BTF3035EJ [INFINEON]

HITFET™ +12V;
BTF3035EJ
型号: BTF3035EJ
厂家: Infineon    Infineon
描述:

HITFET™ +12V

文件: 总59页 (文件大小:3264K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BTF3035EJ  
Smart Low-Side Power Switch  
1
Overview  
Features  
Single channel device  
3.3V and 5V compatible logic input  
PWM switching capability 20kHz for 10-90% duty cycle  
Electrostatic discharge protection (ESD)  
Adjustable switching speed  
Digital latch feedback signal  
Very low power DMOS leakage current in OFF state  
DMOS turn on capability in inverse current situation  
Green Product (RoHS compliant)  
Potential applications  
Suitable for resistive, inductive and capacitive loads  
Replaces electromechanical relays, fuses and discrete circuits  
Allows high inrush currents and active freewheeling  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100/101.  
Description  
The BTF3035EJ is a 35 msingle channel Smart Low-Side Power Switch with in a PG-TDSO-8-31 package  
providing embedded protective functions. The power transistor is built by an N-channel vertical power  
MOSFET.  
The device is monolithically integrated. The BTF3035EJ is automotive qualified and is optimized for 12V  
automotive and industrial applications.  
Table 1  
Product Summary  
Operating voltage range  
VOUT  
3 .. 28 V  
40 V  
Maximum battery voltage  
VBAT(LD)  
VDD  
Operating supply voltage range  
Maximum input voltage  
3.0 .. 5.5 V  
5.5 V  
VIN  
Maximum On-State resistance at Tj = 150°C, VDD = 5V, VIN = 5V  
RDS(ON)  
70 mΩ  
Datasheet  
www.infineon.com/hitfet  
1
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Overview  
Table 1  
Product Summary (cont’d)  
Nominal load current  
IL(NOM)  
5 A  
Minimum current limitation  
IL(LIM)  
14 A  
41 A  
4.5 µA  
6 µA  
Minimum current limitation trigger level  
Maximum OFF state load current at TJ 85°C  
Maximum stand-by supply current at TJ = 25°C  
IL(LIM)TRIGGER  
IL(OFF)  
IDD(OFF)  
Type  
Package  
Marking  
F3035EJ  
BTF3035EJ  
PG-TDSO-8-31  
Diagnostic Functions  
Short circuit to battery  
Over temperature shut down  
Stable latching diagnostic signal  
Protection Functions  
Over temperature shutdown with auto-restart  
Active clamp over voltage protection of the output (OUT, cooling tab)  
Current limitation  
Enhanced short circuit protection  
Detailed Description  
The device is able to switch all kind of resistive, inductive and capacitive loads, limited by maximum clamping  
energy and maximum current capabilities.  
The BTF3035EJ offers dedicated ESD protection on the IN, VDD, ENABLE, STATUS and SRP pin which refers to  
the GND ground pin, as well as an over voltage clamping of the OUT to Source/GND.  
The over voltage protection gets activated during inductive turn off conditions or other over voltage events  
(like load dump). The power MOSFET is limiting the drain-source voltage, if it rises above the VOUT(CLAMP).  
The over temperature protection prevents the device from overheating due to overload and/or bad cooling  
conditions.  
The BTF3035EJ has an auto-restart thermal shutdown function. The device will turn on again, if input is still  
high, after the measured temperature has dropped below the thermal hysteresis.  
Datasheet  
2
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
3
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1  
3.2  
3.3  
4
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Transient Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output On-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Functional description of ENABLE pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Functional description of IN pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Resistive Load Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Adjustable Switching Speed / Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5.1  
5.2  
5.3  
5.4  
5.5  
5.5.1  
5.5.2  
5.6  
5.7  
5.8  
6
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Over Voltage Clamping on OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Over Temperature Protection with Latched Fault Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Overcurrent Limitation / Short Circuit Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Reset conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.1  
6.2  
6.3  
6.4  
7
7.1  
7.2  
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Functional Description of the STATUS pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
8
Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Supply Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Undervoltage Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Input/Enable Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Functional Description of the SRP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.1  
8.2  
8.3  
8.4  
8.5  
9
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9.1  
9.2  
9.3  
9.4  
Datasheet  
3
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
10  
Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
10.1  
10.2  
10.3  
10.4  
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
11  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
11.1  
Design and Layout Recommendations/Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
12  
13  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Datasheet  
4
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Block Diagram  
2
Block Diagram  
Figure 1  
Block Diagram  
Datasheet  
5
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Pin Assignment  
3
Pin Assignment  
3.1  
Pin Configuration  
Figure 2  
Pin configuration  
3.2  
Pin Definitions and Functions  
Pin  
Symbol  
I/O  
Function  
1
IN  
Input  
If IN logic is high, switches ON the Power DMOS  
If IN logic is low, switches OFF the Power DMOS  
only if pin ENABLE is logic high  
2
3
VDD  
Input  
Input  
Logic supply voltage, 3V to 5.5V  
STATUS  
Reset of latches by microcontroller pull-up  
Output  
If STATUS logic is high, device is under normal operation  
If STATUS logic is low, device is in over temperature condition  
4
5
SRP  
Input  
Input  
Slewrate control with external resistor  
ENABLE  
If ENABLE logic is high, IN pin is enabled  
If ENABLE logic is low, IN pin is disabled and leakages are minimum  
6,7,8  
GND  
I/O  
I/O  
SOURCE of power DMOS and Logic, GND pins must be connected  
together  
Cooling tab OUT  
DRAIN of power DMOS. Connected to Load.  
Datasheet  
6
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Pin Assignment  
3.3  
Voltage and Current Definition  
Figure 3 shows all external terms used in this data sheet, with associated convention for positive values.  
Figure 3  
Naming Definition of electrical parameters  
Datasheet  
7
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 2  
Absolute Maximum Ratings1)  
TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Voltages  
Supply voltage  
Output voltage  
VDD  
-0.3  
5.5  
40  
31  
V
V
V
P_4.1.1  
P_4.1.2  
P_4.1.3  
VOUT  
Battery voltage for short circuit  
protection  
VBAT(SC)  
1)l = 0 or 5m  
SC = 30 m+ RCable  
R
RCable = l * 16 m/m  
LSC = 5 µH + LCable  
LCable = l * 1 µH/m VDD =5V;  
VIN=5V; VENABLE=5V  
Battery voltage for load dump  
protection  
(VBAT(LD) = VA + VS with VA = 13.5V)  
VBAT(LD)  
40  
V
V
2)Ri = 2 , RL = 2.2, td = P_4.1.4  
400 ms,  
suppressed pulse  
Control pins voltages  
Input Voltage  
VIN  
-0.3  
-0.3  
5.5  
P_4.1.8  
SRP pin Voltage  
STATUS pin Voltage  
ENABLE pin Voltage  
Power Stage  
VSRP  
5.5  
5.5  
5.5  
V
V
V
VSRP VDD  
P_4.1.9  
VSTATUS -0.3  
VENABLE -0.3  
P_4.1.10  
P_4.1.11  
Load current  
|IL|  
IL(LIM)  
TJ < 150°C  
P_4.1.12  
P_4.1.48  
Power Dissipation  
PTOT  
1.75  
W
DC operation,TA =  
85°C,TJ < 150°C, IL = INOM  
Energies  
Unclamped single inductive energy EAS  
single pulse  
138 mJ  
130 mJ  
IL(0) = IL(NOM)  
VBAT = 13.5 V  
P_4.1.17  
P_4.1.27  
TJ(0) = 150°C  
Unclamped repetitive inductive  
energy pulse with 10k cycles  
EAR(10k)  
IL(0) = IL(NOM)  
VBAT = 13.5 V  
TJ(0) = 85 °C  
Datasheet  
8
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
General Product Characteristics  
Table 2  
Absolute Maximum Ratings1) (cont’d)  
TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Unclamped repetitive inductive  
energy pulse with 100k cycles  
EAR(100k)  
124 mJ  
IL(0) = IL(NOM)  
VBAT = 13.5 V  
P_4.1.32  
Tj(0) = 85 °C  
Temperatures  
Operating temperature  
Storage temperature  
ESD robustness  
Tj  
-40  
-55  
+150 °C  
+150 °C  
P_4.1.39  
Tstg  
ESD robustness (all pins)  
ESD robustness OUT pin vs. GND  
ESD robustness  
VESD  
VESD  
VESD  
VESD  
-2  
-4  
2
kV  
kV  
V
HBM3)  
HBM3)  
CDM4)  
CDM 5)  
P_4.1.41  
P_4.1.42  
P_4.1.43  
P_4.1.44  
4
-500 –  
500  
750  
ESD robustness corner pins  
-750 –  
V
1) Not subject to production test, specified by design.  
2) VBAT(LD) is setup without the DUT connected to the generator per ISO7637-1;  
Ri is the internal resistance of the load dump test pulse generator;  
td is the pulse duration time for load dump pulse (pulse 5) according ISO 7637-1, -2.  
3) ESD robustness, HBM according to ANSI/ESDA/JEDEC JS-001 (1.5 k, 100 pF)  
4) ESD robustness, Charged Device Model “CDM” ESDA STM5.3.1 or JESD22-C101  
5) ESD robustness, Charged Device Model “CDM” ESDA STM5.3.1 or JESD22-C101  
Note:  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation  
Datasheet  
9
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
General Product Characteristics  
4.2  
Functional Range  
Table 3  
Functional Range  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
3.0 5.0 5.5  
Supply Voltage Range for  
Nominal Operation  
VDD(NOR)  
IDD(ON)  
V
P_4.2.1  
P_4.2.5  
Supply current continuous ON  
operation  
1.3 2.5 mA Supply current  
continuous ON  
operation is specified  
for RSRP=0. It is lower  
(0.7mA typ) for  
R
SRP=5.8k  
1)  
Standby supply current  
(ambient)  
IDD(OFF)  
6
0
5
1.5  
6
6
µA TJ = 25°C  
P_4.2.8  
P_4.2.9  
P_4.2.10  
1)  
Maximum standby supply current IDD(OFF)_150  
(hot)  
14 µA TJ = 150°C  
1)  
Battery Voltage Range for  
Nominal Operation  
VBAT(NOR)  
13.5 18  
V
V
Extended Battery Voltage Range VBAT(EXT)  
for Operation  
29  
parameter deviations P_4.2.11  
possible  
SRP pin resistor for adjustable  
operation  
RSRP(NOR)  
70 krefer to graphic  
P_4.2.12  
Figure 16  
1)  
1)  
SRP pin resistor for fast operation RSRP(EXTF)  
0
1.5 kΩ  
P_4.2.13  
SRP pin resistor for slow  
operation  
RSRP(EXTS)  
>160 –  
kPin can be left open P_4.2.14  
1)  
DIAGNOSIS  
STATUS Pin voltage operation  
range  
VSTATUS  
-0.3  
5.5  
V
normal and reset  
P_4.2.15  
P_4.2.17  
mode  
1)  
STATUS Pin Leakage current  
ISTATUS  
1.5 12 µA VSTATUS 5V  
1)  
STATUS Pin voltage drop Fault  
STATUS Current Reset  
VSTATUS(FAULT)  
ISTATUS(RESET)  
0.5 0.8  
V
ISTATUS(FAULT)=1mA  
P_4.2.18  
P_4.2.19  
5
7
mA  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
Datasheet  
10  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
General Product Characteristics  
4.3  
Thermal Resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards.  
For more information, go to www.jedec.org.  
Table 4  
TJ = -40°C to +150°CVDD = 3.0 V to 5.5 VVBAT = 6 V to 18 Vall voltages with respect to ground,  
positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
2
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1) 2)  
1) 3)  
1) 4)  
Junction to Case  
RthJC  
-
K/W  
K/W  
K/W  
P_4.3.4  
Junction to Ambient (2s2p)  
RthJA(2s2p)  
RthJA(1s0p)  
34  
P_4.3.10  
P_4.3.15  
Junction to Ambient  
45  
(1s0p+600mm2 Cu)  
1) Not subject to production test, specified by design  
2) Specified RthJC value is simulated at natural convection on a cold plate setup (bottom of package is fixed to ambient  
temperature).  
TC = 85°C. Device is loaded with 1W power.  
3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board;  
The product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu,  
2 x 35µm Cu). Where applicable a thermal via array under the ex posed pad contacted the first inner copper layer.  
Ta = 85°C, Device is loaded with 1W power.  
4) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 1s0p board;  
The product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with additional heatspreading copper  
area of 600mm2 and 70 mm thickness. Ta = 85°C, Device is loaded with 1W power.  
Datasheet  
11  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
General Product Characteristics  
4.3.1  
PCB set up  
The following PCB setup was implemented to determine the transient thermal impedance. The setup is  
according to JEDEC standard JESD51-2A and related.  
Figure 4  
Cross-section JEDEC2s2p  
Figure 5  
Cross-section JEDEC1s0p  
Figure 6  
PCB layout, top view  
Datasheet  
12  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
General Product Characteristics  
4.3.2  
Transient Thermal Impedance  
Figure 7  
Typical transient thermal impedance ZthJA = f(tp), Ta = 85°C  
Value is according to Jedec JESD51-2,-7 at natural convection on FR4 boards; The product  
(Chip+Package) was simulated with the respective PCB setups, according to the JEDEC  
standard. Where applicable a thermal via array under the ex posed pad contacted the first  
inner copper layer. Device is dissipating 1 W power.  
Datasheet  
13  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
General Product Characteristics  
Figure 8  
Zth(JC) vs. duty cycle  
Figure 9  
PCB 1sp0 - Rthja vs. cooling areas  
Datasheet  
14  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Power Stage  
5
Power Stage  
5.1  
Output On-state Resistance  
