1ED3431MU12MXUMA1 [INFINEON]

EiceDRIVER™ 1ED34x1Mc12M Enhanced;
1ED3431MU12MXUMA1
型号: 1ED3431MU12MXUMA1
厂家: Infineon    Infineon
描述:

EiceDRIVER™ 1ED34x1Mc12M Enhanced

驱动
文件: 总45页 (文件大小:814K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1ED34x1Mc12M (1ED-X3 Analog)  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
Single-channel 5.7 kV (rms) isolated gate driver IC with adjustable DESAT and  
soꢀ-off  
Features  
650 V, 1200 V, 1700 V, 2300 V IGBTs, SiC, and Si MOSFETs  
40 V absolute maximum output supply voltage  
±3 A, ±6 A, and ±9 A typical sinking and sourcing peak output current  
Separate source and sink outputs for hard switching and with active Miller clamp/clamp driver  
Adjustment pins for parameter configuration from input side  
Precise VCEsat detection (DESAT) with fault output and adjustable filter time and leading edge blanking time  
with resistor at ADJB pin  
Adjustable IGBT soꢀ turn-off aꢀer desaturation detection with resistor at ADJA pin  
Operation at high ambient temperature up to 125 °C with over-temperature shut down at 160 °C (±10 °C)  
Tight IC-to-IC propagation delay matching (tPDD,max = 30 ns)  
Undervoltage lockout protection with hysteresis for input and output side with active shut-down  
High common-mode transient immunity CMTI = 200 kV/µs  
Small space-saving DSO-16 fine-pitch package with large creepage distance (>8 mm)  
Safety certification  
-
-
UL 1577 recognized (File E311313) with VISO,test = 6840 V (rms) for 1 s, VISO = 5700 V (rms) for 60 s  
IEC 60747-17/VDE 0884-11 approval (pending) with VIORM = 1767 V (peak, reinforced)  
Evaluation board available EVAL-1ED3491MX12M  
Potential applications  
Industrial motor drives - compact, standard, premium, servo drives  
Solar inverters  
UPS systems  
Welding  
Commercial and agricultural vehicles (CAV)  
Commercial air-conditioning (CAC)  
High-voltage isolated DC-DC converters  
Isolated switch mode power supplies (SMPS)  
PG-DSO-16  
Product validation  
Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.  
Datasheet  
Please read the Important Notice and Warnings at the end of this document  
v2.1  
www.infineon.com/gdisolated  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
Device information  
Device information  
Product type  
Output current CLAMP type1) Isolation class Marking  
OPN  
1ED3431MC12M  
1ED3461MC12M  
1ED3491MC12M  
1ED3431MU12M  
1ED3461MU12M  
1ED3491MU12M  
3 A (typ)  
6 A (typ)  
9 A (typ)  
3 A (typ)  
6 A (typ)  
9 A (typ)  
CLAMP  
reinforced  
reinforced  
reinforced  
UL 1577  
3431MC12 1ED3431MC12MXUMA1  
3461MC12 1ED3461MC12MXUMA1  
3491MC12 1ED3491MC12MXUMA1  
3431MU12 1ED3431MU12MXUMA1  
3461MU12 1ED3461MU12MXUMA1  
3491MU12 1ED3491MU12MXUMA1  
CLAMPDRV  
CLAMPDRV  
CLAMP  
CLAMPDRV  
CLAMPDRV  
UL 1577  
UL 1577  
1) Please refer to Chapter 4.5.4.1 for circuit connection to avoid damage to the gate driver IC  
Description  
The 1ED34x1Mc12M family (X3 Analog) consists of galvanically isolated single channel gate driver ICs in a small  
PG-DSO-16 package with a large creepage and clearance of 8 mm. The gate driver ICs provide a typical peak  
output current of 3 A, 6 A, and 9 A.  
Adjustable control and protection functions are included to simplify the design of highly reliable systems. All  
parameter adjustments are done from the input side, including adjustable DESAT filter time, leading edge  
blanking time, and soꢀ-off current level with only two resistors..  
All logic I/O pins are supply voltage dependent 3.3 V or 5 V CMOS compatible and can be directly connected to a  
microcontroller.  
The data transfer across the galvanic isolation is realized by the integrated coreless transformer technology.  
VCC1  
VCC2H  
IN,H  
DESAT,H  
RDYC, FLT_N  
EiceDRIVERTM  
DESAT SoftOff  
ON,H  
ADJ,H  
OFF.H  
CLAMP,H  
GND2,H  
CPU  
GND1  
VCC1  
VEE2,H  
VCC2,L  
IN,L  
DESAT,L  
RDYC, FLT_N  
EiceDRIVERTM  
DESAT SoftOff  
ON,L  
ADJ,L  
OFF,L  
CLAMP,L  
GND2,L  
GND1  
VEE2,L  
Figure 1  
Typical application  
Datasheet  
2
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
Table of contents  
Table of contents  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Related products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
3.1  
3.2  
Pin configuration and functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
4
4.1  
4.2  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Start-up and fault clearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input side undervoltage lockout, VCC1 UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output side under-voltage lockout, VCC2 UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Input side logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
IN non-inverting driver input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
RDYC ready status output, fault-off and fault clear input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
RDYC fault-off input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
RDYC fault clear input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
FLT_N status output and fault-off input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
FLT_N fault-off input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Desaturation protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
DESAT behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
DESAT filter and leading edge blanking time adjustment with ADJB . . . . . . . . . . . . . . . . . . . . . . . . 19  
Gate driver output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Turn-on behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Turn-off and fault turn-off behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Hard switching turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Soꢀ turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Soꢀ-off current source adjustment with ADJA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Active shut-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Active Miller clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
CLAMP output types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Switch-off timeout until forced switch-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Short circuit clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
4.2.1  
4.2.2  
4.3  
4.3.1  
4.3.2  
4.3.2.1  
4.3.2.2  
4.3.3  
4.3.3.1  
4.4  
4.4.1  
4.4.2  
4.5  
4.5.1  
4.5.2  
4.5.2.1  
4.5.2.2  
4.5.2.2.1  
4.5.3  
4.5.4  
4.5.4.1  
4.5.5  
4.6  
5
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Operating parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Voltage supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
5.1  
5.2  
5.3  
5.4  
5.4.1  
Datasheet  
3
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
Table of contents  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.4.6  
5.4.7  
5.4.8  
5.4.9  
Logic input and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Analog input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Gate driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Active Miller clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Desaturation protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Soꢀ-off current source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Over-temperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
6
6.1  
6.2  
Insulation characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Certified according to VDE 0884-11 reinforced insulation (pending) . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Recognized under UL 1577 (File E311313) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
8
8.1  
8.2  
Application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Reference layout for thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Printed circuit board guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Datasheet  
4
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
1 Block diagram  
1
Block diagram  
VCC1  
VCC2  
2
7
UVLO1  
UVLO2  
14  
10  
opt.  
CLAMP  
CLAMPDRV  
CLAMP control  
and detection  
IN  
PWM logic TX  
RX  
VEE2  
VCC2  
1
1
FLT_N  
6
5
ON  
Output control  
with hard-  
12  
11  
switching and  
SoftOff  
OFF  
RDYC  
VEE2  
VCC2  
1
LOGIC  
TRX  
TRX  
LOGIC  
ADJB  
ADJA  
4
3
DESAT  
GND2  
13  
15  
DESAT control  
and detection  
2
VEE2  
1
1
8
9
16  
GND1  
GND1  
VEE2  
VEE2  
Figure 2  
Block diagram  
Datasheet  
5
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
2 Related products  
2
Related products  
Note:  
Please consider the gate driver IC power dissipation and insulation requirements for the selected  
power switch and operating condition.  
Product group Product name  
Description  
TRENCHSTOP™  
IGBT Discrete  
IKQ75N120CS6  
IKW15N120BH6  
IHW40N120R5  
High Speed 1200 V, 75 A IGBT with anti-parallel diode in TO247-3  
High Speed 1200 V, 15 A IGBT with anti-parallel diode in TO247  
Reverse conducting 1200 V, 40 A IH IGBT with integrated diode in  
TO247  
CoolSiCSiC  
IMBF170R650M1  
IMW120R045M1  
1700 V, 650 mΩ SiC MOSFET in TO263-7 package  
1200 V, 45 mΩ SiC MOSFET in TO247-3 package  
1200 V, 350 mΩ SiC MOSFET in TO247-4 package  
650 V, 27 mΩ SiC MOSFET in TO247-4 package  
650 V, 107 mΩ SiC MOSFET in TO247-3 package  
EasyPACK1B 1200 V / 45 mΩ sixpack module  
EasyDUAL2B 1200 V, 6 mΩ half-bridge module  
MOSFET Discrete  
IMZ120R350M1H  
IMZA65R027M1H  
IMW65R107M1H  
FS45MR12W1M1_B11  
FF6MR12W2M1_B11  
CoolSiCSiC  
MOSFET Module  
F3L11MR12W2M1_B74 EasyPACK2B 1200 V, 11 mΩ 3-Level module in Advanced NPC  
(ANPC) topology  
F4-23MR12W1M1_B11 EasyPACK1B 1200 V, 23 mΩ fourpack module  
TRENCHSTOP™  
IGBT Modules  
F4-200R17N3E4  
FS150R17N3E4  
FF650R17IE4  
EconoPACK3 1700 V, 200 A fourpack IGBT module  
EconoPACK3 1700 V, 150 A sixpack IGBT module  
PrimePACK3 1700 V, 650 A half-bridge dual IGBT module  
PrimePACK3 1700 V, 1000 A half-bridge dual IGBT module  
PrimePACK3+ 1700 V, 1200 A dual IGBT module  
PrimePACK3+ 1700 V, 1500 A dual IGBT module  
PrimePACK3 1700 V, 1500 A dual IGBT module  
PrimePACK3+ 1700 V, 1800 A dual IGBT module  
FF1000R17IE4  
FF1200R17IP5  
FF1500R17IP5  
FF1500R17IP5R  
FF1800R17IP5  
FP10R12W1T7_B11  
EasyPIM1B 1200 V, 10 A three phase input rectifier PIM IGBT  
module  
FS100R12W2T7_B11  
FP150R12KT4_B11  
FS200R12KT4R_B11  
EasyPACK2B 1200 V, 100 A sixpack IGBT module  
EconoPIM3 1200V three-phase PIM IGBT module  
EconoPACK3 1200 V, 200 A sixpack IGBT module  
Datasheet  
6
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
3 Pin configuration and functionality  
3
Pin configuration and functionality  
The pin assignment at the gate driver IC generally differentiates between the input side and the output side.  
Table 1  
General pin assignment  
Designation  
Pins  
1 to 8  
9 to 16  
input side, input logic signal side, or low voltage side  
output side, driver power side, or high voltage side  
For simplicity reasons the driver is described as an IGBT driver. For use with MOSFETs and other power switches  
simply replace any mentioning of collector and emitter with their corresponding pin names.  
3.1  
Pin configuration  
Table 2  
Pin configuration table abbreviations  
Description  
Abbreviation  
Pin type  
PWR  
I/O  
Power supply and gate current output pins  
Digital input and output pin  
Digital input pin  
I
GND  
AI  
Ground reference pin  
Analog input pin  
Buffer type  
OD  
Open drain output  
CMOS  
PP  
CMOS compatible input threshold levels  
Push/pull output buffer  
special  
Pull device  
PD  
Special output/input function, see individual description  
Pull-down resistor  
Current source  
CS  
Table 3  
Pin configuration  
Pin Pin name Pin type Buffer type Pull  
Function  
no.  
device  
1
GND1  
VCC1  
ADJA  
ADJB  
RDYC  
GND  
PWR  
AI  
Ground input side  
2
Positive power supply input side  
Parameter adjust set A  
Parameter adjust set B  
3
special  
special  
OD, CMOS  
CS  
CS  
4
AI  
5
I/O  
Combined ready output, high active and fault clear  
input and soꢀ-off input, low active  
6
7
FLT_N  
IN  
I/O  
I
OD, CMOS  
CMOS  
Fault output, low active and soꢀ- off input, low active  
PD, 40 kΩ Non inverted driver input  
Datasheet  
7
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
3 Pin configuration and functionality  
Table 3  
Pin configuration (continued)  
Pin Pin name Pin type Buffer type Pull  
Function  
no.  
device  
8
GND1  
VEE2  
GND  
GND  
PWR  
Ground input side  
9
Negative power supply output side  
10  
CLAMP  
OD  
Active Miller clamping, open drain to VEE2  
(1ED3431M only)  
10  
CLAMPDRV PWR  
PP  
Active miller clamping, clamp driver for external  
MOSFET (1ED3461M, 1ED3491M)  
11  
12  
13  
14  
15  
16  
OFF  
PWR, AI  
OD  
Driver sink output  
ON  
PWR, AI  
AI  
OD  
Driver source output  
DESAT  
VCC2  
GND2  
VEE2  
special  
CS, 500 µA Enhanced desaturation protection  
PWR  
AI  
Positive power supply output side  
Signal ground output side  
GND  
Negative power supply output side  
GND1  
VCC1  
ADJA  
ADJB  
RDYC  
FLT_N  
IN  
VEE2  
GND2  
VCC2  
DESAT  
ON  
1
16  
15  
14  
13  
12  
11  
10  
9
2
3
4
5
6
7
8
OFF  
CLAMP  
VEE2  
GND1  
Figure 3  
PG-DSO-16 (top view) with CLAMP  
GND1  
VCC1  
ADJA  
ADJB  
RDYC  
FLT_N  
IN  
VEE2  
GND2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCC2  
DESAT  
ON  
OFF  
CLAMPDRV  
VEE2  
GND1  
Figure 4  
PG-DSO-16 (top view) with CLAMPDRV  
Datasheet  
8
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
3 Pin configuration and functionality  
3.2  
Pin functionality  
GND1  
Reference ground of the input side. Connect direct to input signal ground.  
VCC1  
Positive power supply terminal of the input side, connect to 5 V or 3.3 V for proper operation. Place a decoupling  
capacitor close to this pin and GND1.  
ADJA and ADJB parameter adjust input for set A or B  
The pins ADJA and ADJB are used to adjust two sets of independent parameters of output functions.  
Connect a resistor between 1.33 kΩ and 28.0 kΩ to GND1 to adjust each parameter. All valid resistor values  
belong to the E96-series with 1% tolerance.  
Connecting ADJA to GND1 uses a default value for soꢀ switch-off. Connecting it to VCC1 is disabling the gate  
driver IC.  
Connecting ADJB to GND1 is disabling the gate driver IC. Connecting it to VCC1 is setting the function to  
minimum values.  
RDYC ready status output, fault-off input and fault-clear input  
Open-drain output reports the correct operation of the device, ready output is high active. Fault-clear input and  
fault-off input clears a gate driver fault or switch the gate driver output to off with fault-off function, input is low  
active. Connect to a microcontroller with 5 V or 3.3 V I/O with an external pull-up resistor to VCC1. A typical value  
for this resistor is 2.2 kΩ. The RDCY signal is referenced to GND1.  
FLT_N fault output and fault-off input  
Open-drain output reports the failures related to operating of the inverter system to the microcontroller, fault  
output is active low. Fault-off input switch the gate driver output to off with fault-off function, input is low  
active. Connect to a microcontroller with 5 V or 3.3 V I/O with an external pull-up resistor to VCC1. A typical value  
for this resistor is 2.2 kΩ. The FLT_N signal is referenced to GND1.  
IN non inverting gate driver input  
IN input controls the output of the gate driver IC, the IGBT is turned on if IN is set to high. Connect to a PWM  
output of the microcontroller with 5 V or 3.3 V IO. An internal pull-down resistor ensures IGBT off-state if not  
connected. A minimum pulse width of typical 103 ns is defined to make the gate driver IC robust against glitches  
at IN.  
VEE2  
Negative power supply terminal of the output side. Connect to a voltage of 0 V to -25 V referenced to GND2 for  
proper operation. Place a decoupling capacitor close to the following pins:  
VCC2 and VEE2  
GND2 and VEE2  
If no negative supply voltage is used, all VEE2 pins have to be connected to GND2.  
CLAMP Miller clamp output, CLAMPDRV Miller clamp pre-driver output  
CLAMP: High-current clamp output to hold the gate voltage low during collector-emitter-voltage rise. Connect  
directly to the gate of the IGBT.  
CLAMPDRV: Clamp pre-driver output for the use of an external clamp switch. Connect directly to the gate of a  
n-channel MOSFET.  
Datasheet  
9
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
3 Pin configuration and functionality  
OFF driver output  
High-current driver sink output to discharge the gate of the external IGBT.The gate driver IC also sinks the  
Soꢀ-off current at this pin. Connect to the gate of the IGBT via a chosen turn-off gate resistor.  
ON driver output  
High-current driver source output to charge the gate of the external IGBT and turn it on and sense input for the  
CLAMP function. Connect to the gate of the IGBT via a chosen turn-on gate resistor.  
DESAT enhanced desaturation detection input  
Desaturation detection input to monitor the IGBT collector-emitter voltage (VCE) to detect desaturation caused  
by short circuit events. Connect to the collector of the driven IGBT via a series connection of a protection  
resistor and a high-voltage diode. The DESAT signal is referenced to GND2.  
VCC2  
Positive power supply terminal of the output side. Connect to sufficient supply voltage referenced to GND2 for  
proper operation. Place a decoupling capacitor close to the following pins:  
VCC2 and VEE2  
VCC2 and GND2  
GND2 reference ground  
Reference ground of the output side. Connect to common voltage of a bipolar supply and the emitter of the  
IGBT. Place a decoupling capacitor close to the following pins:  
VCC2 and GND2  
GND2 and VEE2  
Datasheet  
10  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
4
Functional description  
The 1ED34x1Mc12M family (X3 Analog) consists of galvanically isolated single channel gate driver ICs with  
adjustable feature parametrization by two simple resistors. All adjustments can be done from the low voltage  
input side.  
To start-up the gate driver IC for normal operation both input and output sides of the gate driver IC need to be  
powered.  
The 1ED34x1Mc12M family (X3 Analog) is designed to support various supply configurations on the input and  
output side. On the output side unipolar and bipolar supply is possible.  
The output stage is realized as rail-to-rail. There the gate driver voltage follows the supply voltage without an  
additional voltage drop. In addition it provides an easy clamping of the gate voltage during short circuit of an  
external IGBT.  
The RDYC status output reports correct operation of the gate driver IC like sufficient voltage supply. The FLT_N  
status output reports failures in the application like desaturation detection.  
To ensure safe operation the gate driver IC is equipped with an input and output side under-voltage lockout  
circuit. The UVLO levels are optimized for IGBTs.  
The desaturation detection circuit protects the external IGBT from destruction at a short circuit. The gate driver  
IC reacts on a DESAT fault by turning off the IGBT with the adjustable soꢀ-off method.  
The soꢀ turn-off function is used to switch-off the external IGBT in overcurrent conditions in a soꢀ-controlled  
manner to protect the IGBT against collector emitter over-voltages.  
An active Miller clamp function protects the IGBT from parasitic turn-on in fast switching applications.  
4.1  
Start-up and fault clearing  
For normal operation both input and output sides of the gate driver IC need to be powered. A low level at the  
FLT_N pin always indicates a fault condition. In this case the IC starts internal mechanisms for fault clearing.  
Input side start-up  
1.  
2.  
3.  
4.  
5.  
6.  
Voltage at VCC1 reaches the input UVLO threshold: input side of gate driver IC starts operating  
FLT_N follows input supply voltage  
Records resistor programmable function from ADJA and ADJB  
Waits until output side is powered  
Initiates internal start-up: Transfers configured values to output side  
Performs internal self-test  
The start-up delay takes approx. 200 µs and is part of the complete start-up time tSTART1  
.
Output side start-up  
1.  
2.  
3.  
4.  
5.  
Voltage at VCC2 reaches the output UVLO threshold: output side of gate driver IC starts operating  
Activates OFF gate driver output: connected gate stays discharged  
Waits until input side is powered  
Initiates internal start-up: Receives configured values from input side  
Performs internal self-test  
The start-up delay takes approx. 200 µs and is part of the complete start-up time tSTART2  
.
The gate driver IC releases RDYC to high to signal a successful start-up and its readiness to operate. The gate  
driver IC will follow the status of the IN signal.  
Clearing a fault with RDYC to low cycle  
1.  
2.  
Set IN to low  
Set RDYC to low for a duration longer than the fault clear time tCLRMIN  
Datasheet  
11  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
3.  
Release RDYC to high  
a.  
b.  
If the source of the fault is no longer present, FLT_N is released to high  
If another fault source is active, FLT_N stays low and the cycle needs to be repeated  
4.  
Continue PWM operation  
4.2  
Supply  
The 1ED34x1Mc12M family (X3 Analog) is designed to support various supply configurations. The input side can  
be used with a 3.3 V or 5 V supply.  
The output side requires either an unipolar supply (VEE2 = GND2) or a bipolar supply.  
Individual supply voltages between VCC2 and GND2 or GND2 and VEE2 shall not exceed 25 V.  
The total supply voltage between VCC2 and VEE2 shall not exceed 35 V.  
To ensure safe operation of the gate driver IC, it is equipped with an input and output side undervoltage lockout  
circuit.  
Unipolar supply  
In unipolar supply configuration the gate driver IC is typically supplied with a positive voltage of 15 V at VCC2.  
GND2 and VEE2 are connected together and this common potential is connected to the IGBT emitter.  
+3V3  
+15V  
VCC1  
VCC2  
100n  
1µ  
1k  
DESAT  
ON  
SGND  
GND1  
1R  
1R  
IN  
IN  
OFF  
RDYC  
FLT_N  
RDYC  
FLT_N  
ADJA  
ADJB  
CLAMP  
GND2  
VEE2  
Figure 5  
Application example with unipolar supply (1ED3431M)  
Bipolar supply  
For bipolar supply the gate driver IC is typically supplied with a positive voltage of 15 V at VCC2 and a negative  
voltage of -8 V or -15 V at VEE2 relative to GND2.  
Between VCC2 and VEE2 the maximum potential difference is 35 V.  
+3V3  
+15V  
VCC1  
GND1  
VCC2  
100n  
1µ  
1k  
DESAT  
ON  
SGND  
1R  
1R  
IN  
IN  
OFF  
RDYC  
FLT_N  
RDYC  
FLT_N  
ADJA  
ADJB  
CLAMP  
GND2  
1µ  
-8V  
VEE2  
Figure 6  
Application example with bipolar supply (1ED3431M)  
Negative supply prevents a parasitic turn-on due to the additional voltage margin to the gate turn-on threshold.  
Datasheet  
12  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
VEE2 over GND2 supply connection check  
The gate driver IC has a built-in connection check for VEE2. A loss of VEE2 connection will be detected and  
signaled via RDYC.  
4.2.1  
Input side undervoltage lockout, VCC1 UVLO  
To ensure correct operation of the input side and safe operation of the application the gate driver IC is equipped  
with an input supply undervoltage lockout for VCC1.  
UVLO behavior during start-up:  
1.  
2.  
The voltage at the supply terminal VCC1 reaches the VUVLO1H threshold  
The gate driver IC reads the ADJA and ADJB resistor values and transfers the configuration to the output  
side  
3.  
The IC releases the RDYC output to high and is ready to operate.  
The start-up delay takes approx. 200 µs and is part of the complete start-up time tSTART1  
.
UVLO behavior during shut-down:  
If the supply voltage VVCC1 of the input side drops below VUVLO1L the RDYC signal is switched to low and the  
output will be switched off.  
The fault signal FLT_N follows the input supply voltage.  
IN  
VUVLO1H  
VUVLO1L  
VCC1  
VCC2  
tPDRDYC  
tSTART1  
ON+OFF  
RDYC  
tUV1LRDYC  
tPDRDYC  
FLT_N  
Figure 7  
UVLO VCC1 behavior  
4.2.2  
Output side under-voltage lockout, VCC2 UVLO  
To ensure correct operation of the output side and safe operation of the IGBT in the application, the gate driver  
IC is equipped with an output supply undervoltage lockout for VCC2 versus GND2.  
UVLO behavior during start-up:  
If the voltage at the supply terminal VCC2 reaches the VUVLO2H threshold the RDYC output is released to high  
and the gate driver IC is ready to operate.  
The start-up delay takes approx. 200 µs and is part of the complete start-up time tSTART2  
.
UVLO behavior during shut-down:  
If the supply voltage VVCC2 of the output side drops below VUVLO2L the RDYC signal is switched to low and the  
output will be switched off.  
Datasheet  
13  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
IN  
VCC1  
VUVLO2H  
VUVLO2L  
VCC2  
ON+OFF  
tPDRDYC  
tUV2LOFF  
RDYC  
tSTART2  
tUV2LRDYC  
FLT_N  
Figure 8  
UVLO VCC2 behavior  
Any VUVLO2L event will lead to a fault-off and a RDYC low level. Depending of the level of the voltage drop, the  
gate driver IC either stays in a not ready state and waits for the supply voltage to recover, or it will fully reset the  
gate driver IC. Both variants differ in the necessary delay of RDYC release aꢀer the supply voltage has recovered.  
Aꢀer a reset, the gate driver IC needs to fully restart until it becomes ready again.  
Datasheet  
14  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
4.3  
Input side logic  
The input threshold levels are always CMOS compliant. The threshold levels are 30% of VCC1 for low level and  
70% of VCC1 for high level.  
The 1ED34x1Mc12M family (X3 Analog) has three input pins (IN, ADJA, ADJB) and two I/O pins (RDYC, FLT_N) at  
the input side.  
4.3.1  
IN non-inverting driver input  
The input pin has a positive logic. To turn on the associated IGBT apply a logic high signal at the IN pin. A  
minimum pulse width of typical 103 ns is defined to make the IC robust against glitches at IN.  
4.3.2  
RDYC ready status output, fault-off and fault clear input  
The RDYC pin is a logic input and open drain output and has three different functions:  
RDYC as ready status output of all ready sources  
RDYC as fault-off input  
RDYC as fault clear input  
In a typical application the RDYC pins of all gate driver ICs in the inverter are connected together and form a  
single wire RDYC signal.  
An external pull-up resistor is required to ensure RDYC status output during operation.  
Ready sources  
the input side is properly supplied, VCC1 supply above UVLO1 threshold  
the output side is properly supplied with a positive voltage, VCC2 supply above UVLO2 threshold  
no VEE2 over GND2 failure  
Internal signal transmission is operating nominal  
the ON pin monitoring of the gate driver is below VEE2 + 2 V, IGBT has to be off at start-up  
4.3.2.1  
RDYC fault-off input  
Pulling RDYC to low disables the operation of the gate driver IC. The gate driver IC ignores IN signals as long as  
the RDYC pin stays low and the IC uses its fault-off function to switch-off the IGBT.  
The defined minimum pulse width makes the IC robust against glitches at RDYC. The gate driver ignores pulses  
with a shorter duration.  
IN  
RDYC ext.  
tSSIO  
RDYC  
<tRDYCMIN  
>tRDYCMIN  
<tRDYCMIN  
>tRDYCMIN  
tPDRDYC  
tSSIO  
VEE2 + 2V  
ON+OFF  
Figure 9  
RDYC short pulse behavior of external manipulation of the RDYC pin  
Aꢀer an external RDYC low signal the IC is actively pulling RDYC to low until the voltage at ON pin falls below the  
VEE2+2 V threshold.  
The RDYC fault-off input is active low.  
Datasheet  
15  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
4.3.2.2  
RDYC fault clear input  
Setting RDYC to low for longer than the fault clear time tCLRMIN will reset the stored fault signal at pin FLT_N with  
the rising edge of RDYC. Additionally the following conditions have to be met as well:  
PWM IN pin level needs to be low,  
voltage at ON pin has dropped below the VEE2+2 V threshold, and  
triggering fault condition is no longer present.  
The typical fault clear time tCLRMIN is 1.0 µs.  
IN  
FLT event  
FLT_N  
tDESATFLT  
tDESATFLT  
VEE2 + 2V  
ON+OFF  
tSSIO  
tSSIO  
RDYC  
>tCLRMIN  
>tCLRMIN  
Figure 10  
RDYC fault clear timing  
VIH  
RDYC  
FLT_N  
Figure 11  
RDYC fault clear rising edge to FLT_N  
4.3.3  
FLT_N status output and fault-off input  
The FLT_N pin is a logic input and open drain output and has two different functions:  
FLT_N as fault-status output for fault sources  
FLT_N as fault-off input  
In a typical application the FLT_N pins of all gate driver ICs in the inverter are connected together and form a  
single wire FLT_N signal.  
An external pull-up-resistor is required to ensure FLT_N status output during operation.  
Fault sources  
The following fault sources can trigger a FLT_N pin to low and initiate a fault turn-off:  
desaturation detection of IGBT  
gate driver over temperature protection  
4.3.3.1  
FLT_N fault-off input  
Pulling FLT_N to low disables the operation of the gate driver IC. The gate driver IC ignores IN signals as long as  
the FLT_N pin stays low and the IC uses its fault-off function to switch-off the IGBT.  
The defined minimum pulse width makes the gate driver IC robust against glitches at FLT_N.  
Aꢀer a low at the FLT_N pin either internally or externally applied, the fault event is latched until cleared.  
Datasheet  
16  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
The FLT_N fault-off input is active low.  
IN  
FLT_N ext.  
FLT_N ext.  
FLT_N  
<tFLT_NMIN  
>tFLT_NMIN  
<tFLT_NMIN  
>tFLT_NMIN  
tPDFLT_N  
ON+OFF  
RDYC  
>tCLRMIN  
>tCLRMIN  
Figure 12  
FLT_N short pulse behavior of external manipulation of the FLT_N pin cleared by RDYC  
Datasheet  
17  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
4.4  
Desaturation protection  
The desaturation detection circuit protects the external IGBT from destruction at a short circuit. The  
desaturation protection follows the given sequence:  
1.  
2.  
3.  
4.  
Voltage at DESAT pin reaches DESAT threshold level, for a period of time exceeding the filter time  
Gate driver IC output switches the external IGBT off, using the soꢀ-off method  
Gate driver IC switches FLT_N pin to low to indicate the fault to a connected microcontroller  
Short circuit situation is resolved  
aꢀer the voltage at the ON pin has dropped below the VEE2+2 V threshold,  
no other fault condition is present,  
the input has been turned off and  
the fault has been cleared using the RDYC low cycle method  
+15V  
VCC2  
D
A
CVCC2  
RDESAT  
DDESAT  
DESAT  
LOGIC  
RG  
FLT_off  
OFF  
GND2  
Figure 13  
DESAT circuit (only relevant pins shown)  
The 1ED34x1Mc12M family (X3 Analog) has a fixed DESAT threshold level of typical 9.18 V. If lower threshold  
levels are required, the DESAT resistor can be increased. Larger DESAT resistor values lead to lower DESAT  
threshold voltages. The threshold voltage reduction is equal to the DESAT current multiplied by the DESAT  
resistance.  
The high-precision internal current source results in a minimum impact on the DESAT detection variation.  
4.4.1  
DESAT behavior  
The DESAT function offers a leading edge blanking time and filters to optimize the DESAT detection for  
application usage.  
The leading edge blanking inhibits threshold detection during an IGBT turn on phase. The typical IGBT turn on  
behavior starts with charging of the gate, commutation of the application load current and finally VCE voltage  
decrease to VCEsat voltage levels. To prevent the gate driver IC from detecting a false DESAT event, leading edge  
blanking pauses the DESAT circuit until the time tDESATleb has elapsed.  
Following the leading edge blanking time, the gate driver IC forces the DESAT current into the external  
DESAT circuit. The current typically flows through a protection resistor, a fast high voltage diode and the  
collector-emitter path of the IGBT. The resulting voltage at the DESAT pin is the sum of the voltage drop across  
this path.  
During a short circuit condition, the VCE voltage increases, resulting in a reverse polarity condition of the DESAT  
diode. The remaining DESAT current also increases the voltage level at the DESAT pin and triggers the DESAT  
threshold. If the pin voltage level stays above the threshold for the duration of the DESAT filter time tDESATfilter  
,
the gate driver IC registers the DESAT event and acts accordingly.  
Datasheet  
18  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
The internal processing time aꢀer DESAT threshold crossing, filtering and beginning of fault-off is defined as  
tDESATOUT. The duration of the gate discharge during fault-off is defined as tFLTOFFtot and is depending on the  
soꢀ-off function and the gate load.  
IN  
tPDRDYC  
tPDON  
tFLTOFFtot  
OUT  
tDESATfilter  
tDESATOUTS  
VDESAT  
tDESATleb  
DESAT  
VCE  
tDESATFLT  
FLT_N  
RDYC  
>tCLRMIN  
Figure 14  
DESAT timing with leading edge blanking, filter and reaction times  
4.4.2  
DESAT filter and leading edge blanking time adjustment with ADJB  
The ADJB pin configures the DESAT leading edge blanking time and DESAT filter time:  
A resistor from ADJB to GND1 sets the DESAT leading edge blanking time and the DESAT filter time used  
during DESAT detection  
Use resistors from the E96 resistor-series with 1% tolerance values to achieve accurate parameter  
configuration  
The gate driver IC reads the resistor value once during start-up  
Connecting ADJB to GND1 inhibits the gate driver operation and stops the start-up sequence  
Connecting ADJB to VCC1 disables the filtering resulting in minimum response times  
Table 4  
DESAT filter timing ADJB adjustment  
DESAT filter time stopped 0  
set up  
1
2
3
4
5
6
7
Resistance at ADJB  
to GND1  
<
1.33 kΩ 1.58 kΩ 1.91 kΩ 2.26 kΩ 2.74 kΩ 3.32 kΩ 4.02 kΩ 4.87 kΩ  
1.05 kΩ  
or tied  
to GND1  
typ. tDESATleb  
typ. tDESATfilter  
inhibit 650 ns  
gate  
driver  
operatio  
n
650 ns  
650 ns  
650 ns  
650 ns  
650 ns  
650 ns  
650 ns  
1575 ns 1775 ns 1975 ns 2375 ns 2775 ns 3175 ns 3575 ns 3975 ns  
Datasheet  
19  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
Table 4  
DESAT filter timing ADJB adjustment  
10 11  
DESAT filter time  
set up  
8
9
12  
13  
14  
15  
default  
Resistance at ADJB 5.90 kΩ 7.15 kΩ 8.66 kΩ 10.7 kΩ 13.7 kΩ 17.4 kΩ 23.2 kΩ 28.0 kΩ >45.3 kΩ  
to GND1  
or tied  
to VCC1  
typ. tDESATleb  
typ. tDESATfilter  
1150 ns 1150 ns 1150 ns 1150 ns 1150 ns 1150 ns 1150 ns 1150 ns 400 ns  
3975 ns 3575 ns 3175 ns 2775 ns 2375 ns 1975 ns 1775 ns 1575 ns 225 ns  
Datasheet  
20  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
4.5  
Gate driver output  
The gate driver output side uses MOSFETs to provide a rail-to-rail output. Therefore, the gate drive voltage  
follows the supply voltage closely.  
Due to the low internal voltage drop, the switching behavior of the IGBT is predominantly governed by the  
external gate resistor. The gate driver IC offers separate sink and source outputs to adapt the gate resistor for  
turn-on and turn-off separately without additional bypass components.  
The cell value x in the following table is placeholder for high or low and indicates that this pin does not  
influence the resulting gate driver output state. The arrow (→) in cells indicate the transition initiated by the pin  
of the logic input and gate driver supply pins resulting in a transition to the gate driver output state as listed.  
Table 5  
Driver output state including transition behavior  
Logic input and gate driver supply  
IN RDYC FLT_N  
Static gate driver output state: on and off  
Gate driver output  
VCC1  
VCC2  
ON  
OFF  
high  
low  
high  
high  
high  
high  
high  
high  
high  
high  
high  
tri-state  
low  
tri-state  
Transition to not ready and static not ready state  
x
x
high → low  
low  
high  
high  
high  
high  
high  
high  
→ tri-state  
tri-state  
→ fault off  
low  
Transition to fault and static fault state  
x
x
high  
high  
high → low  
low  
high  
high  
high  
high  
→ tri-state  
tri-state  
→ fault off  
low  
Transition with VCC1 power loss and unsupplied input side  
x
x
x
x
x
x
high → low  
low  
high  
high  
→ tri-state  
tri-state  
→ fault off  
low  
Transition with VCC2 power loss and unsupplied output side  
x
x
x
x
x
x
x
x
high → low  
low  
→ tri-state  
tri-state  
→ fault off  
active shut down  
Datasheet  
21  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
4.5.1  
Turn-on behavior  
The 1ED34x1Mc12M family (X3 Analog) is optimized for hard switching turn-on. A turn-on command switches  
the ON pin internally to VCC2.  
4.5.2  
Turn-off and fault turn-off behavior  
The gate driver IC supports different turn-off sequences to adapt to different applications and IGBT currents  
during normal switching operation and in the case of a fault.  
Table 6  
Turn-off sequences  
Turn-off sequence  
Turn-off reason  
Remark  
Hard switching  
Soꢀ turn-off  
normal off  
X
fault turn-off  
X
adjustable via ADJA  
The gate driver fault turn-off behavior can be configured with the ADJA pin  
Once started, the fault turn-off sequence cannot be interrupted by an IN = low turn-off signal.  
FLT_N or RDYC  
tPDRDYCS, tPDFLT_NS  
VOUT = 80%  
ON + OFF (soft-off)  
Figure 15  
Fault turn-off sequence initiated by FLT_N or RDYC  
VDESAT  
DESAT  
tDESATfilter,n  
tDESATOUTS  
VOUT = 80%  
ON + OFF (soft-off)  
Figure 16  
Fault turn-off sequence initiated by DESAT event  
4.5.2.1  
Hard switching turn-off  
The gate driver IC supports hard switching turn-off during normal switching operation. Switching the IGBT gate  
off by turning on the discharge MOSFET in the output stage, the OFF pin is switched to VEE2 pin.  
4.5.2.2  
Soꢀ turn-off  
The soꢀ turn-off function protects the IGBT against collector-emitter overvoltage during turn off in an  
overcurrent condition. It turns-off the IGBT with a reduced gate current to reduce the di/dt induced  
overvoltage..  
The IGBT gate is connected via OFF to an internal current sink circuit. The discharge current is typically lower  
than the hard switch-off current used for normal operation. Since soꢀ turn-off is a single event aꢀer a failure,  
the gate driver IC can handle the additional power dissipation internally.  
Soꢀ turn-off can be configured with the ADJA pin. The function is only active during fault turn-off.  
The adjustable range depends on the current strength of the gate driver IC:  
Datasheet  
22  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
1ED3431M: 15 mA - 233 mA  
1ED3461M: 29 mA - 466 mA  
1ED3491M: 44 mA - 699 mA  
4.5.2.2.1  
Soꢀ-off current source adjustment with ADJA  
The ADJA pin configures the Soꢀ-off function and current level:  
A resistor from ADJA pin to GND1 sets the Soꢀ-off current level for the fault-off function  
Use resistors from the E96 resistor-series with 1% tolerance values to achieve accurate parameter  
configuration  
The gate driver IC reads the resistor value once during start-up  
Connecting ADJA to GND1 results in a Soꢀ-off function for fault-off with a predefined value  
Connecting ADJA to VCC1 inhibits the gate driver operation and stops the start-up sequence  
Table 7  
Soꢀ-off adjustment with ADJA  
Soꢀ-off set up default  
0
1
2
3
4
5
6
7
Resistance from < 1.05 kΩ  
1.33 kΩ 1.58 kΩ 1.91 kΩ 2.26 kΩ 2.74 kΩ 3.32 kΩ 4.02 kΩ 4.87 kΩ  
ADJA to GND1  
or tied to  
GND1  
typ. ICSOFF  
1ED3431M  
146 mA  
291 mA  
437 mA  
15 mA  
29 mA  
44 mA  
29 mA  
58 mA  
87 mA  
44 mA  
87 mA  
58 mA  
73 mA  
87 mA  
102 mA 116 mA  
typ. ICSOFF  
1ED3461M  
116 mA 146 mA 175 mA 204 mA 233 mA  
typ. ICSOFF  
1ED3491M  
131 mA 175 mA 218 mA 262 mA 306 mA 349 mA  
Table 7  
Soꢀ-off adjustment with ADJA  
10 11  
Soꢀ-off set up  
8
9
12  
13  
14  
15  
stopped  
Resistance from 5.90 kΩ 7.15 kΩ 8.66 kΩ 10.7 kΩ 13.7 kΩ 17.4 kΩ 23.2 kΩ 28.0 kΩ >45.3 kΩ or  
ADJA to GND1  
tied to VCC1  
typ. ICSOFF  
1ED3431M  
131 mA 146 mA 160 mA 175 mA 189 mA 204 mA 218 mA 233 mA inhibit gate  
driver  
operation  
typ. ICSOFF  
1ED3461M  
262 mA 291 mA 320 mA 349 mA 379 mA 408 mA 437 mA 466 mA  
typ. ICSOFF  
1ED3491M  
393 mA 437 mA 480 mA 524 mA 568 mA 612 mA 655 mA 699 mA  
Datasheet  
23  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
4.5.3  
Active shut-down  
The active shut-down feature ensures a safe IGBT off-state, if the output chip is not supplied. It protects the  
IGBT against a floating gate. The IGBT gate is always clamped via OFF to VEE2.  
4.5.4  
Active Miller clamp  
The 1ED34x1Mc12M family (X3 Analog) is equipped with an active Miller clamp function to protect the IGBT from  
parasitic turn-on in fast switching applications.  
Aꢀer a turn-off command the gate driver IC follows the implemented sequence:  
1.  
2.  
3.  
4.  
Discharge of the IGBT gate while monitoring the voltage level at the ON pin  
Detection of a voltage at the ON pin less than a level of VEE2 + 2.0 V  
Filtering of the detection to avoid false CLAMP activation and not to influence regular turn-off behavior  
Activating clamp function to keep IGBT gate at VEE2 level  
4.5.4.1  
CLAMP output types  
The CLAMP output stage offers two operating modes:  
direct gate clamping with an open drain output for medium clamping current, 1ED3431M variants  
pre-driver output, to clamp IGBT gate with external transistor for high clamping current, 1ED3461M and  
1ED3491M variants  
Direct gate clamping  
Direct gate clamping with an open drain output is tailored for direct clamping of IGBT gate to VEE2. The output  
current capability is typically 2 A. Useful IGBT current rating for direct gate clamping is a collector current of  
typically smaller than 100 A. Connect the CLAMP pin directly to the gate with low inductive tracks.  
+3V3  
+15V  
VCC1  
VCC2  
100n  
1µ  
1k  
DESAT  
ON  
SGND  
GND1  
1R  
1R  
IN  
IN  
OFF  
RDYC  
FLT_N  
RDYC  
FLT_N  
ADJA  
ADJB  
CLAMP  
GND2  
VEE2  
Figure 17  
Application example with unipolar supply (1ED3431M)  
Datasheet  
24  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
IN  
tPDOFF  
VVEE2 +2V  
ON  
tCLAMPfilter  
tONCLAMP  
OFF  
CLAMP  
CLAMP tri state  
CLAMP active low  
CLAMP tri state  
Figure 18  
Direct clamp output behavior  
Pre-driver output  
Track inductance and clamp output resistance reduces the clamping capability for large IGBTs. In this case,  
select the pre-driver output product variant with an external MOSFET.  
The external small signal n-channel MOSFET transistor in combination with the pre-driver output enables  
clamping of high gate currents. Connect the MOSFET between the CLAMPDRV output, VEE2 pin, and IGBT gate.  
Due to the pre-driver configuration the clamp current is only limited by the external clamp MOSFET transistor.  
Depending on the external MOSFET a Miller current clamping up to 20 A can be reached. The clamping MOSFET  
has to be placed close to the IGBT gate to minimize track resistance and inductance.  
+3V3  
+15V  
VCC1  
VCC2  
100n  
1µ  
1k  
DESAT  
ON  
SGND  
GND1  
1R  
1R  
IN  
IN  
OFF  
RDYC  
FLT_N  
RDYC  
FLT_N  
ADJA  
ADJB  
CLAMPDRV  
GND2  
1µ  
-8V  
VEE2  
Figure 19  
Application example with bipolar supply and CLAMP pre-driver output (1ED3461M,  
1ED3491M)  
Datasheet  
25  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
IN  
tPDOFF  
VVEE2 +2V  
ON  
tCLAMPfilter  
tONCLAMP  
OFF  
CLAMPDRV  
CLAMP DRV low  
CLAMP DRV active high  
CLAMP DRV low  
Figure 20  
Clamp pre-driver output behavior  
4.5.5  
Switch-off timeout until forced switch-off  
The gate driver IC is equipped with a switch-off timeout monitoring feature. In case the pin monitoring  
comparator has not registered an off-state within the timeout time this feature activates a forced switch-off.  
The monitoring feature secures the IGBT switch-off in case of a connection failure between the OFF output  
and the IGBT gate or a faulty gate resistor. In a forced switch-off all available output switch-off paths (OFF and  
CLAMP/CLAMPDRV) will be used to hard switch-off the IGBT aꢀer such an event.  
OFF activated  
VVEE2 +2V  
ON  
(soft-off)  
tCTSOOS  
tCTT  
VVEE2 +2V  
ON  
(hard switch-off)  
tCTT  
TO switch-off inactive  
TO switch-off active  
Figure 21  
Switch-off timeout behavior  
The timing diagram shows the switch-off timeout behavior from the moment of OFF output activation until the  
timeout has elapsed and the CLAMP output is activated.  
4.6  
Short circuit clamping  
The integrated short circuit clamping diode limits the IGBT gate over voltage during a short circuit. The over  
voltage is typically triggered by the capacitive feedback of the Miller capacitance.  
The internal diodes from ON and CLAMP to VCC2 limit the gate driver voltage to a value slightly higher than the  
supply voltage. These diode paths are rated for a maximum current of 0.75 A and the duration of 6 µs. Add an  
external Schottky diode if higher currents are expected or a tighter clamping is desired. Also use an external  
diode if the active Miller clamping circuit uses the pre-driver output configuration.  
Datasheet  
26  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
4 Functional description  
+15V  
+15V  
VCC2  
VCC2  
ON  
ON  
OFF  
OFF  
CLAMP  
CLAMP  
GND2  
VEE2  
GND2  
VEE2  
Figure 22  
Short circuit clamping circuitry  
Datasheet  
27  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
5 Electrical parameters  
5
Electrical parameters  
5.1  
Absolute maximum ratings  
Note:  
Absolute maximum ratings are defined as ratings, which when being exceeded may lead to  
destruction of the integrated circuit. Unless otherwise noted all voltages are given with respect to  
their respective GND (GND1 for pins 1 to 8, GND2 for pins 9 to 16).  
Table 8  
Absolute maximum ratings  
Parameter  
Symbol Values  
Min.  
Unit  
Note /  
Test Condition  
Max.  
Input to output offset voltage  
VOFFSET  
2300  
V
VVEE2,max-VVEE2,min  
with VVEE2,max  
VGND1  
VVEE2,min  
1) 2)  
Supply voltage input side  
VVCC1  
-0.3  
-0.3  
-0.3  
-0.3  
6.5  
6.5  
6.5  
6.5  
10  
V
Logic input voltage (IN)  
VLogicIN  
VLogicRF  
VLogicAD  
V
Logic input voltage (RDYC, FLT_N)  
Logic input voltage (ADJA, ADJB)  
V
V
Open drain logic output current (RDYC, FLT_N) ILogicOC  
mA  
V
Positive supply voltage output side  
Negative supply voltage output side  
Maximum supply voltage difference output  
VVCC2  
VVEE2  
Vmax2  
-0.3  
-40  
40  
0.3  
40  
V
V
side (VVCC2 - VVEE2  
)
DESAT input voltage  
VDESAT  
VCLAMP  
ICLAMP  
VOUT  
-0.3  
VVCC2 +0.3  
V
V
A
3)  
CLAMP input voltage  
VVEE2 -0.3 VVCC2 +0.3  
2.4  
Maximum CLAMP output current  
Gate driver output voltage (ON, OFF)  
t < 5 µs  
VVEE2 -0.3 Vmax2 +0.3 V  
Maximum CLAMP to VCC2 diode IGBT short  
tCLP  
6
µs  
ICLAMP/OUT = 0.75 A  
circuit clamping time  
Junction temperature  
TJ  
-40  
-55  
150  
150  
100  
700  
2
°C  
Storage temperature  
TStg  
°C  
Power dissipation, input side  
Power dissipation, output side  
ESD capability: Human body model  
ESD capability: Charged device model  
PD,IN  
mW  
mW  
kV  
V
@TA = 25 °C  
@TA = 25°C4)  
PD,OUT  
VESDHBM  
VESDCDM  
5)  
6)  
500  
1) for functional operation only  
2) See also Chapter 6 on page 41  
3) May be exceeded during short circuit clamping.  
4) Derating the power above 65°C with 8 mW/°C  
Datasheet  
28  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
5 Electrical parameters  
5) According to ANSI/ESDA/JEDEC-JS-001-2017 (discharging a 100 pF capacitor through a 1.5 kΩ series  
resistor).  
6) According to ANSI/ESDA/JEDEC-JS-002-2014 (TC = test condition in volt)  
5.2  
Thermal parameters  
Thermal performance may change significantly with layout and heat dissipation of components in close  
proximity.  
Figure 23  
Reference layout for thermal data (Two layer PCB; copper thickness 35 μm; leꢀ: top  
layer; right: bottom layer)  
The PCB layout represents the reference layout used for the thermal characterization. Pins 1 and 8 (GND1)  
and pins 9 and 16 (VEE2) require ground plane connections for achieving maximum power dissipation. The  
1ED34x1Mc12M family (X3 Analog) is conceived to dissipate most of the heat generated through these pins.  
Table 9  
Thermal parameters  
Parameter  
Symbol  
Value  
Unit  
Note / Test Condition  
Thermal resistance junction to  
ambient  
RTHJA,OUT  
122  
K/W  
@TA = 65°C, PD, OUT = 400 mW,  
PD, IN = 50 mW, 4 layer test PCB,  
PG-DSO-16  
Characterization parameter junction ΨJtop  
to package top input side  
8
K/W  
5.3  
Operating parameters  
Note:  
Within the operating range the IC operates as described in the functional description. Unless  
otherwise noted all voltages are given with respect to their respective GND (GND1 for pins 1 to 8,  
GND2 for pins 9 to 16).  
Table 10  
Operating parameters  
Parameter1)  
Symbol  
Values  
Min.  
3.0  
Unit  
Note /  
Test Condition  
Max.  
5.5  
5.5  
25  
Supply voltage input side  
VVCC1  
V
V
V
V
Logic input voltages (IN, RDYC, FLT_N) VLogicIN  
-0.3  
13  
Positive supply voltage output side  
Negative supply voltage output side  
VVCC2  
VVEE2  
-25  
0
Datasheet  
29  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
5 Electrical parameters  
Table 10  
Operating parameters (continued)  
Symbol Values  
Parameter1)  
Unit  
Note /  
Test Condition  
Min.  
Max.  
Supply voltage difference output side Vmax2  
(VVCC2 - VVEE2  
13  
35  
V
)
2)  
Ambient temperature  
TA  
-40  
0
125  
250  
200  
°C  
Switching frequency  
fSW  
kHz  
V/ns  
max PD applies  
Common mode transient immunity  
|CMTI|  
0
VOFFSET,test =  
1500 V  
1) Parameter is not subject to production test - verified by design/characterization  
2) TJ has to be below over temperature protection temperature TOTPOFF  
Datasheet  
30  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
5 Electrical parameters  
5.4  
Electrical characteristics  
Note:  
The electrical characteristics include the spread of values in supply voltages, load, and junction  
temperatures within the operating parameters unless specified otherwise. Typical values represent  
the median values at TA = 25°C. Unless otherwise noted all voltages are given with respect to their  
respective GND (GND1 for pins 1 to 8, GND2 for pins 9 to 16).  
5.4.1  
Voltage supply  
Table 11  
Voltage supply  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test  
Condition  
Min.  
Max.  
3.05  
VCC1 UVLO threshold  
VUVLO1H  
VUVLO1L  
VHYS1  
2.95  
V
V
V
2.6  
0.1  
2.8  
VCC1 UVLO hysteresis  
0.14  
(VUVLO1H - VUVLO1L  
)
VCC1 quiescent current IQ1  
2.4  
2.4  
4.0  
4.0  
mA  
mA  
VVCC1 = 3.3 V, IN =  
High, RDYC = High,  
FLT_N = High  
VCC1 operating current IO1  
VVCC1 = 3.3 V, IN =  
16 kHz, 50%, RDYC =  
High, FLT_N = High  
VCC2 UVLO threshold  
VCC2 UVLO hysteresis  
VUVLO2H,0  
VUVLO2L,0  
VHYS2,0  
12.0  
11.0  
1.0  
12.6  
V
V
V
10.4  
0.75  
(VUVLO2H,0 - VUVLO2L,0  
)
VEE2 not connected  
detection threshold  
VVEE2,NC  
0.5  
3.9  
5
V
VVEE2 - VGND2  
VCC2 quiescent current IQ2  
mA  
VVCC2 = 15 V, VVEE2  
= -8 V, OUT = High,  
DESAT = Low  
VCC2 operating current IO2  
3.9  
5
mA  
VVCC2 = 15 V, VVEE2 =  
-8 V, OUT = 16 kHz,  
50%, DESAT = Low,  
CLOAD = 100 pF  
Datasheet  
31  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
5 Electrical parameters  
5.4.2  
Logic input and output  
Table 12  
Logic input and output  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note or Test  
Condition  
Min.  
Max.  
30  
Logic low input voltage (IN,  
RDYC, FLT_N)  
VLogicINL  
VLogicINH  
%
of VVCC1  
Logic high input voltage (IN,  
RDYC, FLT_N)  
70  
%
of VVCC1  
Logic low output voltage (RDYC, VRDYC5  
,
300  
47  
1.2  
mV  
kΩ  
MΩ  
ISINK = 5 mA  
FLT_N) VFLT_N5  
Logic input pull down resistor RINPD  
(IN)  
33  
40  
Logic input pull down resistor RRDYCPD  
,
0.8  
1.0  
(RDYC, FLT_N)  
RFLT_NPD  
5.4.3  
Analog input  
Resistor values outside of the 1% tolerance range results in the gate driver IC selecting either the lower or higher  
step for the corresponding function.  
Table 13  
Analog input  
Parameter1)  
Symbol  
Values  
Typ.  
Unit  
Note or Test  
Condition  
Min.  
Max.  
Analog input resistor (ADJA,  
ADJB)  
RADJx0  
RADJx1  
RADJx2  
RADJx3  
RADJx4  
RADJx5  
RADJx6  
RADJx7  
RADJx8  
RADJx9  
RADJx10  
RADJx11  
RADJx12  
RADJx13  
RADJx14  
RADJx15  
1.33  
kΩ  
all resistor values are  
from the E96-series  
with 1% tolerance  
1.58  
1.91  
2.26  
2.74  
3.32  
4.02  
4.87  
5.90  
7.15  
8.66  
10.7  
13.7  
17.4  
23.2  
28.0  
Datasheet  
32  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
5 Electrical parameters  
1) Parameter is not subject to production test - verified by design/characterization  
Datasheet  
33  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
5 Electrical parameters  
5.4.4  
Gate driver  
Note:  
High and low level output currents are absolute values without an information of current direction.  
Table 14  
Gate driver  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test  
Condition  
Min.  
Max.  
High level output  
voltage  
VON0  
VVCC2 + 0.87 VVCC2 + 1.01  
V
ION = 500 mA1)  
2) 3)  
High level output peak ION  
current 1ED3431M  
2.6  
3.8  
1.12  
2.5  
0.82  
7.5  
0.56  
5.0  
0.41  
11  
A
A
A
A
A
A
V
C
= 33 nF  
LOAD  
High level output on  
resistance 1ED3431M  
RDSON,H  
0.51  
2.0  
0.31  
5.2  
0.26  
4.0  
0.16  
7.9  
0.17  
6.0  
0.11  
2.24  
ION = 67 mA3)  
2) 4)  
Low level output peak IOFF  
current 1ED3431M  
C
LOAD  
= 33 nF  
Low level ouput on  
RDSON,L  
1.64  
IOFF = 67 mA4)  
resistance 1ED3431M  
2) 3)  
High level output peak ION  
current 1ED3461M  
C
LOAD  
= 68 nF  
High level output on  
resistance 1ED3461M  
RDSON,H  
1.13  
ION = 133 mA3)  
2) 4)  
Low level output peak IOFF  
current 1ED3461M  
C
LOAD  
= 68 nF  
Low level ouput on  
RDSON,L  
0.83  
IOFF = 133 mA4)  
resistance 1ED3461M  
2) 3)  
High Level output peak ION  
current 1ED3491M  
C
LOAD  
= 100 nF  
High level output on  
resistance 1ED3491M  
RDSON,H  
0.38  
7.5  
0.28  
0.75  
ION = 200 mA3)  
2) 4)  
Low Level output peak IOFF  
current 1ED3491M  
C
LOAD  
= 100 nF  
Low level ouput on  
RDSON,L  
0.55  
IOFF = 200 mA4)  
resistance 1ED3491M  
5)  
5)  
5)  
Active Shut Down  
Voltage OFF 1ED3431M  
VACTSD  
VACTSD  
VACTSD  
VVEE2 +2.4  
VVEE2 +2.4  
VVEE2 +2.4  
IOUT = 67 mA,VVCC2  
open  
Active Shut Down  
Voltage OFF 1ED3461M  
V
IOUT = 133 mA,VVCC2  
open  
Active Shut Down  
V
IOUT = 200 mA,VVCC2  
Voltage OFF 1ED3491M  
open  
1) Integrated diode ON vs. VCC2 clamping test  
2) Parameter is not subject to production test - verified by design/characterization  
3) IN = High, ON = High; VCC2-ON = 15 V; RG = 0.1 Ω; VCC2 = 15 V; VEE2 = -8 V  
4) IN = Low, OFF = Low; OFF-VEE2 = 15 V; RG = 0.1 Ω; VCC2 = 15 V; VEE2 = -8 V  
Datasheet  
34  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
5 Electrical parameters  
5) With reference to VEE2  
5.4.5  
Active Miller clamp  
Table 15  
Active Miller clamp  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit  
Note or Test  
Condition  
Max.  
VVCC2 +1.63  
VVCC2 +1.1  
VVEE2+11.5  
High level clamp  
voltage  
VCLAMPH0  
VCLAMPH1  
VVCC2 +1.5  
VVCC2 +0.9  
VVEE2+9.5  
VVEE2+6.7  
V
V
V
V
ICLAMP = 500 mA1) 2)  
ICLAMP = 50 mA1) 2)  
ICLAMPH = 5 mA3)  
ICLAMPH = 50 mA3)  
Clamp-driver high  
level output voltage  
(1ED3461M, 1ED3491M)  
VCLAMPDH1 VVEE2+7.5  
VCLAMPDH2 VVEE2+4.5  
Clamp-driver high level ICLAMPH  
output peak current  
(1ED3461M, 1ED3491M)  
0.20  
0.27  
A
4) VCC2 = 15 V; VEE2 =  
0 V; CCLAMP = 100 nF;  
RCLAMP = 1 Ω  
Clamp/Clamp-driver  
output low level  
current  
ICLAMPL,2  
1.1  
1.8  
A
4) VCC2 = 15 V; VEE2  
= 0 V; VCLAMP = 2 V;  
CCLAMP = 100 nF;  
RCLAMP = 0.1 Ω  
Clamp/Clamp-driver  
output low level  
current  
ICLAMPL,5  
2.2  
3.5  
A
4) VCC2 = 15 V; VEE2  
= 0 V; VCLAMP = 5 V;  
CCLAMP = 100 nF;  
RCLAMP = 0.1 Ω  
Clamp/Clamp-driver  
output low level ON  
resistance  
RDSON,CLP 0.50  
0.85  
1.35  
V
ICLAMPL = 200 mA  
Clamp threshold  
voltage  
VON_CLAMP 1.5  
tCLAMPfilter 195  
2.0  
2.5  
Related to VEE2  
Clamp filter time  
235  
275  
ns  
ns  
4) 5)  
CLAMP reaction time in tCLAMP_ON 16 +  
CLAMP mode  
23 +  
tCLAMPfilter  
35 +  
tCLAMPfilter  
C
C
= 100 pF  
= 100 pF  
LOAD  
tCLAMPfilter  
4) 6)  
4)  
CLAMP reaction time in tCLAMPD_ON 24 +  
CLAMP driver mode  
35 +  
tCLAMPfilter  
53 +  
tCLAMPfilter  
ns  
µs  
µs  
LOAD  
tCLAMPfilter  
Switch-off time-out  
time  
tCTT  
2.4  
Switch-off time-out  
soꢀ-off offset time  
tCTSOOS  
2.4  
4) additional time-out  
delay during soꢀ-off  
1) Integrated diode CLAMP vs. VCC2 clamping test  
2) only valid for direct clamping: IN = High, OUT = High  
3) only valid for clamp pre-driver output: IN = Low, OUT = Low  
4) Parameter is not subject to production test - verified by design/characterization  
5) CLAMP mode reaction time specified with 3.3 kΩ pull-up from CLAMP to 3.3 V, from CLAMP threshold until  
reaching 0.8 V (falling) at CLAMP pin  
Datasheet  
35  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
5 Electrical parameters  
6) CLAMP driver mode reaction time specified from CLAMP threshold until reaching 0.8 V (rising) at  
CLAMP(DRV) pin  
5.4.6  
Dynamic characteristics  
Dynamic characteristics are measured with VVCC1 = 5 V, VVCC2 = 15 V and VVEE2 = -8 V unless specified otherwise.  
Table 16  
Dynamic characteristics  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note or Test  
Condition  
Min.  
Max.  
Input pulse suppression tINMIN  
time IN  
98  
85  
103  
108  
115  
ns  
ns  
Input pulse suppression tRDYCMIN  
,
100  
1.0  
time RDYC/FLT_N for  
enable / fault off  
tFLT_NMIN  
Input pulse width RDYC  
for FLT_N reset (Fault  
clear time)  
tCLRMIN  
1.2  
µs  
Input IN to output  
propagation delay ON  
tPDON  
226  
218  
-23  
244  
236  
-8  
270  
262  
7
ns  
ns  
ns  
CLOAD = 100 pF, VIN  
70%, VOUT=20%  
=
=
Input IN to output  
propagation delay OFF  
tPDOFF  
tPDISTO  
CLOAD = 100 pF, VIN  
30%, VOUT=80%  
Input to output  
CLOAD = 100 pF  
propagation delay  
distortion (tPDOFF - tPDON  
)
Input IN to output  
propagation delay  
distortion between any  
devices (tPDON-tPDON) or  
tPDD  
30  
ns  
1) same conditions  
(VIN, VVCC1, VVCC2 and  
VVEE2, CLOAD, TA)  
(tPDOFF-tPDOFF  
)
1)  
State synchronization  
time between input and  
output  
tSSIO  
13  
µs  
ns  
ns  
Input RDYC to output on tPDRDYC  
propagation delay  
447  
323  
523  
361  
600  
407  
CLOAD = 100 pF; IN  
high; VRDYC = 70%,  
VOUT=20%  
Input RDYC or FLT_N  
to Soꢀ-off output  
propagation delay  
tPDRDYCS  
tPDFLT_NS  
,
CLOAD = 100 pF, VSignal  
= 30%, VOUT=80%,  
Soꢀ-off function  
ICSOFF,15  
Input RDYC or FLT_N to  
hard switch-off output  
propagation delay  
tPDRDYCH  
tPDFLT_NH  
,
303  
342  
15  
384  
30  
ns  
ns  
CLOAD = 100 pF, VSignal  
= 30%, VOUT=80%,  
OFF function  
Rise time 1ED3431M  
tRISE  
CLOAD = 1 nF, VOUT:  
20% to 80%  
Datasheet  
36  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
5 Electrical parameters  
Table 16  
Dynamic characteristics (continued)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test  
Condition  
Min.  
Max.  
Fall time 1ED3431M  
Rise time 1ED3461M  
Fall Time 1ED3461M  
Rise Time 1ED3491M  
Fall Time 1ED3491M  
tFALL  
tRISE  
tFALL  
tRISE  
tFALL  
15  
15  
15  
15  
15  
30  
30  
30  
30  
30  
ns  
ns  
ns  
ns  
ns  
CLOAD = 1 nF, VOUT:  
80% to 20%  
CLOAD = 2.2 nF, VOUT  
20% to 80%  
:
:
:
:
CLOAD = 2.2 nF, VOUT  
80% to 20%  
CLOAD = 3.3 nF, VOUT  
20% to 80%  
CLOAD = 3.3 nF, VOUT  
80% to 20%  
1) Parameter is not subject to production test - verified by design/characterization  
5.4.7  
Desaturation protection  
All parameters valid for VCC1 = 5 V, VCC2 = 15 V, and VEE2 = 0 V unless specified otherwise.  
Table 17  
Desaturation protection  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note or Test  
Condition  
Min.  
Max.  
DESAT charge current  
IDESATC  
470  
259  
500  
525  
366  
µA  
kΩ  
VDESAT = 0 V  
DESAT voltage divider RDVD  
resistance  
312.5  
between DESAT and  
GND2 pins  
DESAT clamp and  
discharge ON  
resistance  
RDSON,D  
7.7  
25.0  
IDESATD = 200 mA  
DESAT threshold level VDESAT  
8.88  
356  
9.18  
400  
650  
1150  
225  
9.48  
444  
V
DESAT leading edge  
blanking time  
tDESATleb,d  
tDESATleb,s  
tDESATleb,l  
ns  
ns  
ns  
ns  
ADJB depending, VON  
20% rising to VDESAT  
= 1 V, CLOAD = 100 pF,  
CDESAT = 2 pF,  
597  
703  
1077  
1223  
263  
DESAT filter time  
(default)  
tDESATfilter,def 190  
ADJB = VCC1  
DESAT filter time (ADJB tDESATfilter,A 1476  
1575  
1775  
1975  
2375  
2775  
3175  
1684  
1895  
2105  
2526  
2947  
3368  
ns  
ns  
ns  
ns  
ns  
ns  
ADJB depending  
adjustable)  
tDESATfilter,B 1667  
tDESATfilter,C 1857  
tDESATfilter,D 2238  
tDESATfilter,E 2619  
tDESATfilter,F 3000  
Datasheet  
37  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
5 Electrical parameters  
Table 17  
Desaturation protection (continued)  
Symbol Values  
Typ.  
3575  
Parameter  
Unit  
Note or Test  
Condition  
Min.  
Max.  
3789  
tDESATfilter,G 3381  
tDESATfilter,H 3762  
ns  
ns  
ns  
3975  
743  
4211  
883  
DESAT sense to FLT_N  
tDESATFLT  
623  
VFLT_N = 30%, IFLT _N  
= 5 mA, tDESATfilter,def  
CFLT_N = 100 pF  
low delay  
,
DESAT sense to OFF low tDESATOUTS  
delay, Soꢀ-off  
287 +  
tDESATfilter  
333 +  
tDESATfilter  
382 +  
tDESATfilter  
ns  
VOUT = 80%, CLOAD  
100 pF, ICSOFF,15  
=
Datasheet  
38  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
5 Electrical parameters  
5.4.8  
Soꢀ-off current source  
Soꢀ-off current source values specified at OFF pin at VOFF = 3 V with unipolar supply of VVCC2 = 15 V.  
Table 18  
Current source turn-off  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test  
Condition  
Min.  
Max.  
Soꢀ-off current source  
current 1ED3431M  
ICSOFF,0  
ICSOFF,1  
ICSOFF,2  
ICSOFF,3  
ICSOFF,4  
ICSOFF5  
ICSOFF,6  
ICSOFF,7  
ICSOFF,8  
ICSOFF,9  
ICSOFF,10  
ICSOFF,11  
ICSOFF,12  
ICSOFF,13  
ICSOFF,14  
ICSOFF,15  
ICSOFF,0  
ICSOFF,1  
ICSOFF,2  
ICSOFF,3  
ICSOFF,4  
ICSOFF,5  
ICSOFF,6  
ICSOFF,7  
ICSOFF,8  
ICSOFF,9  
ICSOFF,10  
ICSOFF,11  
ICSOFF,12  
ICSOFF,13  
ICSOFF,14  
10  
24  
35  
47  
58  
70  
82  
93  
15  
19  
36  
52  
70  
87  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
depends on resistor  
value at ADJA  
29  
44  
58  
73  
87  
105  
122  
140  
157  
175  
192  
210  
227  
245  
262  
280  
36  
102  
116  
131  
146  
160  
175  
189  
204  
218  
233  
29  
105  
116  
128  
140  
151  
163  
175  
186  
22  
Soꢀ-off current source  
current 1ED3461M  
depends on resistor  
value at ADJA  
45  
58  
72  
70  
87  
105  
140  
175  
210  
245  
280  
314  
349  
384  
419  
454  
489  
524  
93  
116  
146  
175  
204  
233  
262  
291  
320  
349  
379  
408  
437  
116  
140  
163  
186  
210  
233  
256  
280  
303  
326  
349  
Datasheet  
39  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
5 Electrical parameters  
Table 18  
Current source turn-off (continued)  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit  
Note or Test  
Condition  
Max.  
559  
ICSOFF,15  
ICSOFF,0  
ICSOFF,1  
ICSOFF,2  
ICSOFF,3  
ICSOFF,4  
ICSOFF,5  
ICSOFF,6  
ICSOFF,7  
ICSOFF,8  
ICSOFF,9  
ICSOFF,10  
ICSOFF,11  
ICSOFF,12  
ICSOFF,13  
ICSOFF,14  
ICSOFF,15  
373  
34  
466  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Soꢀ-off current source  
current 1ED3491M  
44  
54  
depends on resistor  
value at ADJA  
70  
87  
105  
157  
210  
262  
314  
367  
419  
472  
524  
577  
629  
681  
734  
786  
839  
105  
140  
175  
210  
245  
280  
314  
349  
384  
419  
454  
489  
524  
559  
131  
175  
218  
262  
306  
349  
393  
437  
480  
524  
568  
612  
655  
699  
5.4.9  
Over-temperature protection  
Table 19  
Over-temperature protection  
Parameter1)  
Symbol  
Values  
Typ.  
160  
Unit  
Note or Test  
Condition  
Min.  
150  
Max.  
170  
Over-temperature  
protection level  
TOTPOFF  
°C  
1) Parameter is not subject to production test - verified by design/characterization  
Datasheet  
40  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
6 Insulation characteristics  
6
Insulation characteristics  
The following isolation classes are available for the 1ED34x1Mc12M family (X3 Analog).  
Table 20  
Product isolation classes  
Marking Insulation characteristics  
Product name  
Values specified in  
UL values  
Table 23  
Table 23  
1ED34x1MU12M 34x1MU12  
UL 1577 certified insulation  
Reinforced insulation  
-
1ED34x1MC12M  
34x1MC12  
Table 22  
Table 21  
Safety limiting values  
This coupler is suitable for rated insulation only within the given safety ratings. Compliance with the safety  
ratings shall be ensured by means of suitable protective circuits.  
Description  
Symbol  
TS  
Characteristic  
Unit  
°C  
Maximum ambient safety temperature  
Maximum input-side power dissipation at TA = 25°C  
Maximum output-side power dissipation at TA = 25°C1)  
150  
PSI  
100  
mW  
mW  
A
PSO  
1000  
Maximum driver output current (ON, OFF)2)  
IOUT  
1ED3431MC  
1ED3461MC  
1ED3491MC  
2.4  
4.8  
7.2  
1) IC output-side power dissipation is derated linearly at 8 mW/°C above 65 °C  
2) Maximum pulse length of t = 5 µs  
6.1  
Certified according to VDE 0884-11 reinforced insulation (pending)  
Valid for parts with part name 1ED34x1MC12M, x indicate different variants.  
This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety  
ratings shall be ensured by means of suitable protective circuits.  
Table 22  
Reinforced insulation according to VDE 0884-11  
Symbol  
Description  
Characteristic  
Unit  
Installation classification per EN 60664-1, Table 1  
for rated mains voltage ≤ 150 V (rms)  
for rated mains voltage ≤ 300 V (rms)  
for rated mains voltage ≤ 600 V (rms)  
for rated mains voltage ≤1000 V (rms)  
I-IV  
I-IV  
I-III  
I-II  
Climatic classification  
40/125/21  
Pollution degree (EN 60664-1)  
Minimum external clearance  
Minimum external creepage  
Minimum comparative tracking index  
2
CLR  
CPG  
CTI  
>8  
>8  
400  
mm  
mm  
Datasheet  
41  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
6 Insulation characteristics  
Table 22  
Reinforced insulation according to VDE 0884-11 (continued)  
Description  
Symbol  
Characteristic  
Unit  
Apparent charge, method a  
qC  
<5  
nC  
Vpd(ini),a = VIOTM, Vpd(m) = 4500 V, tini = 1 min  
Apparent charge, method b  
qC  
<5  
nC  
Vpd(ini),b = VIOTM × 1.2, Vpd(m) = 4500 V, tini = 1 s  
Isolation resistance at TA,max  
RIO  
> 1011  
> 109  
8000  
1767  
6875  
Ω
Isolation resistance at TS  
RIO_S  
VIOTM  
VIORM  
VIOSM  
Ω
Maximum rated transient isolation voltage  
Maximum repetitive insulation voltage  
V (peak)  
V (peak)  
V (peak)  
Maximum surge isolation voltage for reinforced isolation  
VTEST = VIOSM × 1.6  
Insulation capacitance  
CIO  
1.7  
pF  
6.2  
Recognized under UL 1577 (File E311313)  
Table 23  
Recognized under UL 1577  
Description  
Symbol  
VISO  
Characteristic  
Unit  
Insulation withstand voltage/1 min  
Insulation test voltage/1 s  
5700  
6840  
V (rms)  
V (rms)  
VISO, TEST  
Datasheet  
42  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
7 Package information  
7
Package information  
1)  
1)  
6.4  
7.5  
0.35 x 45°  
0.7±0.2  
Seating plane  
Coplanarity  
Bottom View  
16  
9
9
16  
Pin1 Marking  
1
8
8
1
2)  
0.65  
0.33±0.08  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width  
All dimensions are in units mm  
The drawing is in compliance with ISO 128-30, Projection Method 1 [  
]
Figure 24  
PG-DSO-16-28/33 - 300 mil 16-pin fine pitch plastic green dual small outline package  
Datasheet  
43  
v2.1  
2021-02-15  
EiceDRIVER1ED34x1Mc12M Enhanced  
Datasheet  
8 Application notes  
8
Application notes  
8.1  
Reference layout for thermal data  
Figure 25  
Reference layout for thermal data (Two layer PCB; copper thickness 35 μm; leꢀ: top  
layer; right: bottom layer)  
The PCB layout represents the reference layout used for the thermal characterization. Pins 1 and 8 (GND1)  
and pins 9 and 16 (VEE2) require ground plane connections for achieving maximum power dissipation. The  
1ED34x1Mc12M family (X3 Analog) is conceived to dissipate most of the heat generated through these pins.  
8.2  
Printed circuit board guidelines  
Following factors should be taken into account for an optimum PCB layout.  
Sufficient spacing should be kept between high voltage isolated side and low voltage side circuits.  
The same minimum distance between two adjacent high-side isolated parts of the PCB should be  
maintained to increase the effective isolation and reduce parasitic coupling.  
In order to ensure low supply ripple and clean switching signals, bypass capacitor trace lengths should be  
kept as short as possible.  
Revision history  
Revision history  
Reference  
Description  
v2.1  
Change footnotes to table notes  
added param VOFFSET  
update package drawing to latest revision  
update certification status  
v2.0  
v1.0  
v0.8  
Editorial changes  
Parameter tables completed and editorial changes in functional description  
Editorial changes in functional description and parameter tables  
Datasheet  
44  
v2.1  
2021-02-15  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2021-02-15  
Published by  
IMPORTANT NOTICE  
WARNINGS  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
Infineon Technologies AG  
81726 Munich, Germany  
©
2021 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-fiz1584344472005  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY