AUIRLS4030TRR [INFINEON]

Power Field-Effect Transistor, 180A I(D), 100V, 0.0043ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT, PLASTIC, D2PAK-3;
AUIRLS4030TRR
型号: AUIRLS4030TRR
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 180A I(D), 100V, 0.0043ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT, PLASTIC, D2PAK-3

晶体 晶体管 开关 脉冲 局域网
文件: 总13页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96406B  
AUTOMOTIVE GRADE  
AUIRLS4030  
Features  
AUIRLSL4030  
l
Optimized for Logic Level Drive  
Advanced Process Technology  
UltraLowOn-Resistance  
HEXFET® Power MOSFET  
l
l
l
l
l
l
l
D
S
VDSS  
RDS(on) typ.  
max.  
100V  
175°COperatingTemperature  
Fast Switching  
3.4m  
4.3m  
Ω
Ω
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free,RoHSCompliant  
Automotive Qualified *  
G
ID  
180A  
Description  
Specifically designed for Automotive applications, this  
HEXFET® Power MOSFET utilizes the latest processing  
techniques to achieve extremely low on-resistance per  
siliconarea. Additionalfeaturesofthisdesign area175°C  
junctionoperatingtemperature, fastswitchingspeedand  
improved repetitive avalanche rating . These features  
combine to make this design an extremely efficient and  
reliable device for use in Automotive applications and a  
wide variety of other applications.  
S
S
D
D
G
G
D2Pak  
AUIRLS4030  
TO-262  
AUIRLSL4030  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Stressesbeyondthoselistedunder“AbsoluteMaximumRatings”maycausepermanentdamagetothedevice.Thesearestress  
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications  
is not implied.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. Thethermal  
resistanceandpowerdissipationratingsaremeasuredunderboardmountedandstillairconditions.Ambienttemperature(TA)  
is 25°C, unless otherwise specified.  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
Max.  
180  
130  
730  
Units  
A
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
PD @TC = 25°C  
W
370  
2.5  
± 16  
305  
Maximum Power Dissipation  
Linear Derating Factor  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy (Thermally limited)  
Avalanche Current  
W/°C  
V
mJ  
A
VGS  
EAS  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy  
EAR  
mJ  
21  
dv/dt  
TJ  
V/ns  
Peak Diode Recovery  
Operating Junction and  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
°C  
300  
Thermal Resistance  
Parameter  
Typ.  
–––  
–––  
Max.  
0.40  
40  
Units  
°C/W  
Rθ  
Junction-to-Case  
JC  
Junction-to-Ambient (PCB Mount) , D2Pak  
RθJA  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
www.irf.com  
1
11/17/11  
AUIRLS/SL4030  
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
100 ––– –––  
––– 0.10 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250μA  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
V
V
/ T  
(BR)DSS Δ  
Δ
J
RDS(on)  
–––  
–––  
1.0  
3.4  
3.6  
4.3  
4.5  
2.5  
VGS = 10V, ID = 110A  
VGS = 4.5V, ID = 92A  
VDS = VGS, ID = 250μA  
VDS = 25V, ID = 110A  
VDS = 100V, VGS = 0V  
VDS = 100V, VGS = 0V, TJ = 125°C  
VGS = 16V  
m
Ω
VGS(th)  
Gate Threshold Voltage  
–––  
V
gfs  
IDSS  
Forward Transconductance  
Drain-to-Source Leakage Current  
320 ––– –––  
––– ––– 20  
S
μA  
––– ––– 250  
––– ––– 100  
––– ––– -100  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA  
VGS = -16V  
RG(int)  
–––  
2.1  
–––  
Ω
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
Qg  
–––  
–––  
–––  
–––  
–––  
87  
27  
45  
42  
74  
130  
–––  
–––  
–––  
–––  
ID = 110A  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
Rise Time  
VDS = 50V  
nC  
ns  
Qgd  
VGS = 4.5V  
Qsync  
ID = 110A, VDS =0V, VGS = 4.5V  
VDD = 65V  
td(on)  
tr  
––– 330 –––  
––– 110 –––  
––– 170 –––  
––– 11360 –––  
––– 670 –––  
––– 290 –––  
––– 760 –––  
––– 1140 –––  
ID = 110A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
R = 2.7  
Ω
G
VGS = 4.5V  
Ciss  
Input Capacitance  
VGS = 0V  
Coss  
Output Capacitance  
Reverse Transfer Capacitance  
VDS = 50V  
Crss  
ƒ = 1.0MHz  
pF  
Coss eff. (ER)  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 80V  
VGS = 0V, VDS = 0V to 80V  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
S
IS  
Continuous Source Current  
MOSFET symbol  
––– ––– 180  
A
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
showing the  
integral reverse  
G
ISM  
––– ––– 730  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
–––  
–––  
–––  
V
TJ = 25°C, IS = 110A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 85V,  
IF = 110A  
di/dt = 100A/μs  
–––  
–––  
–––  
50  
60  
88  
ns  
Qrr  
Reverse Recovery Charge  
nC  
A
––– 130 –––  
––– 3.3 –––  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.05mH, RG = 25Ω,  
IAS = 110A, VGS =10V. Part not recommended for use above  
this value .  
Coss eff. (TR) is a fixed capacitance that gives the same  
charging time as Coss while VDS is rising from 0 to 80% VDSS  
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
ƒ ISD 110A, di/dt 1330A/μs, VDD V(BR)DSS, TJ 175°C.  
„ Pulse width 400μs; duty cycle 2%.  
‡ Rθ is measured at TJ approximately 90°C.  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For  
recommended footprint and soldering techniquea refer to applocation  
note # AN- 994 echniques refer to application note #AN-994.  
‰ RθJC value shown is at time zero.  
2
www.irf.com  
AUIRLS/SL4030  
Qualification Information†  
Automotive  
††  
(per AEC-Q101)  
Comments: This part number(s) passed Automotive  
qualification. IR’s Industrial and Consumer  
Qualification Level  
qualification level is granted by extension of the  
higher Automotive level.  
MSL1  
N/A  
3L-D2 PAK  
3L-TO-262  
Moisture Sensitivity Level  
Class M4(+/- 800V )†††  
Machine Model  
(per AEC-Q101-002)  
Class H3A(+/- 6000V )†††  
(per AEC-Q101-001)  
Human Body Model  
ESD  
Class C5(+/- 2000V )†††  
(per AEC-Q101-005)  
Charged Device Model  
Yes  
RoHS Compliant  
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/  
Exceptions (if any) to AEC-Q101 requirements are noted in the qualification report.  
††  
††† Highest passing voltage  
www.irf.com  
3
AUIRLS/SL4030  
1000  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
4.5V  
3.5V  
3.0V  
2.7V  
2.5V  
VGS  
15V  
10V  
8.0V  
4.5V  
3.5V  
3.0V  
2.7V  
2.5V  
TOP  
TOP  
100  
BOTTOM  
BOTTOM  
10  
2.5V  
2.5V  
60μs PULSE WIDTH  
60μs PULSE WIDTH  
Tj = 175°C  
Tj = 25°C  
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
= 110A  
D
V
= 10V  
GS  
T = 175°C  
J
T = 25°C  
J
V
= 50V  
DS  
60μs PULSE WIDTH  
1.0  
1
2
3
4
5
-60 -40 -20 0 20 40 60 80 100120140160180  
T , Junction Temperature (°C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
5.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 110A  
D
C
C
C
+ C , C  
SHORTED  
V
V
= 80V  
= 50V  
iss  
gs  
gd  
ds  
DS  
DS  
= C  
rss  
oss  
gd  
4.0  
3.0  
2.0  
1.0  
0.0  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
100  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
20  
40  
60  
80  
100  
V
Q , Total Gate Charge (nC)  
DS  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
4
www.irf.com  
AUIRLS/SL4030  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
T = 175°C  
J
DS  
100μsec  
T = 25°C  
J
10msec  
DC  
1msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
2.0  
0.1  
1
0.0  
0.5  
1.0  
1.5  
2.5  
0
1
10  
100  
1000  
V
, Source-to-Drain Voltage (V)  
SD  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
200  
125  
120  
115  
110  
105  
100  
95  
Id = 5mA  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
90  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
J
C
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
4.5  
1400  
I
D
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1200  
1000  
800  
600  
400  
200  
0
TOP  
17A  
40A  
BOTTOM 110A  
-20  
0
20  
40  
60  
80  
100 120  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
Drain-to-Source Voltage (V)  
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
www.irf.com  
5
AUIRLS/SL4030  
1
D = 0.50  
0.1  
0.01  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.0477 0.000071  
0.02  
0.01  
τ
J τJ  
τ
τ
Cτ  
τ
1τ1  
τ
2τ2  
3τ3  
0.1631 0.000881  
0.1893 0.007457  
Ci= τi/Ri  
/
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤj = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
350  
300  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 110A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
Starting T , Junction Temperature (°C)  
EAS (AR) = PD (ave)·tav  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com  
AUIRLS/SL4030  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
40  
35  
30  
25  
20  
15  
10  
5
I = 73A  
F
V
= 85V  
R
T = 25°C  
J
T = 125°C  
J
I
I
I
= 250μA  
= 1.0mA  
= 1.0A  
D
D
D
0
0
200  
400  
600  
800  
1000  
-75 -50 -25  
0
25 50 75 100 125 150 175  
T , Temperature ( °C )  
di /dt (A/μs)  
F
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
35  
800  
I = 110A  
F
I = 73A  
F
720  
640  
560  
480  
400  
320  
240  
160  
80  
30  
25  
20  
15  
10  
5
V
= 85V  
V
= 85V  
R
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
880  
I = 110A  
F
800  
V
= 85V  
R
720  
640  
560  
480  
400  
320  
240  
160  
80  
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
www.irf.com  
7
AUIRLS/SL4030  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
CircuitLayoutConsiderations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dtcontrolledbyRG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
InductorCurrent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
Ω
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
PulseWidth ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2μF  
12V  
.3μF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
8
www.irf.com  
AUIRLS/SL4030  
D2Pak Package Outline (Dimensions are shown in millimeters (inches))  
D2Pak Part Marking Information  
PartNumber  
AULS4030  
DateCode  
Y= Year  
WW= Work Week  
A= Automotive, Lead Free  
IRLogo  
YWWA  
XX or XX  
LotCode  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
AUIRLS/SL4030  
TO-262 Package Outline ( Dimensions are shown in millimeters (inches))  
TO-262 Part Marking Information  
PartNumber  
AULSL4030  
DateCode  
Y= Year  
WW= Work Week  
A= Automotive, Lead Free  
IRLogo  
YWWA  
XX or XX  
LotCode  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
AUIRLS/SL4030  
D2Pak (TO-263AB) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
www.irf.com  
11  
AUIRLS/SL4030  
Ordering Information  
Base part  
Package Type  
Standard Pack  
Form  
Complete Part Number  
Quantity  
AUIRLSL4030  
AUIRLS4030  
TO-262  
D2Pak  
Tube  
Tube  
50  
50  
AUIRLSL4030  
AUIRLS4030  
Tape and Reel Left  
Tape and Reel Right  
800  
800  
AUIRLS4030TRL  
AUIRLS4030TRR  
12  
www.irf.com  
AUIRLS/SL4030  
IMPORTANTNOTICE  
Unlessspecificallydesignatedfortheautomotivemarket,InternationalRectifierCorporationanditssubsidiaries(IR)reserve  
the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services  
at any time and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix follow  
automotive industry and / or customer specific requirements with regards to product discontinuance and process change  
notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s  
standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products  
and applications using IR components. To minimize the risks with customer products and applications, customers should  
provideadequatedesignandoperatingsafeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with  
alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation.  
Information of third parties may be subject to additional restrictions.  
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or  
service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive  
business practice. IR is not responsible or liable for any such statements.  
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into  
the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR  
productcouldcreateasituationwherepersonalinjuryordeathmayoccur. ShouldBuyerpurchaseoruseIRproductsforany  
suchunintendedorunauthorizedapplication,BuyershallindemnifyandholdInternationalRectifieranditsofficers,employees,  
subsidiaries,affiliates,anddistributorsharmlessagainstallclaims,costs,damages,andexpenses,andreasonableattorney  
feesarisingoutof,directlyorindirectly,anyclaimofpersonalinjuryordeathassociatedwithsuchunintendedorunauthorized  
use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.  
Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are  
designedandmanufacturedtomeetDLAmilitaryspecificationsrequiredbycertainmilitary,aerospaceorotherapplications.  
Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring  
military grade products, is solely at the Buyer’s own risk and that they are solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR  
productsaredesignatedbyIRascompliantwithISO/TS16949requirementsandbearapartnumberincludingthedesignation  
“AU”. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not  
be responsible for any failure to meet such requirements.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLDHEADQUARTERS:  
101 N. Sepulveda Blvd., El Segundo, California 90245  
Tel:(310)252-7105  
www.irf.com  
13  

相关型号:

AUIRLS8409-7P

Power Field-Effect Transistor,
INFINEON

AUIRLS8409-7TRL

Power Field-Effect Transistor,
INFINEON

AUIRLSL4030

Power Field-Effect Transistor, 180A I(D), 100V, 0.0043ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, ROHS COMPLIANT, PLASTIC, TO-262, 3 PIN
INFINEON

AUIRLU024N

Advanced Planar Technology Low On-Resistance Fully Avalanche Rated
INFINEON

AUIRLU024Z

Power Field-Effect Transistor, 16A I(D), 55V, 0.058ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-251AA, ROHS COMPLIANT, PLASTIC, IPAK-3
INFINEON

AUIRLU2905

Power Field-Effect Transistor, 42A I(D), 55V, 0.03ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, IPAK-3
INFINEON

AUIRLU3110Z

AUTOMOTIVE GRADE
INFINEON

AUIRLU3114Z

Advanced Process Technology
INFINEON

AUIRLZ24NS

Power Field-Effect Transistor,
INFINEON

AUIRLZ24NSTRL

暂无描述
INFINEON

AUIRLZ44Z

AUTOMOTIVE GRADE
INFINEON

AUIRS1170S

AUIRS1170S 是一款通过汽车认证的智能次级侧驱动器 IC,该产品设计用于驱动在隔离谐振、反激和正向转换器中用作同步整流器的 N 通道功率 MOSFET。该 IC 可以控制一个或多个并联 N 通道 MOSFET,模拟肖特基二极管整流器行为。AUIRS1170S 可在 DCM 和 CCM 工作模式下运行。SYNC 引脚应在 CCM 模式下使用,通过次级或主控制器信号直接关断 MOSFET。该 IC 设计使用简单电容器耦合接口连接主控制器。除 SYNC 控制外,漏极到源极电压通过差分感测,确定电流极性并开关电源开关,近乎零电流转换。使用先进的消隐方案和双脉冲抑制实现稳健性和抗噪声能力,可在各种工作模式下可靠运行。
INFINEON