The on-state resistance depends on the supply voltage and on the junction temperature TJ. Figure 10 shows  
this dependencies in terms of temperature and voltage for the typical on-state resistance RDS(ON). The behavior  
in reverse polarity is described in chapter“Inverse Current Capability” on Page 20.  
Figure 10 Trend of On-State Resistance RDS(ON) = f(TJ), VDD = 5V or 3V, VIN = high  
At VIN= high the power DMOS switches ON with a dedicated slope.  
To achieve a reasonable RDS(ON)and the specified switching speed a 5V supply is required.  
5.2  
Functional description of ENABLE pin  
The physical digital input ENABLE allows power down mode when IN pin toggling is not needed.  
When ENABLE is set to logic low, the DMOS is switched off (regardless of the status of the input IN) and the  
device will be in Power Down mode. It allows the lowest possible leakage current through OUT and VDD pins.  
The STATUS pin will not be available during this stage and the device is reset.  
When the ENABLE pin is switched to logic high, the device logic and DMOS are available with full  
functionalities, after a dead time defined as masking time - tENABLE(MASKING)”(Table “tENABLE(MASKING)” on  
Page 36), .  
Then, depending on the status of the IN pin the DMOS is switched on or off, see Chapter 5.3 and Figure 11  
“VOUT in relation to VENABLE and VIN” on Page 16. The STATUS pin will also be available. For the electrical  
characteristics see Table 8, Page 35.  
Datasheet  
15  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Power Stage  
5.3  
Functional description of IN pin  
The IN pin is a digital input. As described in Chapter 5.2 using the physical IN pin requires the ENABLE pin to  
be set to logic high.  
If IN is set to logic low, the DMOS is switched off.  
If IN is set to logic high, the DMOS is switched on.  
In addition, an high frequency PWM signal source can be connected. At a frequency of 20kHz the duty cycle can  
be selected between 10% and 90%. .  
5.4  
Resistive Load Output Timing  
Figure 12 shows the typical timing when switching a resistive load.  
Figure 11 VOUT in relation to VENABLE and VIN  
Figure 12 Definition of Power Output Timing for Resistive Load  
Datasheet  
16  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Power Stage  
5.5  
Inductive Load  
5.5.1  
Output Clamping  
When switching off inductive loads with low side switches, the drain-source voltage VOUT rises above battery  
potential, because the inductance intends to continue driving the current. To prevent unwanted high voltages  
the device has a voltage clamping mechanism to keep the voltage at VOUT(CLAMP). During this clamping  
operation mode the device heats up as it dissipates the energy from the inductance. Therefore the maximum  
allowed load inductance is limited. See Figure 13 and Figure 14 for more details.  
Figure 13 Output Clamp Circuitry  
Figure 14 Switching an Inductive Load  
Note:  
Repetitive switching of inductive load by VDD instead of using the input is a not recommended  
operation and may affect the device reliability and reduce the lifetime.  
Datasheet  
17  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Power Stage  
5.5.2  
Maximum Load Inductance  
While demagnetization of inductive loads, energy has to be dissipated in the BTF3035EJ.  
This energy can be calculated by the following equation:  
VBAT VOUT(CLAMP)  
RL × IL  
L
E =VOUT(CLAMP)  
×
×ln 1−  
+ IL  
×
(5.1)  
(5.2)  
RL  
VBAT VOUT(CLAMP)  
RL  
Following equation simplifies under assumption of RL = 0  
1
VBAT  
2
E = LIL × 1−  
2
VBAT VOUT(CLAMP)  
The figure below shows the inductance / current combination the BTF3035EJ can handle.  
For maximum single avalanche energy refer to EAS value in Table 2.  
Figure 15 Maximum load inductance for single pulse  
L = f(IL), TJ,start = 150°C, VBAT = 13.5V  
Datasheet  
18  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Power Stage  
5.6  
Adjustable Switching Speed / Slew Rate  
In order to optimize electromagnetic emission, the switching speed of the MOSFET can be adjusted by  
connecting an external resistor between SRP pin and GND. This allows for balancing between electromagnetic  
emissions and power dissipation. Shorting the SRP pin to GND represents the fastest switching speed. Open  
pin represents the slowest switching speed.  
The accuracy of the switching speed adjustment is dependent on the precision of the external resistor used  
and on the parasitic capacitance on the SRP pin. It is recommended to use accurate resistors and place them  
as close as possible to the SRP pin with the shortest way possible to the GND of the device.  
Figure 16 shows the simplified relation between the resistor value and the switching times  
Figure 16 Typical simplified relation between switching time and RSRP resistor values used on SRP pin  
It is not recommended to change the slew rate resistance during switching (supplied device, VDD > VDD(UV_ON)  
.
Undefined switching times can result.  
If the SRP pin is externally pulled up above the normal SRP pin voltage VSRP (e.g. to VDD) the slowest slew rate  
settings apply.  
Datasheet  
19  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Power Stage  
5.7  
Inverse Current Capability  
An inverse situation means the OUT pin is pulled below GND potential via the load and current flows in the  
Power DMOS intrinsic body diode.  
In certain application cases (for example in use in a bridge or half-bridge configuration) the body diode is used  
for freewheeling of an inductive load. In this case the device is still supplied but the inverse current is flowing  
from GND to OUT(drain).  
In inverse operation the body diode is dissipating power, which is defined by the driven current times the  
voltage drop on the body diode -VDS  
.
In order to dissipate less power in inverse situation, a dedicated circuit has been implemented.  
The BTF3035EJ includes an inverse current detection circuit that allows to turn ON the Power DMOS while  
inverse current is present (active freewheeling) and disables all protections, e.g. current limitation,  
temperature shutdown or over voltage clamping. To do active freewheeling, both ENABLE and IN pin must be  
set to logic high.  
The timings are set to slow mode (open SRP pin), regardless of the SRP pin configuration.  
During inverse current condition the quiescent current of the circuit is the same as in normal operation if  
ENABLE=high (see Chapter 9.4). If ENABLE=low and the device is still supplied, the standby supply current in  
inverse increases compared to standby supply current in normal output current condition (see Table 8  
“Electrical Characteristics: Supply and Input” on Page 35).  
The maximum admissible inverse current is -IL(NOM)  
.
5.8  
Characteristics  
See Table 9.1 “Power Stage” on Page 30 for electrical characteristics.  
Datasheet  
20  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Protection Functions  
6
Protection Functions  
The device provides embedded protection functions. Integrated protection functions are designed to prevent  
IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside”  
normal operation. Protection functions are not to be used for continuous or repetitive operation. Over  
temperature is indicated by a low active signal on the STATUS pin.  
6.1  
Over Voltage Clamping on OUT  
The BTF3035EJ is equipped with a voltage clamp circuitry that keeps the drain-source voltage VDS at a certain  
level VOUT(CLAMP). The over voltage clamping is overruling the other protection functions. Power dissipation has  
to be limited not to exceed the maximum allowed junction temperature.  
This function is also used in terms of inductive clamping. See also “Output Clamping” on Page 17 for more  
details.  
6.2  
Over Temperature Protection with Latched Fault Signal  
The device is protected against over temperature due to overload and/or bad cooling conditions by an  
integrated temperature sensor. The over temperature protection is available if the device is active, i.e. IN=high  
and ENABLE=high.  
The device incorporates an absolute (TJ(SD)) and a dynamic temperature limitation (ΔTJ(SW)). Triggering one of  
them will cause the output to switch off. The dynamic temperature limitation principle is developed in a  
separated Application Note for HITFET+.  
The switch off will be done with the fastest possible slew rate. The BTF3035EJ has a thermal-restart function.  
If IN pin is still high the device will turn on again after the junction temperature has dropped below the thermal  
hysteresis (ΔTJ_HYS).  
In case of detected overtemperature the fault signal will be set and the STATUS pin will be internally pulled  
down to VSTATUS(FAULT)  
.
This VSTATUS is independent from the IN signal, providing a stable fault signal (Logic “low”) to be read out by a  
micro controller.  
The latched fault signal needs to be reset by a pull-up signal (VSTATUS VSTATUS(RESET)) at the STATUS pin for a  
minimum duration of tRESET, provided that the junction temperature has decreased at least from the thermal  
hysteresis in the meantime.  
The latched fault signal can also be reset by setting ENABLE=low. See Chapter 6.4 for an overview of reset  
conditions.  
See “Diagnostics” on Page 26 for details on the feedback and reset function.  
Datasheet  
21  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Protection Functions  
Figure 17 Thermal protective switch OFF scenario for case of overload or short circuit  
Note:  
For better understanding, the time scale is not linear. The real timing of this drawing is application  
dependant and cannot be described.  
6.3  
Overcurrent Limitation / Short Circuit Behavior  
BTF3035EJ provides a smart overcurrent limitation intended to protect against short circuit conditions while  
allowing also load inrush currents higher than the current limitation level. It has a current limitation level IL(LIM)  
which is triggered by a higher trigger level IL(LIM)TRIGGER  
If the load current IL reaches the current limitation trigger level IL(LIM)TRIGGER, the internal current limitation will  
be activated and the device limits the current to a lower value IL(LIM)  
.
.
The IL(LIM)TRIGGER function has a latch behaviour, it happens once and is disabled until it is reset.  
Then, BTF3035EJ behaves as a normal auto-restart, current limiting device: It keeps heating up at IL(LIM) until  
the thermal shutdown temperature TJ(SD) is reached, then it turns off.  
Due to autorestart feature, the MOSFET turns on again after it drops in temperature below thermal hysteresis  
(TJ_HYS). If fault situation is still present, the current will be limited to IL(LIM) as the trigger feature is now  
disabled. The time to over temperature switch off strongly depends on the cooling conditions.  
To reset the IL(LIM)TRIGGER level feature, two conditions are necessary. The STATUS pin needs a pull-up signal  
(VSTATUS VSTATUS(RESET)) for a minimum duration of tRESET, and the IN pin must be in low state (VIN VIN(L)) at the  
same time.  
The IL(LIM)TRIGGER level feature can also be reset by setting ENABLE=low. See Chapter 6.4 for an overview of reset  
conditions.  
Figure 18 “Short circuit protection via current limitation and thermal switch off , with latched fault  
signal on STATUS” on Page 23 shows this behavior.  
Datasheet  
22  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Protection Functions  
Figure 18 Short circuit protection via current limitation and thermal switch off , with latched fault  
signal on STATUS  
Note:  
For better understanding, the time scale is not linear. The real timing of this drawing is application  
dependant and cannot be described.  
Datasheet  
23  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Protection Functions  
Behavior with overload current below current limitation trigger level  
The lower current limitation level IL(LIM) is also triggered by any thermal shutdown. It can be the case when a  
still current, below the overcurrent limitation trigger level (IL < IL(LIM)TRIGGER), provokes an over temperature  
shutdown. Any over temperature shutdown disables the IL(LIM)TRIGGER function.  
Figure 19 Example of overload behavior with thermal shutdown  
Note:  
For better understanding, the time scale is not linear. The real timing of this drawing is application  
dependant and cannot be described.  
Datasheet  
24  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Protection Functions  
6.4  
Reset conditions  
The following table gives the reset conditions of the latched STATUS signal and the IL(LIM)TRIGGER function.  
Additionally, both functions are reset when ENABLE=low, regardless of STATUS and IN pin states.  
Figure 20 Reset conditions of latched STATUS signal and IL(LIM)TRIGGER function.  
Datasheet  
25  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Diagnostics  
7
Diagnostics  
The BTF3035EJ provides a latched digital fault feedback signal on the STATUS pin triggered by an over  
temperature or dynamic temperature shutdown.  
7.1  
Functional Description of the STATUS pin  
The BTF3xxxEJ series provides digital status information via the STATUS pin to give an alarm feedback to a  
possible connected micro controller. See Figure 17 “Thermal protective switch OFF scenario for case of  
overload or short circuit” on Page 22.  
Normal operation mode  
In normal operation (no fault is detected) the STATUS pin is logic “high”. It is pulled up via an external Resistor  
with a recommended value of 4.7kΩ. Internally it is connected to an open drain MOSFET via an internal  
Resistor.  
Fault operation  
In case of a temperature shutdown the internal MOSFET of the BTF3xxxEJ series pulls the STATUS pin down to  
approx 0.5V, which a connected microcontroller would accept as logic “low” level signal for a 4.7kpull-up  
resistor. This mode stays active independent from the input pin state or internal auto-restarts until it is reset.  
Reset Latch (external pull up)  
To reset the latched STATUS signal, the STATUS pin has to be pulled-up to VDD, for a minimum time of tRESET  
.
The IN pin state does not matter to reset the latched STATUS signal. See Chapter 11 for an example of basic  
circuitry to use this digital feedback function.  
Reset IL(LIM)TRIGGER  
See Chapter 6.3 for detailed explanation on the function and Chapter 6.4 for a quick overview of reset  
mechanism.  
7.2  
Characteristics  
See Table 9.3 “Diagnostics” on Page 34 for electrical characteristics.  
Datasheet  
26  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Supply and Input Stage  
8
Supply and Input Stage  
8.1  
Supply Circuit  
The supply pin VDD is protected against ESD pulses as shown in Figure 21.  
The device supply is not internally regulated but directly taken from a external supply. Therefore a reverse  
polarity protected and buffered (3.0V..5.5V) voltage supply is required. To achieve a reasonable RDS(ON) and the  
specified switching speed a 5V supply is required.  
Figure 21 Supply Circuit  
8.2  
Undervoltage Shutdown  
In order to ensure a stable and defined device behavior under all allowed conditions the supply voltage VDD is  
monitored.  
If the supply voltage VDD drops below the switch-off threshold VDD(TH), the power DMOS switches off. In this case  
ENABLE pin is pulled to low state and both latched STATUS and IL(LIM)TRIGGER level are reset (See Chapter 6.4,  
Reset conditions). All device functions are only specified for supply voltages above the supply voltage  
threshold VDD(TH)MAX. There is no fault feedback ensured for VDD < VDD(TH)  
.
8.3  
Input/Enable Circuit  
Figure 22 shows the IN pin circuit of the BTF3035EJ. Due to an internal pull-down it is ensured that the device  
switches off in case of open IN pin. A Zener structure protects the input circuit against ESD pulses.  
This structure is also valid for ENABLE pin.  
Datasheet  
27  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Supply and Input Stage  
Figure 22 Simplified IN/ENABLE pin circuitry  
8.4  
Functional Description of the SRP Pin  
The BTF3035EJ provides the possibility to adjust slewrate with an external resistor connected to the Slew-  
Rate-Preset pin (SRP). It defines the strength of the gate driver stage used to switch the power DMOS. The  
greater the resistor the lesser the current driven by the slew rate logic block to the gate driver block, which will  
result in a slower turn-on and turn-off. For details on this function please refer to “Adjustable Switching  
Speed / Slew Rate” on Page 19.  
Figure 23 Simplified functional block diagram of SRP pin  
Datasheet  
28  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Supply and Input Stage  
8.5  
Characteristics  
Please see Table “INPUT” on Page 36, Table “ENABLE” on Page 36 for INPUT and ENABLE electrical  
characteristics.  
The timings Table shows slew rate for specific resistor values, for the SRP pin electrical characteristics please  
see Table “SRP” on Page 36.  
Datasheet  
29  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Electrical Characteristics  
9
Electrical Characteristics  
Note:  
Characteristics show the deviation of parameter at given input voltage and junction temperature.  
Typical values show the typical parameters expected from manufacturing and in typical application  
condition.  
All voltages and currents naming and polarity in accordance to  
Figure 3 “Naming Definition of electrical parameters” on Page 7  
9.1  
Power Stage  
See Chapter “Power Stage” on Page 15 for parameters description and further details.  
Table 5 Electrical Characteristics: Power Stage  
TJ = -40°C to +150°C, VDD = 3.0 V to 5.5 V, VBAT = 6 V to 18 V, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Power Stage - Static Characteristics  
On-State resistance  
On-State resistance  
Nominal load current  
RDS(ON)  
32  
60  
mIL = IL(NOM)  
DD = 5V;  
;
;
P_9.1.4  
P_9.1.9  
V
TJ = 25°C  
RDS(ON)  
70  
mIL = IL(NOM)  
VDD = 5V;  
TJ = 150°C  
IL(NOM)  
5
2
A
1)TJ < 150°C;  
P_9.1.34  
P_9.1.39  
VDD = 5 V;  
2)  
OFF state load current, Output  
leakage current  
IL(OFF)25  
4.5 µA  
VBAT = 13.5 V;  
V
IN = 0 V;  
VDD = 5 V;  
TJ 85°C  
OFF state load current, Output  
leakage current  
IL(OFF)150  
3
9
µA VBAT = 18 V;  
IN = 0 V;  
P_9.1.44  
V
VDD = 5 V;  
TJ = 150°C  
Reverse Diode  
Reverse diode forward voltage  
-VDS  
0.8 1.5  
V
ID = - IL(NOM)  
VIN = 0 V  
;
P_9.1.50  
Power Stage - Dynamic characteristics - switching time adjustment VBAT = 13.5V, VDD = 5 V; resistive load:  
RL = 2.2; CSRP-GND < 100 pF;  
see also Figure 12 “Definition of Power Output Timing for Resistive Load” on Page 16  
Turn-on time  
Turn-off time  
tON(0)  
0.45 1.35 2.8 µs RSRP = 0Ω  
P_9.1.51  
P_9.1.55  
3)  
tOFF(0)  
0.8  
2
4
µs RSRP = 0Ω  
4)  
Datasheet  
30  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Electrical Characteristics  
Table 5  
Electrical Characteristics: Power Stage (cont’d)  
TJ = -40°C to +150°C, VDD = 3.0 V to 5.5 V, VBAT = 6 V to 18 V, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Turn-on delay time  
tDON(0)  
tDOFF(0)  
tF(0)  
0.15 0.35 0.8 µs RSRP = 0Ω  
P_9.1.59  
P_9.1.63  
P_9.1.67  
P_9.1.71  
P_9.1.75  
Turn-off delay time  
0.5  
0.3  
0.3  
1
1
1
2
µs RSRP = 0Ω  
µs RSRP = 0Ω  
µs RSRP = 0Ω  
Turn-on output fall time  
Turn-off output rise time  
Turn-on Slew rate 5)  
2
tR(0)  
2
-(DV/Dt)ON(0)  
15 27  
45  
V/µs RSRP = 0Ω  
5)  
Turn-off Slew rate  
Turn-on time  
(DV/Dt)OFF(0)  
tON(5k8)  
15 27  
45  
V/µs RSRP = 0Ω  
P_9.1.79  
P_9.1.52  
P_9.1.56  
5)  
1.3 2.7 4.5 µs RSRP = 5.8kΩ  
3)  
Turn-off time  
tOFF(5k8)  
2
4
6
µs RSRP = 5.8kΩ  
4)  
Turn-on delay time  
Turn-off delay time  
Turn-on output fall time  
Turn-off output rise time  
Turn-on Slew rate  
tDON(5k8)  
tDOFF(5k8)  
tF(5k8)  
0.3 0.75 1.5 µs RSRP = 5.8kΩ  
P_9.1.60  
P_9.1.64  
P_9.1.68  
P_9.1.72  
P_9.1.76  
1
1
1
7
2
3
µs RSRP = 5.8kΩ  
µs RSRP = 5.8kΩ  
µs RSRP = 5.8kΩ  
2
3
tR(5k8)  
2
3
-(DV/Dt)ON(5k8)  
13  
21  
V/µs RSRP = 5.8kΩ  
5)  
Turn-off Slew rate  
Turn-on time  
(DV/Dt)OFF(5k8)  
tON(58k)  
7
13  
21  
40  
70  
V/µs RSRP = 5.8kΩ  
P_9.1.80  
P_9.1.53  
P_9.1.57  
5)  
13 26  
23 35  
µs RSRP = 58kΩ  
3)  
Turn-off time  
tOFF(58k)  
µs RSRP = 58kΩ  
4)  
Turn-on delay time  
Turn-off delay time  
Turn-on output fall time  
Turn-off output rise time  
Turn-on Slew rate  
tDON(58k)  
tDOFF(58k)  
tF(58k)  
3
7
6
10  
35  
30  
30  
µs RSRP = 58kΩ  
µs RSRP = 58kΩ  
µs RSRP = 58kΩ  
µs RSRP = 58kΩ  
P_9.1.61  
P_9.1.65  
P_9.1.69  
P_9.1.73  
P_9.1.77  
15  
10 20  
10 20  
tR(58k)  
-(DV/Dt)ON(58k) 0.7 1.4 2.1 V/µs RSRP = 58kΩ  
5)  
Turn-off Slew rate  
Turn-on time  
(DV/Dt)OFF(58k) 0.7 1.4 2.1 V/µs RSRP = 58kΩ  
P_9.1.81  
5)  
tON(open)  
tOFF(open)  
tDON(open)  
40 80  
130 µs RSRP = 200k(open) P_9.1.54  
3)  
Turn-off time  
55 110 190 µs RSRP = 200k(open) P_9.1.58  
4)  
Turn-on delay time  
10 20  
40  
µs RSRP = 200k(open) P_9.1.62  
Datasheet  
31  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Electrical Characteristics  
Table 5  
Electrical Characteristics: Power Stage (cont’d)  
TJ = -40°C to +150°C, VDD = 3.0 V to 5.5 V, VBAT = 6 V to 18 V, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Turn-off delay time  
tDOFF(open)  
tF(open)  
25 50  
30 60  
30 60  
100 µs RSRP = 200k(open) P_9.1.66  
Turn-on output fall time  
Turn-off output rise time  
Turn-on Slew rate  
90  
90  
µs RSRP = 200k(open) P_9.1.70  
µs RSRP = 200k(open) P_9.1.74  
tR(open)  
-(DV/Dt)ON(open) 0.25 0.5 0.7 V/µs RSRP = 200k(open) P_9.1.78  
5)  
Turn-off Slew rate  
(DV/Dt)OFF(open) 0.25 0.5 0.7 V/µs RSRP = 200k(open) P_9.1.82  
5)  
1) Not subject to production test, calculated by RthJA and RDS(ON). (JEDEC2S2P)  
2) Not subject to production test, specified by design  
3) Not subject to production test, calculated by (tDON + tF)  
4) Not subject to production test, calculated by (tDOFF + tR)  
5) Not subject to production test, calculated slew rate between 90% and 50%; see Figure 12 “Definition of Power  
Output Timing for Resistive Load” on Page 16  
9.2  
Protection  
See Chapter “Protection Functions” on Page 21 for parameter description and further details.  
Note:  
Integrated protection functions are designed to prevent IC destruction under fault conditions  
described in the data sheet. Fault conditions are considered as “outside” normal operating range.  
Protection functions are not designed for continuous repetitive operation  
Table 6  
Electrical characteristics: Protection  
TJ = -40°C to +150°C, VDD = 3.0 V to 5.5 V; VBAT = 6 V to 18 V, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit Note or  
Test Condition  
Number  
Min.  
Thermal shut down 1)  
1)  
Thermal shut down  
TJ(SD)  
150  
175 200 °C  
P_9.2.1  
junction temperature  
1)  
1)  
Thermal hysteresis  
ΔTJ_HYS  
ΔTJ(SW)  
15  
70  
K
K
P_9.2.3  
P_9.2.4  
Dynamic temperature limitation  
Over Voltage Protection / Clamping  
Drain clamp voltage  
VOUT(CLAMP)  
40  
V
VIN = 0 V; IL= 14  
P_9.2.7  
mA;  
Datasheet  
32  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Electrical Characteristics  
Table 6  
Electrical characteristics: Protection (cont’d)  
TJ = -40°C to +150°C, VDD = 3.0 V to 5.5 V; VBAT = 6 V to 18 V, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit Note or  
Test Condition  
Number  
Min.  
Current limitation  
Current limitation trigger level  
IL(LIM)TRIGGER  
41  
62  
-
82  
28  
A
A
VIN = 5 V;  
VDD = 5V;  
EN=5V  
VIN = 5V;  
P_9.2.11  
P_9.2.16  
V
Current limitation level BTF3035EJ IL(LIM)  
14  
V
V
DD = 5V;  
EN=5V  
settled value  
1) Not subject to production test, specified by design.  
Datasheet  
33  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Electrical Characteristics  
9.3  
Diagnostics  
See Chapter “Diagnostics” on Page 26 for description and further details.  
Table 7 Electrical Characteristics: Diagnostics  
TJ = -40°C to +150°C, VDD = 3.0 V to 5.5 V, VBAT = 6 V to 18 V, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Feedback pin  
STATUS pin voltage operation  
range  
VSTATUS  
-0.3  
5.5  
V
STATUS Pin voltage drop Fault  
STATUS Pin reset current  
VSTATUS(FAULT)  
ISTATUS(RESET)  
5
0.5 0.8  
V
ISTATUS(FAULT)=1mA  
P_9.3.2  
P_9.3.3  
P_9.3.6  
7
mA  
V
STATUS Pin reset threshold  
voltage  
VSTATUS(RESET) 0.9 2.0 2.5  
STATUS Pin leakage current  
(85°C)  
ISTATUS(85)  
1.5  
6
µA  
VSTATUS 5.5V  
P_9.3.4  
P_9.3.5  
TJ 85°C  
1)  
STATUS Pin leakage current  
(150°C)  
ISTATUS(150)  
tRESET  
6
12  
µA  
µs  
VSTATUS 5V  
TJ = 150°C  
Fault feedback reset time  
20  
VSTATUS > VSTATUS(RESET) P_9.3.7  
1) Not subject to production test, specified by design.  
Datasheet  
34  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Electrical Characteristics  
9.4  
Supply and Input Stage  
See Chapter “Supply and Input Stage” on Page 27 for description and further details.  
Table 8 Electrical Characteristics: Supply and Input  
TJ = -40°C to +150°C, VDD = 3.0 V to 5.5 V, VBAT = 6 V to 18 V, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Supply  
Nominal supply voltage  
VDD(NOM)  
3.0 5.0 5.5  
1.3 2.4 3.0  
V
V
P_9.4.1  
Supply ON/OFF threshold voltage VDD(TH)  
VIN = 5.0V; VBAT=13.5V; P_9.4.2  
EN= 5V;  
VIN= 5V;  
V
Supply current,  
continuous ON operation  
IDD(ON)  
1.3 2.5 mA VDD = 5.0V;  
RSRP = 0;  
P_9.4.6  
V
EN= 5V;  
OUT(0) = IOUT(NOM)  
0.7 2.5 mA VOUT < -0.3V;  
DD = 5.5V;  
I
Supply current,  
inverse condition on OUT to GND,  
ON mode  
IDD_ON(-VOUT)  
P_9.4.9  
V
VEN= 5V;  
VIN= 5V;  
IL =-IL(NOM)  
Supply current,  
inverse condition on OUT to GND,  
OFF mode  
IDD_OFF(-VOUT)  
200 µA VOUT < -0.3V;  
VDD= 5.5V;  
P_9.4.10  
P_9.4.11  
P_9.4.12  
VEN= 5V;  
VIN= 0V;  
IL =-IL(NOM)  
1)  
Standby supply current  
IDD(OFF)  
1.5  
6
6
µA  
V = 0V;  
IN  
VDD = 5.0V;  
SRP = 0;  
R
VEN= 0V;  
TJ 85°C  
Standby supply current,  
maximum at 150°C  
IDD(OFF)_150  
14  
µA VIN = 0V;  
VDD = 5.0V;  
RSRP = 0;  
VEN= 0V;  
TJ = 150°C  
Datasheet  
35  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Electrical Characteristics  
Table 8  
Electrical Characteristics: Supply and Input (cont’d)  
TJ = -40°C to +150°C, VDD = 3.0 V to 5.5 V, VBAT = 6 V to 18 V, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
INPUT  
Input Voltage  
VIN  
-0.3  
-0.3  
2.0  
5.5  
0.8  
VDD  
V
Low level input voltage  
High level input voltage  
Input voltage hysteresis  
Input pull down current  
VIN(L)  
VIN(H)  
VIN(HYS)  
IIN  
V
P_9.4.14  
P_9.4.15  
P_9.4.16  
P_9.4.17  
V
200  
mV  
160 µA 2.7V < VIN < 5.5V  
-0.3V < VDD < 5.5V  
Internal Input pull down resistor  
ENABLE  
RIN(GND)  
25 50  
100 kΩ  
P_9.4.18  
ENABLE Voltage  
VENABLE  
-0.3  
-0.3  
2.0  
5.5  
0.8  
VDD  
V
Low level ENABLE voltage  
High level ENABLEvoltage  
ENABLE voltage hysteresis  
ENABLE pull down current  
VENABLE(L)  
VENABLE(H)  
VENABLE(HYS)  
IENABLE  
V
P_9.4.20  
P_9.4.21  
P_9.4.22  
P_9.4.23  
V
200  
mV  
160 µA 2.7V < VIN < 5.5V  
-0.3V < VDD < 5.5V  
Internal ENABLE pull down resistor RENABLE(GND)  
25 50  
100 kΩ  
P_9.4.24  
P_9.4.25  
ENABLE masking time  
tENABLE(MASKING)  
4
8
16  
µs  
SRP  
1)  
1)  
1)  
SRP resistor range for adjustable  
operation  
RSRP(NOR)  
RSRP(EXTF)  
RSRP(EXTS)  
5
70  
KΩ  
P_9.4.26  
P_9.4.27  
P_9.4.28  
SRP resistor range for fast  
operation  
0
1.5 KΩ  
KΩ  
SRP resistor range for slow  
operation  
160  
1) Not subject to production test, specified by design.  
Datasheet  
36  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
10  
Characterization Results  
10.1  
Power Stage  
Figure 24 RDS(ON) vs. VDD @ TJ=-40, 25, 85, 150°C, IL=IL(NOM); VIN= VENABLE= 5V; VDD= 3...5.5V; RSRP= 0  
Datasheet  
37  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
Figure 25 IDD(ON) vs. RSRP @ TJ=-40, 25, 150°C, IL=IL(NOM); VIN = VENABLE= VDD= 5V  
Figure 26 RDS(ON) vs. TJ @ VDD=3V, 5V; VIN = VENABLE = 5V; TJ= -40, 25, 85, 150°C;  
Datasheet  
38  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
Figure 27  
I
L(OFF) vs. TJ @ VIN = 0V; VENABLE= VDD= 5V; TJ= -40, -20, 0, 25, 50, 85, 105, 125, 150°C; VBAT  
=
13.5V, 18V, 31V  
Figure 28 IL(OFF) vs. VBAT =0..40V @ TJ= -40, 25, 85, 150°C; VIN = 0V; VENABLE= VDD= 5V  
Datasheet  
39  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
Figure 29  
EAS vs. IL @ TJ(0)=25°C, 150°C, VBAT=13.5V; VIN = VENABLE = VDD= open; IL=IL(NOM) /4, IL(NOM)/2,  
IL(NOM), 2*IL(NOM)  
Figure 30 EAR_10k, _100k vs. IL @ TJ(0)=25°C, 105°C, VBAT= 13.5V; VIN = VENABLE = VDD= 5V; IL =IL(NOM), 2*IL(NOM)  
Datasheet  
40  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
Figure 31  
EAR vs. cycles @ TJ(0)=25°C, 105°C, VBAT = 13.5V; VIN = VENABLE = VDD= 5V; IL = IL(NOM), 2*IL(NOM)  
Datasheet  
41  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
Figure 32 tF, tR, tDON, tDOFF vs. RSRP; VIN = VENABLE= VDD= 5V; VBAT= 13.5V; RL=2.2; TJ = -40, 25, 150°C  
Datasheet  
42  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
Figure 33 -(ΔV/Δt)ON, (ΔV/Δt)OFF vs. RSRP; VIN = VENABLE = VDD= 5V; VBAT = 13.5V; RL=2.2; TJ= -40, 25, 150°C  
Datasheet  
43  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
Figure 34 tF, tR, tDON, tDOFFvs. VDD=3..5.5V @ VBAT=13.5V; TJ= -40, 25, 150°C; RSRP = 5.8k; VIN = VENABLE  
5V; RL=2.2;  
=
Datasheet  
44  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
Figure 35 tF, tR, tDON, tDOFF vs. VBAT=3..31V @ VDD=5V; VIN = VENABLE= VDD = 5V; RL = 2.2; RSRP=5.8k; TJ= -  
40, 25, 150°C  
Datasheet  
45  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
Figure 36 Slewrates (-(ΔV/Δt)ON, (ΔV/Δt)OFF vs. VBAT @ TJ = -40, 25, 150°C; RL=2.2; RSRP= 5.8k; VIN  
=
VDD = VENABLE= 5V; VBAT = 3..31V  
Datasheet  
46  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
Figure 37 tF, tR, tDON, tDOFF vs. TJ= -40; 25; 85;150°C @ RSRP= 5.8k; VIN= VENABLE = VDD = 5V; VBAT = 13.5V;  
RL= 2.2Ω  
Datasheet  
47  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
Figure 38 tF, tR, tDON, tDOFF vs. RL @ RSRP= 5.8k; VIN= VENABLE= VDD= 5V; VBAT = 13.5V; TJ = -40, 25, 150°C  
Datasheet  
48  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
10.2  
Protection  
Figure 39 TJ(SD) vs. VDD; VIN=VENABLE= 5V; VDD= 3V...5.5V; IL= 10mA  
Figure 40  
VOUT(clamp) vs. TJ; VIN= 0V;VENABLE= VDD= 5V; IL= 14mA  
Datasheet  
49  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
Figure 41  
I
L(LIM)TRIGGER peak vs. VDD=3...5.5V@ TJ= -40, 25, 85, 150°C; VIN= PWM 5V in SOA; VENABLE= 5V;  
VBAT= 13.5V; RL= 2.2Ω  
Figure 42 IL(LIM) vs. VDD= 3V...5.5V @ TJ = -40, 25, 150°C; VENABLE=VIN= 5V; VBAT= 13.5V  
Datasheet  
50  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
10.3  
Diagnostics  
Figure 43 ISTATUS vs. VDD = 3V...5.5V@ TJ= -40, 25, 150°C; VENABLE= VIN= 5V; VBAT= 13.5V;  
Figure 44  
VSTATUS in fault mode vs. VDD = 3V...5V@ TJ = -40, 25, 150°C; VIN = VENABLE= 5V; VBAT= 13.5V;  
Datasheet  
51  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
10.4  
Supply and Input Stage  
Figure 45 VDD(TH) vs. TJ = -40, 25, 150°C; VIN=VENABLE= 5V; RL= 2.2; VBAT= 13.5V; RSRP= 0Ω  
Figure 46 IDD(ON) vs. VDD = 3V...5.5V@ TJ = -40, 25, 85, 150°C; VIN = VENABLE = 5V; RSRP= 0; VBAT = 13.5V;  
Datasheet  
52  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
Figure 47  
IDD(OFF) vs. TJ @ VDD = 3, 4, 5V; VIN = VENABLE = 0V;  
Figure 48 IIN vs. VIN = -0.3V...5.5V@ TJ = -40, 25, 150°C; VDD = VENABLE= 5V;  
Datasheet  
53  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Characterization Results  
Figure 49 VIN(L), VIN(H) vs. TJ @ VDD = 5V; VENABLE= 5V; IL= 1.4 mA; RSRP= 0; VIN= 0V...5.5V; VBAT= 13.5V;  
Figure 50  
VEN(L), VEN(H) vs. TJ @ VDD = 5V; VBAT= 13.5V; IL= 1.4mA; RSRP= 0; VEN= 0V...5.5V; VBAT= 13.5V;  
Datasheet  
54  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Application Information  
11  
Application Information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Application Diagram  
An application example with the BTF3035EJ is shown below.  
Figure 51 Simplified application diagram  
Note:  
This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
Table 9  
Reference  
RSTATUS  
RSRP  
Pin description for simplified application diagram  
Value  
4.7kΩ  
kΩ  
Purpose  
Pulls-up the STATUS pin  
SRP resistor  
CSRP-GND  
CVDD  
< 100pF  
100nF  
maximum permitted parasitic capacitance at the SRP pin  
Filter capacitor on supply pin  
Datasheet  
55  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Application Information  
11.1  
Design and Layout Recommendations/Considerations  
As consequence of the fast switching times for high currents, special care has to be taken to the PCB layout.  
Stray inductances have to be minimized. The BTF3035EJ has no separate pin for power ground and logic  
ground. Therefore it is recommended to assure that the offset between the ground connection of the slew rate  
resistor and ground pin of the device (GND/SOURCE) is minimized. The resistor RSRP should be placed near to  
the device and directly connected to the GND pin of the device to avoid any influence of GND shift to the  
functionality of the SRP pin.  
In order to avoid influence on SRP functionality (e.g. switching times..) the maximum capacitance on SRP pin  
to GND (CSRP-GND) has to be less than 100pF. This has to be considered by a proper layout also taking into  
account of parasitic capacitors.  
It is recommended not to let the SRP pin floating. A maximum resistor of 200 kOhm to GND is recommended.  
Datasheet  
56  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Package information  
12  
Package information  
Figure 52 PG-TDSO-8-31 1)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
1) Dimension in mm  
Datasheet  
57  
Rev. 1.0  
2018-08-08  
BTF3035EJ  
Smart Low-Side Power Switch  
Revision History  
13  
Revision History  
Revision  
Date  
Changes  
Rev. 1.0  
2018-08-08 First Release  
Datasheet  
58  
Rev. 1.0  
2018-08-08  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2018-08-08  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
a written document signed by  
Document reference  

相关型号:

BTF3050EJ

HITFET™ +12V
INFINEON

BTF3050TE

BTF3050TE 是一款 50mOhm 智能单通道低边电源开关,采用 PG-TO252-5 封装,提供嵌入式保护功能。功率晶体管由 N 通道垂直功率 MOSFET 构成。该设备是单片集成的。BTF3050TE 符合汽车标准,针对12V 汽车和工业应用进行了优化。
INFINEON

BTF3080EJ

HITFET™ +12V
INFINEON

BTF3125EJ

HITFET™ +12V
INFINEON

BTF32C1

HC-49/US Microprocessor Crystals
CALIBER

BTF32C1-23.999MHZ-TR

Parallel - Fundamental Quartz Crystal, 23.999MHz Nom, HC49/US, 2 PIN
CALIBER

BTF32C1-50.000MHZ-L3-BT

Parallel - Fundamental Quartz Crystal, 50MHz Nom, HC49/US, 3 PIN
CALIBER

BTF32C1-8.999MHZ-V

Parallel - Fundamental Quartz Crystal, 8.999MHz Nom, HC49/US, 2 PIN
CALIBER

BTF32C3

HC-49/US Microprocessor Crystals
CALIBER

BTF32C5

HC-49/US Microprocessor Crystals
CALIBER

BTF32E1

HC-49/US Microprocessor Crystals
CALIBER

BTF32E1-9.000MHZ-V

Parallel - Fundamental Quartz Crystal, 9MHz Nom, HC49/US, 2 PIN
CALIBER