AUIRF7739L2TR_15 [INFINEON]

Automotive DirectFET Power MOSFET;
AUIRF7739L2TR_15
型号: AUIRF7739L2TR_15
厂家: Infineon    Infineon
描述:

Automotive DirectFET Power MOSFET

文件: 总11页 (文件大小:540K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AUTOMOTIVE GRADE  
AUIRF7739L2TR  
Automotive DirectFET® Power MOSFET  
Advanced Process Technology  
Optimized for Automotive Motor Drive, DC-DC and  
other Heavy Load Applications  
Exceptionally Small Footprint and Low Profile  
High Power Density  
Low Parasitic Parameters  
Dual Sided Cooling  
175°C Operating Temperature  
Repetitive Avalanche Capability for Robustness and Reliability  
Lead free, RoHS and Halogen free  
V(BR)DSS  
RDS(on) typ.  
max.  
ID (Silicon Limited)  
Qg (typical)  
40V  
700µ  
1000µ  
270A  
220nC  
S
S
S
S
 Automotive Qualified *  
D
D
G
S
S
S
S
DirectFET® ISOMETRIC  
Applicable DirectFET® Outline and Substrate Outline   
L8  
SB  
SC  
M2  
M4  
L4  
L6  
L8  
Description  
The AUIRF7739L2TR combines the latest Automotive HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging to  
achieve the lowest on-state resistance in a package that has the footprint of a DPak (TO-252AA) and only 0.7 mm profile. The DirectFET package is  
compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering  
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual  
sided cooling to maximize thermal transfer in automotive power systems.  
This HEXFET® Power MOSFET is designed for applications where efficiency and power density are essential. The advanced DirectFET® packaging  
platform coupled with the latest silicon technology allows the AUIRF7739L2TR to offer substantial system level savings and performance improvement  
specifically in motor drive, high frequency DC-DC and other heavy load applications on ICE, HEV and EV platforms. This MOSFET utilizes the latest  
processing techniques to achieve low on-resistance and low Qg per silicon area. Additional features of this MOSFET are 175°C operating junction  
temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for  
high current automotive applications.  
Standard Pack  
Base Part Number  
Package Type  
Orderable Part Number  
Form  
Quantity  
AUIRF7739L2  
DirectFET Large Can  
AUIRF7739L2TR  
Tape and Reel  
4000  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and  
functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under  
board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.  
Parameter  
Max.  
40  
±20  
270  
190  
46  
375  
1070  
125  
3.8  
Units  
VDS  
VGS  
Drain-to-Source Voltage  
Gate-to-Source Voltage  
V
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TA = 25°C  
ID @ TC = 25°C  
Continuous Drain Current, VGS @ 10V (Silicon Limited)   
Continuous Drain Current, VGS @ 10V (Silicon Limited)   
Continuous Drain Current, VGS @ 10V (Silicon Limited)   
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current   
A
IDM  
PD @TC = 25°C  
PD @TA = 25°C  
Power Dissipation   
Power Dissipation   
W
EAS  
EAS (tested)  
IAR  
Single Pulse Avalanche Energy (Thermally Limited)   
Single Pulse Avalanche Energy (Tested Value)   
Avalanche Current   
270  
160  
mJ  
A
mJ  
See Fig. 16, 17, 18a, 18b  
EAR  
Repetitive Avalanche Energy   
TP  
Peak Soldering Temperature  
270  
°C  
TJ  
Operating Junction and  
-55 to + 175  
TSTG  
Storage Temperature Range  
HEXFET® is a registered trademark of Infineon.  
*Qualification standards can be found at www.infineon.com  
1
2015-11-19  
AUIRF7739L2TR  
Thermal Resistance  
Symbol  
RJA  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
40  
Units  
°C/W  
W/°C  
Junction-to-Ambient   
Junction-to-Ambient   
Junction-to-Ambient   
Junction-to-Can   
–––  
–––  
1.2  
RJA  
RJA  
–––  
RJ-Can  
Junction-to-PCB Mounted  
–––  
0.5  
RJ-PCB  
Linear Derating Factor   
0.83  
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
40 ––– –––  
––– 0.008 ––– V/°C Reference to 25°C, ID = 1.0mA  
Conditions  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
V
VGS = 0V, ID = 250µA  
V(BR)DSS/TJ  
RDS(on)  
VGS(th)  
–––  
2.0  
700 1000  
2.8 4.0  
V
GS = 10V, ID = 160A   
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
µ  
V
V
DS = VGS, ID = 250µA  
DS = 10V, ID = 160A  
Gate Threshold Voltage Coefficient  
Forward Transconductance  
Internal Gate Resistance  
––– -6.7  
––– mV/°C  
VGS(th)/TJ  
gfs  
280  
–––  
–––  
–––  
–––  
–––  
–––  
1.5  
–––  
–––  
5.0  
S
V
RG  
  
–––  
–––  
–––  
VDS = 40V, VGS = 0V  
DS = 40V, VGS = 0V, TJ = 125°C  
VGS = 20V  
VGS = -20V  
IDSS  
IGSS  
Drain-to-Source Leakage Current  
µA  
nA  
250  
100  
V
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
––– -100  
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Symbol Parameter Min. Typ. Max. Units  
Total Gate Charge  
Conditions  
Qg  
Qgs1  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
220  
46  
19  
81  
74  
100  
83  
21  
71  
56  
42  
330  
–––  
–––  
VDS = 20V  
GS = 10V  
V
Gate-to-Source Charge  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
ID = 160A  
Qgs2  
Qgd  
nC  
See Fig.11  
Qgodr  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qsw  
Qoss  
td(on)  
tr  
VDS = 16V, VGS = 0V  
VDD = 20V, VGS = 10V   
ID = 160A  
nC  
ns  
Turn-On Delay Time  
Rise Time  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 1.8  
Ciss  
Coss  
Crss  
Coss  
Coss  
Coss eff.  
Input Capacitance  
––– 11880 –––  
––– 2510 –––  
––– 1240 –––  
––– 8610 –––  
––– 2230 –––  
––– 3040 –––  
VGS = 0V  
VDS = 25V  
Output Capacitance  
Reverse Transfer Capacitance  
Output Capacitance  
Output Capacitance  
Effective Output Capacitance  
ƒ = 1.0 MHz  
pF  
VGS = 0V, VDS = 1.0V, ƒ = 1.0 MHz  
VGS = 0V, VDS = 32V, ƒ = 1.0 MHz  
VGS = 0V, VDS = 0V to 32V  
Notes through are on page 3  
2
2015-11-19  
AUIRF7739L2TR  
Diode Characteristics  
Symbol Parameter  
Min. Typ. Max. Units  
Conditions  
Continuous Source Current  
(Body Diode)  
MOSFET symbol  
showing the  
integral reverse  
p-n junction diode.  
D
IS  
–––  
–––  
–––  
–––  
110  
A
G
Pulsed Source Current  
(Body Diode)   
ISM  
1070  
S
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
87  
1.3  
130  
380  
V
TJ = 25°C, IS = 160A, VGS = 0V   
TJ = 25°C, IF = 160A, VDD = 20V  
dv/dt = 100A/µs   
ns  
nC  
250  
Qrr  
Mounted on minimum  
footprint full size board with  
metalized back and with small  
clip heatsink (still air).  
Mounted to a PCB with  
small clip heatsink (still air)  
Surface mounted on 1 in.  
square Cu board (still air).  
Click on this section to link to the appropriate technical paper.  
Click on this section to link to the DirectFET® Website.  
Surface mounted on 1 in. square Cu board, steady state.  
TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
Starting TJ = 25°C, L = 0.021mH, RG = 25, IAS = 160A.  
Pulse width 400µs; duty cycle 2%.  
Used double sided cooling, mounting pad with large heatsink.  
Mounted on minimum footprint full size board with metalized back and with small clip heat sink.  
Ris measured at TJ of approximately 90°C.  
3
2015-11-19  
AUIRF7739L2TR  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
1
Tj = 25°C  
4.5V  
4.5V  
0.1  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig. 1 Typical Output Characteristics  
Fig. 2 Typical Output Characteristics  
0.93  
0.92  
0.91  
0.90  
0.89  
0.88  
0.87  
0.86  
0.85  
10  
V
= 10V  
GS  
I
= 160A  
D
8
6
4
2
0
T
= 125°C  
J
T
= 25°C  
J
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
0
40  
I
80  
120  
160  
200  
, Drain Current (A)  
V
Gate -to -Source Voltage (V)  
D
GS,  
Fig. 4 Typical On-Resistance vs. Drain Current  
Fig. 3 Typical On-Resistance vs. Gate Voltage  
1000  
2.0  
I
= 160A  
= 10V  
D
V
GS  
100  
T
= 175°C  
J
1.5  
1.0  
0.5  
T
= 25°C  
10  
1
J
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
2
3
4
5
6
7
8
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
T
GS  
J
Fig 6. Normalized On-Resistance vs. Temperature  
2015-11-19  
Fig 5. Typical Transfer Characteristics  
4
AUIRF7739L2TR  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
1000  
100  
10  
T
= 175°C  
J
T
= 25°C  
J
I
I
I
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
V
= 0V  
2.5  
GS  
1.0  
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
0.0  
0.5  
1.0  
1.5  
2.0  
3.0  
T
V
, Source-to-Drain Voltage (V)  
J
SD  
Fig 8. Typical Source-Drain Diode Forward Voltage  
Fig. 7 Typical Threshold Voltage vs.  
Junction Temperature  
150  
100000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
125  
100  
75  
50  
25  
0
rss  
oss  
gd  
= C + C  
T
= 25°C  
J
ds  
gd  
C
iss  
10000  
T
= 175°C  
J
C
C
oss  
rss  
V
= 10V  
DS  
20µs PULSE WIDTH  
1000  
0
25  
I
50  
75  
100  
125  
150  
1
10  
, Drain-to-Source Voltage (V)  
100  
,Drain-to-Source Current (A)  
V
D
DS  
Fig 10. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 9. Typical Forward Trans conductance vs. Drain Current  
300  
14.0  
I = 160A  
D
12.0  
250  
200  
150  
100  
50  
V
V
= 32V  
= 20V  
DS  
DS  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
0
25  
50  
75  
100  
125  
150  
175  
0
50  
100  
150  
200  
250  
300  
T
, Case Temperature (°C)  
Q , Total Gate Charge (nC)  
C
G
Fig 12. Maximum Drain Current vs. Case Temperature  
Fig 11. Typical Gate Charge vs.  
Gate-to-Source Voltage  
5
2015-11-19  
AUIRF7739L2TR  
10000  
1000  
100  
10  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
D
OPERATION IN THIS AREA  
LIMITED BY R (on)  
TOP  
29A  
46A  
BOTTOM 160A  
DS  
100µsec  
1msec  
10msec  
DC  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
1
0
1
10  
100  
25  
50  
75  
100  
125  
150  
175  
V
, Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
DS  
J
Fig 14. Maximum Avalanche Energy vs. Temperature  
Fig 13. Maximum Safe Operating Area  
10  
1
D = 0.50  
0.20  
0.10  
0.1  
0.05  
Ri (°C/W)  
0.1080  
i (sec)  
0.000171  
0.02  
0.01  
0.01  
0.6140  
0.4520  
0.053914  
0.006099  
0.036168  
1.47e-05  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assumingTj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assumingj = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 16. Typical Avalanche Current vs. Pulse Width  
6
2015-11-19  
AUIRF7739L2TR  
300  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 16, 17:  
TOP  
BOTTOM 1.0% Duty Cy cle  
= 160A  
Single Pulse  
(For further info, see AN-1005 at www.infineon.com)  
1. Avalanche failures assumption:  
I
D
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 18a, 18b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 16, 17).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
0
ZthJC(D, tav) = Transient thermal resistance, see Figures 15)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
P
D (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC  
Iav = 2T/ [1.3·BV·Zth]  
J
Fig 17. Maximum Avalanche Energy vs. Temperature  
E
AS (AR) = PD (ave)·tav  
Fig 18b. Unclamped Inductive Waveforms  
Fig 18a. Unclamped Inductive Test Circuit  
VDD  
Fig 19a. Gate Charge Test Circuit  
Fig 19b. Gate Charge Waveform  
Fig 20a. Switching Time Test Circuit  
Fig 20b. Switching Time Waveforms  
7
2015-11-19  
AUIRF7739L2TR  
DirectFET® Board Footprint, L8 (Large Size Can).  
Please see DirectFET® application note AN-1035 for all details regarding the assembly of DirectFET® .  
This includes all recommendations for stencil and substrate designs.  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
D
D
S
S
S
S
S
S
S
S
G
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
2015-11-19  
AUIRF7739L2TR  
DirectFET® Outline Dimension, L8 (Large Size Can).  
Please see DirectFET® application note AN-1035 for all details regarding the assembly of DirectFET® . This includes  
all recommendations for stencil and substrate designs.  
DirectFET® Part Marking  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
9
2015-11-19  
AUIRF7739L2TR  
DirectFET® Tape & Reel Dimension (Showing component orientation)  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4000 parts, ordered as AUIRF7739L2TR.  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4000)  
METRIC  
IMPERIAL  
CODE  
MIN  
MAX  
N.C  
MIN  
MAX  
N.C  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.900  
N.C  
330.00  
20.20  
12.80  
1.50  
N.C  
N.C  
13.20  
N.C  
0.520  
N.C  
99.00  
N.C  
100.00  
22.40  
18.40  
19.40  
3.940  
0.880  
0.720  
0.760  
G
H
0.650  
0.630  
16.40  
15.90  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
2015-11-19  
AUIRF7739L2TR  
Qualification Information  
Qualification Level  
Automotive  
(per AEC-Q101)  
Comments: This part number(s) passed Automotive qualification. Infineon’s  
Industrial and Consumer qualification level is granted by extension of the higher  
Automotive level.  
DFET2 Large Can  
MSL1  
Moisture Sensitivity Level  
Class M4 (800V)†  
AEC-Q101-002  
Class H3A (7000V)†  
AEC-Q101-001  
N/A  
Machine Model  
Human Body Model  
ESD  
Charged Device Model  
AEC-Q101-005  
Yes  
RoHS Compliant  
† Highest passing voltage.  
Revision History  
Date  
Comments  
 Updated datasheet with corporate template  
 Corrected ordering table on page 1.  
 Updated Tape and Reel option on page 10  
11/19/2015  
Published by  
Infineon Technologies AG  
81726 München, Germany  
© Infineon Technologies AG 2015  
All Rights Reserved.  
IMPORTANT NOTICE  
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics  
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any  
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and  
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third  
party.  
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this  
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of  
the product of Infineon Technologies in customer’s applications.  
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of  
customer’s technical departments to evaluate the suitability of the product for the intended application and the  
completeness of the product information given in this document with respect to such application.  
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies office (www.infineon.com).  
WARNINGS  
Due to technical requirements products may contain dangerous substances. For information on the types in question  
please contact your nearest Infineon Technologies office.  
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized  
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a  
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.  
11  
2015-11-19  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY