ZSPM4551 [IDT]

High-Efficiency Charger for Li-Ion Batteries;
ZSPM4551
型号: ZSPM4551
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

High-Efficiency Charger for Li-Ion Batteries

文件: 总29页 (文件大小:463K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZSPM4551  
High-Efficiency Charger  
for Li-Ion Batteries  
Datasheet  
Brief Description  
Features  
The ZSPM4551 is a DC/DC synchronous switching  
lithium-ion (Li-Ion) battery charger with fully inte-  
grated power switches, internal compensation, and  
full fault protection.  
VBAT reverse-current blocking  
Programmable temperature-compensated  
termination voltage: 3.94V to 4.18V ± 1%  
User programmable maximum charge current:  
50mA to 1500mA  
Its switching frequency of 1MHz enables the use of  
small filter components, resulting in smaller board  
space and reduced BOM costs.  
Current mode PWM control in constant voltage  
Supervisor for VBAT reported at the NFLT pin  
Input supply under-voltage lockout  
In Full-Charge Constant-Current Mode, the regula-  
tion is for constant current (CC). Once termination  
voltage is reached, the regulator operates in voltage  
mode. When the regulator is disabled (the EN pin is  
low), the device draws 10µA (typical) quiescent  
current.  
Full protection for over-current, over-temperature,  
VBAT over-voltage, and charging timeout  
Charge status indication  
I2C™ program interface with EEPROM registers  
The ZSPM4551 includes supervisory reporting  
through the NFLT (inverted fault) open-drain output  
to interface other components in the system. Device  
programming is achieved by an I²C™* interface  
through the SCL and SDA pins.  
Related IDT Smart Power Products  
ZSPM4121 Ultra-low Power Under-Voltage  
Switch  
ZSPM4141 Ultra-Low-Power Linear Regulator  
Benefits  
Physical Characteristics  
Up to 1.5A of continuous output current in Full-  
Charge Constant-Current (CC) Mode  
Wide input voltage range: VBAT + 0.3V (3.5V min.)  
to 7.2V  
High efficiency – up to 92% with typical loads  
Junction operating temperature: -40°C to 125°C  
Package: 16-pin PQFN (4mm x 4mm)  
Available Support  
Evaluation Kit  
ZSPM4551 Application Circuit  
Support Documentation  
ZSPM4551  
VIN  
VTH_REF  
CIN  
RREF  
GND  
VTHERM  
CVDD  
RSENSE  
LOUT  
Battery  
VDD  
SCL  
SW  
COUT  
RTHM  
VSENSE  
VDD  
RPULLUP  
(optional)  
SDA  
EN  
VBAT  
NFLT  
VDD  
RPULLUP  
(optional)  
PGND  
* I2C™ is a trademark of NXP.  
© 2016 Integrated Device Technology, Inc.  
1
January 29, 2016  
 
ZSPM4551  
High-Efficiency Charger  
for Li-Ion Batteries  
Datasheet  
ZSPM4551 Block Diagram  
EN  
VIN  
NFLT  
VIN  
VIN  
SCL  
SDA  
ZSPM4551  
I²C™*  
Interface  
MONITOR  
&
CONTROL  
Over-Voltage  
Protection  
VBAT  
VBAT  
VTH_REF  
VTHERM  
Oscillator  
BATT Thermal  
Control  
RREF  
Ramp  
Generator  
BATT Current  
Control  
VIN  
S
Vref  
Gate  
Drive  
Backgate  
Blocking  
SW  
Gate Drive  
Control  
LOUT  
RSENSE  
BATTERY  
Typical Applications  
COUT  
RTHM  
Comparator  
Gate  
Drive  
Portable battery chargers  
Smart phones  
Error Amp  
PGND  
Compensation  
Network  
VIN  
Laptops  
Current  
Control  
VDD Regulator  
VSENSE  
VBAT  
Tablets/e-readers  
VDD  
GND  
CVDD  
I²C™*is a trademark of NXP.  
Ordering Information  
Ordering Code  
ZSPM4551AA1W  
ZSPM4551AA1R  
ZSPM4551KIT  
Description  
Package  
ZSPM4551 High-Efficiency Li-Ion Battery Charger  
ZSPM4551 High-Efficiency Li-Ion Battery Charger  
ZSPM4551 Evaluation Kit  
16-pin PQFN / 7” Reel (1000 parts)  
16-pin PQFN / 13” Reel (3300 parts)  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
www.IDT.com/go/support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com  
www.IDT.com/go/sales  
DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance  
specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The  
information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an  
implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property  
rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be  
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the  
property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated  
Device Technology, Inc. All rights reserved.  
© 2016 Integrated Device Technology, Inc.  
2
January 29, 2016  
ZSPM4551 Datasheet  
Contents  
1
ZSPM4551 Characteristics............................................................................................................................... 5  
1.1. Absolute Maximum Ratings....................................................................................................................... 5  
1.2. Thermal Characteristics............................................................................................................................. 6  
1.3. Recommended Operating Conditions ....................................................................................................... 6  
1.4. Electrical Characteristics ........................................................................................................................... 7  
1.5. I2C™ Interface Timing Requirements...................................................................................................... 10  
Functional Description.................................................................................................................................... 11  
2.1. Internal Protection ................................................................................................................................... 12  
2.1.1. VIN Under-Voltage Lockout .............................................................................................................. 12  
2.1.2. Internal Current Limit ........................................................................................................................ 12  
2.1.3. Thermal Shutdown............................................................................................................................ 12  
2.1.4. VBAT Over-Voltage Protection ......................................................................................................... 12  
2.2. Fault Handling.......................................................................................................................................... 13  
2.2.1. NFLT Pin Functionality...................................................................................................................... 13  
2.2.2. Other Faults ...................................................................................................................................... 13  
2.3. Serial Interface ........................................................................................................................................ 15  
2.3.1. I2C™ Subaddress Definition ............................................................................................................. 15  
2.3.2. I2C™ Bus Operation.......................................................................................................................... 15  
2.4. Status and Configuration Registers......................................................................................................... 17  
Application Circuits......................................................................................................................................... 22  
3.1. Typical Application Circuit ....................................................................................................................... 22  
3.2. Selection of External Components .......................................................................................................... 22  
3.2.1. COUT Output Capacitor ...................................................................................................................... 22  
3.2.2. LOUT Output Inductor ......................................................................................................................... 22  
3.2.3. CIN Bypass Capacitor........................................................................................................................ 22  
3.2.4. CVDD Bypass Capacitor for VDD Internal Reference Voltage Output ...............................................22  
3.2.5. RSENSE Output Sensing Resistor ....................................................................................................... 23  
3.2.6. Pull-up Resistors............................................................................................................................... 23  
Pin Configuration and Package...................................................................................................................... 23  
4.1. ZSPM4551 Package Dimensions............................................................................................................ 23  
4.2. Pin-Out Assignments............................................................................................................................... 24  
4.3. Pin Description for 16-Pin PQFN (4 x 4 mm) .......................................................................................... 24  
4.4. Package Markings ................................................................................................................................... 25  
Layout Recommendations.............................................................................................................................. 26  
5.1. Multi-Layer PCB Layout........................................................................................................................... 26  
5.2. Single-Layer PCB Layout ........................................................................................................................ 27  
Ordering Information ...................................................................................................................................... 28  
Related Documents........................................................................................................................................ 28  
Document Revision History............................................................................................................................ 29  
2
3
4
5
6
7
8
© 2016 Integrated Device Technology, Inc.  
3
January 29, 2016  
ZSPM4551 Datasheet  
List of Figures  
Figure 2.1 ZSPM4551 Block Diagram ............................................................................................................... 11  
Figure 2.2 Charging State Diagram ................................................................................................................... 14  
Figure 2.3 Subaddress in I2C™ Transmission................................................................................................... 15  
Figure 2.4 I2C™ Start / Stop Protocol ................................................................................................................ 16  
Figure 2.5 I2C™ Data Transmission Timing ...................................................................................................... 16  
Figure 3.1 Typical Application Circuit for Charging a Lithium-Ion Battery .........................................................22  
Figure 4.1 PQFN-16 Package Dimensions........................................................................................................ 23  
Figure 4.2 ZSPM4551 Pin Assignments............................................................................................................ 24  
Figure 4.3 Marking Diagram 16-Pin PQFN (4 x 4 mm)...................................................................................... 25  
Figure 5.1 Package and PCB Land Configuration for Multi-Layer PCB ............................................................26  
Figure 5.2 JEDEC Standard FR4 Multi-Layer Board – Cross-Sectional View...................................................26  
Figure 5.3 Conducting Heat Away from the Die using an Exposed Pad Package ............................................27  
Figure 5.4 Application Using a Single-Layer PCB ............................................................................................. 28  
List of Tables  
Table 1.1  
Table 1.2  
Table 1.3  
Table 1.4  
Table 1.5  
Table 2.1  
Table 2.2  
Table 2.3  
Table 2.4  
Table 2.5  
Table 2.6  
Table 2.7  
Table 2.8  
Table 2.9  
Table 4.1  
Absolute Maximum Ratings................................................................................................................ 5  
Thermal Characteristics...................................................................................................................... 6  
Recommended Operating Conditions ................................................................................................ 6  
Electrical Characteristics .................................................................................................................... 7  
I2C™ Interface Timing Characteristics.............................................................................................. 10  
Register Descriptions (Device Address = 48HEX).............................................................................. 17  
STATUS Register—Address 00HEX .................................................................................................. 17  
Configuration Register CONFIG1—Address 02HEX .......................................................................... 18  
Configuration Register CONFIG2—Address 03HEX .......................................................................... 18  
Configuration Register CONFIG3—Address 04HEX .......................................................................... 19  
Configuration Register CONFIG4—Address 05HEX .......................................................................... 19  
Configuration Register CONFIG5—Address 06HEX .......................................................................... 20  
Enable Configuration Register CONFIG_ENABLE—Address 11HEX................................................21  
EEPROM Control Register EEPROM_CTRL—Address 12HEX ........................................................21  
Pin Description.................................................................................................................................. 24  
© 2016 Integrated Device Technology, Inc.  
4
January 29, 2016  
ZSPM4551 Datasheet  
1
ZSPM4551 Characteristics  
Important: Stresses beyond those listed under “Absolute Maximum Ratings” (section 1.1) may cause permanent  
damage to the device. These are stress ratings only, and functional operation of the device at these or any other  
conditions beyond those indicated under “Recommended Operating Conditions” is not implied. Exposure to  
absolute–maximum–rated conditions for extended periods may affect device reliability.  
1.1. Absolute Maximum Ratings  
Over operating free–air temperature range unless otherwise noted.  
Table 1.1  
Absolute Maximum Ratings  
Parameter  
Value 1)  
-0.3 to 8  
-1 to 8.8  
-0.3 to 3.6  
-40 to 125  
-65 to 150  
±2k  
Unit  
V
VIN, EN, NFLT, SCL, SDA, VTHERM, VTH_REF, VBAT, VSENSE  
SW  
V
VDD  
V
Operating Junction Temperature Range, TJ  
Storage Temperature Range, TSTOR  
Electrostatic Discharge – Human Body Model 2)  
Electrostatic Discharge – Machine Model 2)  
Lead Temperature (soldering, 10 seconds)  
°C  
°C  
V
+/-200  
V
260  
°C  
1) All voltage values are with respect to network ground terminal.  
2) ESD testing is performed according to the respective JESD22 JEDEC standard.  
© 2016 Integrated Device Technology, Inc.  
5
January 29, 2016  
 
 
 
 
 
ZSPM4551 Datasheet  
1.2. Thermal Characteristics  
Table 1.2  
Thermal Characteristics  
Parameter  
Symbol  
Value 1)  
Unit  
Thermal Resistance Junction to Air 1)  
°C/W  
50  
θJA  
1) Assumes a 4x4mm QFN-16 in 1 in2 area of 2 oz. copper and 25°C ambient temperature.  
1.3. Recommended Operating Conditions  
Table 1.3  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
V
BAT + 0.3V  
Input Operating Voltage at VIN Pin  
VIN  
5.3  
7.2  
V
(3.5V min)  
RSENSE  
LOUT  
COUT  
COUT-ESR  
CIN  
50  
4.7  
4.7  
Sense Resistor  
mΩ  
µH  
µF  
mΩ  
µF  
nF  
°C  
Output Filter Inductor Typical Value 1)  
Output Filter Capacitor Typical Value 2)  
Output Filter Capacitor ESR  
100  
Input Supply Bypass Capacitor Value 3)  
VDD Supply Bypass Capacitor Value 2)  
Operating Free Air Temperature  
Operating Junction Temperature  
3.3  
70  
10  
CVDD  
TA  
100  
130  
85  
-40  
-40  
TJ  
125  
°C  
1) For best performance, use an inductor with a saturation current rating higher than the maximum VBAT load requirement plus the  
inductor current ripple.  
2) For best performance, use a low ESR ceramic capacitor.  
3) For best performance, use a low ESR ceramic capacitor. If CIN is not a low ESR ceramic capacitor, add a 0.1µF ceramic capacitor in  
parallel to CIN.  
© 2016 Integrated Device Technology, Inc.  
6
January 29, 2016  
 
 
 
 
 
 
 
 
ZSPM4551 Datasheet  
1.4. Electrical Characteristics  
Electrical characteristics TJ = -40°C to 125°C, VIN = 5.3V, (unless otherwise noted)  
Table 1.4  
Electrical Characteristics  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
VIN Supply Voltage  
VBAT+0.3V  
(3.5V min)  
Voltage Input  
VIN  
5.3  
3
7.2  
V
Quiescent Current  
Normal Mode  
ICC-NORM ILOAD = 0A, no switching  
mA  
EN 2.2V (HIGH)  
Quiescent Current  
Disabled Mode  
ICC--DISABLE EN = 0V  
10  
50  
µA  
VBAT Leakage  
Leakage Current From Battery  
Reverse Current  
IBAT-LEAK EN = 0V, VVBAT = 4.1V  
10  
10  
µA  
µA  
IBAT-BACK VBAT > VIN, VBAT = 4.1V,  
TJ < 85°C  
VIN Under-Voltage Lockout  
Input Supply Under-Voltage  
Threshold  
VIN-UV  
VIN increasing  
3.15  
200  
V
Input Supply Under-Voltage  
Threshold Hysteresis  
VIN-UV_HYST  
100  
0.9  
mV  
OSC  
Oscillator Frequency  
NFLT Open Drain Output  
High-Level Output Leakage  
Low-Level Output Voltage  
fOSC  
1
1.1  
0.4  
0.8  
MHz  
IOH-NFLT  
VNFLT = 5.3V  
0.1  
µA  
V
VOL-NFLT INFLT = -1mA  
EN/SCL/SDA Input Voltage Thresholds  
High Level Input Voltage  
Low Level Input Voltage  
VIH  
VIL  
2.2  
V
V
Input Hysteresis – EN, SCL,  
SDA Pins  
VHYST  
200  
mV  
© 2016 Integrated Device Technology, Inc.  
7
January 29, 2016  
 
 
ZSPM4551 Datasheet  
Parameter  
Symbol  
Condition  
Min  
Typ  
0.1  
Max  
Unit  
µA  
µA  
µA  
µA  
µA  
µA  
V
VEN=VIN  
VEN=0V  
Input Leakage – EN Pin  
IIN-EN  
-2.0  
55  
VSCL=VIN  
VSCL=0V  
VSDA=VIN  
VSDA=0V  
ISDA = -1mA  
Input Leakage – SCL Pin  
Input Leakage – SDA Pin  
IIN-SCL  
-0.1  
0.1  
IIN-SDA  
-0.1  
Low-Level Output Voltage  
VOL-SDA  
0.4  
Thermal Shutdown  
Thermal Shutdown Junction  
Temperature  
TSD  
150  
2.9  
170  
10  
°C  
°C  
TSD Hysteresis  
TSD-HYST  
Pre-Charge End  
Pre-charge Voltage Threshold  
Pre-charge Voltage Hysteresis  
Charge Restart  
VPRECHG  
VPC-HYST  
3.0  
70  
3.1  
V
mV  
Voltage Below Termination for  
Charging Restart  
VRESTART  
100  
mV  
Charging Regulator with LOUT =4.7µH and COUT=4.7µF  
Output Current Limit Tolerance  
in Full-Charge Mode  
IBAT-FC  
IBAT is user programmable;  
see Table 2.5.  
IBAT  
10%  
-
IBAT  
IBAT  
10%  
+
A
V
Termination Voltage Tolerance  
in Top-Off Mode  
VBAT-TO  
IBAT = 0.1C, 0°C < TJ < 85°C  
VBAT  
1%  
-
VBAT  
VBAT  
1%  
+
VBAT is user programmable;  
see section 2.4.  
Top-Off Mode Time Out  
Full-Charge Timer  
Timer Accuracy  
tTO  
tFC  
0
120  
1400  
+10%  
Minutes  
Minutes  
200  
-10%  
tACC  
High Side Switch On  
Resistance  
ISW = -1A, TJ=25°C  
ISW = 1A, TJ=25°C  
200  
250  
1.5  
mΩ  
mΩ  
RDSON  
Low Side Switch On  
Resistance  
Maximum Output Current  
Over-Current Detect  
IBAT  
A
A
IOCD  
HS switch current  
2.5  
101%  
VBAT  
102%  
VBAT  
103%  
VBAT  
VBAT Over-Voltage Threshold  
Maximum Duty Cycle  
VBAT-OV  
DUTYMAX  
98  
%
© 2016 Integrated Device Technology, Inc.  
8
January 29, 2016  
ZSPM4551 Datasheet  
Parameter  
Thermistor  
VTH_REF Output Voltage  
Thermistor: 10KΩ Temperature Thresholds β=3434K  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
VVTH_REF IVT_REF = 2µA to 100µA  
1.8  
V
%VTH_REF  
%VTH_REF  
0°C VTHERM Threshold (0°C)  
0°C  
Decreasing Temperature  
75.6  
66.5  
0°C VTHERM Threshold with  
Hysteresis (10°C)  
0°CHYST Increasing Temperature  
%VTH_REF  
%VTH_REF  
%VTH_REF  
%VTH_REF  
%VTH_REF  
%VTH_REF  
%VTH_REF  
%VTH_REF  
10°C VTHERM Threshold  
(10°C)  
10°C Decreasing Temperature  
10°CHYST Increasing Temperature  
45°C Increasing Temperature  
45°CHYST Decreasing Temperature  
50°C Increasing Temperature  
50°CHYST Decreasing Temperature  
60°C Increasing Temperature  
60°CHYST Decreasing Temperature  
66.2  
65.4  
34.5  
35.3  
30.8  
31.5  
24.9  
30.8  
10°C VTHERM Threshold with  
Hysteresis (11°C)  
45°C VTHERM Threshold  
(45°C)  
45°C VTHERM Threshold with  
Hysteresis (44°C)  
50°C VTHERM Threshold  
(50°C)  
50°C VTHERM Threshold with  
Hysteresis (49°C)  
60°C VTHERM Threshold  
(60°C)  
60°C VTHERM Threshold with  
Hysteresis (50°C)  
Thermistor: 100KΩ Temperature Thresholds β=4311K  
%VTH_REF  
%VTH_REF  
0°C VTHERM Threshold (0°C)  
0°C  
Decreasing Temperature  
80.5  
69.8  
0°C VTHERM Threshold with  
Hysteresis (10°C)  
0°CHYST Increasing Temperature  
%VTH_REF  
%VTH_REF  
%VTH_REF  
%VTH_REF  
10°C VTHERM Threshold  
(10°C)  
10°C  
10°CHYST Increasing Temperature  
45°C Increasing Temperature  
45°CHYST Decreasing Temperature  
Decreasing Temperature  
69.8  
68.6  
31.3  
32.3  
10°C VTHERM Threshold with  
Hysteresis (11°C)  
45°C VTHERM Threshold  
(45°C)  
45°C VTHERM Threshold with  
Hysteresis (44°C)  
© 2016 Integrated Device Technology, Inc.  
9
January 29, 2016  
ZSPM4551 Datasheet  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
%VTH_REF  
50°C VTHERM Threshold  
(50°C)  
50°C  
Increasing Temperature  
27.0  
%VTH_REF  
%VTH_REF  
%VTH_REF  
50°C VTHERM Threshold with  
Hysteresis (49°C)  
50°CHYST Decreasing Temperature  
60°C Increasing Temperature  
60°CHYST Decreasing Temperature  
27.8  
19.4  
27.0  
60°C VTHERM Threshold  
(60°C)  
60°C VTHERM Threshold with  
Hysteresis (50°C)  
1.5. I2C™ Interface Timing Requirements  
Electrical characteristics TJ = -40°C to 125°C, VIN = 5.3V. See Figure 2.5 for an illustration of the timing  
specifications given in Table 1.5.  
Table 1.5  
I2C™ Interface Timing Characteristics  
Standard Mode  
Fast Mode 1)  
Parameter  
Symbol  
Unit  
Min  
0
Max  
Min  
Max  
I2C™ Clock Frequency  
I2C™ Clock High Time  
fscl  
tsch  
tscl  
tsp  
100  
0
0.6  
1.3  
0
400  
kHz  
µs  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
4
I2C™ Clock Low Time  
4.7  
0
I2C™ Tolerable Spike Time 2)  
I2C™ Serial Data Setup Time  
I2C™ Serial Data Hold Time  
I2C™ Input Rise Time 2)  
I2C™ Input Fall Time 2)  
50  
50  
tsds  
tsdh  
ticr  
250  
0
250  
0
1000  
300  
300  
300  
300  
ticf  
I2C™ Output Fall Time; 10pF to  
400pF Bus 2)  
tocf  
300  
I2C™ Bus Free Time Between Stop  
and Start  
I2C™ Start or Repeated Start Condition  
Setup Time  
I2C™ Start or Repeated Start Condition  
Hold Time  
tbuf  
tsts  
tsth  
tsps  
4.7  
4.7  
4
1.3  
0.6  
0.6  
0.6  
µs  
µs  
µs  
µs  
I2C™ Stop Condition Setup Time 2)  
4
1) The I²C™ interface will operate in either standard or fast mode.  
2) Parameter not tested in production.  
© 2016 Integrated Device Technology, Inc.  
10  
January 29, 2016  
 
 
 
 
ZSPM4551 Datasheet  
2
Functional Description  
The ZSPM4551 is a fully-integrated Li-Ion battery charger IC based on a highly-efficient switching topology. It is  
configurable for termination voltage, charge current, and additional variables to allow optimum charging conditions  
for a wide range of Li-Ion batteries. A 1MHz internal switching frequency facilitates low-cost LC filter  
combinations. Figure 2.1 provides a block diagram for the ZSPM4551.  
Figure 2.1  
ZSPM4551 Block Diagram  
EN  
VIN  
NFLT  
VIN  
VIN  
SCL  
SDA  
ZSPM4551  
I²C™*  
Interface  
MONITOR  
&
CONTROL  
Over-Voltage  
Protection  
VBAT  
VBAT  
VTH_REF  
VTHERM  
Oscillator  
BATT Thermal  
Control  
RREF  
Ramp  
Generator  
BATT Current  
Control  
VIN  
S
Vref  
Gate  
Drive  
Backgate  
Blocking  
SW  
Gate Drive  
Control  
LOUT  
RSENSE  
BATTERY  
COUT  
RTHM  
Comparator  
Gate  
Drive  
Error Amp  
PGND  
Compensation  
Network  
VIN  
Current  
Control  
VDD Regulator  
VSENSE  
VBAT  
VDD  
GND  
CVDD  
I²C™*is a trademark of NXP.  
When the battery voltage is below 3.0 volts, the ZSPM4551 enters a pre-charge state and applies a small,  
programmable charge current to safely charge the battery to a level for which full-charge current can be applied.  
Once the Full-Charge Mode has been initiated, the regulation will be for constant current (CC). When the battery  
voltage has increased enough to go into maintenance mode, the PWM control loop will force a constant voltage  
across the battery. Once in constant voltage mode, current is monitored to determine when the battery is fully  
charged. See Figure 2.2 for a diagram of the charging states.  
© 2016 Integrated Device Technology, Inc.  
11  
January 29, 2016  
 
 
ZSPM4551 Datasheet  
This regulation voltage as well as the 1C charging current can be set to change based on the battery temperature.  
There are four temperature ranges for which the regulation voltage can be set independently: 0°C to 10°C, 10°C  
to 45°C, 45°C to 50°C, and 50°C to 60°C. The ZSPM4551 will stop charging if the temperature passes the  
descending temperature threshold at 0°C or the ascending threshold at 60°C. These thresholds have 10 degrees  
of hysteresis. The intermediate points have 1 degree of hysteresis.  
2.1. Internal Protection  
2.1.1.  
VIN Under-Voltage Lockout  
The device is held in the off state until the EN pin voltage is HIGH (2.2V) and VIN rises to 3.15V (typical). There  
is a 200mV hysteresis on this input, which requires the input to fall below 2.95V (typical) before the device will  
disable.  
2.1.2.  
Internal Current Limit  
The current through the inductor LOUT is sensed on a cycle-by-cycle basis and if the current limit (IOCD; see sec-  
tion 1.4) is reached, the ZSPM4551 will abbreviate the cycle. The current limit is always active when the regulator  
is enabled.  
2.1.3.  
Thermal Shutdown  
If the junction temperature of the ZSPM4551 exceeds 170°C (typical), the SW output will tri-state to protect the  
device from damage. The NFLT and all other protection circuitry will stay active to inform the system of the failure  
mode. Once the device cools to 160°C (typical), the device will attempt to start up again. If the device reaches  
170°C, the shutdown/restart sequence will repeat.  
2.1.4.  
VBAT Over-Voltage Protection  
The ZSPM4551 has a battery protection circuit designed to shut down the charging profile if the battery voltage is  
greater than the termination voltage. The termination voltage can change based on user programming, so the  
protection threshold is set to 2% above the termination voltage. Shutting down the charging profile puts the  
ZSPM4551 in a fault condition.  
© 2016 Integrated Device Technology, Inc.  
12  
January 29, 2016  
 
 
 
 
 
ZSPM4551 Datasheet  
2.2. Fault Handling  
2.2.1.  
NFLT Pin Functionality  
In the event of a battery over-voltage, the battery temperature being outside of the safe charging range, or the full  
charge timer expiring, charging stops, and the NFLT pin is pulled low. When the fault condition is no longer  
present, the device will enter the INITIALIZE state (see Figure 2.2), but the NFLT pin will remain low until the  
STATUS register (00HEX) is read (see Table 2.2). When the STATUS register is read, the NFLT pin will go high  
until a new fault is detected.  
2.2.2.  
Other Faults  
When an open thermistor, thermal shut down, VIN under-voltage, or top-off time-out are detected, charging  
immediately stops and the corresponding bit in the STATUS register (00HEX) is set. The device enters the  
INITIALIZE state until the fault is no longer detected.  
© 2016 Integrated Device Technology, Inc.  
13  
January 29, 2016  
 
