AFL27009SX/CH [INFINEON]

ADVANCED ANALOG HIGH RELIABILITY HYBRID DC/DC CONVERTERS; 先进的模拟高可靠性混合DC / DC转换器
AFL27009SX/CH
型号: AFL27009SX/CH
厂家: Infineon    Infineon
描述:

ADVANCED ANALOG HIGH RELIABILITY HYBRID DC/DC CONVERTERS
先进的模拟高可靠性混合DC / DC转换器

转换器 电源电路 局域网
文件: 总16页 (文件大小:446K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94435A  
AFL270XXS SERIES  
270V Input, Single Output  
ADVANCED ANALOG  
HIGH RELIABILITY  
HYBRID DC/DC CONVERTERS  
Description  
The AFL Series of DC/DC converters feature high power  
density with no derating over the full military tempera-  
ture range. This series is offered as part of a complete  
family of converters providing single and dual output  
voltages and operating from nominal +28 or +270 volt  
inputs with output power ranging from 80 to 120 watts.  
For applications requiring higher output power, multiple  
converters can be operated in parallel. The internal cur-  
rent sharing circuits assure equal current distribution  
among the paralleled converters. This series incorpo-  
rates Advanced Analog’s proprietary magnetic pulse  
feedback technology providing optimum dynamic line  
and load regulation response. This feedback system  
samples the output voltage at the pulse width modulator  
fixed clock frequency, nominally 550 KHz. Multiple con-  
verters can be synchronized to a system clock in the  
500 KHz to 700 KHz range or to the synchronization  
output of one converter. Undervoltage lockout, primary  
and secondary referenced inhibit, soft-start and load  
fault protection are provided on all models.  
AFL  
Features  
n 160 To 400 Volt Input Range  
n 5, 6, 9, 12, 15 and 28 Volt Outputs Available  
n High Power Density - up to 84 W /in  
3
n Up To 120 Watt Output Power  
n Parallel Operation with Stress and Current  
Sharing  
n Low Profile (0.380") Seam Welded Package  
n Ceramic Feedthru Copper Core Pins  
n High Efficiency - to 87%  
n Full Military Temperature Range  
n Continuous Short Circuit and Overload  
Protection  
n Remote Sensing Terminals  
n Primary and Secondary Referenced  
Inhibit Functions  
n Line Rejection > 60 dB - DC to 50KHz  
n External Synchronization Port  
n Fault Tolerant Design  
These converters are hermetically packaged in two en-  
closure variations, utilizing copper core pins to mini-  
mize resistive DC losses. Three lead styles are avail-  
able, each fabricated with Advanced Analog’s rugged  
ceramic lead-to-package seal assuring long term  
hermeticity in the most harsh environments.  
n Dual Output Versions Available  
n Standard Military Drawings Available  
Manufactured in a facility fully qualified to MIL-PRF-  
38534, these converters are available in four screening  
grades to satisfy a wide range of requirements. The CH  
grade is fully compliant to the requirements of MIL-PRF-  
38534 for class H. The HB grade is fully processed and  
screened to the class H requirement, but does not have  
material element evaluated to the class H requirement.  
Both grades are tested to meet the complete group “A”  
test specification over the full military temperature range  
without output power deration. Two grades with more  
limited screening are also available for use in less  
demanding applications. Variations in electrical,  
mechanical and screening can be accommo-  
dated. Contact Advanced Analog for special re-  
quirements.  
www.irf.com  
1
07/24/02  
AFL270XXS Series  
Specifications  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage  
-0.5V to 500V  
300°C for 10 seconds  
Soldering Temperature  
Case Temperature  
Operating  
Storage  
-55°C to +125°C  
-65°C to +135°C  
Static Characteristics -55°C TCASE +125°C, 160 VIN 400 unless otherwise specified.  
Group A  
Parameter  
INPUT VOLTAGE  
Subgroups  
Test Conditions  
Min  
Nom  
Max  
Unit  
Note 6  
160  
270  
400  
V
V
IN  
= 270 Volts, 100% Load  
OUTPUT VOLTAGE  
1
1
1
1
1
1
4.95  
5.94  
8.91  
11.88  
14.85  
27.72  
5.00  
6.00  
9.00  
12.00  
15.00  
28.00  
5.05  
6.06  
9.09  
12.12  
15.15  
28.28  
V
V
V
V
V
V
AFL27005S  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
4.90  
5.88  
8.82  
11.76  
14.70  
27.44  
5.10  
6.12  
9.18  
12.24  
15.30  
28.56  
V
V
V
V
V
V
AFL27005S  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
V
IN  
= 160, 270, 400 Volts - Note 6  
OUTPUT CURRENT  
OUTPUT POWER  
AFL27005S  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
16.0  
13.5  
10.0  
9.0  
8.0  
4.0  
A
A
A
A
A
A
Note 6  
Note 1  
80  
81  
90  
108  
120  
112  
W
W
W
W
W
W
AFL27005S  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
MAXIMUM CAPACITIVE LOAD  
10,000  
µfd  
V
IN  
= 270 Volts, 100% Load - Note 1, 6 -0.015  
+0.015  
%/°C  
OUTPUT VOLTAGE  
TEMPERATURE COEFFICIENT  
OUTPUT VOLTAGE REGULATION  
1, 2, 3  
1, 2, 3  
No Load, 50% Load, 100% Load  
-70.0  
-10.0  
+70.0  
+10.0  
mV  
mV  
AFL27028S  
All Others  
Line  
Line  
V
= 160, 270, 400 Volts  
IN  
1, 2, 3  
-1.0  
+1.0  
%
Load  
OUTPUT RIPPLE VOLTAGE  
AFL27005S  
V
= 160, 270, 400 Volts, 100% Load,  
IN  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
30  
35  
mV  
pp  
BW = 10MHz  
mV  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
pp  
40  
mV  
pp  
45  
mV  
pp  
50  
mV  
pp  
100  
mV  
pp  
For Notes to Specifications, refer to page 4  
2
www.irf.com  
AFL270XXS Series  
Static Characteristics (Continued)  
Group A  
Parameter  
INPUT CURRENT  
Subgroups  
Test Conditions  
= 270 Volts  
Min  
Nom  
Max  
Unit  
V
IN  
1
2, 3  
1, 2, 3  
1, 2, 3  
15  
17  
3.0  
5.0  
mA  
mA  
mA  
mA  
No Load  
I
= 0  
OUT  
Inhibit 1  
Inhibit 2  
Pin 4 Shorted to Pin 2  
Pin 12 Shorted to Pin 8  
V
= 270 Volts, 100% Load  
INPUT RIPPLE CURRENT  
AFL27005S  
IN  
B.W. = 10MHz  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
60  
60  
70  
70  
80  
80  
mA  
pp  
mA  
mA  
mA  
mA  
mA  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
pp  
pp  
pp  
pp  
pp  
V
= 90% V  
Note 5  
CURRENT LIMIT POINT  
OUT  
NOM  
1
2
3
115  
105  
125  
125  
115  
140  
%
%
%
Expressed as a Percentage  
of Full Rated Load  
LOAD FAULT POWER DISSIPATION  
VIN = 270 Volts  
1, 2, 3  
30  
W
Overload or Short Circuit  
EFFICIENCY  
AFL27005S  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
VIN = 270 Volts, 100% Load  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
78  
79  
80  
82  
83  
82  
82  
83  
84  
85  
87  
85  
%
%
%
%
%
%
ENABLE INPUTS (Inhibit Function)  
Converter Off  
1, 2, 3  
1, 2, 3  
Logical Low, Pin 4 or Pin 12  
Note 1  
Logical High, Pin 4 and Pin 12 - Note 9 2.0  
Note 1  
-0.5  
0.8  
100  
50  
V
µA  
V
Sink Current  
Converter On  
Sink Current  
100  
µA  
SWITCHING FREQUENCY  
1, 2, 3  
500  
550  
600  
KHz  
SYNCHRONIZATION INPUT  
Frequency Range  
1, 2, 3  
1, 2, 3  
1, 2, 3  
500  
2.0  
-0.5  
700  
10  
0.8  
100  
80  
KHz  
V
V
nSec  
%
Pulse Amplitude, Hi  
Pulse Amplitude, Lo  
Pulse Rise Time  
Note 1  
Note 1  
20  
Pulse Duty Cycle  
ISOLATION  
1
Input to Output or Any Pin to Case  
(except Pin 3). Test @ 500VDC  
100  
MΩ  
DEVICE WEIGHT  
MTBF  
Slight Variations with Case Style  
85  
gms  
MIL-HDBK-217F, AIF @ T = 70°C  
C
300  
KHrs  
For Notes to Specifications, refer to page 4  
www.irf.com  
3
AFL270XXS Series  
Dynamic Characteristics -55°C TCASE +125°C, VIN = 270 Volts unless otherwise specified.  
Group A  
Parameter  
Subgroup  
s
Test Conditions  
Min  
Nom  
Max  
Unit  
LOAD TRANSIENT RESPONSE  
Note 2, 8  
4, 5, 6  
4, 5, 6  
Load Step 50%  
Load Step 10%  
100%  
50%  
-450  
-450  
450  
200  
mV  
µSec  
AFL27005S  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
450  
400  
mV  
µSec  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
Load Step 50%  
Load Step 10%  
100%  
50%  
-450  
-450  
450  
200  
mV  
µSec  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
450  
400  
mV  
µSec  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
Load Step 50%  
Load Step 10%  
100%  
50%  
-600  
-600  
600  
200  
mV  
µSec  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
600  
400  
mV  
µSec  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
Load Step 50%  
Load Step 10%  
100%  
50%  
-750  
-750  
750  
200  
mV  
µSec  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
750  
400  
mV  
µSec  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
Load Step 50%  
Load Step 10%  
100%  
50%  
-900  
-900  
900  
200  
mV  
µSec  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
900  
400  
mV  
µSec  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
Load Step 50%  
Load Step 10%  
100%  
50%  
-1200  
-1200  
1200  
200  
mV  
µSec  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
1200  
400  
mV  
µSec  
Amplitude  
Recovery  
LINE TRANSIENT RESPONSE  
Note 1, 2, 3  
VIN Step = 160  
400 Volts  
-500  
500  
500  
mV  
µSec  
Amplitude  
Recovery  
TURN-ON CHARACTERISTICS  
VIN = 160, 270, 400 Volts. Note 4  
Overshoot  
Delay  
4, 5, 6  
4, 5, 6  
Enable 1, 2 on. (Pins 4, 12 high or  
open)  
250  
120  
mV  
mSec  
50  
60  
75  
70  
Same as Turn On Characteristics.  
LOAD FAULT RECOVERY  
LINE REJECTION  
MIL-STD-461, CS101, 30Hz to 50KHz  
Note 1  
dB  
Notes to Specifications:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
Parameters not 100% tested but are guaranteed to the limits specified in the table.  
Recovery time is measured from the initiation of the transient to where VOUT has returned to within ±1% of VOUT at 50% load.  
Line transient transition time 100 µSec.  
Turn-on delay is measured with an input voltage rise time of between 100 and 500 volts per millisecond.  
Current limit point is that condition of excess load causing output voltage to drop to 90% of nominal.  
Parameter verified as part of another test.  
All electrical tests are performed with the remote sense leads connected to the output leads at the load.  
Load transient transition time 10 µSec.  
Enable inputs internally pulled high. Nominal open circuit voltage 4.0VDC.  
4
www.irf.com  
AFL270XXS Series  
AFL270XXS Circuit Description  
Figure I. AFL Single Output Block Diagram  
INPUT  
FILTER  
DC INPUT  
ENABLE 1  
1
4
OUTPUT  
FILTER  
PRIMARY  
BIAS SUPPLY  
7
+ OUTPUT  
+ SENSE  
10  
CURRENT  
SENSE  
SYNC OUTPUT  
5
SHARE  
11  
12  
SHARE  
CONTROL  
AMPLIFIER  
ERROR  
AMP  
& REF  
SYNC INPUT  
CASE  
6
3
2
FB  
ENABLE 2  
SENSE  
AMPLIFIER  
9
8
- SENSE  
INPUT RETURN  
OUTPUT RETURN  
used, the sense leads should be connected to their respec-  
tive output terminals at the converter. Figure III. illustrates a  
typical application.  
Circuit Operation and Application Information  
The AFL series of converters employ a forward switched  
mode converter topology. (refer to Figure I.) Operation of  
the device is initiated when a DC voltage whose magnitude  
is within the specified input limits is applied between pins 1  
and 2. If pin 4 is enabled (at a logical 1 or open) the primary  
bias supply will begin generating a regulated housekeeping  
voltage bringing the circuitry on the primary side of the con-  
verter to life. Two power MOSFETs used to chop the DC  
input voltage into a high frequency square wave, apply this  
chopped voltage to the power transformer. As this switch-  
ing is initiated, a voltage is impressed on a second winding  
of the power transformer which is then rectified and applied  
to the primary bias supply. When this occurs, the input  
voltage is shut out and the primary bias voltage becomes  
exclusively internally generated.  
Inhibiting Converter Output  
As an alternative to application and removal of the DC  
voltage to the input, the user can control the converter  
output by providing TTL compatible, positive logic signals  
to either of two enable pins (pin 4 or 12). The distinction  
between these two signal ports is that enable 1 (pin 4) is  
referenced to the input return (pin 2) while enable 2 (pin 12)  
is referenced to the output return (pin 8). Thus, the user  
has access to an inhibit function on either side of the isola-  
tion barrier. Each port is internally pulled “high” so that  
when not used, an open connection on both enable pins  
permits normal converter operation. When their use is  
desired, a logical “low” on either port will shut the con-  
verter down.  
The switched voltage impressed on the secondary output  
transformer winding is rectified and filtered to provide the  
converter output voltage. An error amplifier on the second-  
ary side compares the output voltage to a precision refer-  
ence and generates an error signal proportional to the dif-  
ference. This error signal is magnetically coupled through  
the feedback transformer into the controller section of the  
converter varying the pulse width of the square wave sig-  
nal driving the MOSFETs, narrowing the width if the output  
voltage is too high and widening it if it is too low.  
Figure II. Enable Input Equivalent Circuit  
+5.6V  
100K  
1N4148  
Pin 4 or  
Pin 12  
Disable  
290K  
Remote Sensing  
2N3904  
Connection of the + and - sense leads at a remotely locat-  
led load permits compensation for resistive voltage drop  
between the converter output and the load when they are  
physically separated by a significant distance. This con-  
nection allows regulation to the placard voltage at the point  
of application. When the remote sensing features is not  
150K  
Pin 2 or  
Pin 8  
www.irf.com  
5
AFL270XXS Series  
Internally, these ports differ slightly in their function. In use,  
a low on Enable 1 completely shuts down all circuits in the  
converter while a low on Enable 2 shuts down the second-  
ary side while altering the controller duty cycle to near zero.  
Externally, the use of either port is transparent save for  
minor differences in idle current. (See specification table).  
level of +2.0 volts. The sync output of another converter  
which has been designated as the master oscillator pro-  
vides a convenient frequency source for this mode of op-  
eration. When external synchronization is not required, the  
sync in pin should be left unconnected thereby permitting  
the converter to operate at its’ own internally set frequency.  
The sync output signal is a continuous pulse train set at 550  
±50 KHz, with a duty cycle of 15 ±5%. This signal is refer-  
enced to the input return and has been tailored to be com-  
patible with the AFL sync input port. Transition times are  
less than 100 ns and the low level output impedance is less  
than 50 ohms. This signal is active when the DC input  
voltage is within the specified operating range and the con-  
verter is not inhibited. This output has adequate drive re-  
serve to synchronize at least five additional converters. A  
typical synchronization connection option is illustrated in  
Figure III.  
Synchronization of Multiple Converters  
When operating multiple converters, system requirements  
often dictate operation of the converters at a common fre-  
quency. To accommodate this requirement, the AFL series  
converters provide both a synchronization input and out-  
put.  
The sync input port permits synchronization of an AFL co-  
nverter to any compatible external frequency source oper-  
ating between 500 and 700 KHz. This input signal should  
be referenced to the input return and have a 10% to 90%  
duty cycle. Compatibility requires transition times less th an  
100 ns, maximum low level of +0.8 volts and a minimum high  
Figure III. Preferred Connection for Parallel Operation  
1
12  
Power  
Input  
Enable 2  
Vin  
Rtn  
Share  
Sense  
Sense  
Return  
Case  
Enable  
+
-
AFL  
AFL  
1
Sync Out  
Sync In  
+
Vout  
6
1
7
Optional  
Synchronization  
Connection  
Share Bus  
12  
Enable  
2
Vin  
Rtn  
Share  
Sense  
Sense  
Return  
Case  
+
-
Enable  
1
Sync Out  
Sync In  
to Load  
+
Vout  
7
6
1
12  
Enable  
2
Vin  
Rtn  
Share  
Sense  
Sense  
Return  
Case  
+
-
AFL  
Enable  
1
Sync Out  
Sync In  
+
Vout  
7
6
(Other Converters)  
Parallel Operation-Current and Stress Sharing  
AFL series operating in the parallel mode is that in addition  
to sharing the current, the stress induced by temperature  
will also be shared. Thus if one member of a paralleled set  
is operating at a higher case temperture, the current it pro-  
vides to the load will be reduced as compensation for the  
temperature induced stress on that device.  
Figure III. illustrates the preferred connection scheme for  
operation of a set of AFL converters with outputs operating  
in parallel. Use of this connection permits equal sharing of  
a load current exceeding the capacity of an individual AFL  
among the members of the set. An important feature of the  
6
www.irf.com  
AFL270XXS Series  
When operating in the shared mode, it is important that  
symmetry of connection be maintained as an assurance of  
optimum load sharing performance. Thus, converter out-  
puts should be connected to the load with equal lengths of  
wire of the same gauge and sense leads from each con-  
verter should be connected to a common physical point,  
preferably at the load along with the converter output and  
return leads. All converters in a paralleled set must have  
their share pins connected together. This arrangement is  
diagrammatically illustrated in Figure III. showing the out-  
puts and sense pins connected at a star point which is  
located close as possible to the load.  
for minor variations of either surface. While other available  
types of heat conductive materials and compounds may  
provide similar performance, these alternatives are often  
less convinient and are frequently messy to use.  
A conservative aid to estimating the total heat sink surface  
area (AHEAT SINK) required to set the maximum case temp-  
erature rise (T) above ambient temperature is given by  
the following expression:  
1.43  
T  
A
HEAT SINK  
3.0  
0.85  
As a consequence of the topology utilized in the current  
sharing circuit, the share pin may be used for other func-  
tions. In applications requiring a single converter, the volt-  
age appearing on the share pin may be used as a “current  
monitor”. The share pin open circuit voltage is nominally  
+1.00v at no load and increases linearly with increasing  
output current to +2.20v at full load. The share pin voltage is  
referenced to the output return pin.  
80P  
where  
T = Case temperature rise above ambient  
1
P = Device dissipation in Watts = POUT  
Eff  
1  
As an example, it is desired to maintain the case tempera-  
ture of an AFL27015S at +85°C in an area where the  
ambient temperature is held at a constant +25°C; then  
Thermal Considerations  
Because of the incorporation of many innovative techno-  
logical concepts, the AFL series of converters is capable of  
providing very high output power from a package of very  
small volume. These magnitudes of power density can only  
be obtained by combining high circuit efficiency with effec-  
tive methods of heat removal from the die junctions. This  
requirement has been effectively addressed inside the de-  
vice; but when operating at maximum loads, a significant  
amount of heat will be generated and this heat must be  
conducted away from the case. To maintain the case tem-  
perature at or below the specified maximum of 125°C, this  
heat must be transferred by conduction to an appropriate  
heat dissipater held in intimate contact with the converter  
base-plate.  
T = 85 - 25 = 60°C  
From the Specification Table, the worst case full load effi-  
ciency for this device is 83%; therefore the power dissipa-  
tion at full load is given by  
1
(
)
P
120  
1
120 0.205 24.6W  
=
=
=
.83  
and the required heat sink area is  
1.43  
60  
A
HEAT SINK  
=
3.0 = 71 in2  
Because effectiveness of this heat transfer is dependent  
on the intimacy of the baseplate/heatsink interface, it is st-  
rongly recommended that a high thermal conductivity heat  
transferance medium is inserted between the baseplate a-  
nd heatsink. The material most frequently utilized at the fa-  
ctory during all testing and burn-in processes is sold under  
8024.60.85  
Thus, a total heat sink surface area (including fins, if any) of  
2
71 in in this example, would limit case rise to 60°C above  
ambient. A flat aluminum plate, 0.25" thick and of approxi-  
mate dimension 4" by 9" (36 in per side) would suffice for  
1
2
the trade name of Sil-Pad 400 . This particular pro duct  
is an insulator but electrically conductive versions are also  
available. Use of these materials assures maximum surfa-  
ce contact with the heat dissipator thereby compensating  
this application in a still air environment. Note that to meet  
the criteria in this example, both sides of the plate require  
unrestricted exposure to the ambient air.  
1
Sil-Pad is a registered Trade Mark of Bergquist, Minneapolis, MN  
www.irf.com  
7
AFL270XXS Series  
Input Filter  
Finding a resistor value for a particular output voltage, is  
simply a matter of substituting the desired output voltage  
and the nominal device voltage into the equation and solv-  
ing for the corresponding resistor value.  
The AFL270XXS series converters incorporate a single  
stage LC input filter whose elements dominate the input  
load impedance characteristic during the turn-on sequence.  
The input circuit is as shown in Figure IV.  
Figure V. Connection for VOUT Adjustment  
Figure IV. Input Filter Circuit  
Enable  
2
Share  
Sense  
Sense  
Return  
R ADJ  
8.4µH  
+
AFL270xxS  
-
Pin  
Pin  
1
To Load  
+
Vout  
0.54µfd  
Caution: Do not set Radj < 500Ω  
2
Attempts to adjust the output voltage to a value greater than  
120% of nominal should be avoided because of the poten-  
tial of exceeding internal component stress ratings and sub-  
sequent operation to failure. Under no circumstance should  
the external setting resistor be made less than 500. By  
remaining within this specified range of values, completely  
safe operation fully within normal component derating is  
assured.  
Undervoltage Lockout  
A minimum voltage is required at the input of the converter  
to initiate operation. This voltage is set to 150 ± 5 volts. To  
preclude the possibility of noise or other variations at the  
input falsely initiating and halting converter operation, a hys-  
teresis of approximately 10 volts is incorporated in this cir-  
cuit. Thus if the input voltage droops to 140 ± 5 volts, the  
converter will shut down and remain inoperative until the  
input voltage returns to 150 volts.  
Examination of the equation relating output voltage and re-  
sistor value reveals a special benefit of the circuit topology  
utilized for remote sensing of output voltage in the  
AFL270XXS series of converters. It is apparent that as the  
resistance increases, the output voltage approaches the  
nominal set value of the device. In fact the calculated limit-  
ing value of output voltage as the adjusting resistor be-  
comes very large is 25mV above nominal device voltage.  
OutputVoltage Adjust  
In addition to permitting close voltage regulation of remotely  
located loads, it is possible to utilize the converter sense  
pins to incrementally increase the output voltage over a  
limited range.The adjustments made possible by this method  
are intended as a means to “trim” the output to a voltage  
setting for some particular application, but are not intended  
to create an adjustable output converter. These output  
voltage setting variations are obtained by connecting an  
appropriate resistor value between the +sense and -sense  
pins while connecting the -sense pin to the output return pin  
as shown in Figure V. below. The range of adjustment and  
corresponding range of resistance values can be deter-  
mined by use of the equation presented below.  
The consequence is that if the +sense connection is un-  
intentionally broken, an AFL270XXS has a fail-safe output  
voltage of Vout + 25mV, where the 25mV is independent of  
the nominal output voltage. It can be further demonstrated  
that in the event of both the + and - sense connections  
being broken, the output will be limited to Vout + 440mV.  
This 440 mV is also essentially constant independent of the  
nominal output voltage. While operation in this condition is  
not damaging to the device, not all performance parameters  
will be met.  
Performance Data  
NOM  
V
adj  
R
= 100•  
Typical performance data is graphically presented on the follow-  
ing pages for selected parameters on a variety of AFL270XXS  
type converters. The data presented was selected as repre-  
sentative of more critical parameters and for general interest in  
typical converter applications.  
OUT  
NOM  
V
- V  
-.025  
Where VNOM = device nominal output voltage, and  
VOUT = desired output voltage  
8
www.irf.com  
AFL270XXS Series  
AFL270XXS - Typical Line Rejection Characteristics  
Measured per MIL-STD 461D, CS101 with 100% Output Load, Vin = 270VDC  
AFL27005S  
AFL27006S  
0
0
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-100  
30  
100  
1000  
10000  
50000  
30  
100  
100  
100  
1000  
10000  
10000  
10000  
50000  
Frequency ( Hz )  
Frequency ( Hz )  
AFL27009S  
AFL27012S  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
30  
1000  
50000  
30  
100  
1000  
10000  
50000  
Frequency ( Hz )  
Frequency ( Hz )  
AFL27015S  
AFL27028S  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
30  
1000  
50000  
30  
100  
1000  
10000  
50000  
Frequency ( Hz )  
Frequency ( Hz )  
www.irf.com  
9
AFL270XXS Series  
AFL270XXS Typical Efficiency Characteristics  
Presented for three values of Input Voltage.  
AFL27005S  
AFL27006S  
90  
90  
80  
70  
60  
50  
80  
160V  
160V  
270V  
70  
270V  
60  
400V  
400V  
50  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
Output Power ( Watts )  
Output Power ( Watts )  
AFL27009S  
AFL27012S  
90  
80  
70  
60  
50  
95  
85  
75  
65  
55  
160V  
270V  
160V  
270V  
400V  
400V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
120  
Output Power ( Watts )  
Output Power ( Watts )  
AFL27028S  
AFL27015S  
90  
95  
80  
70  
60  
50  
85  
75  
65  
55  
160V  
160V  
270V  
270V  
400V  
400V  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
Output Power ( Watts )  
Output Power ( Watts )  
10  
www.irf.com  
AFL270XXS Series  
Typical Performance Characteristics - AFL27005S  
Output Load = 100%, Vin = 270VDC unless otherwise specified.  
Turn-on Time, No Load  
Turn-on Time, Full Load  
6
6
5
4
5
4
3
3
2
2
1
1
0
0
-1  
-1  
70  
75  
80  
85  
90  
95  
100  
70  
75  
80  
85  
90  
95  
100  
Time from Application of Input Power ( msec )  
Time from Application of Input Power ( msec )  
Output Ripple Voltage  
Input Ripple Current  
40  
20  
0
8
4
0
-20  
-40  
-4  
-8  
0
2
4
6
8
10  
0
2
4
6
8
10  
Time ( usec )  
Time ( usec )  
Output Load Transient Response  
10% Load to/from 50% Load  
Output Load Transient Response  
50% Load to/from 100% Load  
400  
200  
0
400  
200  
0
-200  
-200  
-400  
-400  
0
200  
400  
600  
Time ( usec )  
800  
1000  
0
200  
400  
600  
Time ( usec )  
800  
1000  
www.irf.com  
11  
AFL270XXS Series  
Typical Performance Characteristics - AFL27015S  
Output Load = 100%, Vin = 270VDC unless otherwise specified.  
Turn-on Time, No Load  
Turn-on Time, Full Load  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
-2  
-2  
50  
55  
60  
65  
70  
75  
80  
50  
55  
60  
65  
70  
75  
80  
Time from Application of Input Power ( msec )  
Time from Application of Input Power ( msec )  
Output Ripple Voltage  
Input Ripple Current  
40  
20  
0
8
4
0
-20  
-40  
-4  
-8  
0
2
4
6
8
10  
0
2
4
6
8
10  
Time ( usec )  
Time ( usec )  
Output Load Transient Response  
10% Load to/from 50% Load  
Output Load Transient Response  
50% Load to/from 100% Load  
800  
800  
400  
0
400  
0
-400  
-800  
-400  
-800  
0
200  
400  
600  
Time ( usec )  
800  
1000  
0
200  
400  
600  
Time ( usec )  
800  
1000  
12  
www.irf.com  
AFL270XXS Series  
Typical Performance Characteristics - AFL27028S  
Output Load = 100%, Vin = 270VDC unless otherwise specified.  
Turn-on Time, Full Load  
Turn-on Time, No Load  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
-5  
-5  
60  
65  
70  
75  
80  
85  
90  
60  
65  
70  
75  
80  
85  
90  
Time from Application of Input Power ( msec )  
Time from Application of Input Power ( msec )  
Input Ripple Current  
Output Ripple Voltage  
40  
8
4
20  
0
0
-20  
-40  
-4  
-8  
0
2
4
6
8
10  
0
2
4
6
8
10  
Time ( usec )  
Time ( usec )  
Output Load Transient Response  
10% Load to/from 50% Load  
Output Load Transient Response  
50% Load to/from 100% Load  
800  
400  
0
800  
400  
0
-400  
-800  
-400  
-800  
0
200  
400  
600  
Time ( usec )  
800  
1000  
0
200  
400  
600  
Time ( usec )  
800  
1000  
www.irf.com  
13  
AFL270XXS Series  
AFL270XXS to Standard Military Drawing EquivalenceTable  
AFL27005S  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
5962-9456901  
5962-9553401  
5962-9553501  
5962-9475301  
5962-9457001  
5962-9556501  
Available Screening Levels and ProcessVariations for AFL270XXS Series.  
MIL-STD-883  
Method  
No  
ES  
HB  
CH  
Requirement  
Temperature Range  
Element Evaluation  
Internal Visual  
Suffix  
Suffix  
Suffix  
Suffix  
-20 to +85°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
MIL-PRF-38534  
ü
2017  
1010  
2001  
1015  
¬
ü
Cond B  
ü
Temperature Cycle  
Constant Acceleration  
Burn-in  
Cond C  
Cond C  
500g  
Cond A  
Cond A  
48hrs @ 85°C  
48hrs @ 125°C  
25°C  
160hrs @ 125°C  
160hrs @ 125°C  
Final Electrical (Group A)  
MIL-PRF-38534  
& Specification  
25°C  
-55, +25, +125°C -55, +25, +125°C  
Seal, Fine & Gross  
External Visual  
1014  
2009  
Cond C  
Cond A, C  
Cond A, C  
Cond A, C  
¬
ü
ü
ü
* per Commercial Standards  
14  
www.irf.com  
AFL270XXS Series  
AFL270XXS Case Outlines  
Case X  
Case W  
Pin Variation of Case Y  
3.000  
2.760  
ø
0.128  
0.050  
0.050  
0.250  
0.250  
1.000  
1.000  
Ref  
1.260 1.500  
0.200 Typ  
Non-cum  
Pin  
ø
0.040  
Pin  
0.040  
0.220  
ø
2.500  
0.220  
0.525  
2.800  
2.975 max  
0.238 max  
0.42  
0.380  
Max  
0.380  
Max  
Case Y  
Case Z  
Pin Variation of Case Y  
1.150  
0.300  
ø
0.140  
0.25 typ  
0.050  
0.050  
0.250  
0.250  
1.000  
Ref  
1.500 1.750 2.00  
1.000  
Ref  
0.200 Typ  
Non-cum  
Pin  
ø
0.040  
Pin  
ø
0.040  
0.220  
0.220  
1.750  
2.500  
0.375  
0.36  
2.800  
2.975 max  
0.525  
0.238 max  
0.380  
Max  
0.380  
Max  
Tolerances, unless otherwise specified: .XX  
.XXX  
=
=
±0.010  
±0.005  
BERYLLIA WARNING: These converters are hermetically sealed; however they contain BeO substrates and should not be ground or subjected to any other  
operations including exposure to acids, which may produce Beryllium dust or fumes containing Beryllium  
www.irf.com  
15  
AFL270XXS Series  
AFL270XXS Pin Designation  
Pin No.  
Designation  
Positive Input  
Input Return  
Case  
1
2
3
4
Enable 1  
5
Sync Output  
Sync Input  
Positive Output  
Output Return  
Return Sense  
Positive Sense  
Share  
6
7
8
9
10  
11  
12  
Enable 2  
Part Numbering  
AFL 270 05 S X / CH  
Model  
Screening  
,
ES  
Input Voltage  
270 = 270V  
28 = 28V  
Case Style  
W, X, Y, Z  
HB, CH  
Output Voltage  
05 = 5V, 06 = 6V  
09 = 9V, 12 = 12V  
15 = 15V, 28 = 28V  
Outputs  
S = Single  
D = Dual  
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331  
ADVANCED ANALOG: 2270 Martin Av., Santa Clara, California 95050, Tel: (408) 727-0500  
Visit us at www.irf.com for sales contact information.  
Data and specifications subject to change without notice. 07/02  
16  
www.irf.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY