ZMD31015AEF-T [IDT]

Automotive Analog Circuit;
ZMD31015AEF-T
型号: ZMD31015AEF-T
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Automotive Analog Circuit

文件: 总23页 (文件大小:296K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZMD31150  
Fast Automotive Sensor Signal Conditioner  
Data Sheet  
Rev. 1.04 / November 2009  
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
Brief Description  
Benefits  
The ZMD31150 is a CMOS integrated circuit for  
highly-accurate amplification and sensor-specific  
correction of bridge sensor signals. Digital  
compensation of sensor offset, sensitivity,  
No external trimming components  
required  
Only a few external protection devices  
temperature  
drift,  
and  
non-linearity  
is  
needed  
accomplished via a 16-bit RISC microcontroller  
running a correction algorithm, with calibration  
coefficients stored in an EEPROM.  
PC-controlled configuration and One-  
Shot calibration via I2C or ZACwireTM  
interface: Simple, cost efficient, quick,  
and precise  
The ZMD31150 is adjustable to nearly all bridge  
sensor types. Measured values are provided at  
the analog voltage output or at the digital  
ZACwireTM and I2C interface. The digital interface  
can be used for a simple PC-controlled calibration  
procedure, in order to program a set of calibration  
coefficients into an on-chip EEPROM. Thus, a  
specific sensor and a ZMD31150 are mated  
digitally: fast, precise, and without the cost  
overhead associated with trimming by external  
devices or a laser.  
End-of-Line calibration via I2C or  
ZACwireTM interface  
High accuracy (0.25% FSO @ -25 to  
85° C; 0.5% FSO @ -40 to 125° C)  
The ZMD31150 is optimized for  
automotive environments by its special  
protection circuitry and excellent  
electromagnetic compatibility  
Features  
Digital compensation of sensor offset,  
sensitivity, temperature drift, and non-  
linearity  
Available Support  
Adjustable to nearly all bridge sensor types,  
analog gain of 420, overall gain up to 2000  
Output options: ratiometric analog voltage  
output (5 - 95% in maximum, 12.4 bit  
resolution) or ZACwireTM (digital one-wire-  
interface)  
Temperature compensation: internal or  
external diode, bridge resistance, thermistor  
Sensor biasing by voltage or constant  
current  
Evaluation Kit  
Application Notes  
Mass calibration solution  
ZMD31150 Overview  
VCC  
Sensor  
Module  
Sample rate up to 7.8 kHz  
High voltage protection up to 33 V  
Reverse polarity and short circuit protection  
Wide operation temperature -40 to +150 °C  
Supply voltage 4.5 to 5.5 V  
OUT  
GND  
ZMD  
31150  
Traceability by user-defined EEPROM  
entries  
Several safety and diagnostic functions  
© 2009 ZMD AG Rev. 1.04  
Data Sheet  
Rev. 1.04  
November 2009  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
2 / 23  
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
Contents  
1
Electrical Characteristics............................................................................................................................ 5  
1.1. Absolute Maximum Ratings ................................................................................................................ 5  
1.2. Operating Conditions .......................................................................................................................... 5  
1.3. Electrical Parameters.......................................................................................................................... 6  
1.3.1. Supply Current and System Operation Conditions...................................................................... 6  
1.3.2. Analog Front-End (AFE) Characteristics ..................................................................................... 6  
1.3.3. Temperature Measurement (refer chapter 0) .............................................................................. 6  
1.3.4. Sensor Connection Check ........................................................................................................... 7  
1.3.5. AD-Conversion............................................................................................................................. 7  
1.3.6. DAC & Analog Output (Pin AOUT) ............................................................................................. 7  
1.3.7. System Response........................................................................................................................ 8  
1.4. Interface Characteristics & EEPROM ................................................................................................. 8  
1.4.1. I2C Interface (refer ZMD31150_FD_Rev_*.pdf for timing details) ............................................... 8  
1.4.2. ZACwire™ One Wire Interface (OWI).......................................................................................... 9  
1.4.3. EEPROM...................................................................................................................................... 9  
Circuit Description .................................................................................................................................... 10  
2.1. Signal Flow........................................................................................................................................ 10  
2.2. Application Modes............................................................................................................................. 10  
2.3. Analog Front End (AFE).................................................................................................................... 11  
2.3.1. Programmable Gain Amplifier (PGA)......................................................................................... 11  
2.3.2. Measurement Cycle................................................................................................................... 12  
2.3.3. Analog-to-Digital Converter........................................................................................................ 13  
2.4. Temperature Measurement............................................................................................................... 14  
2.5. System Control and Conditioning Calculation................................................................................... 15  
2.5.1. Operation Modes ....................................................................................................................... 15  
2.5.2. Start Up Phase........................................................................................................................... 15  
2.5.3. Conditioning Calculation ............................................................................................................ 16  
2.6. Analog Output AOUT ........................................................................................................................ 16  
2.7. Serial Digital Interface....................................................................................................................... 16  
2.8. Failsafe Features, Watchdog and Error Detection............................................................................ 17  
2.9. High Voltage, Reverse Polarity and Short Circuit Protection............................................................ 17  
Application Circuit Examples.................................................................................................................... 18  
Pin Configuration, Latch-Up and ESD Protection .................................................................................... 20  
4.1. Pin Configuration and Latch-up Conditions ...................................................................................... 20  
4.2. ESD-Protection.................................................................................................................................. 20  
Package.................................................................................................................................................... 21  
Quality and Reliability............................................................................................................................... 21  
Customization........................................................................................................................................... 21  
Additional Documents .............................................................................................................................. 22  
Glossary ................................................................................................................................................... 22  
2
3
4
5
6
7
8
9
10  
Document Revision History .................................................................................................................. 23  
© 2009 ZMD AG Rev. 1.04  
Data Sheet  
Rev. 1.04  
November 2009  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
3 / 23  
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
List of Figures  
Figure 2.1 Block Diagram of the ZMD31150................................................................................................10  
Figure 2.2 Measurement Cycle ....................................................................................................................13  
Figure 3.1 Bridge in Voltage Mode, External Diode Temperature Sensor...................................................18  
Figure 3.2 Bridge in Voltage Mode, External Thermistor.............................................................................19  
Figure 3.3 Bridge in Current Mode, Temperature Measurement via Bridge TC..........................................19  
Figure 5.1 ZMD31150 Pin Diagram..............................................................................................................21  
List of Tables  
Table 1.1  
Table 1.2  
Table 1.3  
Table 1.4  
Table 1.5  
Table 1.6  
Table 1.7  
Table 1.8  
Table 1.9  
Absolute Maximum Ratings ..........................................................................................................5  
Operating Conditions ....................................................................................................................5  
Parameters for Supply Current and System Operation Conditions..............................................6  
Parameters for AFE ......................................................................................................................6  
Parameters for Temperature Measurement..................................................................................6  
Parameters for Sensor Connection Check ...................................................................................7  
Parameters for AD-Conversion.....................................................................................................7  
Parameters for DAC & Analog Output ..........................................................................................7  
Parameters for System Response................................................................................................8  
Table 1.10 Parameters for I2C Interface .........................................................................................................8  
Table 1.11 Parameters for ZACwireTM ............................................................................................................9  
Table 1.12 Parameters for EEPROM..............................................................................................................9  
Table 2.1  
Table 2.2  
Table 2.3  
Table 3.1  
Table 4.1  
Table 8.1  
Adjustable gains, resulting sensor signal spans, and common mode ranges............................11  
Analog Zero Point Shift Ranges (XZC).......................................................................................12  
Analog Output resolution versus sample rat...............................................................................14  
Application Circuit Parameters....................................................................................................18  
Pin Configuration and Latch-Up Conditions................................................................................20  
Additional Documents .................................................................................................................22  
© 2009 ZMD AG Rev. 1.04  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
Data Sheet  
Rev. 1.04  
4 / 23  
November 2009  
this publication is subject to changes without notice.  
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
1
Electrical Characteristics  
1.1.  
Absolute Maximum Ratings  
Parameters apply in operation temperature range and without time limitations.  
Table 1.1  
Symbol  
Absolute Maximum Ratings  
Parameter  
Min  
Max  
Unit Conditions  
VDDE_AMR  
Supply Voltage 1  
-33  
33  
VDC To VSSE, refer to chapter 3 for application  
circuits  
VOUT  
Potential at pin AOUT 1  
Analog Supply Voltage  
-33  
-0.3  
-0.3  
33  
VDC Related to VSSE  
1
VDDA_AMR  
6.5  
VDC Related to VSSA, VDDE - VDDA < 0.35 V  
VDC Related to VSSA  
VA_IO  
VD_IO  
Voltage at all analog and  
digital IO – Pins  
VDDA  
+ 0.3  
TSTG  
Storage temperature  
-55  
150  
C  
1.2.  
Operating Conditions  
All voltages are related to VSSA  
.
Table 1.2  
Symbol  
TAMB  
Operating Conditions  
Parameter  
Min  
-40  
-40  
Typ  
Max  
150  
125  
Unit Conditions  
2
Ambient temperature  
TQE  
TQA  
C  
C  
TAMB_TQA  
Ambient temperature  
advanced performance 4  
TAMB_TQI  
Ambient temperature  
-25  
85  
TQI  
C  
advanced performance 4  
VDDE  
RBR_V  
RBR_C  
Supply Voltage  
4.5  
2
5.0  
5.5  
25  
10  
VDC  
k  
k  
3, 4  
Bridge Resistance  
Bridge Resistance 3, 4  
Bridge Voltage Mode  
Bridge Current Excitation,  
note IBR_MAX  
4
RIBR  
Resistor RIBR  
0.07 * RBR  
IBR = VDDA / (16 * RIBR)  
k  
mA  
V
IBR_MAX  
VBR_TOP  
Maximum Bridge Current  
2
Maximum Bridge Top  
Voltage  
15/16 *  
DDA - 0.3  
V
TC RIBR  
TC Current Reference  
Resistor  
50  
ppm/K Behavior influences generated  
current  
4
1 Refer to the 'ZMD31150 High Voltage Protection Description' for specification and detailed conditions  
2 Notice temperature profile description in the 'ZMD31150 Dice Package Document' for operation in temperature range > 125 °C  
3 Symmetric behavior and identical electrical properties (especially with regard to the low pass characteristic) of both sensor inputs of  
the ZMD31150 are required. Unsymmetrical conditions of the sensor and/or external components connected to the sensor input pins  
of ZMD31150 can generate a failure in signal operation  
4 No measurement in mass production, parameter is guaranteed by design and/or quality observation  
© 2009 ZMD AG Rev. 1.04  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
Data Sheet  
Rev. 1.04  
November 2009  
5 / 23  
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
1.3.  
Electrical Parameters  
All parameter values are valid on behalf on in chapter 1.2 specified operating conditions (special definitions  
excluded). All Voltages related to VSSA.  
1.3.1. Supply Current and System Operation Conditions  
Table 1.3  
Symbol  
IVDDE  
Parameters for Supply Current and System Operation Conditions  
Parameter  
Min  
Typ  
Max  
Unit Conditions  
Supply current  
5.5  
mA Without bridge and load current,  
fCLK 3 MHz  
fCLK  
Clock frequency  
2 5  
3
4 5  
MHz Guaranteed adjustment range  
1.3.2. Analog Front-End (AFE) Characteristics  
Table 1.4  
Symbol  
VIN_SP  
Parameters for AFE  
Parameter  
Min  
1
Typ  
Max  
275  
300  
Unit Conditions  
Input Span  
mV/V Analog gain: 420 to 2.8  
Analog Offset Compensation  
Range  
-300  
%
Depends on gain adjust, refer to  
VIN_SP chapter 2.3.1.1  
IIN_OFF  
VIN_CM  
Parasitic differential input  
offset current  
-10  
-2  
10  
2
nA Within TAMB;  
nA Within TAMB_TQI  
5
Common mode input range 0.29 * VDDA  
0.65 * VDDA  
V
Depends on gain adjust,  
no XZC, refer to chapter 2.3.1  
1.3.3. Temperature Measurement (refer chapter 0)  
Table 1.5  
Symbol  
ATSED  
Parameters for Temperature Measurement  
Parameter  
Min  
Typ  
Max  
1300  
Unit  
Conditions  
External temperature diode 300  
channel gain  
ppm FS  
/ mV  
ITSE  
External temperature diode  
bias current  
6
10  
20  
A  
External temperature diode  
input range *  
0
1.5  
V
ATSER  
VTSER  
STTSI  
External temperature  
resistor channel gain  
1200  
0
3500  
600  
2700  
ppm FS  
/ (mV/V)  
External temperature  
resistor input range *  
mV/V  
Internal temperature diode  
sensitivity  
700  
ppm FS /K  
raw values – without  
conditioning  
5 No measurement in mass production, parameter is guaranteed by design and/or quality observation  
© 2009 ZMD AG Rev. 1.04  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
Data Sheet  
Rev. 1.04  
6 / 23  
November 2009  
this publication is subject to changes without notice.  
 
 
 
 
 
 
 
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
1.3.4. Sensor Connection Check  
Table 1.6  
Symbol  
Parameters for Sensor Connection Check  
Parameter  
Min  
100  
Typ  
Max  
Unit Conditions  
RSCC_min  
Sensor connection loss  
detection threshold  
k  
RSSC_short Sensor input short  
RSSC_pass Sensor input no short  
0
50  
short detection guaranteed  
short is never detected  
1000  
1.3.5. AD-Conversion  
Table 1.7  
Symbol  
rADC  
Parameters for AD-Conversion  
Parameter  
A/D Resolution *  
DNL *  
Min  
Typ  
Max  
Unit Conditions  
13  
16  
Bit  
DNLADC  
0.95  
LSB  
rADC =13Bit, fCLK=3MHz, best  
fit, 2nd order, complete AFE,  
5.3.5.5  
INLADC  
INLADC  
Range  
INL TQA *  
4
LSB  
INL TQE  
5
LSB  
ADC Input Range  
10  
90  
%VDDA  
1.3.6. DAC & Analog Output (Pin AOUT)  
Table 1.8  
Symbol  
rDAC  
Parameters for DAC & Analog Output  
Parameter  
Min  
Typ  
12  
Max  
Unit Conditions  
D/A Resolution  
Bit  
analog output, 10-90%  
ISRC/SINK_OUT  
Output current sink and source for  
VDDE=5V  
2.5  
5
mA  
Vout: 5-95%, RLOAD>=2k  
Vout: 10-90%, RLOAD>=1k  
IOUT_max  
Short circuit current  
-25  
25  
mA  
to VSSE/VDDE6  
VSR_OUT95  
VSR_OUT90  
Addressable output signal  
range  
0.05  
0.1  
0.95  
0.9  
VDDE @ RLOAD>=2k  
@ RLOAD>=1k  
SROUT  
Output slew rate *  
0.1  
V/ s CLOAD < 50nF  
ROUT_DIA  
Output resistance in  
diagnostic mode  
82  
Diagnostic Range:  
<4|96>%, RLOAD>=2k  
<8|92>%, RLOAD>=1k  
  
CLOAD  
Load capacitance *  
DNL  
150  
1.5  
5
nF  
C3 + CL (refer chapter 3)  
DNLOUT  
INLOUT  
INLOUT  
ILEAK_OUT  
-1.5  
-5  
LSB  
LSB  
LSB  
A  
INL TQA *  
INL TQE  
best fit, rDAC =12Bit  
-8  
8
best fit, rDAC =12Bit  
Output Leakage current @  
150grd  
-25  
25  
in case of power or ground loss  
6 minimum output voltage to VDDE or maximum output voltage to VSSE  
© 2009 ZMD AG Rev. 1.04  
Data Sheet  
Rev. 1.04  
November 2009  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
7 / 23  
 
 
 
 
 
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
1.3.7. System Response  
Table 1.9  
Symbol  
tSTA  
Parameters for System Response  
Parameter  
Min  
Typ  
Max  
Unit Conditions  
2
Startup time  
5
ms  
to 1st output, fclk=3MHz, no ROM  
check, ADC: 14bit & 2nd order  
tRESP  
Response time  
(100% jump) *  
256  
512  
s  
fCLK=4MHz, 13Bit, 2nd order, refer  
chapter 0  
Bandwidth *  
5
kHz  
mV  
comparable to analog SSCs  
VNOISE,PP  
VNOISE,RMS  
REOUT_5  
Analog Output Noise  
Peak-to-Peak *  
10  
shorted inputs, gain=  
bandwidth 10kHz  
Analog Output Noise  
RMS *  
3
mV  
shorted inputs, gain=  
bandwidth 10kHz  
Ratiometricity Error  
1000  
ppm  
maximum error of  
VDDE=5V to 4.5/5.5V  
13Bit 2nd order ADC, fclk<=3MHz,  
XZC=0 1, no sensor caused effects;  
inside of parenthesis: digital readout  
FALL TQI  
FALL TQA  
FALL TQE  
Overall failure (deviation from ideal  
line including INL, gain, offset &  
temp errors)  
0.25 (0.1)  
0.5 (0.25)  
1.0 (0.5)  
%
FS  
1.4.  
Interface Characteristics & EEPROM  
1.4.1. I2C Interface (refer ZMD31150_FD_Rev_*.pdf for timing details)  
Table 1.10  
Symbol  
VI2C_IN_H  
VI2C_IN_L  
VI2C_OUT_L  
CSDA  
Parameters for I2C Interface  
Parameter  
Min  
Typ  
Max  
Unit Conditions  
VDDA  
Input-High-Level *  
Input-Low-Level *  
Output-Low-Level *  
SDA load capacitance *  
SCL clock frequency *  
Internal pullup resistor *  
0.8  
0.2  
VDDA  
0.15  
400  
400  
100  
VDDA Open Drain, IOL<2mA  
pF  
fSCL  
kHz  
k  
RI2C  
25  
2
Depends on resolution and configuration - start routine begins approximately 0.8ms after power on  
* no measurement in mass production, parameter is guarantied by design and/or quality observation  
1 XZC is active: additional overall failure of 25ppm/K for XZC=31 in maximum, failure decreases linear for XZC adjusts lower than 31  
© 2009 ZMD AG Rev. 1.04  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
Data Sheet  
Rev. 1.04  
November 2009  
8 / 23  
 
 
 
 
 
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
1.4.2. ZACwire™ One Wire Interface (OWI)  
Table 1.11  
Symbol  
Parameters for ZACwireTM  
Parameter  
Min  
Typ  
Max  
0.2  
Unit Conditions  
VDDA  
VOWI_IN_L  
Input-Low-Level *  
Input-High-Level *  
Output-Low-Level *  
Start Window *  
VOWI_IN_H  
VOWI_OUT_L  
0.75  
96  
VDDA  
t.b.d.  
455  
VDDA Open Drain, IOL<?mA  
175  
ms  
typ: @ fclk=3MHz  
1.4.3. EEPROM  
Table 1.12  
Symbol  
Parameters for EEPROM  
Parameter  
Min  
-40  
Typ  
Max  
Unit Conditions  
TAMB_EEP  
Ambient temperature EEPROM  
150  
C  
*
programming  
nWRI_EEP  
Write cycles *  
100k  
100  
@write <= 85°C  
@write up to 150°C  
8 * 108  
<=175°C2  
nREAD_EEP  
tRET_EEP  
Read cycles *  
3
Data retention *  
15  
a
1300h @ 175°C  
(=100000h@55°C &  
27000h@125°C & 3000h@150°C)  
tWRI_EEP  
Programming time *  
12  
ms  
per written word, fclk=3MHz  
* no measurement in mass production, parameter is guarantied by design and/or quality observation  
2 valid for the dice, notice additional package and temperature version caused restrictions  
3 over lifetime and valid for the dice, use calculation sheet “ZMD_TempProfile_Rev_*.xls” for temperature stress calculation,  
notice additional package and temperature version caused restrictions  
© 2009 ZMD AG Rev. 1.04  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
Data Sheet  
Rev. 1.04  
November 2009  
9 / 23  
 
 
 
 
 
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
2
Circuit Description  
2.1.  
Signal Flow  
The ZMD31150’s signal path is partly analog and partly digital. The analog part is realized differentially – this  
means, the differential bridge sensor signal is internally handled via two signal lines, which are rejected  
symmetrically around an internal common mode potential (analog ground = VDDA/2).  
Consequently, it is possible to amplify positive and negative input signals, which are located within the  
common mode range of the signal input.  
Figure 2.1  
Block Diagram of the ZMD31150  
ZACwireTM  
I2C  
RAM  
EEPROM  
Digital  
Data I/O  
Analog  
Out  
PGA  
TS  
ADC  
CMC  
DAC  
BAMP  
ROM  
Analog Block  
Digital Block  
ZMD31150  
The differential signal from the bridge sensor is pre-amplified by the Programmable Gain Amplifier (PGA).  
The Multiplexer (MUX) transmits the signals from either the bridge sensor, the external diode, or the  
separate temperature sensor, to the Analog-to-Digital Converter (ADC) in a certain sequence (instead of the  
temperature diode, the internal pn-junction (TS) can be used optionally). Afterwards, the ADC converts these  
signals into digital values.  
The digital signal correction takes place in the calibration microcontroller (CMC). It is based on a correction  
formula located in the ROM, and on sensor-specific coefficients stored in the EEPROM during calibration.  
Dependent on the programmed output configuration, the corrected sensor signal is output as an analog  
value or in a digital format (I2CTM, ZACwireTM). The configuration data and the correction parameters can be  
programmed into the EEPROM via the digital interfaces.  
2.2.  
Application Modes  
For each application, a configuration set has to be established (generally prior to calibration) by programming  
the on-chip EEPROM regarding to the following modes:  
Sensor Channel  
Sensor Mode: Ratiometric bridge excitation in voltage or current supply mode.  
Input Range: The gain adjustment of the AFE with respect to the maximum sensor signal span and  
the zero point of the ADC has to be chosen.  
© 2009 ZMD AG Rev. 1.04  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
Data Sheet  
Rev. 1.04  
November 2009  
10 / 23  
 
 
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
Additional Offset Compensation (XZC): The extended analog offset compensation has to be  
enabled, if required; e.g., if the sensor offset voltage is near to or larger than the sensor span.  
Resolution/Response Time: The A/D converter has to be configured for resolution and converting  
scheme, or ADC order (first or second order). These settings influence the sampling rate and the  
signal integration time, and thus, the noise immunity.  
Temperature  
Temperature Measurement: The source for the temperature correction has to be chosen.  
2.3.  
Analog Front End (AFE)  
The Analog Front End (AFE) consists of the Programmable Gain Amplifier (PGA), the Multiplexer (MUX),  
and the Analog-to-Digital Converter (ADC).  
2.3.1. Programmable Gain Amplifier (PGA)  
The following table shows the adjustable gains, the sensor signal spans, and the allowed common mode  
range.  
Table 2.1  
Adjustable gains, resulting sensor signal spans, and common mode ranges  
No.  
Overall Gain  
aIN  
Max. Span  
VIN_SP  
Gain  
Amp1  
Gain  
Amp2  
Gain  
Amp3  
Input common mode range  
VIN_CM as % of VDDA 2)  
[mV/V] 1)  
XZC = Off  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
32 to 57  
XZC = On  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
not applicable  
1
2
420  
280  
210  
140  
105  
70  
1.8  
2.7  
30  
30  
15  
15  
7.5  
7.5  
3.75  
3.75  
3.75  
1
7
4.66  
7
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3.6  
4
5.4  
4.66  
7
5
7.1  
6
10.7  
14.3  
21.4  
28.5  
53.75  
80  
4.66  
7
7
52.5  
35  
8
4.66  
3.5  
7
9
26.3  
14  
10  
11  
12  
9.3  
7
1
4.66  
3.5  
1.4  
107  
267  
1
13  
2.8  
1
1)  
Recommended internal signal range is 75% of supply voltage in maximum.  
Span is calculated by the following formula: Span = 75% / gain  
1)  
Bridge in voltage mode, containing maximum input signal (with XZC: +300% Offset), 14-bit accuracy. Refer to the 'ZMD31150  
Functional Description' for usable input signal/common mode range at bridge in current mode.  
© 2009 ZMD AG Rev. 1.04  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
Data Sheet  
Rev. 1.04  
November 2009  
11 / 23  
 
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
2.3.1.1. Offset Compensation  
The ZMD31150 supports two methods of sensor offset compensation (zero shift):  
Digital offset correction  
XZC - Analog compensation for large offset values (up to in maximum approximately 300% of span,  
depending on gain adjustment)  
Digital sensor offset correction will be processed during the digital signal correction/conditioning by the  
calibration microcontroller (CMC). Analog sensor offset pre-compensation will be needed for compensation  
of large offset values, which would overdrive the analog signal path by uncompensated gaining. For analog  
sensor offset pre-compensation, a compensation voltage will be added in the analog pre-gaining signal path  
(coarse offset removal). The analog offset compensation in the AFE can be adjusted by 6 EEPROM bits.  
Table 2.2  
Analog Zero Point Shift Ranges (XZC)  
PGA gain  
Max. Span VIN_SP  
[mV/V]  
Offset shift per step  
in % of full span  
Approx. maximum  
offset shift [mV/V]  
Approx. maximum shift  
in [% VIN_SP] (@ ± 31)  
aIN  
420  
280  
210  
140  
105  
70  
1.8  
2.7  
12.5 %  
7.6 %  
12.5 %  
7.6 %  
5.2 %  
7.6 %  
5.2 %  
7.6 %  
5.2 %  
12.5 %  
7.6 %  
5.2 %  
0.83 %  
7.8  
7.1  
15.5  
14.2  
13  
388 %  
237 %  
388 %  
237 %  
388 %  
237 %  
388 %  
237 %  
161 %  
388 %  
237 %  
161 %  
26 %  
3.6  
5.4  
7.1  
10.7  
14.3  
21.4  
28.5  
53.75  
80  
28  
52.5  
35  
26  
57  
26.3  
14  
52  
194  
189  
161  
72  
9.3  
7
107  
267  
2.8  
2.3.2. Measurement Cycle  
The Multiplexer selects, depending on EEPROM settings, the following inputs in a certain sequence.  
Temperature measured by external diode or thermistor, internal pn-junction or bridge  
Internal offset of the input channel (VOFF  
)
Pre-amplified bridge sensor signal  
The complete measurement cycle is controlled by the CMC. The cycle diagram at the right shows its  
principle structure.  
The EEPROM adjustable parameters are:  
n=<1,31>: Pressure measurement count  
After power on the start routine is called, which contains all needed measurements once.  
Remark: The tasks “CMV”, “SSC/SCC+” and “SSC/SCC-“ are contained independent from EEPROM  
configuration always in cycle.  
© 2009 ZMD AG Rev. 1.04  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
Data Sheet  
Rev. 1.04  
November 2009  
12 / 23  
 
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
Figure 2.2  
Measurement Cycle  
Start routine  
Temperature Auto Zero  
Pressure measurement  
Temp measurement  
1
n
1
n
Pressure measurement  
1
n
1
n
1
n
1
n
Pressure auto zero  
Pressure measurement  
CMV  
Pressure measurement  
SSC/SCC+  
Pressure measurement  
SSC/SCC-  
Pressure measurement  
2.3.3. Analog-to-Digital Converter  
The ADC is an integrating AD-Converter in full differential switched capacitor technique.  
Programmable ADC-resolutions are rADC=<13,14> and with segmentation <15,16> bit.  
It can be used as first or second order converter. In the first order mode it is inherently monotone and  
insensitive against short and long term instability of the clock frequency. The conversion cycle time depends  
on the desired resolution and can be roughly calculated by:  
tCYC_1 = 2 r s / 2 / fCLK  
In the second order mode two conversions are stacked with the advantage of much shorter conversion  
cycle time and the drawback of a lower noise immunity caused by the shorter signal integration period. The  
conversion cycle time at this mode is roughly calculated by:  
tCYC_2 = 2(r+3)/2 / 2 / fCLK  
The calculation formulas give a overview about conversion time for one AD-conversion. Refer Calculation  
sheet “ZMD31150_Bandwidth_Calculation_Rev*.xls” for detailed calculation of sampling time and bandwidth.  
The result of the AD conversion is a relative counter result corresponding to the following equation:  
ZADC = 2 r * (VADC_DIFF / VADC_REF - RSADC  
)
ZADC  
r:  
:
number of counts (result of the conversion)  
adjusted resolution in bit  
© 2009 ZMD AG Rev. 1.04  
Data Sheet  
Rev. 1.04  
November 2009  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
13 / 23  
 
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
VADC/REF_DIFF  
RSADC  
:
differential input/reference voltage of ADC  
digital ADC Range Shift (RSADC = 1/16, 1/8, 1/4, 1/2, controlled by the EEPROM content)  
:
With the RSADC value a sensor input signal can be shifted in the optimal input range of the ADC.  
Table 2.3  
Analog Output resolution versus sample rat  
ADC  
Adjustment  
approx. Output  
Sample Rate  
fCON *2)  
Averaged  
Bandwidth @  
Resolution *1)  
Digital Analog  
Bit Bit  
Order  
rADC  
Bit  
13  
14  
15  
16  
13  
14  
15  
16  
fCLK=3MHz fCLK=4MHz fCLK=3MHz fCLK=4MHz  
OADC  
Hz  
345  
178  
90  
Hz  
460  
Hz  
130  
67  
Hz  
172  
89  
1
1
1
1
2
2
2
2
13  
14  
14  
14  
13  
14  
14  
14  
12  
12  
12  
12  
12  
12  
12  
12  
237  
120  
34  
45  
45  
61  
17  
23  
5859  
3906  
2930  
1953  
7813  
5208  
3906  
2604  
2203  
1469  
1101  
734  
2937  
1958  
1468  
979  
*1) ADC resolution should be one bit higher then applied output resolution, if AFE gain is adjusted in such  
manner, that input range is used more than 50%. Otherwise ADC resolution should be more than one bit  
higher than applied output resolution.  
*2) The sampling rate (AD conversion time) is only a part of the whole cycle,  
refer “ZMD31150 bandwidth calculation sheet” for detailed information  
Remark: ADCs reference voltage ADCVREF is defined by the potential between <VBR_T> and <VBR_B> (or  
<VDDA> to <VSSA>, if CFGAPP:BREF=1). The theoretically input range ADCRANGE_INP of the ADC  
is equivalent to ADCs reference voltage.  
In practice ADCs input range should be used in maximum from 10% to 90% of ADCRANGE_INP - a necessary  
condition for abiding specified accuracy, stability and nonlinearity parameters of AFE. These condition is also  
valid for whole temperature range and all applicable sensor tolerances. Inside of ZMD31150 is no failsafe  
task implemented, which verifies abiding of these condition.  
2.4.  
Temperature Measurement  
The ZMD31150 supports four different methods for temperature data acquiring needed for calibration of the  
sensor signal in temperature range. Temperature data can be acquired using:  
an internal pn-junction temperature sensor,  
an external pn-junction temperature sensor connected to sensor top potential (VBRTOP),  
an external resistive half bridge temperature sensor and  
the temperature coefficient of the sensor bridge at bridge current excitation.  
© 2009 ZMD AG Rev. 1.04  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
Data Sheet  
Rev. 1.04  
November 2009  
14 / 23  
 
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
Refer “ZMD31150 Functional Description” for a detailed explanation of temperature sensor adaptation and  
adjustment.  
2.5.  
System Control and Conditioning Calculation  
The system control supports the following tasks/features:  
control the measurement cycle regarding to the EEPROM-stored configuration data  
16 bit correction calculation for each measurement signal using the EEPROM stored calibration  
coefficients and ROM-based algorithms = signal conditioning  
manage start up sequence and start signal conditioning  
handle communication requests received by the serial interface  
failsafe tasks for the functions of ZMD31150 and message detected errors with diagnostic states  
Refer “ZMD31150_FunctionalDescription_Rev_*.PDF” for a detailed description.  
2.5.1. Operation Modes  
The internal state machine represents three main states:  
the continuous running signal conditioning mode – called Normal Operation Mode: NOM  
the calibration mode with access to all internal registers and states – called Command Mode: CM  
the failure messaging mode – called Diagnostic Mode: DM  
2.5.2. Start Up Phase7  
The start up phase consist of following parts:  
1 internal supply voltage settling phase (=potential VDDA-VSSA) – finished by disabling the reset signal  
through the power on clear block (POC). Refer “ZMD31150_HighVoltageProt_Rev_*.PDF”, chapter 4 for  
power on/off thresholds.  
Time (for beginning with VDDA-VSSA=0V): 500 s to 2000 s, AOUT: tristate  
2 system start, EEPROM read out and signature check (and ROM-check, if CFGAPP:CHKROM=1).  
Time: ~200 s (~9000 s with ROM-check – 28180clocks ), AOUT: LOW (DM)  
3 processing the start routine of signal conditioning (all measures & conditioning calculation).  
Time: 5x AD conversion time, AOUT behavior depending on adjusted OWI mode (2.6):  
- OWIANA & OWIDIS => AOUT: LOW (DM)  
- OWIWIN & OWIENA => AOUT: tristate  
The analog output AOUT will be activated at the end of start up phase depending on adjusted output and  
communication mode (2.6). In case of detected errors Diagnostic Mode (DM) is activated and diagnostic  
output signal is driven at the output.  
After the start up phase the continuous running measurement and calibration cycle is started. Refer  
“ZMD31150_BandwidthCalculation_Rev_*.xls” for detailed information about output update rate.  
7 All described timings are roughly estimated values and correlates with internal clock frequency. Timings estimated for fclk=3MHz.  
© 2009 ZMD AG Rev. 1.04  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
Data Sheet  
Rev. 1.04  
November 2009  
15 / 23  
 
 
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
2.5.3. Conditioning Calculation  
The digitalized value for pressure (acquired raw data) is processed with the correction formula to remove  
offset and temperature dependency and to compensate non-linearity up to 3rd order. The result of the  
correction calculation is a non-negative 15 Bit value for pressure (P) in the range [0; 1). This value P is  
clipped with programmed limitation coefficients and continuously written to the output register of the digital  
serial interface and the output DAC.  
Note: The conditioning includes up to third order nonlinearity sensor input correction. The available  
adjustment ranges depend on the specific calibration parameters, for a detailed description refer to  
“ZMD31150 Functional Description”. To give a rough idea: Offset compensation and linear correction  
are only limited by the loose of resolution it will cause, the second order correction is possible up to  
about 30% full scale difference to straight line, third order up to about 20% (ADC resolution = 13bit).  
The used calibration principle is able to reduce present nonlinearity errors of the sensor up to 90%.  
The temperature calibration includes first and second order correction and should be fairly sufficient  
in all relevant cases. ADC resolution influences also calibration possibilities – 1 bit more resolution  
reduces calibration range by approximately 50%. Calculation input data width is in maximum 14bit.  
15 & 16bit ADC resolution mode uses only a 14 bit segment of ADC range.  
2.6.  
Analog Output AOUT  
The analog output is used for output the analog signal conditioning result and for “End of Line”  
communication via the ZACwireTM interface (one wire communication interface - OWI). The ZMD31150  
supports four different modes of the analog output in combination with OWI behavior:  
OWIENA:analog output is deactivated, OWI communication is enabled  
OWIDIS: analog output is active (~2ms after power on), OWI communication is disabled  
OWIWIN:analog output will be activated after time window,  
OWI communication is enabled in time window of ~500ms in maximum,  
transmission of “START_CM” command has to be finished during time window  
OWIANA:analog output will be activated after ~2ms power on time,  
OWI communication is enabled in time window of ~500ms in maximum,  
transmission of “START_CM” command has to be finished during time window,  
to communicate the internal driven potential at AOUT has to be overwritten  
by the external communication master (AOUT drive capability is current limited)  
The analog output potential is driven by an unity gain output buffer, those input signal is generated by an  
12.4bit resistor string DAC. The output buffer (BAMP) – a rail-to-rail OPAMP - is offset compensated and  
current limited. So a short circuit of analog output to ground or power supply does not damage the  
ZMD31150.  
2.7.  
Serial Digital Interface  
The ZMD31150 includes a serial digital interface (SIF), which is used for communication with the circuit to  
realize calibration of the sensor module. The serial interface is able to communicate with two communication  
protocols – I2CTM and ZACwireTM (an one wire communication interface – also called OWI). The OWI can be  
used to realize a “End of Line” calibration via the analog output AOUT of the complete assembled sensor  
module.  
Refer “ZMD31150 Functional Description” for a detailed description of the serial interfaces and  
communication protocols.  
© 2009 ZMD AG Rev. 1.04  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
Data Sheet  
Rev. 1.04  
November 2009  
16 / 23  
 
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
2.8.  
Failsafe Features, Watchdog and Error Detection  
The ZMD31150 detects various possible errors. A detected error is signalized by changing the interal status  
in diagnostic mode (DM). In this case the analog output is set to LOW (minimum possible output value =  
lower diagnostic range – LDR) and the output registers of the digital serial interface are set to a significant  
error code.  
A watchdog oversees the continuous working of the CMC and the running measurement loop. The operation  
of the internal clock oscillator is verified continuously by oscillator fail detection.  
A check of the sensor bridge for broken wires is done permanently by two comparators watching the input  
voltage of each input (sensor connection and short check). Additionally the common mode voltage of the  
sensor and sensor input short is watched permanently (sensor aging).  
Different functions and blocks in digital part - like RAM-, ROM-, EEPROM- and register content - are watched  
continuously. Refer “ZMD31150 Functional Description” for a detailed description of safety features and  
methods of error messaging.  
2.9.  
High Voltage, Reverse Polarity and Short Circuit Protection  
The ZMD31150 is designed for 5V power supply operation.  
The ZMD31150 and the connected sensor is protected from overvoltage and reverse polarity damage by an  
internal supply voltage limiter. The analog output AOUT can be connected (short circuit, overvoltage and  
reverse) with all potentials in protection range under all potential conditions at the pins VDDE and VSSE.  
All external components – explained in application circuit in chapter 3 – are required to guarantee these  
operation, the protection is no time limited. Refer “ZMD31150 High Voltage Protection Description” for a  
detailed description of protection cases and conditions.  
© 2009 ZMD AG Rev. 1.04  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
Data Sheet  
Rev. 1.04  
November 2009  
17 / 23  
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
3
Application Circuit Examples  
The application circuits contain external components, which are needed for overvoltage, reverse polarity, and  
short circuit protection.  
Note:  
Check also the available 'ZMD31150 Application Notes' for application examples and board layout.  
Table 3.1  
Application Circuit Parameters  
Symbol Parameter  
Min  
100  
100  
4
Typ  
Max  
Unit Notes  
C1  
C2  
C
C
C
470  
nF  
nF  
8) 9)  
C3  
47  
160  
10  
nF The value of C3 is the sum of the load capacitor  
and the cable capacitance  
C4, C5 9)  
C
0
nF Recommended to increase EMC immunity.  
The value of C4, C5 is the sum of the load  
capacitor and the cable capacitance  
R1  
10  
k  
RIBR  
R
Refer to chapter 1.2  
Figure 3.1  
Bridge in Voltage Mode, External Diode Temperature Sensor  
Temperature Sensor  
C1 100nF  
C4 C5  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VDDA  
VSSA  
SDA  
IRTEMP  
VBR_T  
VBP  
Sensor Bridge  
SDA  
SCL  
SCL  
VBR_B  
VBN  
N.C.  
OUT  
VDD  
AOUT  
VSSE  
C3  
47nF  
8
VCC  
VDDE  
C2  
100nF  
ZMD31150  
GND  
8 value of C3 summarizes load capacitor and cable capacity  
9 higher values for C3, C4 and C5 increase EMC immunity  
© 2009 ZMD AG Rev. 1.04  
Data Sheet  
Rev. 1.04  
November 2009  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
18 / 23  
 
 
 
 
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
Figure 3.2  
Bridge in Voltage Mode, External Thermistor  
Temperature Sensor  
C1 100nF  
C4 C5  
PT  
1000  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VDDA  
VSSA  
SDA  
IRTEMP  
VBR_T  
VBP  
Sensor Bridge  
R1  
SDA  
SCL  
SCL  
VBR_B  
VBN  
N.C.  
OUT  
VDD  
AOUT  
VSSE  
C3  
47nF  
8
VCC  
VDDE  
C2  
100nF  
ZMD31150  
GND  
Figure 3.3  
Bridge in Current Mode, Temperature Measurement via Bridge TC  
RIBR  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VDDA  
VSSA  
SDA  
IRTEMP  
VBR_T  
VBP  
C1  
Sensor Bridge  
100nF  
SDA  
SCL  
C4  
C5  
SCL  
VBR_B  
VBN  
N.C.  
OUT  
GND  
VDD  
AOUT  
VSSE  
C3  
47nF  
8
VCC  
VDDE  
C2  
ZMD31150  
100nF  
© 2009 ZMD AG Rev. 1.04  
Data Sheet  
Rev. 1.04  
November 2009  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
19 / 23  
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
4
Pin Configuration, Latch-Up and ESD Protection  
4.1.  
Pin Configuration and Latch-up Conditions  
Table 4.1  
Pin Configuration and Latch-Up Conditions  
Pin Name  
Description  
Remarks  
Usage/  
Connection  
Latch-up related Application Circuit  
Restrictions and/or Remarks  
9
7
6
AOUT  
VDDE  
VDD  
Analog output & one wire IF IO IO  
Required/-  
Required/-  
Trigger Current/Voltage: -100mA/33V  
Trigger Current/Voltage: -100mA/33V  
Positive external supply voltage  
Positive digital supply voltage  
Supply  
Analog IO Required or  
open/-  
only capacitor to VSSA is allowed,  
otherwise no application access  
8
4
VSSE  
SCL  
Negative external supply voltage Ground  
Required/-  
Digital IN, -/VDDA  
pullup  
I²C clock  
Trigger Current/Voltage to  
VDDA/VSSA:  
+/-100mA or 8/-4V  
3
2
1
SDA  
I²C data IO  
Digital IO, -/VDDA  
pullup  
VSSA  
Negative analogue supply  
voltage  
Analog IO Required/-  
VDDA  
Positive analogue supply voltage Analog IO Required/-  
13 VBR_T Bridge top potential  
Analog IO Required/VDDA Depending on application circuit,  
short to VDDA/VSSA possible  
11 VBR_B Bridge bottom potential  
Analog IO Required/VSSA  
14 IRTEMP Temp sensor & current source  
resistor  
Analog IO -/VDDA, VSSA Depending on application circuit  
12 VBP  
Positive input sensor bridge  
Negative input sensor bridge  
Analog IN Required/-  
Analog IN Required/-  
10 VBN  
1)  
Usage: If “Required” is specified, an electrical connection is necessary – refer to the application circuits  
Connection: To be connected to this potential, if not used or no application/configuration related constraints are given  
4.2.  
ESD-Protection  
All pins have an ESD Protection of >2000V. Additionally the pins VDDE, VSSE and AOUT have an ESD  
Protection of >4000V.  
ESD Protection referred to the human body model is tested with devices in SSOP14 packages during  
product qualification. The ESD test follows the human body model with 1.5kOhm/100pF based on MIL 883,  
Method 3015.7.  
© 2009 ZMD AG Rev. 1.04  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
Data Sheet  
Rev. 1.04  
November 2009  
20 / 23  
 
 
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
5
Package  
The standard package of the ZMD31150 is an SSOP14 green package (5.3mm body width) with a lead pitch  
of 0.65 mm.  
Figure 5.1  
ZMD31150 Pin Diagram  
VSSE  
AOUT  
VBN  
VDDE  
VDD  
N.C.  
VBR_B  
VBP  
SCL  
SDA  
VBR_T  
IRTEMP  
VSSA  
VDDA  
6
Quality and Reliability  
The ZMD31150 is qualified according to the AEC-Q100 standard, operating temperature grade 0. A fit rate  
<5fit (temp=55°C, S=60%) is guaranteed. A typical fit rate of the C7D-technologie, which is used for  
ZMD31150, is 2.5fit.  
7
Customization  
For high-volume applications, which require an up- or downgraded functionality compared to the ZM31150,  
ZMDI can customize the circuit design by adding or removing certain functional blocks.  
For it ZMDI has a considerable library of sensor-dedicated circuitry blocks.  
Thus ZMDI can provide a custom solution quickly. Please contact ZMDI for further information.  
© 2009 ZMD AG Rev. 1.04  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
Data Sheet  
Rev. 1.04  
November 2009  
21 / 23  
 
 
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
8
Additional Documents  
Table 8.1  
Additional Documents  
Document  
File Name  
ZMD31150 Feature Sheet  
ZMD31150_FS_Rev_*.PDF  
ZMD31150_FD_Rev_*.PDF  
ZMD31150_HV_PROT_Rev_*.PDF  
ZMD31150_DicePackagePin_Rev_*.PDF  
ZMD31150_Bandwidth_Calculation_Rev*.xls  
ZMD_TempProfile_Rev_*.xls  
ZMD31150_APPLKIT_Rev_*.pdf  
ZMD31150_AN*.pdf  
ZMD31150 Functional Description  
ZMD31150 High Voltage Protection Description  
ZMD31150 Dice Package  
ZMD31150 Bandwidth Calculation Sheet  
ZMD Temperature Profile Calculation Sheet  
ZMD31150 Application Kit Description  
ZMD31150 Application Notes  
Visit ZMDI’s website www.zmdi.com or contact your nearest sales office for the latest version of these  
documents.  
9
Glossary  
Term  
Description  
ADC  
CMC  
CMV  
SCC  
SSC+  
SSC-  
Analog-to-Digital Converter  
Calibration Microcontroller  
Common Mode Voltage  
Sensor Connection Check  
Positive-biased Sensor Short Check  
Negative-biased Sensor Short Check  
© 2009 ZMD AG Rev. 1.04  
Data Sheet  
Rev. 1.04  
November 2009  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
22 / 23  
 
 
 
 
 
Data Sheet  
Fast Automotive Sensor Signal Conditioner  
ZMD31150  
10 Document Revision History  
Revision Date  
Description  
0.46  
0.47  
June 12, 2008  
July 20, 2008  
First release after format update  
Update after review  
“6.” – fit rate added  
1.01  
September 20, 2008 ”1.5.2” – ROM check time revised/corrected  
”5.3.4.3” – SSC – no detection limit added  
1.02  
1.03  
1.04  
September 20, 2009 adjust to new ZMDI template  
October 2, 2009  
change to ZMDI denotation  
November 2, 2009  
formatting and linking issues solved  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
ZMD AG assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The information furnished hereby  
is believed to be true and accurate. However, ZMD AG shall not be liable to any customer, licensee or any other third party for any  
damages in connection with or arising out of the furnishing, performance or use of this technical data.  
Sales Offices and Further Information  
www.zmdi.com  
ZMD AG  
ZMD America, Inc.  
201 Old Country Road  
Suite 204  
Melville, NY 11747  
USA  
ZMD Japan  
ZMD Far East  
Grenzstrasse 28  
01109 Dresden  
Germany  
2nd Floor, Shinbashi Tokyu Bldg. 3F, No.,51, Sec. 2,  
4-21-3, Shinbashi, Minato-ku  
Tokyo, 105-0004  
Japan  
Keelung Road  
11052 Taipei  
Taiwan  
Phone  
Fax  
sales@zmdi.com  
+49 (0)351.8822.7.772 Phone  
+49(0)351.8822.87.772 Fax  
+01 (631) 549-2666  
+01 (631) 549-2882  
sales@zmdi.com  
Phone  
Fax  
sales@zmdi.com  
+81.3.6895.7410  
+81.3.6895.7301  
Phone  
Fax  
sales@zmdi.com  
+886.3.563.1388  
+886.3.563.6385  
© 2009 ZMD AG Rev. 1.04  
Data Sheet  
Rev. 1.04  
November 2009  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,  
stored, or used without the prior written consent of the copyright owner. The Information furnished in  
this publication is subject to changes without notice.  
23 / 23  
 

相关型号:

ZMD31015AEFR

Low-cost sensro signal conditioner with dignostics
ZMD

ZMD31015AEFS

Low-cost sensro signal conditioner with dignostics
ZMD

ZMD31015AEFT

Low-cost sensro signal conditioner with dignostics
ZMD

ZMD31015AEG1-T

Automotive Analog Circuit
IDT

ZMD31015AEG1R

Low-cost sensro signal conditioner with dignostics
ZMD

ZMD31015AEG1S

Low-cost sensro signal conditioner with dignostics
ZMD

ZMD31015AEG1T

Low-cost sensro signal conditioner with dignostics
ZMD

ZMD31015AF-T

Sensor/Transducer
IDT

ZMD31015AIBR

Low-cost sensro signal conditioner with dignostics
ZMD

ZMD31015AIBS

Low-cost sensro signal conditioner with dignostics
ZMD

ZMD31015AIBT

Low-cost sensro signal conditioner with dignostics
ZMD

ZMD31015AICR

Low-cost sensro signal conditioner with dignostics
ZMD