LOS_COARSE_LIMT[3:0] bits (b3~0, 5AH), determines the  
coarse phase limit when the selected input clock is of 2 kHz, 4 kHz or 8 kHz. When the selected input clock is of other frequen-  
cies but 2 kHz, 4 kHz and 8 kHz, the coarse phase limit depends on the WIDE_EN bit and the PH_LOS_COARSE_LIMT[3:0]  
bits.  
Selected Input Clock MULTI_PH_8K_4K_2K_EN WIDE_EN  
Coarse Phase Limit  
0
don’t-care  
0
±1 UI  
±1 UI  
4
MULTI_PH_8K_4K_2K_EN  
2 kHz, 4 kHz or 8 kHz  
1
set by the PH_LOS_COARSE_LIMT[3:0] bits  
(b3~0, 5AH).  
1
0
1
±1 UI  
other than 2 kHz, 4  
kHz and 8 kHz  
don’t-care  
set by the PH_LOS_COARSE_LIMT[3:0] bits  
(b3~0, 5AH).  
These bit set the coarse phase limit. The limit is used only in some cases. Refer to the description of the  
MULTI_PH_8K_4K_2K_EN bit (b4, 5AH).  
0000: ±1 UI.  
0001: ±3 UI.  
0010: ±7 UI.  
0011: ±15 UI.  
3 - 0 PH_LOS_COARSE_LIMT[3:0] 0100: ±31 UI.  
0101: ±63 UI. (default)  
0110: ±127 UI.  
0111: ±255 UI.  
1000: ±511 UI.  
1001: ±1023 UI.  
1010-1111: Reserved.  
Programming Information  
83  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
PHASE_LOSS_FINE_LIMIT_CNFG - Phase Loss Fine Detector Limit Configuration  
Address: 5BH  
Type: Read / Write  
Default Value: 10XXX010  
7
6
5
-
4
-
3
-
2
1
0
FINE_PH_LOS_  
LIMT_EN  
PH_LOS_FINE  
_LIMT2  
PH_LOS_FINE  
_LIMT1  
PH_LOS_FINE  
_LIMT0  
FAST_LOS_SW  
Bit  
Name  
Description  
This bit controls whether the occurrence of the fine phase loss will result in the T0 DPLL unlocked.  
FINE_PH_LOS_LIMT_EN 0: Disabled.  
1: Enabled. (default)  
This bit controls whether the occurrence of the fast loss will result in the T0 DPLL unlocked.  
7
0: Does not result in the T0 DPLL unlocked. T0 DPLL will enter Temp-Holdover mode automatically. (default)  
1: Results in the T0 DPLL unlocked. T0 DPLL will enter Lost-Phase mode if the T0 DPLL operating mode is switched  
automatically.  
6
FAST_LOS_SW  
5 - 3  
-
Reserved.  
These bits set a fine phase limit.  
000: 0.  
001: ± (45 ° ~ 90 °).  
010: ± (90 ° ~ 180 °). (default)  
2 - 0  
PH_LOS_FINE_LIMT[2:0] 011: ± (180 ° ~ 360 °).  
100: ± (20 ns ~ 25 ns).  
101: ± (60 ns ~ 65 ns).  
110: ± (120 ns ~ 125 ns).  
111: ± (950 ns ~ 955 ns).  
Programming Information  
84  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
T0_HOLDOVER_MODE_CNFG - T0 DPLL Holdover Mode Configuration  
Address: 5CH  
Type: Read / Write  
Default Value: 010001XX  
7
6
5
4
3
2
1
-
0
-
MAN_HOLDOV  
ER  
TEMP_HOLDO  
VER_MODE1  
TEMP_HOLDO  
VER_MODE0  
AUTO_AVG  
FAST_AVG  
READ_AVG  
Bit  
Name  
Description  
7
6
MAN_HOLDOVER  
AUTO_AVG  
Refer to the description of the FAST_AVG bit (b5, 5CH).  
Refer to the description of the FAST_AVG bit (b5, 5CH).  
This bit, together with the AUTO_AVG bit (b6, 5CH) and the MAN_HOLDOVER bit (b7, 5CH), determines a fre-  
quency offset acquiring method in T0 DPLL Holdover Mode.  
MAN_HOLDOVER  
AUTO_AVG  
FAST_AVG  
Frequency Offset Acquiring Method  
5
4
FAST_AVG  
READ_AVG  
0
don’t-care  
Automatic Instantaneous  
Automatic Slow Averaged (default)  
Automatic Fast Averaged  
Manual  
0
1
0
1
1
don’t-care  
This bit controls the holdover frequency offset reading, which is read from the T0_HOLDOVER_FREQ[23:0] bits  
(5FH ~ 5DH).  
0: The value read from the T0_HOLDOVER_FREQ[23:0] bits (5FH ~ 5DH) is equal to the one written to them.  
(default)  
1: The value read from the T0_HOLDOVER_FREQ[23:0] bits (5FH ~ 5DH) is not equal to the one written to them.  
The value is acquired by Automatic Slow Averaged method if the FAST_AVG bit (b5, 5CH) is ‘0’; or is acquired by  
Automatic Fast Averaged method if the FAST_AVG bit (b5, 5CH) is ‘1’.  
These bits determine the frequency offset acquiring method in T0 DPLL Temp-Holdover Mode.  
00: The method is the same as that used in T0 DPLL Holdover mode.  
3 - 2  
1 - 0  
TEMP_HOLDOVER_MODE[1:0] 01: Automatic Instantaneous. (default)  
10: Automatic Fast Averaged.  
11: Automatic Slow Averaged.  
-
Reserved.  
T0_HOLDOVER_FREQ[7:0]_CNFG - T0 DPLL Holdover Frequency Configuration 1  
Address: 5DH  
Type: Read / Write  
Default Value: 00000000  
7
6
5
4
3
2
1
0
T0_HOLDOVER T0_HOLDOVER T0_HOLDOVER  
T0_HOLDOVE  
R_FREQ4  
T0_HOLDOVE  
R_FREQ3  
T0_HOLDOVE  
R_FREQ2  
T0_HOLDOVE  
R_FREQ1  
T0_HOLDOVE  
R_FREQ0  
_FREQ7  
_FREQ6  
_FREQ5  
Bit  
Name  
Description  
7 - 0  
T0_HOLDOVER_FREQ[7:0] Refer to the description of the T0_HOLDOVER_FREQ[23:16] bits (b7~0, 5FH).  
Programming Information  
85  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
T0_HOLDOVER_FREQ[15:8]_CNFG - T0 DPLL Holdover Frequency Configuration 2  
Address: 5EH  
Type: Read / Write  
Default Value: 00000000  
7
6
5
4
3
2
1
0
T0_HOLDOVER T0_HOLDOVER T0_HOLDOVER  
T0_HOLDOVE  
R_FREQ12  
T0_HOLDOVE  
R_FREQ11  
T0_HOLDOVE  
R_FREQ10  
T0_HOLDOVE  
R_FREQ9  
T0_HOLDOVE  
R_FREQ8  
_FREQ15  
_FREQ14  
_FREQ13  
Bit  
Name  
Description  
7 - 0  
T0_HOLDOVER_FREQ[15:8] Refer to the description of the T0_HOLDOVER_FREQ[23:16] bits (b7~0, 5FH).  
T0_HOLDOVER_FREQ[23:16]_CNFG - T0 DPLL Holdover Frequency Configuration 3  
Address: 5FH  
Type: Read / Write  
Default Value: 00000000  
7
6
5
4
3
2
1
0
T0_HOLDOVER T0_HOLDOVER T0_HOLDOVER  
T0_HOLDOVE  
R_FREQ20  
T0_HOLDOVE  
R_FREQ19  
T0_HOLDOVE  
R_FREQ18  
T0_HOLDOVE  
R_FREQ17  
T0_HOLDOVE  
R_FREQ16  
_FREQ23  
_FREQ22  
_FREQ21  
Bit  
Name  
Description  
The T0_HOLDOVER_FREQ[23:0] bits represent a 2’s complement signed integer.  
In T0 DPLL Holdover mode, the value written to these bits multiplied by 0.000011 is the frequency offset set manu-  
ally; the value read from these bits multiplied by 0.000011 is the frequency offset automatically slow or fast aver-  
aged or manually set, as determined by the READ_AVG bit (b4, 5CH) and the FAST_AVG bit (b5, 5CH).  
7 - 0  
T0_HOLDOVER_FREQ[23:16]  
T4_APLL_PATH_CNFG - T4 APLL Path Configuration  
Address: 60H  
Type: Read / Write  
Default Value: 0100XXXX  
7
6
5
4
3
-
2
-
1
-
0
-
T4_APLL_PATH T4_APLL_PA  
TH2  
T4_APLL_PA  
TH1  
T4_APLL_PA  
TH0  
3
Bit  
Name  
Description  
These bits select an input to the T4 APLL.  
0000: The output of T0 DPLL 77.76 MHz path.  
0001: The output of T0 DPLL 12E1/24T1/E3/T3 path.  
0010: The output of T0 DPLL 16E1/16T1 path.  
0011: The output of T0 DPLL GSM/OBSAI/16E1/16T1 path.  
0100 ~ 1111: Reserved.  
7 - 4  
3 - 0  
T4_APLL_PATH[3:0]  
-
Reserved.  
Programming Information  
86  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
CURRENT_DPLL_FREQ[7:0]_STS - DPLL Current Frequency Status 1  
Address: 62H  
Type: Read  
Default Value: 00000000  
7
6
5
4
3
2
1
0
CURRENT_DP  
LL_FREQ7  
CURRENT_DP  
LL_FREQ6  
CURRENT_DP  
LL_FREQ5  
CURRENT_DP  
LL_FREQ4  
CURRENT_DP  
LL_FREQ3  
CURRENT_DP  
LL_FREQ2  
CURRENT_DP  
LL_FREQ1  
CURRENT_DP  
LL_FREQ0  
Bit  
Name  
Description  
7 - 0  
CURRENT_DPLL_FREQ[7:0] Refer to the description of the CURRENT_DPLL_FREQ[23:16] bits (b7~0, 64H).  
CURRENT_DPLL_FREQ[15:8]_STS - DPLL Current Frequency Status 2  
Address: 63H  
Type: Read  
Default Value: 00000000  
7
6
5
4
3
2
1
0
CURRENT_DP  
LL_FREQ15  
CURRENT_DP  
LL_FREQ14  
CURRENT_DP  
LL_FREQ13  
CURRENT_DP  
LL_FREQ12  
CURRENT_DP  
LL_FREQ11  
CURRENT_DP  
LL_FREQ10  
CURRENT_DP  
LL_FREQ9  
CURRENT_DP  
LL_FREQ8  
Bit  
Name  
Description  
7 - 0  
CURRENT_DPLL_FREQ[15:8] Refer to the description of the CURRENT_DPLL_FREQ[23:16] bits (b7~0, 64H).  
CURRENT_DPLL_FREQ[23:16]_STS - DPLL Current Frequency Status 3  
Address: 64H  
Type: Read  
Default Value: 00000000  
7
6
5
4
3
2
1
0
CURRENT_DP  
LL_FREQ23  
CURRENT_DP  
LL_FREQ22  
CURRENT_DP  
LL_FREQ21  
CURRENT_DP  
LL_FREQ20  
CURRENT_DP  
LL_FREQ19  
CURRENT_DP  
LL_FREQ18  
CURRENT_DP  
LL_FREQ17  
CURRENT_DP  
LL_FREQ16  
Bit  
Name  
Description  
The CURRENT_DPLL_FREQ[23:0] bits represent a 2’s complement signed integer. If the value in these bits is mul-  
7 - 0  
CURRENT_DPLL_FREQ[23:16] tiplied by 0.000011, the current frequency offset of the T0 DPLL output in ppm with respect to the master clock will  
be gotten.  
Programming Information  
87  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
DPLL_FREQ_SOFT_LIMIT_CNFG - DPLL Soft Limit Configuration  
Address: 65H  
Type: Read / Write  
Default Value: 10001100  
7
6
5
4
3
2
1
0
FREQ_LIMT_P  
H_LOS  
DPLL_FREQ_S  
OFT_LIMT6  
DPLL_FREQ_S  
OFT_LIMT5  
DPLL_FREQ_S DPLL_FREQ_S DPLL_FREQ_S DPLL_FREQ_S DPLL_FREQ_S  
OFT_LIMT4 OFT_LIMT3 OFT_LIMT2 OFT_LIMT1 OFT_LIMT0  
Bit  
Name  
Description  
This bit determines whether the T0 DPLL in hard alarm status will result in it unlocked.  
7
FREQ_LIMT_PH_LOS  
0: Disabled.  
1: Enabled. (default)  
These bits represent an unsigned integer. If the value is multiplied by 0.724, the DPLL soft limit for T0 path in ppm will  
DPLL_FREQ_SOFT_LIMT[6:0] be gotten.  
The DPLL soft limit is symmetrical about zero.  
6 - 0  
DPLL_FREQ_HARD_LIMIT[7:0]_CNFG - DPLL Hard Limit Configuration 1  
Address: 66H  
Type: Read / Write  
Default Value: 10101011  
7
6
5
4
3
2
1
0
DPLL_FREQ_H  
ARD_LIMT7  
DPLL_FREQ_H  
ARD_LIMT6  
DPLL_FREQ_H  
ARD_LIMT5  
DPLL_FREQ_H DPLL_FREQ_H DPLL_FREQ_H DPLL_FREQ_H DPLL_FREQ_H  
ARD_LIMT4 ARD_LIMT3 ARD_LIMT2 ARD_LIMT1 ARD_LIMT0  
Bit  
Name  
Description  
7 - 0  
DPLL_FREQ_HARD_LIMT[7:0] Refer to the description of the DPLL_FREQ_HARD_LIMT[15:8] bits (b7~0, 67H).  
DPLL_FREQ_HARD_LIMIT[15:8]_CNFG - DPLL Hard Limit Configuration 2  
Address: 67H  
Type: Read / Write  
Default Value: 00011001  
7
6
5
4
3
2
1
0
DPLL_FREQ_H  
ARD_LIMT15  
DPLL_FREQ_H  
ARD_LIMT14  
DPLL_FREQ_H  
ARD_LIMT13  
DPLL_FREQ_H DPLL_FREQ_H DPLL_FREQ_H DPLL_FREQ_H DPLL_FREQ_H  
ARD_LIMT12 ARD_LIMT11 ARD_LIMT10 ARD_LIMT9 ARD_LIMT8  
Bit  
Name  
Description  
The DPLL_FREQ_HARD_LIMT[15:0] bits represent an unsigned integer. If the value is multiplied by 0.0014, the  
7 - 0  
DPLL_FREQ_HARD_LIMT[15:8] DPLL hard limit for T0 path in ppm will be gotten.  
The DPLL hard limit is symmetrical about zero.  
Programming Information  
88  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
CURRENT_DPLL_PHASE[7:0]_STS - DPLL Current Phase Status 1  
Address: 68H  
Type: Read  
Default Value: 00000000  
7
6
5
4
3
2
1
0
CURRENT_PH  
_DATA7  
CURRENT_PH  
_DATA6  
CURRENT_PH  
_DATA5  
CURRENT_PH  
_DATA4  
CURRENT_PH  
_DATA3  
CURRENT_PH  
_DATA2  
CURRENT_PH  
_DATA1  
CURRENT_PH  
_DATA0  
Bit  
Name  
Description  
7 - 0  
CURRENT_PH_DATA[7:0] Refer to the description of the CURRENT_PH_DATA[15:8] bits (b7~0, 69H).  
CURRENT_DPLL_PHASE[15:8]_STS - DPLL Current Phase Status 2  
Address: 69H  
Type: Read  
Default Value: 00000000  
7
6
5
4
3
2
1
0
CURRENT_PH  
_DATA15  
CURRENT_PH  
_DATA14  
CURRENT_PH  
_DATA13  
CURRENT_PH  
_DATA12  
CURRENT_PH  
_DATA11  
CURRENT_PH  
_DATA10  
CURRENT_PH  
_DATA9  
CURRENT_PH  
_DATA8  
Bit  
Name  
Description  
The CURRENT_PH_DATA[15:0] bits represent a 2’s complement signed integer. If the value is multiplied by 0.61, the  
averaged phase error of the T0 DPLL feedback with respect to the selected input clock in ns will be gotten.  
7 - 0  
CURRENT_PH_DATA[15:8]  
T0_T4_APLL_BW_CNFG - T0 / T4 APLL Bandwidth Configuration  
Address: 6AH  
Type: Read / Write  
Default Value: XX01XX01  
7
-
6
-
5
4
3
-
2
-
1
0
T0_APLL_BW1  
T0_APLL_BW0  
T4_APLL_BW1  
T4_APLL_BW0  
Bit  
Name  
Description  
7 - 6  
5 - 4  
3 - 2  
1 - 0  
-
Reserved.  
These bits set the bandwidth for T0 APLL.  
00: 100 kHz.  
T0_APLL_BW[1:0] 01: 500 kHz. (default)  
10: 1 MHz.  
11: 2 MHz.  
-
Reserved.  
These bits set the bandwidth for T4 APLL.  
00: 100 kHz.  
T4_APLL_BW[1:0] 01: 500 kHz. (default)  
10: 1 MHz.  
11: 2 MHz.  
Programming Information  
89  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
6.2.8  
OUTPUT CONFIGURATION REGISTERS  
OUT2_FREQ_CNFG - Output Clock 2 Frequency Configuration  
Address: 6DH  
Type: Read / Write  
Default Value: 00001000  
7
6
5
4
3
2
1
0
OUT2_PATH_S  
EL3  
OUT2_PATH_S  
EL2  
OUT2_PATH_S  
EL1  
OUT2_PATH_S OUT2_DIVIDER OUT2_DIVIDER OUT2_DIVIDER OUT2_DIVIDER  
EL0  
3
2
1
0
Bit  
Name  
Description  
These bits select an input to OUT2.  
0000 ~ 0011: The output of T0 APLL. (default: 0000)  
0100: The output of T0 DPLL 77.76 MHz path.  
0101: The output of T0 DPLL 12E1/24T1/E3/T3 path.  
0110: The output of T0 DPLL 16E1/16T1 path.  
7 - 4  
OUT2_PATH_SEL[3:0]  
0111: The output of T0 DPLL GSM/OBSAI/16E1/16T1 path.  
1000 ~ 1011: The output of T4 APLL.  
1100 ~ 1111: Reserved.  
These bits select a division factor of the divider for OUT2.  
The output frequency is determined by the division factor and the signal derived from T0 DPLL or T0/T4 APLL output  
3 - 0  
OUT2_DIVIDER[3:0] (selected by the OUT2_PATH_SEL[3:0] bits (b7~4, 6DH)). If the signal is derived from one of the T0 DPLL outputs, please  
refer to Table 22 for the division factor selection. If the signal is derived from the T0/T4 APLL output, please refer to  
Table 23 for the division factor selection.  
OUT1_FREQ_CNFG - Output Clock 1 Frequency Configuration  
Address:71H  
Type: Read / Write  
Default Value: 00001000  
7
6
5
4
3
2
1
0
OUT1_PATH_S  
EL3  
OUT1_PATH_S  
EL2  
OUT1_PATH_S  
EL1  
OUT1_PATH_S OUT1_DIVIDER OUT1_DIVIDER OUT1_DIVIDER OUT1_DIVIDER  
EL0  
3
2
1
0
Bit  
Name  
Description  
These bits select an input to OUT1.  
0000 ~ 0011: The output of T0 APLL. (default: 0000)  
0100: The output of T0 DPLL 77.76 MHz path.  
0101: The output of T0 DPLL 12E1/24T1/E3/T3 path.  
0110: The output of T0 DPLL 16E1/16T1 path.  
7 - 4  
OUT1_PATH_SEL[3:0]  
0111: The output of T0 DPLL GSM/OBSAI/16E1/16T1 path.  
1000 ~ 1011: The output of T4 APLL.  
1100 ~ 1111: Reserved.  
These bits select a division factor of the divider for OUT1.  
The output frequency is determined by the division factor and the signal derived from T0 DPLL or T0/T4 APLL output  
3 - 0  
OUT1_DIVIDER[3:0] (selected by the OUT1_PATH_SEL[3:0] bits (b7~4, 71H)). If the signal is derived from one of the T0 DPLL outputs, please  
refer to Table 22 for the division factor selection. If the signal is derived from the T0/T4 APLL output, please refer to  
Table 23 for the division factor selection.  
Programming Information  
90  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
OUT1_INV_CNFG - Output Clock 1 Invert Configuration  
Address:72H  
Type: Read / Write  
Default Value: XXXXXX0X  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
-
OUT1_INV  
Bit  
Name  
Description  
7 - 2  
-
Reserved.  
This bit determines whether the output on OUT1 is inverted.  
0: Not inverted. (default)  
1: Inverted.  
1
0
OUT1_INV  
-
Reserved.  
OUT2_INV_CNFG - Output Clock 2 Invert Configuration  
Address:73H  
Type: Read / Write  
Default Value: XXXXX0XX  
7
-
6
-
5
-
4
-
3
-
2
1
-
0
-
OUT2_INV  
Bit  
Name  
Description  
7 - 3  
-
Reserved.  
This bit determines whether the output on OUT2 is inverted.  
0: Not inverted. (default)  
1: Inverted.  
2
OUT2_INV  
-
1 - 0  
Reserved.  
Programming Information  
91  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
FR_SYNC_CNFG - Frame Sync Output Configuration  
Address:74H  
Type: Read / Write  
Default Value: 01X000XX  
7
6
5
-
4
3
2
1
-
0
-
IN_2K_4K_8K_I  
NV  
8K_PUL_POSIT  
ION  
8K_EN  
8K_INV  
8K_PUL  
Bit  
Name  
Description  
This bit determines whether the input clock is inverted before locked by the T0 DPLL when the input clock is 2 kHz, 4 kHz  
or 8 kHz.  
0: Not inverted. (default)  
1: Inverted.  
7
IN_2K_4K_8K_INV  
This bit determines whether an 8 kHz signal is enabled to be output on FRSYNC_8K.  
0: Disabled. FRSYNC_8K outputs low.  
1: Enabled. (default)  
6
5
8K_EN  
-
Reserved.  
This bit is valid only when FRSYNC_8K output pulse; i.e., when one of the 8K_PUL bit (b2, 74H) is ‘1’ or when the  
8K_PUL bit (b2, 74H) is ‘1’. It determines the pulse position referring to the standard 50:50 duty cycle.  
0: Pulsed on the falling edge of the standard 50:50 duty cycle position. (default)  
4
3
8K_PUL_POSITION  
8K_INV  
1: Pulsed on the rising edge of the standard 50:50 duty cycle position.  
This bit determines whether the output on FRSYNC_8K is inverted.  
0: Not inverted. (default)  
1: Inverted.  
This bit determines whether the output on FRSYNC_8K is 50:50 duty cycle or pulsed.  
0: 50:50 duty cycle. (default)  
1: Pulsed. The pulse width is defined by the period of the output on OUT2.  
2
8K_PUL  
-
1 - 0  
Reserved.  
Programming Information  
92  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
6.2.9  
PBO & PHASE OFFSET CONTROL REGISTERS  
PHASE_MON_PBO_CNFG - Phase Transient Monitor & PBO Configuration  
Address:78H  
Type: Read / Write  
Default Value: 0X000110  
7
6
-
5
4
3
2
1
0
IN_NOISE_WIN  
DOW  
PH_MON_PBO PH_TR_MON_L PH_TR_MON_L PH_TR_MON_L PH_TR_MON_L  
_EN IMT3 IMT2 IMT1 IMT0  
PH_MON_EN  
Bit  
Name  
Description  
This bit determines whether the input clock whose edge respect to the reference clock is outside ±5% is enabled to be  
selected for T0 DPLL.  
0: Disabled. (default)  
1: Enabled.  
7
6
5
IN_NOISE_WINDOW  
-
Reserved.  
This bit is valid only when the PH_MON_PBO_EN bit (b4, 78H) is ‘1’. It determines whether the Phase Transient Monitor  
is enabled to monitor the phase-time changes on the T0 selected input clock.  
0: Disabled. (default)  
1: Enabled.  
PH_MON_EN  
This bit determines whether a PBO event is triggered when the phase-time changes on the T0 selected input clock are  
greater than a programmable limit over an interval of less than 0.1 seconds with the PH_MON_EN bit being ‘1’. The limit  
4
PH_MON_PBO_EN is programmed by the PH_TR_MON_LIMT[3:0] bits (b3~0, 78H).  
0: Disabled. (default)  
1: Enabled.  
These bits represent an unsigned integer. The Phase Transient Monitor limit in ns can be calculated as follows:  
3 - 0  
PH_TR_MON_LIMT[3:0]  
Limit (ns) = (PH_TR_MON_LIMT[3:0] + 7) X 156.  
Programming Information  
93  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
6.2.10  
SYNCHRONIZATION CONFIGURATION REGISTERS  
SYNC_MONITOR_CNFG - Sync Monitor Configuration  
Address:7CH  
Type: Read / Write  
Default Value: 00101011  
7
6
5
4
3
-
2
-
1
-
0
-
SYNC_BYPASS  
SYNC_MON_LIMT2 SYNC_MON_LIMT1 SYNC_MON_LIMT0  
Bit  
Name  
Description  
This bit selects one frame sync input signal to synchronize the frame sync output signal.  
0: EX_SYNC1 is selected. (default)  
1: When the T0 selected input clock is IN1_CMOS, EX_SYNC1 is selected; when the T0 selected input clock is  
IN2_CMOS, EX_SYNC2 is selected;when there is no T0 selected input clock, no frame sync input signal is selected.  
7
SYNC_BYPASS  
These bits set the limit for the external sync alarm.  
000: ±1 UI.  
001: ±2 UI.  
010: ±3 UI. (default)  
6 - 4  
3 - 0  
SYNC_MON_LIMT[2:0] 011: ±4 UI.  
100: ±5 UI.  
101: ±6 UI.  
110: ±7 UI.  
111: ±8 UI.  
-
These bits must be set to ‘1011’.  
SYNC_PHASE_CNFG - Sync Phase Configuration  
Address:7DH  
Type: Read / Write  
Default Value: XXXX0000  
7
-
6
-
5
-
4
-
3
2
1
0
SYNC_PH21  
SYNC_PH20  
SYNC_PH11  
SYNC_PH10  
Bit  
Name  
Description  
7 - 4  
-
Reserved.  
These bits set the sampling of EX_SYNC2 when EX_SYNC2 is enabled to synchronize the frame sync output signal. Nomi-  
nally, the falling edge of EX_SYNC2 is aligned with the rising edge of the T0 selected input clock.  
00: On target. (default)  
01: 0.5 UI early.  
10: 1 UI late.  
3 - 2  
SYNC_PH2[1:0]  
SYNC_PH1[1:0]  
11: 0.5 UI late.  
These bits set the sampling of EX_SYNC1 when EX_SYNC1 is enabled to synchronize the frame sync output signal. Nomi-  
nally, the falling edge of EX_SYNC1 is aligned with the rising edge of the T0 selected input clock.  
00: On target. (default)  
01: 0.5 UI early.  
10: 1 UI late.  
1 - 0  
11: 0.5 UI late.  
Programming Information  
94  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
The junction temperature Tj can be calculated as follows:  
7
THERMAL MANAGEMENT  
The device operates over the industry temperature range -40°C ~  
Tj = TA + P X θJA = 85°C + 1.57W X 21.7°C/W = 119.1°C  
+85°C. To ensure the functionality and reliability of the device, the maxi-  
mum junction temperature Tjmax should not exceed 125°C. In some  
The junction temperature of 119.1°C is below the maximum junction  
temperature of 125°C so no extra heat enhancement is required.  
applications, the device will consume more power and a thermal solution  
should be provided to ensure the junction temperature Tj does not  
In some operation environments, the calculated junction temperature  
might exceed the maximum junction temperature of 125°C and an exter-  
nal thermal solution such as a heatsink is required.  
exceed the Tjmax  
.
7.3  
HEATSINK EVALUATION  
7.1  
JUNCTION TEMPERATURE  
A heatsink is expanding the surface area of the device to which it is  
Junction temperature Tj is the temperature of package typically at the  
attached. θJA is now a combination of device case and heat-sink thermal  
resistance, as the heat flowing from the die junction to ambient goes  
geographical center of the chip where the device's electrical circuits are.  
It can be calculated as follows:  
through the package and the heatsink. θJA can be calculated as follows:  
Equation 1: T = T + P X θ  
JA  
j
A
Equation 2: θ = θ + θ + θ  
CH HA  
JA  
JC  
Where:  
θ
= Junction-to-Ambient Thermal Resistance of the Package  
Where:  
JA  
θJC = Junction-to-Case Thermal Resistance  
θCH = Case-to-Heatsink Thermal Resistance  
θHA = Heatsink-to-Ambient Thermal Resistance  
T = Junction Temperature  
j
T = Ambient Temperature  
A
P = Device Power Consumption  
θ
+ θ determines which heatsink and heatsink attachment can  
HA  
In order to calculate junction temperature, an appropriate θ must  
CH  
JA  
be selected to ensure the junction temperature does not exceed the  
maximum junction temperature. According to Equation 1 and 2,  
be used. The θJA is shown in Table 32:  
Power consumption is the core power excluding the power dissipated  
in the loads. Table 33 provides power consumption in special environ-  
ments.  
θ
+ θHA can be calculated as follows:  
CH  
Equation 3: θ + θ = (Tj - TA) / P - θJC  
CH HA  
Assume:  
Tj = 125°C (Tjmax  
Table 32: Power Consumption and Maximum Junction Temperature  
)
Operating  
Voltage  
(V)  
Maximum  
Junction  
Temperature (°C)  
TA = 85°C  
Power  
Consumption (W)  
T (°C)  
A
Package  
P = 1.57W  
θJC = 12.6°C/W (TQFP/EDG64)  
VFQFPN/NL68  
TQFP/EDG64  
1.57  
1.57  
3.6  
3.6  
85  
85  
125  
125  
θCH+ θHA can be calculated as follows:  
θ
+ θ = (125°C - 85°C ) / 1.57W - 12.6°C/W = 12.9°C/W  
CH HA  
7.2  
EXAMPLE OF JUNCTION TEMPERATURE  
CALCULATION  
That is, if a heatsink and heatsink attachment whose θ + θ is  
below or equal to 12.9°C/W is used in such operation environment, the  
junction temperature will not exceed the maximum junction temperature.  
CH  
HA  
Assume:  
TA = 85°C  
θJA = 21.7°C/W (TQFP/EDG64 Soldered & when airfow rate is 0 m/s)  
P = 1.57W  
Table 33: Thermal Data  
θJA (°C/W) Air Flow in m/s  
θJC (°C/W)  
θJB (°C/W)  
Package  
Pin Count Thermal Pad  
0
1
2
3
4
5
VFQFPN/NL68  
VFQFPN/NL68  
TQFP/EDG64  
TQFP/EDG64  
68  
68  
64  
64  
Yes/Exposed  
Yes/Soldered*  
Yes/Exposed  
Yes/Soldered  
9.1  
9.1  
8.3  
1.2  
39.4  
20.9  
37.0  
21.7  
34.1  
16.2  
32.1  
17.3  
31.7  
15.2  
30.4  
16.2  
30.2  
14.6  
29.4  
15.6  
29.1  
14.1  
28.7  
15.2  
28.2  
13.8  
28.1  
14.9  
12.6  
12.6  
35.3  
1.3  
*note: Simulated with 3 x 3 array of thermal vias.  
Programming Information  
95  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
by the solder mask, should be at least the same size/shape as the  
exposed pad/slug area on the package to maximize the thermal/electri-  
cal performance. Sufficient clearance should be designed on the PCB  
between the outer edges of the land pattern and the inner edges of pad  
pattern for the leads to avoid any shorts.  
7.4  
VFQFPN EPAD THERMAL RELEASE PATH  
In order to maximize both the removal of heat from the package and  
the electrical performance, a land pattern must be incorporated on the  
Printed Circuit Board (PCB) within the footprint of the package corre-  
sponding to the exposed metal pad or exposed heat slug on the pack-  
age, as shown in Figure 19. The solderable area on the PCB, as defined  
SOLDER  
PIN  
SOLDER  
EXPOSED HEAT SLUG  
PIN  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
Figure 19. Assembly for Expose Pad thermal Release Path (Side View)  
While the land pattern on the PCB provides a means of heat transfer  
diameter should be 12 to 13mils (0.30 to 0.33mm) with 1 oz copper via  
barrel plating. This is desirable to avoid any solder wicking inside the via  
during the soldering process which may result in voids in solder between  
the exposed pad/slug and the thermal land. Precautions should be taken  
to eliminate any solder voids between the exposed heat slug and the  
land pattern.  
and electrical grounding from the package to the board through a solder  
joint, thermal vias are necessary to effectively conduct from the surface  
of the PCB to the ground plane(s). The land pattern must be connected  
to ground through these vias. The vias act as ‘heat pipes’. The number  
of vias (i.e. ‘heat pipes’) are application specific and dependent upon the  
package power dissipation as well as electrical conductivity require-  
ments. Thus, thermal and electrical analysis and/or testing are recom-  
mended to determine the minimum number needed. Maximum thermal  
and electrical performance is achieved when an array of vias is incorpo-  
rated in the land pattern. It is recommended to use as many vias con-  
nected to ground as possible. It is also recommended that the via  
Note: These recommendations are to be used as a guideline only.  
For further information, please refer to the Application Note on the Sur-  
face Mount Assembly of Amkor's Thermally/Electrically Enhance Lead  
fame Base Package, Amkor Technology.  
Programming Information  
96  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
8
ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATING  
8.1  
Table 34: Absolute Maximum Rating  
Symbol  
VDD  
Parameter  
Min  
Max  
4.0  
Unit  
V
Supply Voltage VDD  
-0.5  
VIN  
Input Voltage (non-supply pins)  
Output Voltage (non-supply pins)  
Storage Temperature  
5.5  
V
VOUT  
TSTOR  
5.5  
V
-50  
+150  
°C  
8.2  
RECOMMENDED OPERATION CONDITIONS  
Table 35: Recommended Operation Conditions  
Symbol  
VDD  
Parameter  
Min  
3.0  
-40  
Typ  
Max  
3.6  
Unit  
Test Condition  
Power Supply (DC voltage) VDD  
Ambient Temperature Range  
Supply Current  
3.3  
V
°C  
mA  
W
TA  
+85  
262  
0.94  
IDD  
233  
Exclude the loading  
current and power  
PTOT  
Total Power Dissipation  
0.77  
Electrical Specifications  
97  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
8.3  
I/O SPECIFICATIONS  
8.3.1  
CMOS INPUT / OUTPUT PORT  
Table 36: CMOS Input Port Electrical Characteristics  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Test Condition  
VIH  
VIL  
IIN  
Input Voltage High  
Input Voltage Low  
Input Current  
2.0  
V
V
0.8  
10  
µA  
V
VIN  
Input Voltage  
-0.5  
5.5  
Table 37: CMOS Input Port with Internal Pull-Up Resistor Electrical Characteristics  
Parameter  
VIH  
Description  
Min  
Typ  
Max  
Unit  
Test Condition  
Input Voltage High  
Input Voltage Low  
2.0  
V
V
VIL  
0.8  
38  
82  
23  
41  
TDI, TMS pin  
RST pin  
PU  
Pull-Up Resistor  
82  
85  
40  
20  
165  
140  
80  
KΩ  
TDI, TMS pin  
RST pin  
IIN  
Input Current  
Input Voltage  
40  
µA  
VIN  
-0.5  
5.5  
V
Table 38: CMOS Input Port with Internal Pull-Down Resistor Electrical Characteristics  
Parameter  
VIH  
Description  
Min  
Typ  
Max  
Unit  
Test Condition  
Input Voltage High  
Input Voltage Low  
2.0  
V
V
VIL  
0.8  
14  
8
TRST and TCK pin  
16  
23  
other CMOS input port with internal pull-down resistor  
SDI, CLKE pin  
PD  
Pull-Down Resistor  
183  
390  
180  
15  
366  
640  
340  
30  
KΩ  
TRST and TCK pin  
other CMOS input port with internal pull-down resistor  
SDI, CLKE pin  
IIN  
Input Current  
Input Voltage  
µA  
VIN  
-0.5  
5.5  
V
Electrical Specifications  
98  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Table 39: CMOS Output Port Electrical Characteristics  
Application Pin  
Parameter  
Description  
Min  
2.4  
0
Typ  
Max  
Unit  
V
Test Condition  
VOH  
VOL  
tR  
VDD  
IOH = 8 mA  
Output Voltage High  
Output Voltage Low  
Rise time (20% to 80%)  
Fall time (20% to 80%)  
Output Voltage High  
Output Voltage Low  
Rise Time (20% to 80%)  
Fall Time (20% to 80%)  
I
OL = 8 mA  
15 pF  
0.4  
4
V
Output Clock  
3
3
ns  
ns  
V
tF  
4
15 pF  
VOH  
VOL  
tR  
VDD  
IOH = 4 mA  
IOL= 4 mA  
50 pF  
2.4  
0
0.4  
10  
10  
V
Other Output  
ns  
ns  
tF  
50 pF  
Electrical Specifications  
99  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
8.3.2  
PECL / LVDS OUTPUT PORT  
PECL Output Port  
8.3.2.1  
130 82 Ω  
VDD (+ 3.3 V)  
GND  
50 (transmission line)  
2 kHz  
to  
667 MHz  
OUT1_POS  
OUT1_NEG  
50 (transmission line)  
VDD (+ 3.3 V)  
GND  
82 Ω  
130 Ω  
Figure 20. Recommended PECL Output Port Line Ter-  
mination  
Table 40: PECL Output Port Electrical Characteristics  
Parameter  
VIL  
Description  
Min  
Typ  
Max  
Unit  
Test Condition  
Input Low Voltage, Differential Inputs 1  
Input High Voltage, Differential Inputs 1  
Input Differential Voltage  
VDD - 2.5  
VDD - 2.4  
VDD - 0.5  
VDD - 0.4  
V
V
VIH  
VID  
0.1  
1.4  
V
Input Low Voltage, Single-ended Input 2  
Input High Voltage, Single-ended Input 2  
VIL_S  
VIH_S  
IIH  
VDD - 2.4  
VDD - 1.3  
VDD - 1.5  
VDD - 0.5  
V
V
Input High Current, Input Differential Voltage VID = 1.4 V  
-10  
-10  
10  
µA  
µA  
V
IIL  
Input Low Current, Input Differential Voltage VID = 1.4 V  
10  
Output Voltage Low 3  
Output Voltage High 3  
Output Differential Voltage3  
Output Rise time (20% to 80%)  
Output Fall time (20% to 80%)  
Output Differential Skew  
VOL  
VDD - 2.1  
VDD - 1.25  
VDD - 1.62  
VDD - 0.88  
VOH  
VOD  
tRISE  
tFALL  
tSKEW  
V
580  
200  
200  
900  
300  
300  
50  
mV  
pS  
pS  
pS  
Note:  
1. Assuming a differential input voltage of at least 100 mV.  
2. Unused differential input terminated to VDD-1.4 V.  
3. With 50 load on each pin to VDD-2 V, i.e. 82 to GND and 130 to VDD  
.
Electrical Specifications  
100  
September 11, 2009  
IDT82V3202  
8.3.2.2 LVDS Output Port  
EBU WAN PLL  
50 (transmission line)  
100 Ω  
OUT1_POS  
OUT1_NEG  
2 kHz  
to  
667 MHz  
50 (transmission line)  
Figure 21. Recommended LVDS Output Port Line Ter-  
mination  
Table 41: LVDS Output Port Electrical Characteristics  
Parameter  
VCM  
Description  
Min  
0
Typ  
Max  
2400  
900  
100  
105  
1475  
1100  
400  
1275  
120  
20  
Unit  
mV  
mV  
mV  
Test Condition  
Input Common-mode Voltage Range  
Input Peak Differential Voltage  
Input Differential Threshold  
1200  
VDIFF  
VIDTH  
RTERM  
VOH  
100  
-100  
95  
External Differential Termination Impedance  
Output Voltage High  
100  
100  
R
LOAD = 100 ± 1%  
1350  
925  
250  
1125  
80  
mV  
mV  
mV  
mV  
VOL  
RLOAD = 100 ± 1%  
Output Voltage Low  
VOD  
R
R
LOAD = 100 ± 1%  
LOAD = 100 ± 1%  
Differential Output Voltage  
VOS  
Output Offset Voltage  
RO  
VCM = 1.0 V or 1.4 V  
Differential Output Impedance  
RO Mismatch between A and B  
Change in VOD between Logic 0 and Logic 1  
Change in VOS between Logic 0 and Logic 1  
RO  
VCM = 1.0 V or 1.4 V  
RLOAD = 100 ± 1%  
RLOAD = 100 ± 1%  
Driver shorted to GND  
Driver shorted together  
%
VOD  
VOS  
ISA, ISB  
ISAB  
25  
mV  
mV  
mA  
mA  
pS  
25  
Output Current  
Output Current  
24  
12  
tRISE  
RLOAD = 100 ± 1%  
Output Rise time (20% to 80%)  
Output Fall time (20% to 80%)  
Output Differential Skew  
200  
200  
300  
300  
50  
tFALL  
RLOAD = 100 ± 1%  
RLOAD = 100 ± 1%  
pS  
tSKEW  
pS  
Electrical Specifications  
101  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
8.4  
JITTER & WANDER PERFORMANCE  
Table 42: Output Clock Jitter Generation  
Peak to Peak  
Typ  
RMS  
Typ  
Test Definition 1  
Note  
Test Filter  
N x 2.048MHz without APLL  
N x 2.048MHz with T0/T4 APLL  
N x 1.544 MHz without APLL  
N x 1.544 MHz with T0/T4 APLL  
44.736 MHz with T0/T4 APLL  
44.736 MHz without APLL  
<2 ns  
<1 ns  
<2 ns  
<1 ns  
<1 ns  
<2 ns  
<1 ns  
<2 ns  
<200 ps  
<100 ps  
<200 ps  
<100 ps  
<100 ps  
<200 ps  
<100 ps  
<200 ps  
20 Hz - 100 kHz  
See Table 43: Output Clock Phase Noise for details 20 Hz - 100 kHz  
10 Hz - 40 kHz  
See Table 43: Output Clock Phase Noise for details  
10 Hz - 40 kHz  
See Table 43: Output Clock Phase Noise for details 100 Hz - 800 kHz  
100 Hz - 800 kHz  
34.368 MHz with T0/T4 APLL  
34.368 MHz without APLL  
See Table 43: Output Clock Phase Noise for details 10 Hz - 400 kHz  
10 Hz - 400 kHz  
GR-253, G.813 Option 2  
0.004 UI p-p 0.001 UI RMS  
0.004 UI p-p 0.001 UI RMS  
0.001 UI p-p 0.001 UI RMS  
0.018 UI p-p 0.007 UI RMS  
0.028 UI p-p 0.009 UI RMS  
0.002 UI p-p 0.001 UI RMS  
0.162 UI p-p 0.03 UI RMS  
0.01 UI p-p 0.009 UI RMS  
limit 0.1 UI p-p  
(1 UI-6430 ps)  
12 kHz - 1.3 MHz  
500 Hz - 1.3 MHz  
65 kHz - 1.3 MHz  
12 kHz - 5 MHz  
1 kHz - 5 MHz  
OC-3  
G.813 Option 1, G.812  
limit 0.5 UI p-p  
(Chip T0 DPLL + T0/T4 APLL) 6.48 MHz, 19.44 MHz, 25.92  
MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 155.52 MHz,  
311.04 MHz, 622.08 MHz output  
(1 UI-6430 ps)  
G.813 Option 1  
limit 0.1 UI p-p  
(1 UI-6430 ps)  
GR-253, G.813 Option 2  
limit 0.1 UI p-p  
(1 UI-1608 ps)  
OC-12  
(Chip T0 DPLL + T0/T4 APLL) 6.48 MHz, 19.44 MHz, 25.92  
MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 155.52 MHz,  
311.04 MHz, 622.08 MHz output + Intel GD16523 + Optical  
transceiver)  
G.813 Option 1, G.812  
limit 0.5 UI p-p  
(1 UI-1608 ps)  
G.813 Option 1, G.812  
limit 0.1 UI p-p  
250 kHz - 5 MHz  
5 kHz - 20 MHz  
1 MHz - 20 MHz  
(1 UI-160 8ps)  
G.813 Option 1, G.812  
limit 0.5 UI p-p  
STM-16  
(Chip T0 DPLL + T0/T4 APLL) 6.48 MHz, 19.44 MHz, 25.92  
MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 155.52 MHz,  
311.04 MHz, 622.08 MHz output + Intel GD16523 + Optical  
transceiver)  
(1 UI-402 ps)  
G.813 Option 1, G.812  
limit 0.1 UI p-p  
(1 UI-402 ps)  
Note:  
1. CMAC E2747 TCXO is used.  
Electrical Specifications  
102  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Table 43: Output Clock Phase Noise  
Output Clock 1  
@100Hz Offset @1kHz Offset @10kHz Offset @100kHz Offset @1MHz Offset @5MHz Offset  
Unit  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
622.08 MHz (T0 DPLL + T0/T4 APLL)  
155.52 MHz (T0 DPLL + T0/T4 APLL)  
38.88 MHz (T0 DPLL + T0/T4 APLL)  
16E1 (T0/T4 APLL)  
-70  
-82  
-94  
-94  
-95  
-93  
-92  
-86  
-98  
-95  
-100  
-112  
-124  
-125  
-127  
-124  
-122  
-107  
-119  
-131  
-131  
-132  
-131  
-126  
-128  
-140  
-143  
-142  
-143  
-138  
-141  
dBC/Hz  
dBC/Hz  
dBC/Hz  
dBC/Hz  
dBC/Hz  
dBC/Hz  
dBC/Hz  
-107  
-118  
-118  
-120  
-116  
-116  
-110  
-110  
-112  
-109  
-108  
16T1 (T0/T4 APLL)  
E3 (T0/T4 APLL)  
T3 (T0/T4 APLL)  
Note:  
1. CMAC E2747 TCXO is used.  
Table 44: Input Jitter Tolerance (155.52 MHz)  
Table 46: Input Jitter Tolerance (2.048 MHz)  
Jitter Frequency  
Jitter Tolerance Amplitude (UI p-p)  
Jitter Frequency  
Jitter Tolerance Amplitude (UI p-p)  
12 µHz  
178 µHz  
1.6 mHz  
15.6 mHz  
0.125 Hz  
19.3 Hz  
500 Hz  
> 2800  
> 2800  
> 311  
> 311  
> 39  
1 Hz  
5 Hz  
150  
140  
130  
40  
20 Hz  
300 Hz  
400 Hz  
700 Hz  
2400 Hz  
10 kHz  
50 kHz  
100 kHz  
33  
> 39  
18  
> 1.5  
5.5  
1.3  
0.4  
0.4  
6.5 kHz  
65 kHz  
> 1.5  
> 0.15  
> 0.15  
1.3 MHz  
Table 45: Input Jitter Tolerance (1.544 MHz)  
Jitter Frequency  
Jitter Tolerance Amplitude (UI p-p)  
1 Hz  
5 Hz  
150  
140  
130  
38  
20 Hz  
300 Hz  
400 Hz  
700 Hz  
2400 Hz  
10 kHz  
40 kHz  
25  
15  
5
1.2  
0.5  
Electrical Specifications  
103  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Table 47: Input Jitter Tolerance (8 kHz)  
Jitter Frequency  
Jitter Tolerance Amplitude (UI p-p)  
1 Hz  
5 Hz  
0.8  
0.7  
20 Hz  
0.6  
300 Hz  
400 Hz  
700 Hz  
2400 Hz  
3600 Hz  
0.16  
0.14  
0.07  
0.02  
0.01  
Table 48: T0 DPLL Jitter Transfer & Damping Factor  
3 dB Bandwidth  
Programmable Damping Factor  
0.1 Hz  
0.3 Hz  
0.6 Hz  
1.2 Hz  
2.5 Hz  
4 Hz  
1.2, 2.5, 5, 10, 20  
1.2, 2.5, 5, 10, 20  
1.2, 2.5, 5, 10, 20  
1.2, 2.5, 5, 10, 20  
1.2, 2.5, 5, 10, 20  
1.2, 2.5, 5, 10, 20  
1.2, 2.5, 5, 10, 20  
1.2, 2.5, 5, 10, 20  
1.2, 2.5, 5, 10, 20  
1.2, 2.5, 5, 10, 20  
1.2, 2.5, 5, 10, 20  
8 Hz  
18 Hz  
35 Hz  
70 Hz  
560 Hz  
Electrical Specifications  
104  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
8.5  
OUTPUT WANDER GENERATION  
template  
template  
tested result  
tested result  
Figure 22. Output Wander Generation  
Electrical Specifications  
105  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
8.6  
INPUT / OUTPUT CLOCK TIMING  
The inputs and outputs are aligned ideally. But due to the circuit delays, there is delay between the inputs and outputs.  
8 kHz Input Clock  
8 kHz Output Clock  
t1  
t2  
t3  
t4  
t5  
t6  
6.48 MHz Input Clock  
6.48 MHz Output Clock  
19.44 MHz Input Clock  
19.44 MHz Output Clock  
25.92 MHz Input Clock  
25.92 MHz Output Clock  
38.88 MHz Input Clock  
38.88 MHz Output Clock  
51.84 MHz Input Clock  
51.84 MHz Output Clock  
Figure 23. Input / Output Clock Timing  
Table 49: Input/Output Clock Timing  
Symbol  
Typical Delay 1 (ns)  
Peak to Peak Delay Variation (ns)  
t1  
t2  
t3  
t4  
t5  
t6  
4
1
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1
2
1.4  
3
Note:  
1. Typical delay provided as reference only.  
Electrical Specifications  
106  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
8.7  
OUTPUT CLOCK TIMING  
FRSYNC_8K  
t1  
t2  
N X T1 (1.544 MHz)  
N X E1 (2.048 MHz)  
t3  
t4  
E3 (34.368 MHz)  
T3 (44.736 MHz)  
6.48 MHz  
t5  
t6  
t7  
t8  
19.44 MHz  
25.92 MHz  
38.88 MHz  
51.84 MHz  
77.76 MHz  
155.52 MHz  
t9  
t10  
t11  
t12  
311.04 MHz  
622.08 MHz  
t13  
Table 50: Output Clock Timing  
Symbol  
Typical Delay (ns)  
Peak to Peak Delay Variation (ns)  
t1  
t2  
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
t3  
2
t4  
2
t5  
2
t6  
2
t7  
2
t8  
2
t9  
2
t10  
t11  
t12  
t13  
2
1.5  
1.5 (not recommended to use)  
1.5 (not recommended to use)  
Electrical Specifications  
107  
September 11, 2009  
Glossary  
3G  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
Third Generation  
ADSL  
AMI  
Asymmetric Digital Subscriber Line  
Alternate Mark Inversion  
APLL  
ATM  
Analog Phase Locked Loop  
Asynchronous Transfer Mode  
Building Integrated Timing Supply  
Complementary Metal-Oxide Semiconductor  
Digital Controlled Oscillator  
Digital Phase Locked Loop  
Digital Subscriber Line  
BITS  
CMOS  
DCO  
DPLL  
DSL  
DSLAM  
DWDM  
EPROM  
GPS  
Digital Subscriber Line Access MUX  
Dense Wavelength Division Multiplexing  
Erasable Programmable Read Only Memory  
Global Positioning System  
Global System for Mobile Communications  
Infinite Impulse Response  
GSM  
IIR  
IP  
Internet Protocol  
ISDN  
JTAG  
LOS  
Integrated Services Digital Network  
Joint Test Action Group  
Loss Of Signal  
LPF  
Low Pass Filter  
LVDS  
MTIE  
MUX  
OBSAI  
OC-n  
Low Voltage Differential Signal  
Maximum Time Interval Error  
Multiplexer  
Open Base Station Architecture Initiative  
Optical Carried rate, n = 1, 3, 12, 48, 192, 768; 51 Mbit/s, 155 Mbit/s, 622 Mbit/s, 2.5 Gbit/s, 10 Gbit/s, 40 Gbit/s.  
Glossary  
108  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
PBO  
PDH  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
Phase Build-Out  
Plesiochronous Digital Hierarchy  
Positive Emitter Coupled Logic  
Phase & Frequency Detector  
Phase Locked Loop  
PECL  
PFD  
PLL  
RMS  
PRS  
Root Mean Square  
Primary Reference Source  
Synchronous Digital Hierarchy  
SDH / SONET Equipment Clock  
SONET Minimum Clock  
SDH  
SEC  
SMC  
SONET  
SSU  
Synchronous Optical Network  
Synchronization Supply Unit  
Synchronous Transfer Mode  
Time Compression Multiplexing Integrated Services Digital Network  
Time Deviation  
STM  
TCM-ISDN  
TDEV  
UI  
Unit Interval  
WLL  
Wireless Local Loop  
Glossary  
109  
September 11, 2009  
Index  
Frequency Hard Alarm .................................................................22, 27  
Frequency Hard Alarm Threshold ...................................................... 22  
H
A
Averaged Phase Error ........................................................................31  
B
Hard Limit ........................................................................................... 25  
Holdover Frequency Offset ................................................................ 32  
I
Bandwidths and Damping Factors .....................................................31  
Acquisition Bandwidth and Damping Factor ...............................31  
Locked Bandwidth and Damping Factor .....................................31  
Starting Bandwidth and Damping Factor ....................................31  
IIR ...................................................................................................... 32  
Input Clock Frequency ....................................................................... 22  
Input Clock Selection ......................................................................... 23  
C
Calibration ..........................................................................................18  
Coarse Phase Loss ............................................................................25  
Crystal Oscillator ................................................................................18  
Current Frequency Offset ...................................................................31  
D
Automatic selection ..............................................................24, 27  
External Fast selection ............................................................... 27  
Forced selection ...................................................................24, 27  
Internal Leaky Bucket Accumulator ................................................... 21  
Bucket Size ................................................................................ 21  
Decay Rate ................................................................................ 21  
Lower Threshold ........................................................................ 21  
Upper Threshold ........................................................................ 21  
DCO ...................................................................................................31  
Division Factor ....................................................................................20  
DPLL Hard Alarm ...............................................................................25  
DPLL Hard Limit .................................................................................25  
DPLL Operating Mode  
L
Limit ................................................................................................... 34  
LPF .................................................................................................... 31  
M
Free-Run mode ..........................................................................31  
Holdover mode ...........................................................................31  
Automatic Fast Averaged ...................................................32  
Automatic Instantaneous ....................................................32  
Automatic Slow Averaged ..................................................32  
Manual ................................................................................32  
Locked mode ..............................................................................31  
Temp-Holdover mode .........................................................31  
Lost-Phase mode .......................................................................31  
Pre-Locked mode .......................................................................31  
Pre-Locked2 mode .....................................................................32  
Master Clock ...................................................................................... 18  
N
No-activity Alarm ..........................................................................21, 27  
P
PFD .................................................................................................... 31  
Phase Lock Alarm ........................................................................25, 27  
Phase-compared ..........................................................................25, 34  
Phase-time ......................................................................................... 34  
Pre-Divider ......................................................................................... 20  
DPLL Soft Alarm .................................................................................25  
DPLL Soft Limit ..................................................................................25  
E
External Sync Alarm ...........................................................................38  
F
DivN Divider ............................................................................... 20  
Lock 8k Divider .......................................................................... 20  
R
Fast Loss ............................................................................................25  
Fine Phase Loss .................................................................................25  
Reference Clock ................................................................................ 22  
Index  
110  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
State Machine .................................................................................... 29  
S
V
Selected Input Clock Switch ...............................................................27  
Non-Revertive switch ..................................................................27  
Revertive switch .........................................................................27  
Validity ............................................................................................... 27  
Index  
111  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
PACKAGE DIMENSIONS  
Figure 24. 68-Pin NL Package Dimensions (a) (in Millimeters)  
Package Dimensions  
112  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
YS  
BM  
Figure 25. 68-Pin NL Package Dimensions (b) (in Millimeters)  
Package Dimensions  
113  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Figure 26. 64-Pin EDG Package Dimensions (a) (in Millimeters)  
Package Dimensions  
114  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Figure 27. 64-Pin EDG Package Dimensions (b) (in Millimeters)  
Package Dimensions  
115  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
Figure 28. EDG64 Recommended Land Pattern with Exposed Pad (in Millimeters)  
Package Dimensions  
116  
September 11, 2009  
IDT82V3202  
EBU WAN PLL  
ORDERING INFORMATION  
XXXXXXX  
Device Type  
XX  
X
Process/  
Temperature  
Range  
Blank  
Industrial (-40 °C to +85 °C)  
Thermally Enhanced Plastic Very Fine Pitch Quad  
Flat No Lead Package (VFQFPN, NL68)  
NL  
Green Thermally Enhanced Plastic Very Fine Pitch Quad  
Flat No Lead Package (VFQFPN, NLG68)  
NLG  
Green Thermal Enhanced Thin Quad Flatpack,  
ExposedPadTM (TQFP, EDG64)  
EDG  
82V3202  
WAN PLL  
DATASHEET DOCUMENT HISTORY  
3/11/2008  
9/17/2008  
3/20/2009  
7/23/2009  
9/11/2009  
Pages 7, 11, 14, 110, 103, 111, 112, 113,  
Page 108  
Pages 94, 95, 101, 113, 114, 115, 116  
Pages 14, 15, 98  
Page 45  
CORPORATE HEADQUARTERS  
for SALES:  
1-800-345-7015 or 408-284-8200  
fax: 408-284-2775  
for Tech Support:  
408-360-1552  
email:telecomhelp@idt.com  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
www.idt.com  
IDT and the IDT logo are trademarks of Integrated Device Technology, Inc.  
117  

相关型号:

IDT82V3203BNL

Telecom Circuit, 1-Func, CMOS, PQCC68, PLASTIC, VFQFPN-68
IDT

IDT82V3203BNLG

Telecom Circuit, 1-Func, CMOS, PQCC68, GREEN, PLASTIC, VFQFPN-68
IDT

IDT82V3255

WAN PLL
IDT
IDT

IDT82V3255DK8

Clock Generator, PQFP64
IDT
IDT
IDT

IDT82V3255TF8

Telecom Circuit, 1-Func, CMOS, PQFP64, TQFP-64
IDT
IDT