AUIRFR4615TR [INFINEON]

Advanced Process Technology Low On-Resistance; 先进的工艺技术低导通电阻
AUIRFR4615TR
型号: AUIRFR4615TR
厂家: Infineon    Infineon
描述:

Advanced Process Technology Low On-Resistance
先进的工艺技术低导通电阻

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总13页 (文件大小:295K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -96398A  
AUTOMOTIVE GRADE  
AUIRFR4615  
AUIRFU4615  
Features  
HEXFET® Power MOSFET  
l
l
l
l
l
l
l
Advanced Process Technology  
D
S
LowOn-Resistance  
175°COperatingTemperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free,RoHSCompliant  
Automotive Qualified *  
VDSS  
150V  
34m  
42m  
33A  
RDS(on) typ.  
G
max.  
ID  
Description  
D
D
Specifically designed for Automotive applications, this  
HEXFET® Power MOSFET utilizes the latest processing  
techniquestoachieveextremelylowon-resistancepersilicon  
area. Additional features of this design are a 175°C junction  
operating temperature, fast switching speed and improved  
repetitive avalanche rating . These features combine to make  
thisdesignanextremelyefficientandreliabledeviceforusein  
S
S
D
G
G
DPak  
AUIRFR4615  
IPAK  
AUIRFU4615  
Automotiveapplicationsandawidevarietyofotherapplications.  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are  
stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the  
specificationsisnotimplied.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability.  
The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient  
temperature (TA) is 25°C, unless otherwise specified.  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
Max.  
33  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
24  
A
140  
PD @TC = 25°C  
W
144  
Maximum Power Dissipation  
Linear Derating Factor  
0.96  
W/°C  
V
VGS  
± 20  
109  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy  
EAR  
mJ  
38  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
°C  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
300(1.6mm from case)  
Thermal Resistance  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
1.045  
50  
Units  
Rθ  
Junction-to-Case  
JC  
Rθ  
°C/W  
Junction-to-Ambient (PCB Mount)  
Junction-to-Ambient  
JA  
RθJA  
110  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
www.irf.com  
1
10/04/11  
AUIRFR/U4615  
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
150 ––– –––  
––– 0.19 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250μA  
V(BR)DSS  
V
V
/ T  
(BR)DSS Δ  
Δ
J
RDS(on)  
VGS(th)  
–––  
3.0  
35  
34  
42  
VGS = 10V, ID = 21A  
VDS = VGS, ID = 100μA  
VDS = 50V, ID = 21A  
m
V
Ω
–––  
5.0  
gfs  
IDSS  
Forward Transconductance  
––– –––  
20  
S
Drain-to-Source Leakage Current  
––– –––  
V
V
V
V
DS = 150V, VGS = 0V  
DS = 150V, VGS = 0V, TJ = 125°C  
GS = 20V  
μA  
––– ––– 250  
––– ––– 100  
––– ––– -100  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA  
GS = -20V  
RG(int)  
–––  
2.7  
–––  
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
Qg  
Total Gate Charge  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
26  
8.6  
9.0  
17  
15  
35  
25  
20  
ID = 21A  
DS = 75V  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
V
nC  
Qgd  
VGS = 10V  
Qsync  
ID = 21A, VDS =0V, VGS = 10V  
VDD = 98V  
td(on)  
tr  
ID = 21A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
R = 7.3  
Ω
G
VGS = 10V  
Ciss  
Input Capacitance  
––– 1750 –––  
––– 155 –––  
VGS = 0V  
Coss  
Output Capacitance  
Reverse Transfer Capacitance  
V
DS = 50V  
Crss  
–––  
40  
–––  
ƒ = 1.0MHz  
(See Fig.5)  
GS = 0V, VDS = 0V to 120V (See Fig.11)  
pF  
Coss eff. (ER)  
Coss eff. (TR)  
––– 179 –––  
––– 382 –––  
V
V
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
GS = 0V, VDS = 0V to 120V  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
S
IS  
Continuous Source Current  
MOSFET symbol  
––– –––  
33  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
showing the  
integral reverse  
A
G
ISM  
––– ––– 140  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
–––  
–––  
V
TJ = 25°C, IS = 21A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 100V,  
IF = 21A  
di/dt = 100A/μs  
–––  
–––  
70  
83  
ns  
Qrr  
Reverse Recovery Charge  
––– 177 –––  
––– 247 –––  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
4.9  
–––  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
Coss eff. (TR) is a fixed capacitance that gives the same charging time  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.51mH  
RG = 25Ω, IAS = 21A, VGS =10V. Part not recommended for use  
above this value .  
ƒ ISD 21A, di/dt 549A/μs, VDD V(BR)DSS, TJ 175°C.  
„ Pulse width 400μs; duty cycle 2%.  
as Coss while VDS is rising from 0 to 80% VDSS  
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application  
note #AN-994  
ˆ Rθ is measured at TJ approximately 90°C  
2
www.irf.com  
AUIRFR/U4615  
Qualification Information†  
Automotive  
††  
(per AEC-Q101)  
Qualification Level  
Comments: This part number(s) passed Automotive  
qualification. IR’s Industrial and Consumer qualification  
level is granted by extension of the higher Automotive level.  
Moisture Sensitivity Level  
MSL1  
N/A  
D PAK  
I-PAK  
Class M3(+/- 400V )†††  
Machine Model  
AEC-Q101-002  
Class H1B(+/- 1000V )†††  
AEC-Q101-001  
Human Body Model  
ESD  
Class C5(+/- 2000V )†††  
AEC-Q101-005  
Charged Device  
Model  
Yes  
RoHS Compliant  
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/  
Exceptions (if any) to AEC-Q101 requirements are noted in the qualification report.  
††  
††† Highest passing voltage  
www.irf.com  
3
AUIRFR/U4615  
1000  
100  
10  
1000  
VGS  
15V  
12V  
VGS  
15V  
12V  
TOP  
TOP  
10V  
10V  
100  
10  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
BOTTOM  
BOTTOM  
5.0V  
1
1
5.0V  
0.1  
0.01  
60μs PULSE WIDTH  
Tj = 175°C  
60μs PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 21A  
D
V
= 10V  
GS  
T = 175°C  
J
T = 25°C  
J
1
V
= 50V  
DS  
60μs PULSE WIDTH  
0.1  
2
4
6
8
10 12 14  
16  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
100  
14.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 21A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
12.0  
= C  
rss  
oss  
gd  
= C + C  
V
V
= 120V  
= 75V  
DS  
DS  
ds  
gd  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
VDS= 30V  
C
iss  
C
oss  
C
rss  
10  
1
10  
100  
1000  
0
5
10  
15  
20  
25  
30  
35  
V
, Drain-to-Source Voltage (V)  
Q , Total Gate Charge (nC)  
DS  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
4
www.irf.com  
AUIRFR/U4615  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100μsec  
1msec  
T
= 175°C  
10msec  
J
T
= 25°C  
J
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
1.4  
GS  
0.1  
1.0  
1
10  
100  
1000  
0.2  
0.4  
V
0.6  
0.8  
1.0  
1.2  
1.6  
V
, Drain-to-Source Voltage (V)  
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
40  
190  
185  
180  
175  
170  
165  
160  
155  
150  
145  
140  
Id = 5mA  
35  
30  
25  
20  
15  
10  
5
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T
, Temperature ( °C )  
Fig 9. MaxiCmum Drain Current vs.  
J
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
3.0  
500  
I
D
450  
400  
350  
300  
250  
200  
150  
100  
50  
TOP  
2.8A  
5.3A  
BOTTOM 21A  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
-20  
0
20 40 60 80 100 120 140 160  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
V
J
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
www.irf.com  
5
AUIRFR/U4615  
10  
1
0.1  
D = 0.50  
0.20  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.02324  
0.26212  
0.50102  
0.25880  
0.000008  
0.000106  
0.001115  
0.005407  
τ
τ
J τJ  
τ
0.05  
0.02  
0.01  
Cτ  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
120  
100  
80  
60  
40  
20  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 22a,22b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 21A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com  
AUIRFR/U4615  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
30  
25  
20  
15  
10  
5
I = 14A  
F
V
= 100V  
R
T = 25°C  
J
T = 125°C  
J
I
I
= 100μA  
D
D
= 250uA  
ID = 1.0mA  
ID = 1.0A  
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
0
200  
400  
600  
800  
1000  
T , Temperature ( °C )  
J
di /dt (A/μs)  
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
35  
800  
I = 21A  
I = 14A  
F
F
30  
25  
20  
15  
10  
5
700  
600  
500  
400  
300  
200  
100  
V
= 100V  
V
= 100V  
R
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
1000  
I = 21A  
F
V
900  
800  
700  
600  
500  
400  
300  
200  
100  
= 100V  
R
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
www.irf.com  
7
AUIRFR/U4615  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
CircuitLayoutConsiderations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dtcontrolledbyRG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
InductorCurrent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
Ω
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
PulseWidth ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2μF  
12V  
.3μF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
8
www.irf.com  
AUIRFR/U4615  
D-Pak (TO-252AA) Package Outline  
Dimensions are shown in millimeters (inches)  
D-Pak (TO-252AA) Part Marking Information  
PartNumber  
AUFR4615  
DateCode  
Y= Year  
WW= Work Week  
A= Automotive, Lead Free  
IRLogo  
YWWA  
XX or XX  
LotCode  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
AUIRFR/U4615  
I-Pak (TO-251AA) Package Outline ( Dimensions are shown in millimeters (inches)  
I-Pak (TO-251AA) Part Marking Information  
PartNumber  
AUFU4615  
DateCode  
Y= Year  
WW= Work Week  
A= Automotive, Lead Free  
IRLogo  
YWWA  
XX or XX  
LotCode  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
AUIRFR/U4615  
D-Pak (TO-252AA) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TR  
TRL  
TRR  
16.3 ( .641 )  
15.7 ( .619 )  
16.3 ( .641 )  
15.7 ( .619 )  
12.1 ( .476 )  
11.9 ( .469 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
FEED DIRECTION  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
13 INCH  
16 mm  
NOTES :  
1. OUTLINE CONFORMS TO EIA-481.  
www.irf.com  
11  
AUIRFR/U4615  
Ordering Information  
Base part  
Package Type  
Standard Pack  
Complete Part Number  
Form  
Quantity  
AUIRFR4615  
DPak  
IPak  
Tube  
Tape and Reel  
Tape and Reel Left  
Tape and Reel Right  
Tube  
75  
AUIRFR4615  
AUIRFR4615TR  
AUIRFR4615TRL  
AUIRFR4615TRR  
AUIRFU4615  
2000  
3000  
3000  
75  
AUIRFU4615  
12  
www.irf.com  
AUIRFR/U4615  
IMPORTANT NOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve  
the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services  
at any time and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix follow  
automotive industry and / or customer specific requirements with regards to product discontinuance and process change  
notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s  
standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products  
and applications using IR components. To minimize the risks with customer products and applications, customers should  
provideadequatedesignandoperatingsafeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is  
accompaniedbyallassociatedwarranties,conditions,limitations,andnotices. Reproductionofthisinformationwithalterations  
isanunfairanddeceptivebusinesspractice. IRisnotresponsibleorliableforsuchaltereddocumentation. Informationofthird  
parties may be subject to additional restrictions.  
ResaleofIRproductsorservicedwithstatementsdifferentfromorbeyondtheparametersstatedbyIRforthatproductorservice  
voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business  
practice. IR is not responsible or liable for any such statements.  
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the  
body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.  
OnlyproductscertifiedasmilitarygradebytheDefenseLogisticsAgency(DLA)oftheUSDepartmentofDefense,aredesigned  
and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers  
acknowledgeandagreethatanyuseofIRproductsnotcertifiedbyDLAasmilitary-grade,inapplicationsrequiringmilitarygrade  
products, is solely at the Buyer’s own risk and that they are solely responsible for compliance with all legal and regulatory  
requirements in connection with such use.  
IRproductsareneitherdesignednorintendedforuseinautomotiveapplicationsorenvironmentsunlessthespecificIRproducts  
are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”.  
Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be  
responsible for any failure to meet such requirements.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLDHEADQUARTERS:  
101 N. Sepulveda Blvd., El Segundo, California 90245  
Tel:(310)252-7105  
www.irf.com  
13  

相关型号:

AUIRFR4615TRL

Advanced Process Technology Low On-Resistance
INFINEON

AUIRFR4615TRR

Advanced Process Technology Low On-Resistance
INFINEON

AUIRFR4620

Specifically designed for Automotive applications
INFINEON

AUIRFR4620TR

Specifically designed for Automotive applications
INFINEON

AUIRFR4620TRL

Specifically designed for Automotive applications
INFINEON

AUIRFR4620TRR

Specifically designed for Automotive applications
INFINEON

AUIRFR48Z

Power Field-Effect Transistor, 42A I(D), 55V, 0.011ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, PLASTIC, DPAK-3
INFINEON

AUIRFR48ZTR

Power Field-Effect Transistor, 42A I(D), 55V, 0.011ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, PLASTIC, DPAK-3
INFINEON

AUIRFR48ZTRL

Power Field-Effect Transistor, 42A I(D), 55V, 0.011ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, PLASTIC, DPAK-3
INFINEON

AUIRFR48ZTRR

Power Field-Effect Transistor, 42A I(D), 55V, 0.011ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, PLASTIC, DPAK-3
INFINEON

AUIRFR5305

AUTOMOTIVE MOSFET
INFINEON

AUIRFR5305TR

AUTOMOTIVE MOSFET
INFINEON