 
 
ZSPM4551 Datasheet  
Figure 2.2  
Charging State Diagram  
EN  
INITIALIZE STATE  
INITIALIZE  
Waiting for Valid  
Charging Conditions  
NO  
No Faults &  
VBAT < VRESTART  
YES  
PRE-CHARGE STATE  
PRE-CHARGE  
Pre-charge Current Limit  
NO  
VBAT > VPRECHG  
Threshold  
YES  
YES  
FULL-CHARGE CONSTANT  
CURRENT (CC) MODE  
1C CHARGING  
1C Current Limit and  
Full-Charge Timer  
VBAT< VPRECHG  
Threshold  
NO  
NO  
VBAT =VTERMINATION  
& ICHARGE < IEOC  
NO  
YES  
CONSTANT VOLTAGE MODE  
END OF CHARGE  
VBAT regulated to  
VBAT =  
VTERMINATION  
VTERMINATION with EOC Timer  
YES  
NO  
ICHARGE < Top  
Off End Current  
YES  
© 2016 Integrated Device Technology, Inc.  
14  
January 29, 2016  
 
ZSPM4551 Datasheet  
2.3. Serial Interface  
The ZSPM4551 features an I2C™ slave interface that offers advanced control and diagnostic features. It supports  
standard and fast mode data rates and auto-sequencing, and it is compliant to I2C™ standard version 3.0.  
I2C™ operation offers configuration control for termination voltages, charge currents, and charge timeouts. This  
configurability allows optimum charging conditions in a wide range of Li-Ion batteries. I2C™ operation also offers  
fault and warning indicators. Whenever a fault is detected, the associated status bit in the STATUS register is set  
and the NFLT pin is pulled low. Whenever a warning is detected, the associated status bit in the STATUS register  
is set, but the NFLT pin is not pulled low. Reading the STATUS register resets the fault and warning status bits,  
and the NFLT pin is released after all fault status bits have been reset.  
2.3.1.  
I2C™ Subaddress Definition  
Figure 2.3  
Subaddress in I2C™ Transmission  
2.3.2.  
I2C™ Bus Operation  
The ZSPM4551’s I2C™ is a two-wire serial interface; the two lines are serial clock (SCL) and serial data (SDA)  
(see Figure 2.4). SDA must be connected to a positive supply (e.g., the VDD pin) through an external pull-up  
resistor. The devices communicating on this bus can drive the SDA line low or release it to high impedance. To  
ensure proper operation, setup and hold times must be met (see Table 1.5). The device that initiates the I2C™  
transaction becomes the master of the bus.  
Communication is initiated by the master sending a START condition, which is a high-to-low transition on SDA  
while the SCL line is high. After the START condition, the device address byte is sent, most significant bit (MSB)  
first, including the data direction bit (read = 1; write = 0). After receiving the valid address byte, the device  
responds with an acknowledge (ACK). An ACK is a low on SDA during the high of the ACK-related clock pulse.  
On the I2C™ bus, during each clock pulse, only one data bit is transferred. The data on the SDA line must remain  
stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as START  
or STOP control conditions. A low-to-high transition on SDA while the SCL input is high indicates a STOP  
condition and is sent by the master.  
© 2016 Integrated Device Technology, Inc.  
15  
January 29, 2016  
 
 
 
 
ZSPM4551 Datasheet  
Any number of data bytes can be transferred from the transmitter to receiver between the START and the STOP  
conditions. Each byte of eight bits is followed by one ACK bit from the receiver. The SDA line must be released by  
the transmitter before the receiver can send an ACK bit. The receiver that acknowledges must pull down the SDA  
line during the ACK clock pulse, so that the SDA line is stable low during the high pulse of the ACK-related clock  
period. When a slave receiver is addressed, it must generate an ACK after each byte is received. Similarly, the  
master must generate an ACK after each byte that it receives from the slave transmitter. An end of data is  
signaled by the master receiver to the slave transmitter by not generating an acknowledge after the last byte has  
been clocked out of the slave. This is done by the master receiver by holding the SDA line high. The transmitter  
must then release the data line to enable the master to generate a STOP condition.  
Figure 2.4  
I2C™ Start / Stop Protocol  
See Table 1.5 for the definitions and specifications for the timing parameters labeled in Figure 2.5.  
Figure 2.5  
I2C™ Data Transmission Timing  
© 2016 Integrated Device Technology, Inc.  
16  
January 29, 2016  
 
 
ZSPM4551 Datasheet  
2.4. Status and Configuration Registers  
Table 2.1  
Register  
Register Descriptions (Device Address = 48HEX  
)
Address  
00HEX  
N/A  
Name  
STATUS  
Default  
Description  
Status bit register  
0
1
00HEX  
N/A  
N/A  
Register not implemented  
Configuration register  
2
02HEX  
03HEX  
04HEX  
05HEX  
06HEX  
N/A  
CONFIG1 1)  
CONFIG2 1)  
CONFIG3 1)  
CONFIG4 1)  
CONFIG5 1)  
N/A  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
N/A  
3
Configuration register  
4
Configuration register  
5
Configuration register  
6
Configuration register  
7-16  
17  
18  
Registers not implemented  
Enable configuration register access  
EEPROM control register  
11HEX  
12HEX  
CONFIG_ENABLE  
EEPROM_CTRL 1)  
00HEX  
00HEX  
1) CONFIGx and EEPROM_CTRL registers are only accessible when the CONFIG_ENABLE register is written with the EN_CFG bit  
set to 1 (see Table 2.8).  
Table 2.2  
STATUS Register—Address 00HEX  
Note: All of the STATUS register bits are READ-only.  
DATA BIT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FIELD NAME  
BATT_OV  
1C_TO  
TEMP_0C TEMP_60C  
TSD  
TOP_TO  
VIN_UV  
TH_OPEN  
FIELD NAME  
BIT DEFINITION 1)  
BATT_OV  
1C_TO  
VBAT over-voltage.  
Full charge timer has timed out.  
TEMP_0C  
TEMP_60C  
TSD  
Thermistor indicates battery temperature < 0°C.  
Thermistor indicates battery temperature > 60°C.  
Thermal shutdown.  
TOP_TO  
VIN_UV  
Top-off timer has timed out.  
VIN under-voltage.  
TH_OPEN  
Thermistor open (battery not present).  
1) Faults are defined as BATT_OV, 1C_TO, TEMP_0C, and TEMP_60C. Warnings are defined as TSD, TOP_TO, VIN_UV, and  
TH_OPEN. Faults cause the NFLT pin to be pulled low. Warnings do not cause the NFLT pin to be pulled low. All status bits are  
cleared after STATUS register read access. The NFLT pin will go to high impedance (open-drain output) after the STATUS register  
has been read and all status bits have been reset.  
© 2016 Integrated Device Technology, Inc.  
17  
January 29, 2016  
 
