1EDN7550B [INFINEON]

Single-channel EiceDRIVER™ gate-drive IC with true differential inputs;
1EDN7550B
型号: 1EDN7550B
厂家: Infineon    Infineon
描述:

Single-channel EiceDRIVER™ gate-drive IC with true differential inputs

驱动
文件: 总27页 (文件大小:1145K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Features  
Very large common-mode input voltage range (CMR) up to ± 150 V (Table 1)  
Supply voltage (VDD) up to 20 V  
2 UVLO options: 4 V and 8 V  
Separate low impedance source and sink outputs  
-
-
4 A / 0.85 Ω source  
8 A / 0.35 Ω sink  
45 ns propagation delay with -7 / +10 ns accuracy  
SOT23 or TSNP 6-pin package  
Fully qualified for industrial applications according to JEDEC  
Description  
EiceDRIVER1EDNx550 is a new family of single-channel non-isolated gate-driver ICs. Due to the unique fully  
differential input circuitry with excellent common-mode rejection, the logic driver state is exclusively controlled  
by the voltage difference between the two inputs, completely independent of the driver’s reference (ground)  
potential. This eliminates the risk for false triggering and thus is a significant benefit in all applications  
exhibiting voltage differences between driver and controller ground, a problem typical for systems with  
4-pin packages (Kelvin Source connection)  
high parasitic PCB inductances (long distances, single-layer PCB)  
bipolar gate drive  
In addition, within the common-mode voltage range CMR for PWM signal at 3.3 V as in (Table 1), 1EDNx550  
allows to address even high-side and half-bridge applications. For PWM signals other than 3.3. V please see the  
Application note Applications of 1EDNx550 single-channel lowside EiceDRIVERwith truly differential inputs.  
Table 1  
Part number  
Product portfolio  
CMR static  
+ 72 V / - 84 V  
+ 72 V / - 84 V  
+ 72 V / - 84 V  
CMR dynamic  
± 150 V  
UVLO  
4 V  
Package  
PG-SOT23-6  
PG-SOT23-6  
PG-TSNP-6  
1EDN7550B  
1EDN8550B  
1EDN7550U  
± 150 V  
8 V  
± 150 V  
4 V  
1EDNx550  
ZVDD  
VDD  
Rgoff  
Rin1  
IN-  
GND OUT_SRC  
VDD  
OUT_SNK  
DVRin  
SGND  
Rgon  
IN+  
Rin2  
CVDD  
Figure 1  
Typical application  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Table of contents  
Table of contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1
2
Pin configuration and description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Differential input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Common mode input range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Driver outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Supply voltage and Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1  
3.1.1  
3.2  
3.3  
4
Electrical characteristics and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.1  
4.2  
4.3  
4.4  
4.5  
5
Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
6
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Switches with Kelvin source connection (4-pin packages) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Applications with significant parasitic PCB-inductances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Switches with bipolar gate drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
High-side switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.1  
6.2  
6.3  
6.4  
7
Layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
8
8.1  
8.2  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
PG-SOT23-6 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
PG-TSNP-6 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
9
Device numbers and markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Datasheet  
2
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Pin configuration and description  
1
Pin configuration and description  
The pin configuration for both SOT23 and TSNP package is illustrated in Figure 2; a description is given in Table  
2 . For functional details, please read Chapter 3.  
SOT23-6  
TSNP-6  
IN-  
OUT_SNK  
1
2
3
6
5
4
OUT_SNK  
OUT_SRC  
VDD  
IN-  
1
2
6
5
4
GND  
GND OUT_SRC  
IN+  
3
VDD  
IN+  
Figure 2  
Table 2  
Pin configuration SOT23 and TSNP 6-pin packages (top view)  
Pin description  
Pin number Pin name  
Description  
1
2
3
4
5
6
IN-  
Negative input  
connected to controller ground via resistor (typically 33 kΩ)  
GND  
Ground  
negative gate drive voltage ("off" state)  
IN+  
Positive input  
connected to PWM output of controller via resistor (typically 33 kΩ)  
VDD  
Positive supply voltage  
positive gate drive voltage ("on" state)  
OUT_SRC  
OUT_SNK  
Driver output source  
low-impedance switch to VDD (4 A / 0.85 Ω)  
Driver output sink  
low-impedance switch to GND (8 A / 0.35 Ω)  
Datasheet  
3
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Block diagram  
2
Block diagram  
A simplified functional block diagram of 1EDNx550 is given in Figure 3.  
UVLO  
VDD  
IN+  
OUT_SRC  
OUT_SNK  
Differential  
Schmitt  
Trigger  
Diff. Amp.  
+ LPF  
Logic  
IN-  
GND  
Figure 3  
Block diagram  
Datasheet  
4
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Functional description  
3
Functional description  
Although EiceDRIVER1EDNx550 is a family of non-isolated gate drivers, it extends the range of possible  
applications into fields usually reserved for isolated drivers, thereby generating significant system cost benefits.  
The key to make this possible is moving from the standard ground related to a true differential input with very  
high common-mode rejection. The required symmetry of the input circuitry is achieved by on-chip trimming; it  
finally allows to deal with peak common-mode voltages of up to ± 150 V between driver reference (GND) and  
system ground (SGND). 1EDNx550 is not only ideally suited for any application with unwanted shiꢀs between  
driver and system ground, but may also be utilized as a high-side driver within the allowed common-mode  
range. Besides, switches requiring a bipolar driving voltage can be operated very easily as well.  
3.1  
Differential input  
Figure 4 depicts the signal path from the controller’s PWM output to the logic gate driver signal as implemented  
on 1EDNx550.  
Controller  
PWM  
1EDNx550  
VS  
Rin1  
2kW  
0
IN+  
15pF  
15pF  
1kW  
1kW  
Cp1  
Cp2  
12 MHz  
2nd order  
Lowpass  
Differential  
Schmitt  
Trigger  
Pulse  
Extender  
Av = 4.5  
DVRin  
DVRin / k  
IN-  
SGND  
Rin2  
2kW  
GND  
k = (Rin [kW] + 3) / 3  
Figure 4  
1EDNx550 input signal path  
The controller output signal, switching between controller supply VS and zero, is applied at the one leg of a  
differential voltage divider, while the other is connected to the controller ground SGND. The divider ratio has to  
be adapted to VS to allow a fixed Schmitt-Trigger threshold voltage. For VS = 3.3 V, Rin1 and Rin2 are chosen to be  
33 kΩ, resulting in a static divider ratio of k = 12 at the driver inputs and 36 at the internal voltage amplifier. With  
VS other than 3.3 V, Rin has to fulfil the relation:  
R
= R = 10.9 VS 3 kΩ  
in1  
in2  
Amplified by a factor of 4.5, the signal is filtered by a 2nd order low-pass filter. Taking into account the RC filter in  
front of the amplifier, the overall input path exhibits the frequency behavior of a 3rd order low-pass filter with a  
corner frequency around 12 MHz. The suppression of high frequencies is important for two reasons. Firstly,  
common-mode ringing, being in the 100 MHz and above range for fast-switching power systems, can effectively  
be damped. In addition, the high-frequency symmetry of the voltage divider is influenced by parasitic  
capacitances, particularly Cp1 and Cp2, the parallel capacitances of Rin1 and Rin2. They are typically in the 50 to  
100 fF range, rather independent of resistor size. Without filtering, any asymmetry would translate high-  
frequency common-mode into differential signals.  
The filtered signal is then applied to a differential Schmitt-Trigger with accurate trimmed threshold levels and  
converted to the logic switch control signal. The subsequent pulse extender function guarantees that no pulses  
shorter than 25 ns are transmitted to the output, thereby further improving noise immunity.  
Due to the filtering requirements the input-to-output propagation delay is slightly increased to around 45 ns. By  
means of on-chip trimming, however, the usually more relevant propagation delay variation can still be kept  
low at +10 / -7 ns.  
Datasheet  
5
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Functional description  
3.1.1  
Common mode input range  
There are two effects limiting the common-mode input range, i.e. the maximum allowed voltage difference  
between controller outputs PWM/SGND and driver reference GND: the circuit and technology-related input  
voltage restrictions and the finite common-mode rejection in the input signal path due to asymmetries.  
The static voltage range at the input pins is limited to + 6 / - 7 V to guarantee accurate linear operation of the  
input circuitry. Taking into account the proposed DC voltage divider ratio, this translates to a static common-  
mode (CMR) range of + 72 / - 84 V. CMR is increased even further for high-frequency common-mode voltages  
("ringing"). Then the maximum input voltage ratings ( ± 10 V) together with the frequency-dependence of the  
voltage-divider ratio result in an extended dynamic CMR as high as ± 150 V.  
The second limitation results from the fact that any imbalance in the signal path converts a common-mode to a  
differential signal. To utilize the full CMR as calculated above, the high accuracy of the trimmed on-chip network  
must not be affected by the external voltage divider resistors. This condition is easily fulfilled when choosing  
Rin1 and Rin2 with 0.1% tolerance; resistors with only 1% accuracy, however, would reduce the common-mode  
range significantly to ± 40 V.  
3.2  
Driver outputs  
The rail-to-rail driver output stage realized with complementary MOS transistors is able to provide a typical 4 A  
sourcing and 8 A sinking current. The low on-resistance coming together with high driving current is particularly  
beneficial for fast switching of very large MOSFETs. With a Ron of 0.85 Ω for the sourcing pMOS and 0.35 Ω for  
the sinking nMOS transistor the driver can in most applications be considered to behave like an ideal switch.  
The p-channel sourcing transistor allows real rail-to-rail behavior without suffering from the source-follower’s  
voltage drop typical for n-channel output stages.  
In case of floating inputs or insufficient supply voltage the driver output is actively clamped to the “low” level  
(GND).  
3.3  
Supply voltage and Undervoltage Lockout (UVLO)  
The Undervoltage Lockout function ensures that the output can be switched only, if the supply voltage VDD  
exceeds the UVLO threshold voltage. Thus it can be guaranteed that the switch transistor is not operated with a  
driving voltage too low to achieve a complete and fast transition to the "on" state; this avoids excessive power  
dissipation (see Table 3).  
Table 3  
Logic table  
ΔVRin  
x
L2)  
UVLO  
active1)  
inactive 3)  
inactive 3)  
OUT_SRC  
high impedance  
high impedance  
H
OUT_SNK  
L
L
H4)  
high impedance  
EiceDRIVER1EDNx550 is available in two different packages; the SOT23 version offers 2 UVLO threshold levels  
to support switches with a broad range of threshold voltages  
1EDN7550 with a typical UVLO threshold of 4.2 V (0.3 V hysteresis)  
1EDN8550 with a typical UVLO threshold of 8 V (1 V hysteresis)  
In addition, the high maximum VDD of 20 V makes the driver family well suited for a broad variety of power  
switch types.  
1
VDD < UVLOoff  
ΔVRin < ΔVRinL  
VDD > UVLOon  
ΔVRin > ΔVRinH  
2
3
4
Datasheet  
6
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Electrical characteristics and parameters  
4
Electrical characteristics and parameters  
The absolute maximum ratings are listed in Table 4 . Stresses beyond these values may cause permanent  
damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
4.1  
Absolute maximum ratings  
Table 4  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit Note or Test Condition  
Max.  
Supply voltage  
VDD  
-0.3  
22  
10  
V
Voltage between VDD to  
GND  
Voltage at pins IN+ and IN-  
Voltage at pin OUT_SRC  
VIN  
-10  
V
V
VOUT_SRC -24  
0.3  
OUT = low; referred to  
VDD pin, DC  
-24  
VOUT_SNK -0.3  
-2  
2
V
V
V
A
A
OUT = low; referred to  
VDD pin < 200 ns  
Voltage at pin OUT_SNK  
24  
24  
OUT = high; referred to  
GND pin, DC  
OUT = high, referred to  
GND pin < 200 ns  
Peak reverse current at  
OUT_SRC  
ISRC_rev  
ISRC_rev  
-5  
< 500 ns  
Peak reverse current at  
OUT_SRC  
5
< 500 ns  
Junction temperature  
Storage temperature  
ESD capability  
Tj  
-40  
-55  
150  
150  
2
°C  
°C  
kV  
TS  
VESD_HBM  
Human Body Model  
(HBM)5)  
ESD capability  
VESD_CDM  
1
kV  
Charged Device Model  
(CDM)6)  
5
According to ANSI/ESDA/JEDEC JS-001 (discharging 100 pF capacitor through 1.5 kΩ resistor)  
According to ANSI/ESDA/JEDEC JS-002  
6
Datasheet  
7
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Electrical characteristics and parameters  
4.2  
Thermal characteristics  
Table 5  
Thermal characteristics SOT23 package  
Parameter  
Symbol  
Values  
Typ.  
165.1  
Unit  
Note or Test Condition  
Min.  
Max.  
Thermal resistance junction- RthJA25  
K/W  
K/W  
K/W  
K/W  
K/W  
ambient7)  
Thermal resistance junction- RthJC25  
79.9  
65.2  
14  
case (top)8)  
Thermal resistance junction- RthJB25  
board9)  
Characterization parameter ΨthJC25  
junction-case (top)10)  
Characterization parameter ΨthJB25  
junction-board11)  
51  
Table 6  
Thermal characteristics TSNP package  
Symbol Values  
Typ.  
141  
Parameter  
Unit  
Note or Test Condition  
Min.  
Max.  
Thermal resistance junction- RthJA25  
K/W  
K/W  
K/W  
K/W  
K/W  
ambient 7)  
Thermal resistance junction- RthJC25  
81  
36  
80  
36  
case (top) 8)  
Thermal resistance junction- RthJB25  
board 9)  
Characterization parameter ΨthJC25  
junction-case (top) 10)  
Characterization parameter ΨthJB25  
junction-board 11)  
7
Obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment  
described in JESD51-2a  
Obtained by simulating a cold plate test on the package top. No specific JEDEC standard test exists, but a  
close description can be found in the ANSI SEMI standard G30-88  
Obtained by simulation in an environment with a ring cold plate fixture to control the PCB temperature, as  
described in JESD51-8  
Estimates the junction temperature of a device in a real system and is extracted from the simulation data  
for obtaining Rth, using a procedure described in JESD51-2a (sections 6 and 7)  
Estimates the junction temperature of a device in a real system and is extracted from the simulation data  
for obtaining Rth, using a procedure described in JESD51-2a (sections 6 and 7)  
8
9
10  
11  
Datasheet  
8
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Electrical characteristics and parameters  
4.3  
Operating range  
Table 7  
Operating Range  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
4.5  
Max.  
Supply voltage  
VDD  
20  
6
V
Min defined by UVLO  
Voltage at pins IN+ and IN-  
Junction temperature  
VIN  
Tj  
-7  
V
12)  
-40  
150  
°C  
4.4  
Electrical characteristics  
Unless otherwise noted, min./max. values of characteristics are the lower and upper limits, respectively. They  
are valid within the full operating range. The supply voltage is VDD= 12 V. Typical values are given at Tj=25°C.  
Table 8  
Power Supply  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
VDD quiescent current  
VDD quiescent current  
IVDDh  
IVDDl  
1.1  
0.9  
mA  
mA  
OUT = high  
OUT = low  
Table 9  
Undervoltage Lockout 1EDN7550x (Logic level MOSFET)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
3.9  
Max.  
4.5  
Undervoltage Lockout (UVLO) UVLOon  
turn on threshold  
4.2  
V
V
V
Undervoltage Lockout (UVLO) UVLOoff  
turn off threshold  
3.9  
0.3  
UVLO threshold hysteresis  
UVLOhys 0.25  
0.35  
Table 10  
Undervoltage Lockout 1EDN8550B (Standard MOSFET)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
7.4  
Max.  
8.6  
Undervoltage Lockout (UVLO) UVLOon  
turn on threshold  
8.0  
V
V
V
Undervoltage Lockout (UVLO) UVLOoff  
turn off threshold  
7.0  
1.0  
UVLO threshold hysteresis  
UVLOhys 0.8  
1.2  
12  
Continuous operation above 125°C may reduce life time  
Datasheet  
9
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Electrical characteristics and parameters  
Table 11  
Inputs IN+, IN-  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Differential input voltage  
threshold for transition LH (at  
input resistor)  
∆VRinH  
1.7  
V
Independent of VDD  
Rin1/Rin2 = 33 kΩ 13)  
Differential input voltage  
threshold for transition HL (at  
input resistor)  
∆VRinL  
1.5  
36  
V
Independent of VDD  
Rin1/Rin2 = 33 kΩ 13)  
Total input resistance on each Rin1 / Rin2  
leg  
kΩ  
Rin1/Rin2 = 33 kΩ 13)  
Table 12  
Static Output Characteristics  
Parameter  
Symbol  
Min.  
Values  
Typ.  
0.85  
Unit Note or Test Condition  
Max.  
High-level (sourcing) output  
resistance  
Ron_SRC  
ISRC = 50 mA  
14)  
Sourcing output current  
ISRC_pk  
4.0  
A
Low-level (sinking) output  
resistance  
Ron_SNK  
0.35  
ISNK = 50 mA  
15)  
Sinking output current  
ISNK_pk  
-8.0  
A
Table 13  
Dynamic characteristics  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Input-to-output propagation tPDon  
38  
38  
45  
55  
55  
ns  
ns  
CL = 200 pF  
CL = 200 pF  
delay turn-on  
Input-to-output propagation tPDoff  
delay turn-off  
45  
Rise time  
Fall time  
Rise time  
Fall Time  
trise  
tfall  
trise  
tfall  
tPW  
6.5  
4.5  
1
1516)  
1516)  
516)  
516)  
ns  
ns  
ns  
ns  
ns  
CL = 1.8 nF  
CL = 1.8 nF  
CL = 200 pF  
CL = 200 pF  
CL = 1.8 nF  
1
Minimum input pulse width  
that changes output state  
2516)  
For an illustration of the dynamic characteristics see Figure 6 and Figure 7  
Figure 5 gives the circuit used for parameter testing  
13  
See Figure 1  
14  
Actively limited to approx. 5.2 Apk; not subject to production test - verified by design / characterization  
Actively limited to approx. -10.4 Apk; not subject to production test - verified by design / characterization  
Parameter verified by design, not 100% tested in production  
15  
16  
Datasheet  
10  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Electrical characteristics and parameters  
Figure 5  
Test circuit  
4.5  
Timing diagram  
Figure 6 depicts rise, fall and delay times as given in the Chapter 4.  
1.7  
1.5  
IN+ - IN-  
50%  
90%  
10%  
OUTx  
tPDoff  
tPDon  
trise  
tfall  
Figure 6  
Propagation delay, rise and fall time  
Figure 7 illustrates the Undervoltage Lockout function.  
UVLOon  
UVLOoff  
VDD  
OUTx  
Figure 7  
UVLO behavior (output state high)  
Datasheet  
11  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Typical characteristics  
5
Typical characteristics  
1.  
Undervoltage Lockout threshold (1EDN7550) 2.  
vs temperature  
Undervoltage Lockout threshold (1EDN8550)  
vs temperature  
4.5  
8.8  
UVLO on  
UVLO off  
UVLO on  
UVLO off  
8.4  
8.0  
7.6  
7.2  
6.8  
6.4  
4.3  
4.1  
3.9  
3.7  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
T [ °C]  
j
T [°C]  
j
3.  
Differential input voltage threshold vs  
temperature  
4.  
Typical quiescent current vs temperature  
2.5  
1.4  
ON threshold  
OFF threshold  
OUT High  
OUT Low  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
1.2  
1.0  
0.8  
0.6  
VDD=12V  
Vin=3.3V  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
T [ °C]  
j
T [°C]  
j
Datasheet  
12  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Typical characteristics  
5.  
Typical quiescent current vs supply voltage 6.  
Total operating current consumption with  
capacitive load vs frequency  
1.6  
50  
VDD 4.5V  
VDD 12V  
VDD 20V  
OUT High  
OUT Low  
Duty Cycle 50%  
CL = 1.8nF  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
40  
30  
20  
10  
0
0
200  
400  
600  
800  
1000  
0
5
10  
15  
20  
25  
Frequency [kHz]  
VDD [V]  
7.  
Typical propagation delay vs temperature  
8.  
Typical rise and fall time vs temperature  
8
turn-on  
turn-on  
54  
turn-off  
turn-off  
7
52  
50  
48  
46  
44  
6
5
4
VDD=12V  
CL=1.8nF  
42  
VDD=12V  
Vin=3.3V  
3
40  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
T [ °C]  
j
T [ °C]  
j
Datasheet  
13  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Typical applications  
6
Typical applications  
6.1  
Switches with Kelvin source connection (4-pin packages)  
This is one of the key target applications of 1EDNx550. The 4-pin configuration depicted in Figure 8 is a very  
effective measure to improve the switching performance of transistors in packages with high source inductance  
LS as is typical for the widely used TO-packages. Although the Kelvin Source connection SS solves the problem  
of the largely increased switching losses due to LS, it is evident, that the gate driver reference potential is  
moving by the inductive voltage drop vLS with respect to the system ground SGND. In fast-switching  
applications at high current, vLS can reach 100 V and above. This is why 4-pin systems so far either used isolated  
drivers or external filters with relatively low corner frequency that add significant signal delay. Now, however,  
1EDNx550 provides an optimum solution for this case.  
Figure 8 also indicates that the usually SGND-related VDD cannot be used directly as the driver supply. But due  
to the high frequency of vLS (> 100 MHz), a filter composed of impedance ZVDD together with the blocking cap  
CVDD is well suited to generate a sufficiently stable driver supply. ZVDD can be either a resistor (e.g. 22 Ω with a  
typical CVDD of 1 µF) or, even better, a proper ferrite bead.  
MOSFET  
VDD  
ZVDD  
Controller  
1EDNx550  
D
Rgoff  
Rin1  
IN- OUT_SNK  
GND OUT_SRC  
SGND  
G
SGND  
ΔVRin  
Rgon  
CVDD  
VDD  
IN+  
PWM_Out  
Rin2  
SS  
vLS  
LS  
S
Figure 8  
1EDN driving 4-pin MOSFET  
6.2  
Applications with significant parasitic PCB-inductances  
In fast switching power systems the unavoidable parasitic inductance associated with any electrical connection  
may cause significant inductive voltage drops, particularly if the PCB-layout cannot be optimized, the most  
common reasons being limitations in the number of PCB-layers, geometric restrictions or also the lack of  
specific experience. In such situations the high robustness of 1EDNx550 with respect to “switching noise” (high-  
frequency voltage between reference potential of driver and controller) is extremely valuable and allows good  
performance even in systems with formerly critical layout. Figure 9 indicates a respective example, indicating  
the most relevant parasitic PCB-inductances.  
Datasheet  
14  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Typical applications  
MOSFET  
1EDNx550  
Controller  
ZVDD  
Rgoff  
D
Rin1  
IN-  
GND OUT_SRC  
VDD  
OUT_SNK  
SGND  
VDD  
G
DVRin  
Rgon  
IN+  
PWM_Out  
S
Rin2  
CVDD  
SGND  
Figure 9  
Application with significant PCB inductance  
6.3  
Switches with bipolar gate drive  
Another application 1EDNx550 is tailored for, is driving power switches that require a negative gate-to-source  
voltage to safely hold them in the “off” state. Although MOSFETs are usually operated at zero “off” voltage, in  
certain situations a negative gate drive voltage can be very helpful. Particularly the fast switching “off” of high  
current when using switches with large common source inductance (e.g. in 3-pin TO-packages) may become  
critical in terms of losses and stability with a zero “off” level. In such cases a negative gate drive voltage is able  
to significantly improve switching performance. As depicted in Figure 10, this kind of application is completely  
uncritical and handled easily with 1EDNx550, while standard drivers cannot be applied directly without  
adaptations.  
MOSFET  
Controller  
1EDNx550  
D
Rgoff  
Rin1  
SGND  
ΔVRin  
IN- OUT_SNK  
GND OUT_SRC  
SGND  
G
Rgon  
VDD  
IN+  
PWM_Out  
Rin2  
S
Figure 10  
Bipolar gate drive for 3-pin MOSFET  
Datasheet  
15  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Typical applications  
6.4  
High-side switches  
Due to the large static input common-mode range, even driving high-side switches is an interesting application  
field for 1EDNx550. Although not providing galvanic isolation, 1EDNx550 can functionally be used as a high-side  
driver, as long as the power-loop voltage VP does not cause a violation of the allowed common-mode range.  
In high-side operation as depicted in Figure 11, the driver ground GND switches between zero (“off” ) and VP  
(“on" state) with respect to SGND; the resulting common-mode voltage at the driver input pins is 0 and -VP/12,  
respectively. The input voltage restriction to -7 V (Table 7) thus limits VP to 84 V. In many applications the driver  
supply voltage can be generated by means of the well-known bootstrapping method also indicated in Figure 11.  
Dboot  
VDD  
VP < 84V  
1EDNx550  
Rboot  
Rgoff  
D
Controller  
Rin1  
SGND  
ΔVRin  
IN- OUT_SNK  
GND OUT_SRC  
SGND  
G
Rgon  
VDD  
IN+  
PWM_Out  
S
Rin2  
Cboot  
Vsw  
D
G
S
Figure 11  
1EDNx550 as a high-side driver  
Datasheet  
16  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Layout guidelines  
7
Layout guidelines  
It is well-known that the layout of a fast-switching power system is a critical task with strong influence on the  
overall performance. This is why there exists a huge number of rules, recommendations, guidelines, tips and  
tricks that should help to finally end up with a proper system layout.  
With 1EDNx550 one of the central layout problems, namely the design of the grounding network, has become  
much less critical due to the highly reduced sensitivity of the differential concept with respect to ground voltage  
differences. So layout rules can be restricted to the following rather simple and evident ones:  
place input resistors Rin close to the driver and make layout of input signal path as symmetric and as  
compact as possible  
use a low-ESR decoupling capacitance for the VDD supply and place it as close as possible to the driver  
minimize power loop inductance as the most critical limitation of switching speed due to the resulting  
unavoidable voltage overshoots  
A layout recommendation for the input path of the SOT23 package version is given in Figure 12.  
RGOFF  
DRV_GND  
RIN1  
IN_N  
IN_P  
IN-  
GND  
IN+  
OUT_SNK  
OUT_SRC  
VDD  
OUT  
RGON  
CVDD  
RVDD  
RIN2  
VIN  
Figure 12  
Layout recommendation for SOT23 package  
As in the case of the TSNP package routing in a single PCB layer is not possible, the layout can be changed  
according to Figure 13 . The chosen size of the input resistors (0603) allows to utilize the full dynamic common-  
mode input range of ±150 V.  
DRV_GND  
RGOFF  
RIN1  
IN_N  
IN_P  
1EDN7550U  
GND  
OUT_SRC  
OUT  
RGON  
CVDD  
RIN2  
VIN  
RVDD  
Figure 13  
Layout recommendation for TSNP package with SMD resistor 0603  
Datasheet  
17  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Layout guidelines  
For applications that do not require the maximum CMR an even more compact layout utilizing resistors of size  
0402 is shown in Figure 14.  
RGOFF  
DRV_GND  
RIN1  
1EDN7550U  
IN_N  
IN_P  
OUT  
GND  
OUT_SRC  
RGON  
CVDD  
RIN2  
RVDD  
VIN  
Figure 14  
Layout recommendation for TSNP package with SMD resistor 0402  
For futher layout recommendations for TSNP, see Recommendations for Printed Circuit Board Assembly of  
Infineon TSLP/TSSLP/TSNP Packages.  
Datasheet  
18  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Package information  
8
Package information  
8.1  
PG-SOT23-6 package  
1)  
1)  
2.9  
1.6  
0.15 C A-B  
2x  
0.15 C D 2x  
0.45±0.1  
2.8  
C
0.1 C  
COPLANARITY  
0.2 C  
6x  
SEATING  
D
PLANE  
0.4±0.1  
0.2  
C A B  
6x  
BOTTOM VIEW  
A
6
4
6
4
1
3
3
1
INDEX  
MARKING  
B
0.95  
1) DOES NOT INCLUDE PLASTIC OR METAL PROTRUSION OF 0.15 MAX. PER SIDE  
ALL DIMENSIONS ARE IN UNITS MM  
THE DRAWING IS IN COMPLIANCE WITH ISO 128 & PROJECTION METHOD 1 [  
]
Figure 15  
SOT23 outline  
Datasheet  
19  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Package information  
0.95  
0.5  
0.95  
0.5  
copper  
solder mask  
stencil apertures  
ALL DIMENSIONS ARE IN UNITS MM  
Figure 16  
SOT23 footprint  
4
4
0.25  
PIN 1  
INDEX MARKING  
3.3  
1.55  
ALL DIMENSIONS ARE IN UNITS MM  
THE DRAWING IS IN COMPLIANCE WITH ISO 128 & PROJECTION METHOD 1 [  
]
Figure 17  
SOT23 packaging  
Datasheet  
20  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Package information  
Type code  
Pin 1 marking  
Date code (YW)  
Figure 18  
Package marking (SOT23)  
Note:  
Date code digits Y and W in Table Table 14 and Table 15  
Table 14  
Year date code marking - digit "Y"  
Year  
2000  
2001  
2002  
2003  
2004  
2005  
2006  
2007  
2008  
2009  
Y
0
1
2
3
4
5
6
7
8
9
Year  
2010  
2011  
2012  
2013  
2014  
2015  
2016  
2017  
2018  
2019  
Y
0
1
2
3
4
5
6
7
8
9
Year  
2020  
2021  
2022  
2023  
2024  
2025  
2026  
2027  
2028  
2029  
Y
0
1
2
3
4
5
6
7
8
9
Table 15  
Week date code marking - digit "W"  
Week  
W
A
B
C
D
E
Week  
12  
W
N
P
Q
R
S
Week  
23  
W
4
5
6
7
a
b
c
Week  
W
h
j
Week  
45  
46  
47  
48  
49  
50  
51  
52  
W
v
x
1
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
2
13  
24  
3
14  
25  
k
l
y
z
4
15  
26  
5
16  
27  
n
p
q
r
8
9
2
3
6
F
17  
T
28  
7
G
H
J
18  
U
V
29  
8
19  
30  
d
e
f
9
20  
W
Y
31  
s
10  
11  
K
L
21  
32  
t
22  
Z
33  
g
u
Datasheet  
21  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Package information  
8.2  
PG-TSNP-6 package  
1.1±0.05  
0.375±0.025  
0.3±0.05  
A
0.1 A  
6x  
3
2
1
4
5
6
INDEX MARKING  
(LASERED)  
0.6  
ALL DIMENSIONS ARE IN UNITS MM  
THE DRAWING IS IN COMPLIANCE WITH ISO 128 & PROJECTION METHOD 1 [  
]
Figure 19  
TSNP-6 outline  
Datasheet  
22  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Package information  
Optional solder mask dam  
0.35  
0.6  
0.6  
copper  
solder mask  
stencil apertures  
ALL DIMENSIONS ARE IN UNITS MM  
Figure 20  
TSNP-6 footprint  
4
PIN 1  
INDEX MARKING  
4
0.5  
1.3  
ALL DIMENSIONS ARE IN UNITS MM  
THE DRAWING IS IN COMPLIANCE WITH ISO 128 & PROJECTION METHOD 1 [  
]
Figure 21  
TSNP-6 packaging  
Datasheet  
23  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Package information  
Pin 1 marking  
Date code (YW)  
Type code  
Figure 22  
Package marking (TSNP-6)  
Note:  
Date code digits Y and W in Table and Table 14 and Table 15  
Further information on packages: www.infineon.com/packages  
Datasheet  
24  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Device numbers and markings  
9
Device numbers and markings  
Table 16  
Device numbers and markings  
Part number  
1EDN7550B  
1EDN8550B  
1EDN7550U  
Orderable part number (OPN)  
1EDN7550BXTSA1  
Device marking  
70  
80  
70  
1EDN8550BXTSA1  
1EDN7550UXTSA1  
Datasheet  
25  
Rev. 2.2  
2019-12-09  
EiceDRIVER1EDN7550 and 1EDN8550  
Single-channel EiceDRIVER gate-drive IC with true differential inputs  
Revision history  
Revision history  
Document  
version  
Date of  
release  
Description of changes  
Rev.2.2  
2019-12-09  
Added new product 1EDN7550U with package TSNP-6  
On front cover "Description", added reference to application note  
(Applications of 1EDNx550 single-channel lowside EiceDRIVERwith  
truly differential inputs.) for input PWM signal voltage levels other than  
3.3 V  
Added Table 3, Logic table  
Corrected footnote in Table 4 VESD_HDM  
Updated Max. value in Table 4 VESD_CDM and added footnote  
Updated Thermal characteristics in Table 5 and added Table 6  
Updated Typ. values for Table 8 and added footnotes for Table 13  
Added Figure 5 for Test circuit  
Added layout recommendations for TSNP package Figure 13 and Figure  
14  
Added package marking for SOT23 Figure 18 and code marking tables  
Table 14, Table 15  
Added package marking for TSNP Figure 22  
Added Chapter 9, Device numbers and markings  
Rev. 2.1  
2019-11-28  
Parameter split in Table 4 Voltage at pins OUT_SRC and OUT_SNK →  
Voltage at pin OUT_SRC and Voltage at pin OUT_SNK and specified min.  
and max.  
Corrected typo in Table 4 VESD_CDM  
To match pin configurations in Figure 2 update of Figure 1 as well as in  
Chapter 5 the Figure 8 to Figure 11.  
Updated diagram according to number of OUT pins → OUTx, Figure 7  
CLoad → CL for Fig 12 and Fig 14  
Updated to latest package diagrams, Chapter 8  
Rev. 2.0  
2018-05-14  
Final Datasheet created  
Datasheet  
26  
Rev. 2.2  
2019-12-09  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2019-12-09  
Published by  
IMPORTANT NOTICE  
WARNINGS  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”) .  
With respect to any examples, hints or any typical values  
stated herein and/or any information regarding the  
application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities of  
any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury  
Infineon Technologies AG  
81726 Munich, Germany  
a written document signed by  
©
2019 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-fkz1513594931854  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

1EDN7550BXTSA1

Single-channel EiceDRIVER™ gate-drive IC with true differential inputs
INFINEON

1EDN7550U

Single-channel EiceDRIVER™ gate-drive IC with true differential inputs
INFINEON

1EDN7550UXTSA1

Single-channel EiceDRIVER™ gate-drive IC with true differential inputs
INFINEON

1EDN8511B

Buffer/Inverter Based MOSFET Driver, PDSO6, SOT-23, 6 PIN
INFINEON

1EDN8511BXUSA1

Buffer/Inverter Based MOSFET Driver,
INFINEON

1EDN851X

EiceDRIVER™
INFINEON

1EDN8550

Single-channel EiceDRIVER™ gate-drive IC with true differential inputs
INFINEON

1EDN8550B

Single-channel EiceDRIVER™ gate-drive IC with true differential inputs
INFINEON

1EDN8550BXTSA1

Single-channel EiceDRIVER™ gate-drive IC with true differential inputs
INFINEON

1EDN9550B

1-channel non-isolated gate-driver IC family with truly differential inputs
INFINEON

1EDP

PC Board Mountable RFI Filters for General Purpose Applications
TE

1EDS20I12SV

1200 V单通道高边栅极驱动IC, UL认证,实现了转换驱动速率控制、DESAT、过流软关断和两级关断闭
INFINEON