AUIRFS8407-7P [INFINEON]

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET;
AUIRFS8407-7P
型号: AUIRFS8407-7P
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET

文件: 总12页 (文件大小:220K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AUTOMOTIVE GRADE  
AUIRFS8407-7P  
Features  
HEXFET® Power MOSFET  
AdvancedProcessTechnology  
D
S
NewUltraLowOn-Resistance  
175°COperatingTemperature  
Fast Switching  
RepetitiveAvalancheAlloweduptoTjmax  
Lead-Free,RoHSCompliant  
AutomotiveQualified*  
VDSS  
40V  
R
DS(on)
typ.  
max.  
1.0mΩ  
1.3mΩ  
G
ID  
306A  
(Silicon Limited)  
Description  
ID  
240A  
(Package Limited)  
Specifically designed for Automotive applications, this  
HEXFET® Power MOSFET utilizes the latest processing  
techniquestoachieveextremelylowon-resistancepersilicon  
area. Additional features of this design are a 175°C junction  
operating temperature, fast switching speed and improved  
repetitive avalanche rating. These features combine to make  
thisdesignanextremelyefficientandreliabledeviceforusein  
Automotiveapplicationsandwidevarietyofotherapplications.  
D
S
S
S
S
S
Applications  
G
D2Pak7Pin  
Electric Power Steering (EPS)  
Battery Switch  
Start/Stop Micro Hybrid  
HeavyLoads  
G
Gate  
D
S
Drain  
Source  
DC-DCApplications  
Base part number  
Package Type  
Standard Pack  
Orderable Part Number  
Form  
Tube  
Tape and Reel Left  
Tape and Reel Right  
Quantity  
50  
AUIRFS8407-7P  
AUIRFS8407-7TRL  
AUIRFS8407-7TRR  
AUIRFS8407-7P  
D2Pak-7PIN  
800  
800  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and  
functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under  
board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Parameter  
Max.  
306  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
216  
A
240  
1040  
Pulsed Drain Current  
231  
PD @TC = 25°C  
Maximum Power Dissipation  
Linear Derating Factor  
W
1.5  
W/°C  
V
± 20  
VGS  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy   
EAS (Thermally limited)  
344  
508  
mJ  
EAS (tested)  
IAR  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
  
See Fig. 14, 15, 24a, 24b  
A
Repetitive Avalanche Energy   
Operating Junction and  
EAR  
mJ  
-55 to + 175  
300  
TJ  
°C  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds (1.6mm from case)  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
www.irf.com © 2013 International Rectifier  
April 30, 2013  
1
AUIRFS8407-7P  
Thermal Resistance  
Symbol  
Parameter  
  
Typ.  
–––  
Max.  
0.65  
40  
Units  
°C/W  
RθJC  
Junction-to-Case  
Rθ  
Junction-to-Ambient (PCB Mount)  
–––  
JA  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
40 ––– –––  
––– 0.035 ––– V/°C Reference to 25°C, ID = 1.0mA  
Conditions  
VGS = 0V, ID = 250μA  
V
Δ
Δ
(BR)DSS/ TJ  
V
Ω
V
RDS(on)  
VGS(th)  
IDSS  
–––  
2.2  
1.0  
1.3  
3.9  
1.0  
m
VGS = 10V, ID = 100A  
VDS = VGS, ID = 150μA  
–––  
Drain-to-Source Leakage Current  
––– –––  
V
V
DS = 40V, VGS = 0V  
DS = 40V, VGS = 0V, TJ = 125°C  
μA  
––– ––– 150  
––– ––– 100  
––– ––– -100  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
VGS = 20V  
GS = -20V  
nA  
V
Ω
RG  
–––  
2.2  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
gfs  
Qg  
Forward Transconductance  
122 ––– –––  
S
VDS = 10V, ID = 100A  
Total Gate Charge  
––– 150 225  
ID = 100A  
Qgs  
Qgd  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
41  
51  
99  
18  
62  
78  
51  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS =20V  
nC  
VGS = 10V  
Qsync  
td(on)  
tr  
ID = 100A, VDS =0V, VGS = 10V  
VDD = 20V  
Rise Time  
ID = 30A  
Ω
RG = 2.7  
VGS = 10V  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 7437 –––  
––– 1097 –––  
––– 748 –––  
––– 1314 –––  
––– 1735 –––  
VGS = 0V  
Output Capacitance  
V
DS = 25V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
pF ƒ = 1.0 MHz  
C
C
oss eff. (ER)  
oss eff. (TR)  
V
GS = 0V, VDS = 0V to 32V  
VGS = 0V, VDS = 0V to 32V  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
S
IS  
Continuous Source Current  
––– ––– 306  
(Body Diode)  
showing the  
integral reverse  
A
V
G
ISM  
VSD  
Pulsed Source Current  
––– ––– 1040  
  
(Body Diode)  
Diode Forward Voltage  
p-n junction diode.  
TJ = 25°C, IS = 100A, VGS = 0V  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
1.0  
3.5  
37  
38  
34  
36  
1.8  
1.3  
dv/dt  
trr  
Peak Diode Recovery  
––– V/ns TJ = 175°C, IS = 100A, VDS = 40V  
Reverse Recovery Time  
–––  
–––  
–––  
–––  
–––  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 34V,  
ns  
IF = 100A  
di/dt = 100A/μs  
Qrr  
Reverse Recovery Charge  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
Calculated continuous current based on maximum allowable  
junction temperature. Bond wire current limit is 240A. Note that  
current limitations arising from heating of the device leads may  
occur with some lead mounting arrangements. (Refer to AN-1140)  
Repetitive rating; pulse width limited by max. junction temperature.  
Limited by TJmax, starting TJ = 25°C, L = 0.069mH, RG = 50Ω,  
IAS = 100A, VGS =10V. Part not recommended for use above  
this value.  
Pulse width 400μs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
When mounted on 1" square PCB (FR-4 or G-10 Material).  
For recommended footprint and soldering techniques  
refer to application note #AN-994.  
.
.
Rθ is measured at TJ approximately 90°C.  
RθJC value shown is at time zero.  
ISD 100A, di/dt 1288A/μs, VDD V(BR)DSS, TJ 175°C.  
www.irf.com © 2013 International Rectifier  
April 30, 2013  
2
AUIRFS8407-7P  
10000  
1000  
100  
10  
10000  
1000  
100  
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
TOP  
TOP  
BOTTOM  
BOTTOM  
5.0V  
5.0V  
60μs PULSE WIDTH  
Tj = 175°C  
60μs PULSE WIDTH  
Tj = 25°C  
1
10  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
10000  
1000  
100  
10  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
I
= 100A  
= 10V  
D
V
GS  
T = 175°C  
J
T
V
= 25°C  
= 10V  
J
DS  
60μs PULSE WIDTH  
1.0  
2
3
4
5
6
7
8
9
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
14.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I
= 100A  
C
C
C
+ C , C  
SHORTED  
ds  
D
iss  
gs  
gd  
12.0  
10.0  
8.0  
= C  
rss  
oss  
gd  
= C + C  
V
V
= 32V  
= 20V  
DS  
DS  
ds  
gd  
C
iss  
C
C
oss  
rss  
6.0  
4.0  
2.0  
100  
0.0  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
20 40 60 80 100 120 140 160 180 200  
V
DS  
Q , Total Gate Charge (nC)  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
3
www.irf.com © 2013 International Rectifier  
April 30, 2013  
AUIRFS8407-7P  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100μsec  
1msec  
T
= 175°C  
J
Limited by  
package  
T
= 25°C  
J
10msec  
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
GS  
= 0V  
1.0  
0.1  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
, Source-to-Drain Voltage (V)  
0.1  
1
10  
100  
V
V
, Drain-toSource Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
350  
300  
250  
200  
150  
100  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
Limited By Package  
Id = 1.0mA  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T
, Temperature ( °C )  
C
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-0.1  
1400  
I
D
1200  
1000  
800  
600  
400  
200  
0
TOP  
22A  
46A  
BOTTOM 100A  
-5  
0
5
10 15 20 25 30 35 40  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
www.irf.com © 2013 International Rectifier  
April 30, 2013  
4
AUIRFS8407-7P  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
Δ
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
Allowed avalanche Current vs avalanche  
ΔΤ  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 14, 15  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 24a, 24b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
350  
300  
250  
200  
150  
100  
50  
TOP  
BOTTOM 1.0% Duty Cycle  
= 100A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = ΔT/ ZthJC  
0
Iav = 2ΔT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com © 2013 International Rectifier  
5
April 30, 2013  
AUIRFS8407-7P  
4.0  
3.0  
2.0  
1.0  
5.0  
4.0  
3.0  
2.0  
1.0  
I
= 100A  
D
T = 125°C  
J
I
I
I
= 150μA  
= 1.0mA  
= 1.0A  
D
D
D
T
= 25°C  
J
4
6
8
10 12 14  
16 18 20  
-75 -50 -25  
0
25 50 75 100 125 150 175  
T
, Temperature ( °C )  
J
V
Gate -to -Source Voltage (V)  
GS,  
Fig 16. On-Resistance vs. Gate Voltage  
Fig 17. Threshold Voltage vs. Temperature  
300  
12  
I = 60A  
I = 60A  
F
F
V
= 34V  
V
= 34V  
R
R
250  
200  
150  
100  
50  
10  
8
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
6
4
2
0
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 19 - Typical Stored Charge vs. dif/dt  
Fig. 18 - Typical Recovery Current vs. dif/dt  
300  
250  
200  
150  
100  
50  
12  
10  
8
I = 100A  
F
I = 100A  
F
V
= 34V  
V
= 34V  
R
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
6
4
2
0
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 21 - Typical Stored Charge vs. dif/dt  
Fig. 20 - Typical Recovery Current vs. dif/dt  
www.irf.com © 2013 International Rectifier  
April 30, 2013  
6
AUIRFS8407-7P  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
V
V
V
V
= 6.0V  
= 7.0V  
= 8.0V  
=10V  
GS  
GS  
GS  
GS  
0
200  
400  
600  
800 1000 1200  
I , Drain Current (A)  
D
Fig 22. Typical On-Resistance vs. Drain Current  
7
www.irf.com © 2013 International Rectifier  
April 30, 2013  
AUIRFS8407-7P  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
*
=10V  
V
GS  
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
-
Reverse  
Recovery  
Current  
Body Diode Forward  
-   
Current  
di/dt  
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  
V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Inductor Current  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 23. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
20V  
GS  
Ω
0.01  
t
p
I
AS  
Fig 24b. Unclamped Inductive Waveforms  
Fig 24a. Unclamped Inductive Test  
Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 μs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 25a. Switching Time Test Circuit  
Fig 25b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2μF  
12V  
.3μF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 26a. Gate Charge Test Circuit  
www.irf.com © 2013 International Rectifier  
Fig 26b. Gate Charge Waveform  
April 30, 2013  
8
AUIRFS8407-7P  
D2Pak - 7 Pin Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak - 7 Pin Part Marking Information  
PartNumber  
AUFS8407-7P  
Date Code  
Y= Year  
WW= Work Week  
IR Logo  
YWWA  
A=Automotive,LeadFree  
XX or XX  
Lot Code  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
9
www.irf.com © 2013 International Rectifier  
April 30, 2013  
AUIRFS8407-7P  
D2Pak - 7 Pin Tape and Reel  
www.irf.com © 2013 International Rectifier  
April 30, 2013  
10  
AUIRFS8407-7P  
Qualification Information†  
Automotive  
(per AEC-Q101)  
Qualification Level  
Comments: This part number(s) passed Automotive qualification. IR’s  
Industrial and Consumer qualification level is granted by extension of the  
higher Automotive level.  
D2 PAK 7 Pin  
MSL1  
Class M3 (+/- 400V)††  
Machine Model  
AEC-Q101-002  
Class H2 (+/- 4000V)††  
AEC-Q101-001  
Human Body Model  
ESD  
Class C5 (+/- 2000V)††  
AEC-Q101-005  
Charged Device Model  
Yes  
RoHS Compliant  
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/  
†† Highest passing voltage.  
11  
www.irf.com © 2013 International Rectifier  
April 30, 2013  
AUIRFS8407-7P  
IMPORTANTNOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve  
the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services  
at any time and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix follow  
automotive industry and / or customer specific requirements with regards to product discontinuance and process change  
notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s  
standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products  
and applications using IR components. To minimize the risks with customer products and applications, customers should  
provideadequatedesignandoperatingsafeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is  
accompaniedbyallassociatedwarranties,conditions,limitations,andnotices. Reproductionofthisinformationwithalterations  
is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of  
third parties may be subject to additional restrictions.  
ResaleofIRproductsorservicedwithstatementsdifferentfromorbeyondtheparametersstatedbyIRforthatproductorservice  
voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business  
practice. IR is not responsible or liable for any such statements.  
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the  
body, orinotherapplicationsintendedtosupportorsustainlife, orinanyotherapplicationinwhichthefailureoftheIR product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
feesarisingoutof, directlyorindirectly, anyclaimofpersonalinjuryordeathassociatedwithsuchunintendedorunauthorized  
use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.  
OnlyproductscertifiedasmilitarygradebytheDefenseLogisticsAgency(DLA)oftheUSDepartmentofDefense,aredesigned  
and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers  
acknowledgeandagreethatanyuseofIRproductsnotcertifiedbyDLAasmilitary-grade,inapplicationsrequiringmilitarygrade  
products, is solely at the Buyer’s own risk and that they are solely responsible for compliance with all legal and regulatory  
requirements in connection with such use.  
IRproductsareneitherdesignednorintendedforuseinautomotiveapplicationsorenvironmentsunlessthespecificIRproducts  
are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”.  
Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be  
responsible for any failure to meet such requirements.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLDHEADQUARTERS:  
101 N. Sepulveda Blvd., El Segundo, California 90245  
Tel:(310)252-7105  
www.irf.com © 2013 International Rectifier  
April 30, 2013  
12  

相关型号:

AUIRFS8407-7TRL

HEXFET® Power MOSFET
INFINEON

AUIRFS8407-7TRR

HEXFET® Power MOSFET
INFINEON

AUIRFS8407TRL

Advanced Process Technology New Ultra Low On-Resistance
INFINEON

AUIRFS8408

NEW ULTRA LOW ON-RESISTANCE
INFINEON

AUIRFS8408-7P

Power Field-Effect Transistor, N-Channel, Metal-Oxide Semiconductor FET
INFINEON

AUIRFS8408-7TRL

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRFS8408TRL

NEW ULTRA LOW ON-RESISTANCE
INFINEON

AUIRFS8408TRR

NEW ULTRA LOW ON-RESISTANCE
INFINEON

AUIRFS8409

AUTOMOTIVE GRADE
INFINEON

AUIRFS8409-7P

HEXFETPower MOSFET
INFINEON

AUIRFS8409-7TRL

HEXFETPower MOSFET
INFINEON

AUIRFS8409-7TRR

HEXFETPower MOSFET
INFINEON