 
 
 
 
ZSPM4551 Datasheet  
Table 2.3  
Configuration Register CONFIG1—Address 02HEX  
Note: All of the CONFIG1 register bits are READ/WRITE.  
DATA BIT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FIELD NAME  
PRE_CHRG[1:0]  
V_TERM_0_10[2:0]  
BIT DEFINITION  
V_TERM_10_45[2:0]  
FIELD NAME  
PRE_CHRG[1:0] 1)  
Pre-charging configuration  
00BIN – 50 mA  
01BIN – 100 mA  
10BIN – 185 mA  
11BIN – 370 mA  
V_TERM_0_10[2:0] 2)  
V_TERM_10_45[2:0] 2)  
Voltage termination:  
0-10°C configuration  
000BIN – 3.94 V  
001BIN – 4.00 V  
010BIN – 4.05 V  
011BIN – 4.10 V  
100BIN – 4.12 V  
101BIN – 4.15 V  
110BIN – 4.18 V  
Voltage termination:  
10-45°C configuration  
111BIN – Invalid setting  
1) PRE_CHRG Note: Maximum output current when Vout < 3.0 V.  
2) V_TERM Note: There are separate settings for battery temperatures 0-10°C, 10-45°C, 45-50°C , and 50-60°C (see Table 2.4 for  
45-50°C and 50-60°C). For <0°C and >60°C, charging is disabled and a fault is set.  
Table 2.4  
Configuration Register CONFIG2—Address 03HEX  
Note: All of the CONFIG2 register bits are READ/WRITE.  
DATA BIT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FIELD NAME  
EOC[1:0]  
V_TERM_45_50[2:0]  
V_TERM_50_60[2:0]  
FIELD NAME  
EOC[1:0] 1)  
BIT DEFINITION  
00BIN – 50 mA  
End of charge configuration  
01BIN – 100 mA  
10BIN – 185 mA  
11BIN – 370 mA  
V_TERM_45_50[2:0] 2)  
V_TERM_50_60[2:0] 2)  
Voltage termination:  
45-50°C configuration  
000BIN – 3.94 V  
001BIN – 4.00 V  
010BIN – 4.05 V  
011BIN – 4.10 V  
100BIN – 4.12 V  
101BIN – 4.15 V  
110BIN – 4.18 V  
Voltage termination:  
50-60°C configuration  
111BIN – Invalid setting  
1) EOC Note: Maximum output current when VOUT < 3.0 V.  
2) V_TERM Note: There are separate settings for battery temperatures 0-10°C, 10-45°C, 45-50°C, and 50-60°C  
(see Table 2.3 for 0-10°C and 10-45°C). For <0°C and >60°C, charging is disabled and a fault is set.  
© 2016 Integrated Device Technology, Inc.  
18  
January 29, 2016  
 
 
 
 
 
 
ZSPM4551 Datasheet  
Table 2.5  
Configuration Register CONFIG3—Address 04HEX  
Note: All of the CONFIG3 register bits are READ/WRITE.  
DATA BIT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FIELD NAME  
MAX_CHRG_CURR_0_10[3:0]  
MAX_CHRG_CURR_10_45[3:0]  
FIELD NAME  
BIT DEFINITION  
Maximum charge current:  
MAX_CHRG_CURR_0_10[3:0] 1)  
MAX_CHRG_CURR_10_45[3:0] 1)  
0000BIN – 50 mA  
0001BIN – 100 mA  
0010BIN – 200 mA  
0011BIN – 300 mA  
0100BIN – 400 mA  
0101BIN – 500 mA  
0110BIN – 600 mA  
0111BIN – 700 mA  
1000BIN – 800 mA  
1001BIN – 900 mA  
1010BIN – 1000 mA  
1011BIN – 1100 mA  
1100BIN – 1200 mA  
1101BIN – 1300 mA  
1110BIN – 1400 mA  
1111BIN – 1500 mA  
0-10°C configuration  
Maximum charge current;  
10-45°C configuration  
1) MAX_CHRG_CURR Note: There are separate settings for battery temperatures 0-10°C, 10-45°C, 45-50°C, and 50-60°C  
(see Table 2.6 for 45-50°C and 50-60°C). For <0°C and >60°C, charging is disabled and a fault is set.  
Table 2.6  
Configuration Register CONFIG4—Address 05HEX  
Note: All of the CONFIG4 register bits are READ/WRITE.  
DATA BIT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FIELD NAME  
MAX_CHRG_CURR_45_50[3:0]  
MAX_CHRG_CURR_50_60[3:0]  
FIELD NAME  
BIT DEFINITION  
MAX_CHRG_CURR_45_50[3:0] 1)  
MAX_CHRG_CURR_50_60[3:0] 1)  
Maximum charge current:  
45-50°C configuration  
0000BIN – 50 mA  
0001BIN – 100 mA  
0010BIN – 200 mA  
0011BIN – 300 mA  
0100BIN – 400 mA  
0101BIN – 500 mA  
0110BIN – 600 mA  
0111BIN – 700 mA  
1000BIN – 800 mA  
1001BIN – 900 mA  
1010BIN – 1000 mA  
1011BIN – 1100 mA  
1100BIN – 1200 mA  
1101BIN – 1300 mA  
1110BIN – 1400 mA  
1111BIN – 1500 mA  
Maximum charge current:  
50-60°C configuration  
1) MAX_CHRG_CURR Note: There are separate settings for battery temperatures 0-10°C, 10-45°C, 45-50°C , and 50-60°C  
(see Table 2.5 for 0-10°C and 10-45°C). For <0°C and >60°C, charging is disabled and a fault is set.  
© 2016 Integrated Device Technology, Inc.  
19  
January 29, 2016  
 
 
 
 
ZSPM4551 Datasheet  
Table 2.7  
Configuration Register CONFIG5—Address 06HEX  
Note: All of the CONFIG5 register bits are READ/WRITE.  
DATA BIT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
1C_TO[2:0]  
D0  
FIELD NAME  
FIELD NAME  
TOP_END 1)  
TOP_END  
TH  
TOP_TO[2:0]  
BIT DEFINITION  
Top-off end configuration  
0BIN – 25 mA  
1BIN – 92 mA  
TH 2)  
Thermistor configuration  
0BIN – 10kΩ  
1BIN – 100kΩ  
TOP_TO[2:0] 3)  
Top off timer time out configuration  
000BIN – 0 minutes  
001BIN – 20 minutes  
010BIN – 40 minutes  
011BIN – 60 minutes  
100BIN – 80 minutes  
101BIN – 100 minutes  
110BIN – 120 minutes  
111BIN – Disable time out timer  
1C_TO[2:0] 4)  
Full charge timer time out configuration  
000BIN – Disable full charge timer  
001BIN – 200 minutes  
010BIN – 400 minutes  
011BIN – 600 minutes  
100BIN – 800 minutes  
101BIN – 1000 minutes  
110BIN – 1200 minutes  
111BIN – 1400 minutes  
1) TOP_END Note: Charging stops when VVBAT = VTERMINATION and IBAT < TOP_END  
2) TH Note: Setting for nominal thermistor and reference resistor value.  
3) TOP_TO Note: Timer starts when VBAT = VTERMINATION and IBAT < EOC.  
4) 1C_TO Note: Timer starts when VBAT > 3.0V.  
© 2016 Integrated Device Technology, Inc.  
20  
January 29, 2016  
 
