MPC92439AC [IDT]

900MHz, Low Voltage, LVPECL Clock Syntheesizer; 900MHz的低电压, LVPECL时钟Syntheesizer
MPC92439AC
型号: MPC92439AC
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

900MHz, Low Voltage, LVPECL Clock Syntheesizer
900MHz的低电压, LVPECL时钟Syntheesizer

时钟
文件: 总15页 (文件大小:823K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
900MHz, Low Voltage,  
LVPECL Clock Syntheesizer  
MPC92439  
DATA SHEET  
The MPC92439 is a 3.3 V compatible, PLL based clock synthesizer targeted for high  
performance clock generation in mid-range to high-performance telecom, networking and  
computing applications. With output frequencies from 3.125 MHz to 900 MHz and the  
support of differential LVPECL output signals the device meets the needs of the most  
demanding clock applications.  
900MHZ LOW VOLTAGE  
CLOCK SYNTHESIZER  
Features  
3.125 MHz to 900 MHz synthesized clock output signal  
Differential LVPECL output  
LVCMOS compatible control inputs  
On-chip crystal oscillator for reference frequency generation  
Alternative LVCMOS compatible reference input  
3.3V power supply  
Fully integrated PLL  
Minimal frequency overshoot  
Serial 3-wire programming interface  
Parallel programming interface for power-up  
28-PLCC and 32-LQFP packaging  
28-Lead and 32-lead Pb-free packages available  
SiGe Technology  
FN SUFFIX(1)  
28-LEAD PLCC PACKAGE  
CASE 776-02  
EI SUFFIX(2)  
28-LEAD PLCC PACKAGE  
CASE 776-02  
Ambient temperature range 0°C to + 70°C  
Pin and function compatible to the MC12439 and MPC9239  
FA SUFFIX(1)  
32-LEAD LQFP PACKAGE  
CASE 873A-03  
Functional Description  
The internal crystal oscillator uses the external quartz crystal as the basis of its frequency  
reference. The frequency of the internal crystal oscillator or external reference clock signal is  
multiplied by the PLL. The VCO within the PLL operates over a range of 400 to 900 MHz. Its  
output is scaled by a divider that is configured by either the serial or parallel interfaces. The  
crystal oscillator frequency f  
termine the output frequency.  
The feedback path of the PLL is internal. The PLL adjusts the VCO output frequency to  
be M times the reference frequency by adjusting the VCO control voltage. Note that for  
some values of M (either too high or too low) the PLL will not achieve phase lock. The PLL  
will be stable if the VCO frequency is within the specified VCO frequency range (400 to 900  
MHz). The M-value must be programmed by the serial or parallel interface.  
AC SUFFIX(2)  
32-LEAD LQFP PACKAGE  
CASE 873A-03  
, the PLL feedback-divider M and the PLL post-divider N de-  
XTAL  
K SUFFIX  
32-LEAD VFQFN PACKAGE  
Pb-FREE PACKAGE  
The PLL post-divider N is configured through either the serial or the parallel interfaces,  
and can provide one of four division ratios (1, 2, 4, or 8). This divider extends performance  
of the part while providing a 50% duty cycle. The output driver is driven differentially from  
the output divider, and is capable of driving a pair of transmission lines terminated 50to  
VCC – 2.0V. The positive supply voltage for the internal PLL is separated from the power  
supply for the core logic and output drivers to minimize noise induced jitter.  
The configuration logic has two sections: serial and parallel. The parallel interface uses  
the values at the M[6:0] and N[1:0] inputs to configure the internal counters. It is recom-  
mended on system reset to hold the P_LOAD input LOW until power becomes valid. On the  
LOW-to-HIGH transition of P_LOAD, the parallel inputs are captured. The parallel interface  
has priority over the serial interface. Internal pullup resistors are provided on the M[6:0] and  
N[1:0] inputs prevent the LVCMOS compatible control inputs from floating. The serial inter-  
face centers on a twelve bit shift register. The shift register shifts once per rising edge of the  
S_CLOCK input. The serial input S_DATA must meet setup and hold timing as specified in  
the AC Characteristics section of this document. The configuration latches will capture the  
Notes:  
(1) FN, FA suffix: leaded terminations  
(2) EI, AC suffix: lead-free, RoHS-compliant, EPP  
ORDERING INFORMATION  
Device  
MPC92439EI  
Package  
PLCC-28 (Pb-Free)  
LQFP-32  
MPC92439FA  
MPC92439AC  
MPC92439KLF  
LQFP-32 (Pb-Free)  
P R O P OVSFQFEN-32D(Pb-Free)  
value of the shift register on the HIGH-to-LOW edge of the S_LOAD input. See PROGRAMMING INTERFACE for more information. The TEST  
output reflects various internal node values, and is controlled by the T[2:0] bits in the serial data stream. In order to minimize the PLL jitter, it  
is recommended to avoid active signal on the TEST output. The PWR_DOWN pin, when asserted, will synchronously divide the FOUT by 16.  
The power down sequence is clocked by the PLL reference clock, thereby causing the frequency reduction to happen relatively slowly. Upon  
de-assertion of the PWR_DOWN pin, the FOUT input will step back up to its programmed frequency in four discrete increments.  
MPC92439 REVISION 4 OCTOBER 27, 2009  
1
©2009 Integrated Device Technology, Inc.  
MPC92439 Data Sheet  
900MHZ, LOW VOLTAGE, LVPECL CLOCK SYNTHESIZER  
XTAL_IN  
XTAL_OUT  
1
0
XTAL  
10 – 20 MHz  
÷1  
÷2  
÷4  
÷8  
11  
00  
01  
10  
1
÷16  
Ref  
VCO  
FOUT  
FOUT  
OE  
PLL  
400 – 900 MHz  
FREF_EXT  
0
VCC  
FB  
÷0 TO ÷127  
7-BIT M-DIVIDER  
XTAL_SEL  
TEST  
TEST  
2
3
7
VCC  
M-LATCH  
N-LATCH  
T-LATCH  
LE  
P_LOAD  
S_LOAD  
P/S  
0
1
0
1
BITS 3-4  
BITS 0-2  
BITS 11-5  
S_DATA  
S_CLOCK  
12-BIT SHIFT REGISTER  
VCC  
M[0:6]  
N[1:0]  
PWR_DOWN  
OE  
Figure 1. MPC92439 Logic Diagram  
25  
24  
23 22  
21  
20 19  
S_CLOCK  
N[1]  
26  
27  
18  
17  
16  
15  
14  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
NC  
GND  
TEST  
VCC  
S_DATA  
S_LOAD  
N[0]  
M[3]  
NC  
28  
1
M[2]  
XTAL_SEL  
M[6]  
VCC_PLL  
MPC92439  
VCC  
M[1]  
MPC92439  
PWR_DOWN  
FREF_EXT  
XTAL_IN  
2
3
4
GND  
FOUT  
M[0]  
M[5]  
13  
12  
P_LOAD  
OE  
M[4]  
FOUT  
VCC  
5
6
7
8
9
10 11  
XTAL_OUT  
1
2
3
4
5
6
7
8
Figure 2. MPC92439 28-Lead PLCC Pinout  
(Top View)  
Figure 3. MPC92439 32-Lead Package Pinout  
(Top View)  
MPC92439 REVISION 4 OCTOBER 27, 2009  
2
©2009 Integrated Device Technology, Inc.  
MPC92439 Data Sheet  
900MHZ, LOW VOLTAGE, LVPECL CLOCK SYNTHESIZER  
24 23 22 21 20 19 18 17  
25  
GND  
NC  
16  
15  
14  
13  
26  
TEST  
M[3]  
M[2]  
VCC 27  
MPC92439  
28  
29  
30  
31  
32  
VCC  
M[1]  
GND  
12 M[0]  
11 P_LOAD  
FOUT  
FOUT  
VCC  
OE  
10  
9
XTAL_OUT  
1
2
3
4
5
6
7
8
Figure 4. 32-Lead VFQFN Package Pinout (Top View)  
MPC92439 REVISION 4 OCTOBER 27, 2009  
3
©2009 Integrated Device Technology, Inc.  
MPC92439 Data Sheet  
900MHZ, LOW VOLTAGE, LVPECL CLOCK SYNTHESIZER  
Table 1. Pin Configurations  
Pin  
XTAL_IN, XTAL_OUT  
FREF_EXT  
I/O  
Default  
Type  
Function  
6
0
Analog Crystal oscillator interface  
LVCMOS Alternative PLL reference input  
LVPECL Differential clock output  
LVCMOS Test and device diagnosis output  
LVCMOS PLL reference select input  
Input  
Output  
Output  
Input  
FOUT, FOUT  
TEST  
XTAL_SEL  
1
0
PWR_DOWN  
Input  
LVCMOS Configuration input for power down mode. Assertion (deassertion) of power down will  
decrease (increase) the output frequency by a ratio of 16 in 4 discrete steps.  
PWR_DOWN assertion (deassertion) is synchronous to the input reference clock.  
S_LOAD  
P_LOAD  
Input  
Input  
0
1
LVCMOS Serial configuration control input. This inputs controls the loading of the configuration  
latches with the contents of the shift register. The latches will be transparent when this  
signal is high, thus the data must be stable on the high-to-low transition.  
LVCMOS Parallel configuration control input. this input controls the loading of the configuration  
latches with the content of the parallel inputs (M and N). The latches will be  
transparent when this signal is low, thus the parallel data must be stable on the low-  
to-high transition of P_LOAD. P_LOAD is state sensitive.  
S_DATA  
S_CLOCK  
M[0:6]  
Input  
Input  
Input  
0
0
1
LVCMOS Serial configuration data input.  
LVCMOS Serial configuration clock input.  
LVCMOS Parallel configuration for PLL feedback divider (M).  
M is sampled on the low-to-high transition of P_LOAD.  
N[1:0]  
OE  
Input  
Input  
1
1
LVCMOS Parallel configuration for Post-PLL divider (N).  
N is sampled on the low-to-high transition of P_LOAD.  
LVCMOS Output enable (active high)  
The output enable is synchronous to the output clock to eliminate the possibility of runt  
pulses on the FOUT output. OE = L low stops FOUT in the logic low state (FOUT = L,  
FOUT = H).  
GND  
VCC  
Supply  
Supply  
Ground Negative power supply (GND).  
VCC  
Positive power supply for I/O and core. All VCC pins must be connected to the positive  
power supply for correct operation.  
VCC_PLL  
NC  
Supply  
VCC  
PLL positive power supply (analog power supply).  
Do not connect  
Table 2. Output Frequency Range and PLL Post-Divider N  
N
PWR_DOWN  
VCO Output Frequency Division  
FOUT Frequency Range  
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
2
4
200 - 450 MHz  
100 -225 MHz  
8
50-112.5 MHz  
1
400-900 MHz  
32  
64  
128  
16  
12.5-28.125 MHz  
6.25-14.0625 MHz  
3.125-7.03125 MHz  
25-56.25 MHz  
MPC92439 REVISION 4 OCTOBER 27, 2009  
4
©2009 Integrated Device Technology, Inc.  
MPC92439 Data Sheet  
900MHZ, LOW VOLTAGE, LVPECL CLOCK SYNTHESIZER  
Table 3. Function Table  
Input  
XTAL_SEL  
OE  
0
1
FREF_EXT  
XTAL interface  
Outputs enabled  
Outputs disabled, FOUT is stopped in the logic low state  
(FOUT = L, FOUT = H)  
PWR_DOWN  
Output divider ÷ 1  
Output divider ÷ 16  
Table 4. General Specifications  
Symbol  
VTT  
Characteristics  
Min  
Typ  
Max  
Unit  
V
Condition  
Output Termination Voltage  
ESD Protection (Machine Model)  
ESD Protection (Human Body Model)  
Latch-Up Immunity  
VCC – 2  
MM  
200  
2000  
200  
V
HBM  
LU  
V
mA  
pF  
CIN  
Input Capacitance  
4.0  
Inputs  
θJA  
LQFP 32 Thermal Resistance Junction to Ambient  
JESD 51-3, single layer test board  
83.1  
73.3  
68.9  
63.8  
57.4  
86.0  
75.4  
70.9  
65.3  
59.6  
°C/W Natural convection  
°C/W 100 ft/min  
°C/W 200 ft/min  
°C/W 400 ft/min  
°C/W 800 ft/min  
JESD 51-6, 2S2P multi-layer test board  
59.0  
54.4  
52.5  
50.4  
47.8  
60.6  
55.7  
53.8  
51.5  
48.8  
°C/W Natural convection  
°C/W 100 ft/min  
°C/W 200 ft/min  
°C/W 400 ft/min  
°C/W 800 ft/min  
Thermal Resistance Junction to Ambient 32 VFQFN  
2.5  
43.0  
1
0
meters per second  
37.6  
33.7  
°C/W  
P R O P O S E D  
θJC  
LQFP 32 Thermal Resistance Junction to Case  
23.0  
26.3  
°C/W MIL-SPEC 883E  
Method 1012.1  
Table 5. Absolute Maximum Ratings(1)  
Symbol  
VCC  
VIN  
Characteristics  
Min  
–0.3  
–0.3  
–0.3  
Max  
4.6  
Unit  
V
Condition  
Supply Voltage  
DC Input Voltage  
DC Output Voltage  
DC Input Current  
DC Output Current  
Storage Temperature  
VCC + 0.3  
VCC + 0.3  
±20  
V
VOUT  
IIN  
IOUT  
TS  
V
mA  
mA  
°C  
±50  
–65  
125  
1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these  
conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated  
conditions is not implied.  
MPC92439 REVISION 4 OCTOBER 27, 2009  
5
©2009 Integrated Device Technology, Inc.  
MPC92439 Data Sheet  
Table 6. DC Characteristics (VCC = 3.3V ± 5%, TA = 0°C to +70°C)  
900MHZ, LOW VOLTAGE, LVPECL CLOCK SYNTHESIZER  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
LVCMOS Control Inputs (FREF_EXT, POWER_DOWN, XTAL_SEL, P_LOAD, S_LOAD, S_DATA, S_CLOCK, M[0:8], N[0:1]. OE)  
VIH  
VIL  
IIN  
Input High Voltage  
Input Low Voltage  
Input Current(1)  
2.0  
VCC + 0.3  
0.8  
V
V
LVCMOS  
LVCMOS  
±200  
µA  
VIN = VCC or GND  
(2)  
Differential Clock Output FOUT  
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
VCC–1.02  
VCC–1.95  
VCC–0.74  
VCC–1.60  
V
V
LVPECL  
LVPECL  
Test and Diagnosis Output TEST  
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
2.0  
V
V
IOH = –0.8 mA  
IOL = 0.8 mA  
0.55  
Supply Current  
ICC_PLL Maximum PLL Supply Current  
ICC Maximum Supply Current  
20  
mA  
mA  
VCC_PLL Pins  
All VCC Pins  
62  
110  
1. Inputs have pull-down resistors affecting the input current.  
2. Outputs terminated 50to VTT = VCC – 2V.  
Table 7. AC Characteristics (VCC = 3.3 V ± 5%, TA = 0°C to +70°C)(1)  
Symbol  
fXTAL  
Characteristics  
Crystal interface frequency range  
Min  
10  
Typ  
Max  
20  
Unit  
MHz  
MHz  
Condition  
VCO frequency range(2)  
Output Frequency  
fVCO  
400  
900  
fMAX  
N = 11 (÷1)  
N = 00 (÷2)  
N = 01 (÷4)  
N = 10 (÷8)  
400  
200  
100  
50  
900  
450  
225  
MHz PWR_DOWN = 0  
MHz  
MHz  
MHz  
112.5  
Serial Interface Programming Clock Frequency(3)  
fS_CLOCK  
0
10  
MHz  
tP,MIN  
DC  
Minimum Pulse Width  
Output Duty Cycle  
Output Rise/Fall Time  
Setup Time  
(S-LOAD, P_LOAD)  
50  
45  
ns  
%
50  
55  
tr, tf  
tS  
0.05  
0.3  
ns  
20% to 80%  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to P_LOAD  
20  
20  
20  
ns  
ns  
ns  
tS  
Hold Time  
S_DATA to S_CLOCK  
M, N to P_LOAD  
20  
20  
ns  
ns  
Cycle-to-cycle jitter (RMS 1σ)(4)  
N=11 (÷1)  
N=00 (÷2)  
N=01 (÷4)  
N=10 (÷8)  
tJIT(CC)  
12  
25  
55  
65  
ps  
Period jitter (RMS 1σ)(5)  
N=11 (÷1)  
N=00 (÷2)  
N=01 (÷4)  
N=10 (÷8)  
tJIT(CC)  
13  
23  
36  
40  
tLOCK  
Maximum PLL Lock Time  
10  
ms  
1. AC characteristics apply for parallel output termination of 50to VTT  
.
2. The input frequency fXTAL and the PLL feedback divider M must match the VCO frequency range: fVCO = fXTAL · M  
3. The frequency of S_CLOCK is limited to 10 MHz in serial programming mode. S_CLOCK can be switched at higher frequencies when used  
as test clock in test mode 6. See APPLICATIONS INFORMATION for more details.  
4. Maximum cycle jitter measured at the lowest VCO frequency. Figure 5 shows the cycle jitter vs. frequency characteristics  
5. Maximum period jitter measured at the lowest VCO frequency. Figure 6 shows the period jitter vs. frequency characteristics  
MPC92439 REVISION 4 OCTOBER 27, 2009  
6
©2009 Integrated Device Technology, Inc.  
MPC92439 Data Sheet  
900MHZ, LOW VOLTAGE, LVPECL CLOCK SYNTHESIZER  
Table 8. MPC92439 Frequency Operating Range (in MHz)  
Output frequency for fXTAL=16 MHz and for N =  
VCO frequency for an crystal interface frequency of  
M
M[6:0]  
10  
12  
14  
16  
18  
20  
1
2
4
8
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
...  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1000000  
400  
420  
440  
460  
480  
500  
520  
540  
560  
580  
600  
620  
640  
660  
680  
700  
720  
740  
760  
780  
800  
820  
840  
860  
880  
900  
414  
432  
450  
468  
486  
504  
522  
540  
558  
576  
594  
612  
630  
648  
666  
684  
702  
720  
738  
756  
774  
792  
810  
828  
846  
864  
882  
900  
400  
416  
432  
448  
464  
480  
496  
512  
528  
544  
560  
576  
592  
608  
624  
640  
656  
672  
688  
704  
720  
736  
752  
768  
784  
800  
816  
832  
848  
864  
880  
896  
400  
416  
432  
448  
464  
480  
496  
512  
528  
544  
560  
576  
592  
608  
624  
640  
656  
672  
688  
704  
720  
736  
752  
768  
784  
800  
816  
832  
848  
864  
880  
896  
200  
208  
216  
224  
232  
240  
248  
256  
264  
272  
280  
288  
296  
304  
312  
320  
328  
336  
344  
352  
360  
368  
376  
384  
392  
400  
408  
416  
424  
432  
440  
448  
100  
104  
108  
112  
116  
120  
124  
128  
132  
136  
140  
144  
148  
152  
156  
160  
164  
168  
172  
176  
180  
184  
188  
192  
196  
200  
204  
208  
212  
216  
220  
224  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
88  
90  
92  
94  
96  
98  
100  
102  
104  
106  
108  
110  
112  
406  
420  
434  
448  
462  
476  
490  
504  
518  
532  
546  
560  
574  
588  
602  
616  
630  
644  
658  
672  
684  
700  
714  
728  
742  
756  
770  
784  
798  
812  
826  
840  
854  
868  
882  
896  
...  
408  
420  
432  
444  
456  
468  
480  
492  
504  
516  
528  
540  
552  
564  
576  
588  
600  
612  
624  
636  
648  
660  
672  
684  
696  
708  
720  
732  
744  
756  
768  
...  
400  
410  
420  
430  
440  
450  
460  
470  
480  
490  
500  
510  
520  
530  
540  
550  
560  
570  
580  
590  
600  
610  
620  
630  
640  
...  
MPC92439 REVISION 4 OCTOBER 27, 2009  
7
©2009 Integrated Device Technology, Inc.  
MPC92439 Data Sheet  
900MHZ, LOW VOLTAGE, LVPECL CLOCK SYNTHESIZER  
PROGRAMMING INTERFACE  
Programming the MPC92439  
Substituting N for the four available values for N (1, 2, 4, 8) yields:  
Programming the MPC92439 amounts to properly configuring the  
internal PLL dividers to produce the desired synthesized frequency  
at the output. The output frequency can be represented by this  
formula:  
Table 9. Output Frequency Range for fXTAL = 16 MHz  
N
FOUT  
FOUT Range  
FOUT Step  
1
0
0
1
1
0
0
1
0
1
Value  
fOUT = fXTAL M ÷ N  
(1)  
2
4
8
1
8M  
4M  
2M  
200-450 MHz  
100-225 MHz  
50-112.5 MHz  
400-900 MHz  
8 MHz  
4 MHz  
2 MHz  
16 MHz  
where fXTAL is the crystal frequency, M is the PLL feedback-divider  
and N is the PLL post-divider. The input frequency and the selection  
of the feedback divider M is limited by the VCO-frequency range.  
16M  
f
XTAL and M must be configured to match the VCO frequency range  
of 400 to 900 MHz in order to achieve stable PLL operation:  
Example Calculation for an 16 MHz Input Frequency  
M
M
MIN = fVCO,MIN ÷ (fXTAL) and  
MAX = fVCO,MAX ÷ (fXTAL  
(2)  
(3)  
For example, if an output frequency of 384 MHz was desired, the  
following steps would be taken to identify the appropriate M and N  
values. 384 MHz falls within the frequency range set by an N value  
of 2, so N[1:0]=00. For N = 2, FOUT = 8M and M = FOUT÷8.  
Therefore, M = 384 ÷ 8 = 48, so M[6:0] = 0110000. Following this  
procedure a user can generate any whole frequency between 50  
MHz and 900 MHz. The size of the programmable frequency steps  
will be equal to:  
)
For instance, the use of a 16 MHz input frequency requires the  
configuration of the PLL feedback divider between M = 25 and M =  
56. Table 8 shows the usable VCO frequency and M divider range for  
other example input frequencies. Assuming that a 16 MHz input  
frequency is used, equation (1) reduces to:  
fOUT = 16 M ÷ N  
(4)  
f
STEP = fXTAL ÷ N  
(5)  
APPLICATIONS INFORMATION  
Jitter Performance of the MPC92439  
Period jitter vs. VCO frequency  
Parameter: Output divider N  
Figure 5 and Figure 6 illustrate the RMS jitter performance of the  
MPC92439 across its specified VCO frequency range. The cycle-to-  
cycle and period jitter is a function of the VCO frequency and the  
output divider N. The general trend is that as the output frequency  
increases (higher VCO frequency and lower N-divider) the  
MPC92439 output jitter decreases. Optimum jitter performance can  
be achieved at higher VCO and output frequencies. The maximum  
cycle-to-cycle and period jitter published in Table 7 correspond to the  
jitter performance at the lowest VCO frequency limit).  
40  
35  
30  
25  
20  
15  
10  
5
N=÷8  
N=÷2  
N=÷4  
N=÷1  
0
400  
500  
600  
700  
800  
900  
VCO frequency [MHz]  
Cycle-to-cycle jitter vs. VCO frequency  
Parameter: Output divider N  
Figure 6. MPC92439 Period Jitter  
Using the Parallel and Serial Interface  
70  
60  
The M and N counters can be loaded either through a parallel or  
serial interface. The parallel interface is controlled via the P_LOAD  
signal such that a LOW to HIGH transition will latch the information  
present on the M[6:0] and N[1:0] inputs into the M and N counters.  
When the P_LOAD signal is LOW the input latches will be  
transparent and any changes on the M[6:0] and N[1:0] inputs will  
affect the FOUT output pair. To use the serial port the S_CLOCK  
signal samples the information on the S_DATA line and loads it into  
a 12 bit shift register. Note that the P_LOAD signal must be HIGH for  
the serial load operation to function. The Test register is loaded with  
the first three bits, the N register with the next two, and the M register  
with the final eight bits of the data stream on the S_DATA input. For  
each register the most significant bit is loaded first (T2, N1 and M6).  
A pulse on the S_LOAD pin after the shift register is fully loaded will  
transfer the divide values into the counters. The HIGH to LOW  
50  
N=÷8  
40  
N=÷4  
30  
20  
N=÷2  
10  
0
N=÷1  
400  
500  
600  
700  
800  
900  
VCO frequency [MHz]  
Figure 5. MPC92439 Cycle-to-cycle Jitter  
MPC92439 REVISION 4 OCTOBER 27, 2009  
8
©2009 Integrated Device Technology, Inc.  
MPC92439 Data Sheet  
900MHZ, LOW VOLTAGE, LVPECL CLOCK SYNTHESIZER  
transition on the S_LOAD input will latch the new divide values into  
the counters. Figure 7 illustrates the timing diagram for both a  
parallel and a serial load of the MPC92439 synthesizer.  
M[6:0] and N[1:0] are normally specified once at power-up  
through the parallel interface, and then possibly again through the  
serial interface. This approach allows the application to come up at  
one frequency and then change or fine-tune the clock as the ability  
to control the serial interface becomes available.  
the user more control on the test clocks sent through the clocktree  
shows the functional setup of the PLL bypass mode. Because the  
S_CLOCK is a CMOS level the input frequency is limited to 200  
MHz. This means the fastest the FOUT pin can be toggled via the  
S_CLOCK is 100 MHz as the divide ratio of the Post-PLL divider is  
2 (if N = 1). Note that the M counter output on the TEST output will  
not be a 50% duty cycle.  
Table 10. Test and Debug Configuration for TEST  
Using the Test and Diagnosis Output TEST  
T[2:0]  
TEST Output  
The TEST output provides visibility for one of the several internal  
nodes as determined by the T[2:0] bits in the serial configuration  
stream. It is not configurable through the parallel interface. Although  
it is possible to select the node that represents FOUT, the LVCMOS  
output is not able to toggle fast enough for higher output frequencies  
and should only be used for test and diagnosis.  
The T2, T1 and T0 control bits are preset to ‘000' when P_LOAD  
is LOW so that the PECL FOUT outputs are as jitter-free as possible.  
Any active signal on the TEST output pin will have detrimental  
affects on the jitter of the PECL output pair. In normal operations,  
jitter specifications are only guaranteed if the TEST output is static.  
The serial configuration port can be used to select one of the  
alternate functions for this pin.  
T2  
T1  
T0  
12-bit shift register out(1)  
Logic 1  
0
0
0
0
0
0
1
1
0
f
XTAL ÷ 2  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
M-Counter out  
FOUT  
Logic 0  
M-Counter out in PLL-bypass mode  
FOUT ÷ 4  
1. Clocked out at the rate of S_CLOCK\  
Most of the signals available on the TEST output pin are useful  
only for performance verification of the MPC92439 itself. However,  
the PLL bypass mode may be of interest at the board level for  
functional debug. When T[2:0] is set to 110 the MPC92439 is placed  
in PLL bypass mode. In this mode the S_CLOCK input is fed directly  
into the M and N dividers. The N divider drives the FOUT differential  
pair and the M counter drives the TEST output pin. In this mode the  
S_CLOCK input could be used for low speed board level functional  
test or debug. Bypassing the PLL and driving FOUT directly gives  
Table 11. Debug Configuration for PLL Bypass(1)  
Output  
FOUT  
TEST  
Configuration  
S_CLOCK ÷ N  
M-Counter out(2)  
1. T[2:0] = 110. AC specifications do not apply in PLL bypass  
mode  
2. Clocked out at the rate of S_CLOCK ÷ (2N)  
S_CLOCK  
T2 T1 T0 N1 N0 M6 M5 M4 M3 M2 M1 M0  
S_DATA  
S_LOAD  
First  
Bit  
Last  
Bit  
M[6:0]  
N[1:0]  
M, N  
P_LOAD  
Figure 7. Serial Interface Timing Diagram  
isolation is sufficient. However, in a digital system environment  
Power Supply Filtering  
where it is more difficult to minimize noise on the power supplies a  
second level of isolation may be required. The simplest form of  
isolation is a power supply filter on the VCC_PLL pin for the  
MPC92439. Figure 8 illustrates a typical power supply filter scheme.  
The MPC92439 is most susceptible to noise with spectral content in  
the 1 kHz to 1 MHz range. Therefore, the filter should be designed  
to target this range. The key parameter that needs to be met in the  
final filter design is the DC voltage drop that will be seen between  
The MPC92439 is a mixed analog/digital product. Its analog  
circuitry is naturally susceptible to random noise, especially if this  
noise is seen on the power supply pins. Random noise on the  
V
CC_PLL pin impacts the device characteristics. The MPC92439  
provides separate power supplies for the digital circuitry (VCC) and  
the internal PLL (VCC_PLL) of the device. The purpose of this design  
technique is to try and isolate the high switching noise digital outputs  
from the relatively sensitive internal analog phase-locked loop. In a  
controlled environment such as an evaluation board, this level of  
MPC92439 REVISION 4 OCTOBER 27, 2009  
9
©2009 Integrated Device Technology, Inc.  
MPC92439 Data Sheet  
900MHZ, LOW VOLTAGE, LVPECL CLOCK SYNTHESIZER  
the VCC supply and the MPC92439 pin of the MPC92439. From the  
data sheet, the VCC_PLL current (the current sourced through the  
VCC_PLL pin) is maximum 20 mA, assuming that a minimum of  
2.835 V must be maintained on the VCC_PLL pin. The resistor shown  
in Figure 8 must have a resistance of 10–15 to meet the voltage  
drop criteria. The RC filter pictured will provide a broadband filter with  
approximately 100:1 attenuation for noise whose spectral content is  
above 20 kHz. As the noise frequency crosses the series resonant  
point of an individual capacitor its overall impedance begins to look  
inductive and thus increases with increasing frequency. The parallel  
capacitor combination shown ensures that a low impedance path to  
ground exists for frequencies well above the bandwidth of the PLL.  
Generally, the resistor/capacitor filter will be cheaper, easier to  
implement and provide an adequate level of supply filtering. A higher  
level of attenuation can be achieved by replacing the resistor with an  
appropriate valued inductor. A 1000 µH choke will show a significant  
impedance at 10 kHz frequencies and above. Because of the current  
draw and the voltage that must be maintained on the VCC_PLL pin, a  
low DC resistance inductor is required (less than 15 ).  
degraded due to system power supply noise. The power supply filter  
and bypass schemes discussed in this section should be adequate  
to eliminate power supply noise related problems in most designs.  
C1  
C1  
1
CF  
C2  
XTAL  
= VCC  
RF = 10-15 Ω  
= GND  
= Via  
VCC_PLL  
VCC  
C2  
CF = 22 µF  
MPC92439  
Figure 9. PCB Board Layout Recommendation  
for the PLCC28 Package  
VCC  
C1, C2 = 0.01...0.1 µF  
C1  
The On-Chip Crystal Oscillator  
The MPC92439 features an integrated on-chip crystal oscillator to  
minimize system implementation cost. The integrated oscillator is a  
Pierce-type that uses the crystal in its parallel resonance mode. It is  
recommended to use a 10 to 20 MHz crystal with a load specification  
of CL = 10 pF. Crystals with a load specification of CL = 20 pF may be  
used at the expense of an slightly higher frequency than specified for  
the crystal. Externally connected capacitors on both the XTAL_IN  
and XTAL_OUT pins are not required but can be used to fine-tune the  
crystal frequency as desired.  
Figure 8. VCC_PLL Power Supply Filter  
Layout Recommendations  
The MPC92439 provides sub-nanosecond output edge rates and  
thus a good power supply bypassing scheme is a must. Figure 9  
shows a representative board layout for the MPC92439. There exists  
many different potential board layouts and the one pictured is but  
one. The important aspect of the layout in Figure 9 is the low  
impedance connections between VCC and GND for the bypass  
capacitors. Combining good quality general purpose chip capacitors  
with good PCB layout techniques will produce effective capacitor  
resonances at frequencies adequate to supply the instantaneous  
switching current for the MPC92439 outputs. It is imperative that low  
inductance chip capacitors are used; it is equally important that the  
board layout does not introduce back all of the inductance saved by  
using the leadless capacitors. Thin interconnect traces between the  
capacitor and the power plane should be avoided and multiple large  
vias should be used to tie the capacitors to the buried power planes.  
Fat interconnect and large vias will help to minimize layout induced  
inductance and thus maximize the series resonant point of the  
bypass capacitors. Note the dotted lines circling the crystal oscillator  
connection to the device. The oscillator is a series resonant circuit  
and the voltage amplitude across the crystal is relatively small. It is  
imperative that no actively switching signals cross under the crystal  
as crosstalk energy coupled to these lines could significantly impact  
the jitter of the device. Special attention should be paid to the layout  
of the crystal to ensure a stable, jitter free interface between the  
crystal and the on-board oscillator. Although the MPC92439 has  
several design features to minimize the susceptibility to power supply  
noise (isolated power and grounds and fully differential PLL), there  
still may be applications in which overall performance is being  
The crystal, the trace and optional capacitors should be placed on  
the board as close as possible to the MPC92439 XTAL_IN and  
XTAL_OUT pins to reduce crosstalk of active signals into the  
oscillator. Short and wide traces further reduce parasitic inductance  
and resistance. It is further recommended to guard the crystal circuit  
by placing a ground ring around the traces and oscillator  
components. See Table 12 for recommended crystal specifications.  
Table 12. Recommended Crystal Specifications  
Parameter  
Value  
Fundamental AT Cut  
Parallel  
Crystal Cut  
Resonance Mode  
Crystal Frequency  
Shunt Capacitance C0  
10 - 20 MHz  
5 - 7 pF  
Load Capacitance CL  
10 pF  
Equivalent Series Resistance ESR  
20–60 Ω  
MPC92439 REVISION 4 OCTOBER 27, 2009  
10  
©2009 Integrated Device Technology, Inc.  
MPC92439 Data Sheet  
900MHZ, LOW VOLTAGE, LVPECL CLOCK SYNTHESIZER  
As an alternative to parallel resonance mode crystals, the  
oscillator also works with crystals specified in the series resonance  
mode. With series resonance crystals, the oscillator frequency and  
the synthesized output frequency of the MPC92439 will be a  
approximately 350-400 ppm higher than using crystals specified for  
parallel frequency mode. This is applicable to applications using the  
MPC92439 in sockets designed for the pin and function compatible  
MC12439 synthesizer, which has an oscillator using the crystal in its  
series resonance mode.Table 13 shows the recommended  
specifications for series resonance mode crystals  
Table 13. Alternative Crystal Specifications  
Parameter  
Value  
Fundamental AT Cut  
Series  
10 - 20 MHz  
5 - 7 pF  
Crystal Cut  
Resonance Mode  
Crystal Frequency  
Shunt Capacitance C0  
Equivalent Series Resistance ESR  
50–80 Ω  
MPC92439 REVISION 4 OCTOBER 27, 2009  
11  
©2009 Integrated Device Technology, Inc.  
MPC92439 Data Sheet  
900MHZ, LOW VOLTAGE, LVPECL CLOCK SYNTHESIZER  
Package Outline and Package Dimensions  
PACKAGE DIMENSIONS  
CASE 776-02  
ISSUE D  
PLCC PLASTIC PACKAGE  
MPC92439 REVISION 4 OCTOBER 27, 2009  
12  
©2009 Integrated Device Technology, Inc.  
MPC92439 Data Sheet  
900MHZ, LOW VOLTAGE, LVPECL CLOCK SYNTHESIZER  
PACKAGE DIMENSIONS  
4X  
0.20  
H
A-B D  
6
D1  
3
A, B, D  
e/2  
D1/2  
32  
PIN 1 INDEX  
1
25  
F
F
A
B
E1/2  
6
E1  
E
4
DETAIL G  
E/2  
DETAIL G  
8
17  
NOTES:  
9
7
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M, 1994.  
3. DATUMS A, B, AND D TO BE DETERMINED AT  
DATUM PLANE H.  
D
4
D/2  
4X  
D
4. DIMENSIONS D AND E TO BE DETERMINED AT  
SEATING PLANE C.  
0.20  
C
A-B D  
5. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED  
THE MAXIMUM b DIMENSION BY MORE THAN  
0.08-mm. DAMBAR CANNOT BE LOCATED ON THE  
LOWER RADIUS OR THE FOOT. MINIMUM SPACE  
BETWEEN PROTRUSION AND ADJACENT LEAD OR  
PROTRUSION: 0.07-mm.  
H
28X  
e
32X  
0.1 C  
6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.25-mm PER SIDE. D1 AND E1 ARE MAXIMUM  
PLASTIC BODY SIZE DIMENSIONS INCLUDING  
MOLD MISMATCH.  
7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.  
8. THESE DIMENSIONS APPLY TO THE FLAT  
SECTION OF THE LEAD BETWEEN 0.1-mm AND  
0.25-mm FROM THE LEAD TIP.  
SEATING  
PLANE  
C
DETAIL AD  
BASE  
METAL  
PLATING  
b1  
c
c1  
MILLIMETERS  
DIM  
A
A1  
A2  
b
b1  
c
c1  
D
MIN  
1.40  
0.05  
1.35  
0.30  
0.30  
0.09  
0.09  
MAX  
1.60  
0.15  
1.45  
0.45  
0.40  
0.20  
0.16  
b
5
8
8X (θ1˚)  
M
0.20  
C
A-B  
D
R R2  
SECTION F-F  
R R1  
9.00 BSC  
D1  
e
E
E1  
L
L1  
q
q1  
R1  
R2  
S
7.00 BSC  
0.80 BSC  
9.00 BSC  
7.00 BSC  
A2  
A
0.25  
GAUGE PLANE  
0.50  
1.00 REF  
0˚ 7˚  
12 REF  
0.70  
(S)  
A1  
L
θ˚  
0.08  
0.08  
0.20  
---  
(L1)  
0.20 REF  
DETAIL AD  
CASE 873A-03  
ISSUE B  
LQFP PLASTIC PACKAGE  
MPC92439 REVISION 4 OCTOBER 27, 2009  
13  
©2009 Integrated Device Technology, Inc.  
MPC92439 Data Sheet  
900MHZ, LOW VOLTAGE, LVPECL CLOCK SYNTHESIZER  
Package Outline - K Suffix for 32 Lead VFQFN  
Seating Plane  
(Ref.)  
N & N  
(N -1)x e  
(Ref.)  
Even  
A1  
IndexArea  
L
A3  
E2  
e
2
N
N
(Ty p.)  
If N & N  
are Even  
Anvil  
1
Singulation  
2
or  
(N -1)x e  
(Ref.)  
Sawn  
E2  
2
Singulation  
TopView  
D
b
(Ref.)e  
N &N  
Odd  
Thermal  
Base  
A
D2  
2
0. 08  
C
Chamfer 4x  
0.6 x 0.6 max  
OPTIONAL  
D2  
C
Bottom View w/Type A ID  
Bottom View w/Type B ID  
Bottom View w/Type C ID  
4
2
1
2
1
2
1
CHAMFER  
RADIUS  
N N-1  
4
N N-1  
DD  
N N-1  
4
4
There are 3 methods of indicating pin 1 corner  
at the back of the VFQFN package are:  
1. Type A: Chamfer on the paddle (near pin 1)  
2. Type B: Dummy pad between pin 1 and N.  
3. Type C: Mouse bite on the paddle (near pin 1)  
4
AA  
4
NOTE: The following package mechanical drawing is a generic  
drawing that applies to any pin count VFQFN package. This drawing  
is not intended to convey the actual pin count or pin layout of this  
device. The pin count and pinout are shown on the front page. The  
package dimensions are in Table 14.  
Table 14. Package Dimensions  
JEDEC Variation: VHHD-2/-4  
All Dimensions in Millimeters  
Symbol  
Minimum  
Nominal  
Maximum  
N
32  
A
0.80  
0
1.00  
0.05  
A1  
A3  
0.25 Ref.  
0.25  
b
ND & NE  
D & E  
D2 & E2  
e
0.18  
0.30  
8
5.00 Basic  
3.0  
3.3  
0.50 Basic  
0.40  
L
0.30  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
MPC92439 REVISION 4 OCTOBER 27, 2009  
14  
©2009 Integrated Device Technology, Inc.  
MPC92439 Data Sheet  
900MHZ, LOW VOLTAGE, LVPECL CLOCK SYNTHESIZER  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
San Jose, California 95138  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2009. All rights reserved.  

相关型号:

MPC92439ACR2

Clock Generator, 900MHz, PQFP32, ROHS COMPLIANT, LQFP-32
IDT

MPC92439EI

900MHz, Low Voltage, LVPECL Clock Syntheesizer
IDT

MPC92439EIR2

Clock Generator, 900MHz, PQCC28, ROHS COMPLIANT, PLASTIC, LCC-28
IDT

MPC92439FA

900MHz, Low Voltage, LVPECL Clock Syntheesizer
IDT

MPC92439FAR2

Clock Generator, 900MHz, PQFP32, LQFP-32
IDT

MPC92439KLF

900MHz, Low Voltage, LVPECL Clock Syntheesizer
IDT

MPC92469

400 MHz Low Voltage PECL Clock Synthesizer w/Spread Spectrum
IDT

MPC92469AC

400MHz, OTHER CLOCK GENERATOR, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, MS-026BBA, LQFP-32
NXP

MPC92469AC

TQFP-32, Tray
IDT

MPC92469ACR2

Clock Generator, PQFP32
IDT

MPC92474AC

700 MHz, OTHER CLOCK GENERATOR, PQFP48, LEAD FREE, LQFP-48
NXP

MPC92474AC

Clock Generator, 700MHz, PQFP48, LEAD FREE, LQFP-48
IDT