 
 
 
 
ZSPM4551 Datasheet  
Table 2.8  
Enable Configuration Register CONFIG_ENABLE—Address 11HEX  
Note: The reset value for all of the CONFIG_ENABLE register bits is 0.  
DATA BIT  
D7  
Not used  
R
D6  
Not used  
R
D5  
Not used  
R
D4  
Not used  
R
D3  
Not used  
R
D2  
Not used  
R
D1  
D0  
EN_CFG  
R/W  
FIELD NAME  
READ/WRITE  
FIELD NAME  
EN_CFG  
Not used  
R
BIT DEFINITION  
Enable-access control bit for configuration registers CONFIG1 through CONFIG5  
(addresses 02HEX to 06HEX  
0BIN – Disable access  
1BIN – Enable access  
)
Table 2.9  
EEPROM Control Register EEPROM_CTRL—Address 12HEX  
Note: The reset value for all of the EEPROM_CTRL register bits is 0.  
DATA BIT  
D7  
Not used  
R
D6  
Not used  
R
D5  
Not used  
R
D4  
Not used  
R
D3  
Not used  
R
D2  
Not used  
R
D1  
Not used  
R
D0  
EE_PROG  
R/W  
FIELD NAME  
READ/WRITE  
FIELD NAME  
EE_PROG 1)  
BIT DEFINITION  
EEPROM program control bit for configuration registers CONFIG1 through CONFIG5  
(addresses 02HEX to 06HEX  
)
0BIN  
1BIN  
Disable EEPROM programming  
Enable EEPROM programming with data from configuration registers CONFIG1  
through CONFIG5 (addresses 02HEX to 06HEX  
)
1) EE_PROG Note: Inputs VIN and EN must be present for 200ms.  
© 2016 Integrated Device Technology, Inc.  
21  
January 29, 2016  
 
 
 
ZSPM4551 Datasheet  
3
Application Circuits  
3.1. Typical Application Circuit  
Figure 3.1  
Typical Application Circuit for Charging a Lithium-Ion Battery  
ZSPM4551  
VIN  
VTH_REF  
CIN  
RREF  
GND  
VTHERM  
CVDD  
RSENSE  
LOUT  
Battery  
VDD  
SCL  
SW  
COUT  
RTHM  
VSENSE  
VDD  
RPULLUP  
(optional)  
SDA  
EN  
VBAT  
NFLT  
VDD  
RPULLUP  
(optional)  
PGND  
3.2. Selection of External Components  
Note that the internal compensation is optimized for a 4.7µF output capacitor (COUT) and a 4.7µH output inductor  
(LOUT). Table 1.3 provides recommended ranges for most of the following components.  
3.2.1.  
COUT Output Capacitor  
To keep the output ripple low, a low ESR (less than 35m) ceramic capacitor is recommended for the 4.7µF  
output filter capacitor. The ESR should not exceed 100mΩ.  
3.2.2.  
LOUT Output Inductor  
For best performance, an inductor with a saturation current rating higher than the maximum VOUT load requirement  
plus the inductor current ripple should be used for the 4.7µH output filter inductor.  
3.2.3.  
CIN Bypass Capacitor  
For best performance, a low ESR ceramic capacitor should be used for the 10µF input supply bypass capacitor. If  
it is not a low ESR ceramic capacitor, a 0.1µF ceramic capacitor should be added in parallel to CIN.  
3.2.4.  
CVDD Bypass Capacitor for VDD Internal Reference Voltage Output  
For best performance, a low ESR ceramic capacitor should be used for the 100nF bypass capacitor from the VDD  
pin to ground.  
© 2016 Integrated Device Technology, Inc.  
22  
January 29, 2016  
 
 
 
 
 
 
 
 
ZSPM4551 Datasheet  
3.2.5.  
RSENSE Output Sensing Resistor  
The typical value for the output sensing resistor is 50m.  
3.2.6.  
Pull-up Resistors  
For proper function of the I2C™ interface, the SDA pin must be connected to a positive supply (e.g., the VDD pin)  
through an external pull-up resistor.  
For proper function of the fault warning signal on the NFLT pin, it must be connected to a positive supply (VDD)  
through an external pull-up resistor.  
4
Pin Configuration and Package  
4.1. ZSPM4551 Package Dimensions  
Figure 4.1  
PQFN-16 Package Dimensions  
© 2016 Integrated Device Technology, Inc.  
23  
January 29, 2016  
 
 
 
 
 
ZSPM4551 Datasheet  
4.2. Pin-Out Assignments  
Figure 4.2  
ZSPM4551 Pin Assignments  
12  
11  
10  
9
13  
14  
15  
16  
8
7
6
5
SDA  
VDD  
NFLT  
EN  
ZSPM4551  
PQFN16 4X4  
Top View  
SW  
PGND  
PGND  
GND  
1
2
3
4
4.3. Pin Description for 16-Pin PQFN (4 x 4 mm)  
Table 4.1  
Pin #  
1
Pin Description  
Name  
Function  
Description  
SW  
Switching Voltage  
Node  
Connect to 4.7µH (typical) inductor LOUT. Also connect to additional SW  
pin 14.  
2
3
VIN  
Input Voltage  
Input voltage. Also connect to CIN. Also connect to additional  
VIN pin 11.  
VSENSE  
Current Sense  
Positive Input  
Positive input for the current loop.  
4
5
VBAT  
GND  
Output Voltage  
GND  
Regulator feedback input.  
Primary ground for the majority of the device except the low-side power  
FET.  
6
EN  
Enable Input  
Inverted Fault  
When EN is high (2.2V), the device is enabled. Ground the pin to  
disable the device. Includes internal pull-up.  
7
8
NFLT  
VDD  
Open-drain output.  
Internal 3.3V  
Connect to a 100nF capacitor to GND.  
Supply Output  
9
VTHERM  
Battery  
Negative node for the thermistor, which must be located in close  
proximity to the battery.  
Temperature  
Sensor Minus  
Node  
© 2016 Integrated Device Technology, Inc.  
24  
January 29, 2016  
 
 
 
 
ZSPM4551 Datasheet  
Pin #  
Name  
Function  
Battery  
Temperature  
Sensor Positive  
Node  
Description  
10  
VTH_REF  
Positive node for the thermistor, which must be located in close  
proximity to the battery.  
11  
12  
13  
14  
VIN  
SCL  
SDA  
SW  
Input Voltage  
Clock Input  
Additional VIN pin for input voltage; connect to VIN pin 2.  
I2C™ clock input.  
I2C™ data (open-drain output).  
Data Input/Output  
Switching Voltage  
Node  
Additional SW pin; connect to SW pin 1.  
15  
16  
PGND  
PGND  
Power GND  
GND supply for internal low-side FET/integrated diode. Also connect to  
additional PGND pin 16.  
Power GND  
GND supply for internal low-side FET/integrated diode. Also connect to  
additional PGND pin 15.  
4.4. Package Markings  
Figure 4.3  
Marking Diagram 16-Pin PQFN (4 x 4 mm)  
XXXXX:  
Lot Number (last five digits)  
Pin 1 mark  
4551A  
O:  
XXXXX  
oYYWW  
YY:  
WW:  
Year  
Work Week  
© 2016 Integrated Device Technology, Inc.  
25  
January 29, 2016  
 
 
ZSPM4551 Datasheet  
5
Layout Recommendations  
To maximize the efficiency of this package for application on a single layer or multi-layer PCB, certain guidelines  
must be followed when laying out this part on the PCB.  
5.1. Multi-Layer PCB Layout  
The following are guidelines for mounting the exposed pad ZSPM4551 on a multi-layer PCB with ground a plane.  
In a multi-layer board application, the thermal vias are the primary method of heat transfer from the package  
thermal pad to the internal ground plane. The efficiency of this method depends on several factors, including die  
area, number of thermal vias, and thickness of copper, etc.  
Figure 5.1  
Package and PCB Land Configuration for Multi-Layer PCB  
Solder Pad (Land Pattern)  
Package Thermal Pad  
Thermal Vias  
Package Outline  
Figure 5.2  
JEDEC Standard FR4 Multi-Layer Board – Cross-Sectional View  
Package Solder  
(square)  
Component Traces  
Pad  
1.5038 - 1.5748 mm  
Component Trace  
(2oz Cu)  
2 Plane  
1.0142 - 1.0502 mm  
Ground Plane  
(1oz Cu)  
1.5748mm  
Thermal Via  
4 Plane  
0.5246 - 0.5606 mm  
Power Plane  
(1oz Cu)  
Thermal Isolation  
Power plane only  
0.0 - 0.071 mm Board  
Base & Bottom Pad  
Package Solder  
Pad (bottom trace)  
© 2016 Integrated Device Technology, Inc.  
26  
January 29, 2016  
 
 
 
 
ZSPM4551 Datasheet  
Figure 5.3 is a representation of how the heat can be conducted away from the die using an exposed pad  
package. Each application will have different requirements and limitations, and therefore the user should use  
sufficient copper to dissipate the power in the system. The output current rating for the linear regulators might  
need to be de-rated for ambient temperatures above 85°C. The de-rated value will depend on calculated worst  
case power dissipation and the thermal management implementation in the application.  
Figure 5.3  
Conducting Heat Away from the Die using an Exposed Pad Package  
Mold compound  
Die  
Epoxy Die attach  
Exposed pad  
Solder  
5% - 10% Cu coverage  
Single Layer, 2oz Cu  
Thermal Vias with Cu plating  
90% Cu coverage  
Ground Layer, 1oz Cu  
Signal Layer, 1oz Cu  
Bottom Layer, 2oz Cu  
20% Cu coverage  
Note: NOT to scale.  
5.2. Single-Layer PCB Layout  
Layout recommendations for a single-layer PCB: Utilize as much copper area for power management as possible.  
In a single-layer board application, the thermal pad is attached to a heat spreader (copper areas) by using a low  
thermal impedance attachment method (solder paste or thermal conductive epoxy).  
In both of the methods mentioned above, it is advisable to use as much copper trace as possible to dissipate the  
heat.  
© 2016 Integrated Device Technology, Inc.  
27  
January 29, 2016  
 
 
ZSPM4551 Datasheet  
Figure 5.4  
Application Using a Single-Layer PCB  
Use as much copper area  
as possible for heat spread  
Package Thermal Pad  
Package Outline  
Important: If the attachment method is NOT implemented correctly, the functionality of the product is NOT  
guaranteed. Power dissipation capability will be adversely affected if the device is incorrectly mounted onto the  
circuit board.  
6
7
Ordering Information  
Ordering Code  
Description  
Package  
ZSPM4551AA1W  
ZSPM4551AA1R  
ZSPM4551KIT  
ZSPM4551 High-Efficiency Charger for Li-Ion Batteries  
ZSPM4551 High-Efficiency Charger for Li-Ion Batteries  
ZSPM4551 Evaluation Kit  
16-pin PQFN / 7” Reel (1000 parts)  
16-pin PQFN / 13” Reel (3300 parts)  
Related Documents  
Document  
ZSPM4551 Feature Sheet  
ZSPM4551 Evaluation Kit Description  
ZSPM4551 Application Note – Li-Ion Battery Charging  
Applications  
Visit IDT’s website www.IDT.com or contact your nearest sales office for the latest version of these documents.  
© 2016 Integrated Device Technology, Inc.  
28  
January 29, 2016  
 
 
 
ZSPM4551 Datasheet  
8
Document Revision History  
Revision  
1.00  
Date  
Description  
December 4, 2012 First release.  
1.01  
October 3, 2014  
January 29, 2016  
Revision of specification for VTH_REF output voltage in Table 1.4.  
Updates for contact information and imagery on cover and headers.  
Changed to IDT branding.  
Corporate Headquarters  
Sales  
Tech Support  
www.IDT.com/go/support  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
www.IDT.com  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance  
specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The  
information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an  
implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property  
rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be  
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the  
property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated  
Device Technology, Inc. All rights reserved.  
© 2016 Integrated Device Technology, Inc.  
29  
January 29, 2016  
 

相关型号:

ZSPM4551AA1R

High-Efficiency Charger for Li-Ion Batteries

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT

ZSPM4551AA1W

High-Efficiency Charger for Li-Ion Batteries

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT

ZSPM4551KIT

High-Efficiency Charger for Li-Ion Batteries

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT

ZSPM8025-KIT

True Digital PWM Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZSPM8725-KIT

True Digital PWM Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT

ZSPM8735-KIT

True Digital PWM Controller (Single-Phase, Single-Rail)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZSPM8825-KIT

True Digital PWM Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT

ZSPM8835-KIT

True Digital PWM Controller (Single-Phase, Single-Rail)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZSPM9000

Ultra-Compact, High-Performance DrMOS Device

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT

ZSPM9000AI1R

Ultra-Compact, High-Performance DrMOS Device

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT

ZSPM9010

Ultra-Compact, High-Performance DrMOS Device

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT

ZSPM9010ZA1R

Ultra-Compact, High-Performance DrMOS Device

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT