BTS50010-1TAD [INFINEON]

BTS50010-1TAD 是一款 1.0mΩ 智能单通道高边电源开关,嵌入 PG-TO-263-7-10 封装,提供保护功能和诊断。其包含 Infineon® ReverSave™ 功能。功率晶体管由带电荷泵的 N 通道功率 MOSFET 构成。其专为在恶劣的汽车环境中驱动高达 80A 的高电流负载而设计,适用于开关电池耦合、配电开关、加热器、电热塞等应用。;
BTS50010-1TAD
型号: BTS50010-1TAD
厂家: Infineon    Infineon
描述:

BTS50010-1TAD 是一款 1.0mΩ 智能单通道高边电源开关,嵌入 PG-TO-263-7-10 封装,提供保护功能和诊断。其包含 Infineon® ReverSave™ 功能。功率晶体管由带电荷泵的 N 通道功率 MOSFET 构成。其专为在恶劣的汽车环境中驱动高达 80A 的高电流负载而设计,适用于开关电池耦合、配电开关、加热器、电热塞等应用。

电池 开关 驱动 泵 电源开关 晶体管
文件: 总51页 (文件大小:897K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BTS50010-1TAD  
Smart High-Side Power Switch  
1
Overview  
Features  
One channel device  
Low Stand-by current  
3.3 V to VS level capable input pin  
Electrostatic discharge protection (ESD)  
Optimized Electromagnetic Compatibility (EMC)  
Logic ground independent from load ground  
Very low leakage current at OUT pin  
Compatible to cranking pulse requirement (test pulse 4 of ISO 7637 and cold start pulse in LV124)  
Embedded diagnostic functions  
Embedded protection functions  
Green Product (RoHS compliant)  
AEC Qualified  
Applications  
Suitable for resistive, inductive and capacitive loads  
Replaces electromechanical relays, fuses and discrete circuits  
Most suitable for applications with high current loads, such as heating system, main switch for power  
distribution, start-stop power supply switch  
PWM applications with low frequencies  
Description  
The BTS50010-1TAD is a 1.0 msingle channel Smart High-Side Power Switch, embedded in a PG-TO-263-7-  
10 package, providing protective functions and diagnosis. It contains Infineon® ReverSave™ functionality. The  
power transistor is built by a N-channel power MOSFET with charge pump. It is specially designed to drive high  
current loads up to 80 A, for applications like switched battery couplings, power distribution switches,  
heaters, glow plugs, in the harsh automotive environment.  
Data Sheet  
www.infineon.com/power  
1
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Overview  
Table 1  
Product Summary  
Parameter  
Symbol Values  
Operating voltage range  
VS(OP)  
8 V … 18 V  
Extended supply voltage including dynamic undervoltage capability  
Maximum ON-state resistance (TJ = 150°C)  
Minimum nominal load current (TA = 85°C)  
Typical current sense differential ratio  
VS(DYN) 3.2 V … 28 V  
RDS(ON) 2 mΩ  
IL(NOM)  
dkILIS  
ICL(0)  
40 A  
52100  
150 A  
Minimum short circuit current threshold  
Maximum stand-by current for the whole device with load (TA = TJ = 85°C) IVS (OFF) 18 µA  
Maximum reverse battery voltage (TA = 25°C for 2 min)  
-VS(REV) 16 V  
Embedded Diagnostic Functions  
Proportional load current sense  
Short circuit / Overtemperature detection  
Latched status signal after short circuit or overtemperature detection  
Embedded Protection Functions  
Infineon® ReverSave™: Reverse battery protection by self turn ON of power MOSFET  
Infineon® Inversave: Inverse operation robustness capability  
Secure load turn-OFF while device loss of GND connection  
Overtemperature protection with latch  
Short circuit protection with latch  
Overvoltage protection with external components  
Enhanced short circuit operation  
Infineon® SMART CLAMPING  
Type  
Package  
Marking  
BTS50010-1TAD  
PG-TO-263-7-10  
S50010D  
Data Sheet  
2
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2
3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1  
3.2  
3.3  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.1  
4.2  
4.3  
5
5.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Switching Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Switching Inductive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Switching Active Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
PWM Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Advanced switch-off behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Protection during Loss of Load or Loss of VS Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Undervoltage Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Activation of the Switch into Short Circuit (Short Circuit Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Short Circuit Appearance when the Device is already ON (Short Circuit Type 2) . . . . . . . . . . . . 26  
Influence of the battery wire inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SENSE Signal in Different Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
SENSE Signal Variation and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.1.1  
5.1.2  
5.1.3  
5.1.3.1  
5.1.3.2  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
5.2  
5.2.1  
5.2.2  
5.3  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.6.1  
5.3.6.2  
5.3.6.3  
5.3.7  
5.4  
5.4.1  
5.4.2  
5.4.3  
5.4.3.1  
5.4.3.2  
Data Sheet  
3
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
5.4.3.3  
5.4.3.4  
SENSE Signal in Case of Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
SENSE Signal in Case of Over Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6
6.1  
6.2  
Electrical Characteristics BTS50010-1TAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Electrical Characteristics Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
7
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
7.1  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
8
9
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Data Sheet  
4
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Product Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Sense Signal, Function of Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Electrical Characteristics: BTS50010-1TAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Data Sheet  
5
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Block Diagram for the BTS50010-1TAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Maximum Single Pulse Current vs. Pulse Time, TJ 150°C, TPIN = 85°C . . . . . . . . . . . . . . . . . . . . . . . 12  
Maximum Energy Dissipation for Inductive Switch OFF, EA vs. IL at VS = 13.5 V . . . . . . . . . . . . . . . . 13  
Maximum Energy Dissipation Repetitive Pulse temperature derating. . . . . . . . . . . . . . . . . . . . . . . 13  
Typical Transient Thermal Impedance Zth(JA) = f(time) for Different PCB Conditions . . . . . . . . . . 15  
Switching a Resistive Load: Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output Clamp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 10 Switching an Inductance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 11 Boundary conditions for switching active loads at low VS with low initial VDS voltage. . . . . . . . . 18  
Figure 12 Inverse Current Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 13 Inverse Behavior - Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 14 Switching in PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 15 Input Pin Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 16 Diagram of Diagnosis & Protection Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 17 Loss of Ground Protection with External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 18 Loss of VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 19 Loss of Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 20 Undervoltage Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 21 Overvoltage Protection with External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 22 Reverse Polarity Protection with External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 23 Oscillations at VS pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 24 Consecutive short circuit events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 25 RC Snubber circuits: between VS pin and module GND; between VS pin and device GND . . . . . 28  
Figure 26 Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 27 Diagnostic Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 28 Current Sense for Nominal and Overload Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 29 Improved Current Sense Accuracy after 2-Point Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 30 Fault Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 31 Application Diagram with BTS50010-1TAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 32 PG-TO-263-7-10 (RoHS-Compliant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Data Sheet  
6
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Block Diagram  
2
Block Diagram  
RVS  
voltage sensor  
VS  
internal  
power  
supply  
over  
temperature  
Smart clamp  
gate control  
&
charge pump  
driver  
logic  
over current  
switch OFF  
IN  
ESD  
protection  
OUT  
load current sense  
IS  
Blockdiagram  
GND  
Figure 1  
Block Diagram for the BTS50010-1TAD  
Data Sheet  
7
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
4
1 2 3 5 6 7  
Figure 2  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin  
1
Symbol Function  
GND  
IN  
GrouND; Signal Ground  
2
INput; Digital signal to switch ON channel (“high” active)  
Sense; Analog/Digital signal for diagnosis, if not used: left open  
Supply Voltage; Battery voltage  
3
IS  
4, Cooling tab VS  
5, 6, 7 OUT  
OUTput; Protected high side power output channel1)  
1) All output pins are internally connected and they also have to be connected together on the PCB. Not shorting all  
outputs on PCB will considerably increase the ON-state resistance and decrease the current sense / overcurrent  
tripping accuracy. PCB traces have to be designed to withstand the maximum current.  
Data Sheet  
8
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Pin Configuration  
3.3  
Voltage and Current Definition  
Figure 3 shows all terms used in this Data Sheet, with associated convention for positive values.  
IVS  
VS  
VS  
IIN  
IN  
VIN  
VDS  
IOUT  
OUT  
Vb,IS  
IIS  
VOUT  
IS  
GND  
VIS  
IGND  
Figure 3  
Voltage and Current Definition  
Data Sheet  
9
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 2  
Absolute Maximum Ratings1)  
TJ = -40°C to +150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Supply Voltages  
Supply Voltage  
VS  
-0.3  
0
28  
16  
V
V
P_4.1.1  
P_4.1.2  
Reverse Polarity Voltage  
-VS(REV)  
2)t < 2 min  
TA = 25°C  
RL 0.5 Ω  
Load Dump Voltage  
VBAT(LD)  
5
45  
20  
V
V
3) RI = 2 Ω  
RL = 2.2 Ω  
RIS = 1 kΩ  
P_4.1.5  
P_4.1.3  
RIN = 4.7 kΩ  
Short Circuit Capability  
4)  
Supply Voltage for Short Circuit VS(SC)  
R
= 20 mΩ  
ECU  
Protection  
LECU = 1 µH  
cable = 6 m/m  
cable = 1 µH/m  
R
L
l = 0 to 5 m  
R, C as shown in  
Figure 31  
See Chapter 5.3  
5)  
Short Circuit is Permanent: IN  
Pin Toggles Short Circuit (SC  
type 1)  
nRSC1  
1 million  
(Grade A)  
P_4.1.4  
P_4.1.6  
GND Pin  
Current through GND pin  
IGND  
-15  
107)  
15  
mA  
6)  
t 2 min  
Input Pin  
Voltage at IN pin  
Current through IN pin  
VIN  
IIN  
-0.3  
VS  
V
P_4.1.7  
P_4.1.8  
-5  
-5  
5
mA  
506)  
t 2 min  
Maximum Retry Cycle Rate in  
Fault Condition  
ffault  
1
Hz  
P_4.1.9  
Data Sheet  
10  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
General Product Characteristics  
Table 2  
Absolute Maximum Ratings1) (cont’d)  
TJ = -40°C to +150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Sense Pin  
Voltage at IS pin  
Current through IS Pin  
VIS  
IIS  
-0.3  
-15  
VS  
107)  
15  
V
P_4.1.10  
P_4.1.11  
mA  
6)  
t 2 min  
Power Stage  
Maximum Energy Dissipation by EAS  
Switching Off Inductive Load  
Single Pulse over Lifetime  
3000  
mJ  
mJ  
mJ  
VS = 13.5 V  
IL = IL(NOM) = 40A  
P_4.1.12  
P_4.1.13  
P_4.1.14  
TJ(0) 150°C  
See Figure 5  
8)VS = 13.5 V  
IL = IL(NOM) = 40A  
TJ(0) 105°C  
See Figure 5  
8)VS = 13.5 V  
IL = 80A  
Maximum Energy Dissipation  
Repetitive Pulse  
EAR  
460  
Maximum Energy Dissipation  
Repetitive Pulse  
EAR  
235  
TJ(0) 105°C  
See Figure 5  
Average Power Dissipation  
PTOT  
VOUT  
200  
W
V
TC = -40°C to  
150°C  
P_4.1.15  
P_4.1.21  
Voltage at OUT Pin  
Temperatures  
-64  
Junction Temperature  
TJ  
-40  
150  
60  
°C  
K
P_4.1.16  
Dynamic Temperature Increase TJ  
See Chapter 5.3 P_4.1.17  
while Switching  
Storage Temperature  
ESD Susceptibility  
TSTG  
-55  
150  
°C  
P_4.1.18  
ESD Susceptibility (all Pins)  
VESD(HBM) -2  
2
4
kV  
kV  
HBM9)  
HBM9)  
P_4.1.19  
P_4.1.20  
ESD Susceptibility OUT Pin vs. VESD(HBM) -4  
GND / VS  
1) Not subject to production test, specified by design.  
2) The device is mounted on a FR4 2s2p board according to Jedec JESD51-2,-5,-7 at natural convection.  
3) VS(LD) is setup without DUT connected to the generator per ISO 7637-1.  
4) In accordance to AEC Q100-012, Figure-1 Test Circuit.  
5) In accordance to AEC Q100-012, Chapter 3 conditions. Short circuit conditions deviating from AEC Q100-012 may  
influence the specified short circuit cycle number in the Data Sheet.  
6) The total reverse current (sum of IGND, IIS and -IIN) is limited by -VS(REV)_max and RVS  
.
7) TC 125°C  
8) Setup with repetitive EAR and superimposed TC conditions (like AEC-Q100-PTC, 106 pulses with E EAR, 103 passive  
temperature cycles), parameter drift within datasheet limits possible  
9) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001.  
Data Sheet  
11  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
General Product Characteristics  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
Data Sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
250  
200  
150  
100  
50  
0
1.0E-03  
1.0E-02  
1.0E-01  
1.0E+00  
1.0E+01  
tpulse [sec]  
Figure 4  
Maximum Single Pulse Current vs. Pulse Time, TJ 150°C, TPIN = 85°C  
Note:  
Above diagram shows the maximum single pulse current that can be maintained by the internal  
power stage bond wires for a given pulse time tpulse. The maximum reachable current may be  
smaller depending on the device current limitation level. The maximum reachable pulse time may  
be shorter due to thermal protection of the device. TPIN is the temperature of pins 5, 6 and 7.  
Data Sheet  
12  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
General Product Characteristics  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Eas - TJ(0)<150°C  
Ear - TJ(0)<105°C  
0
20  
40  
60  
80  
100  
120  
140  
Figure 5  
Maximum Energy Dissipation for Inductive Switch OFF, EA vs. IL at VS = 13.5 V  
100%  
80%  
60%  
40%  
20%  
0%  
100  
110  
120  
130  
140  
150  
Tj(0) [°C]  
Figure 6  
Maximum Energy Dissipation Repetitive Pulse temperature derating  
Data Sheet  
13  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
General Product Characteristics  
4.2  
Functional Range  
Table 3  
Functional Range  
Parameter  
Symbol  
VS(NOM)  
VS(EXT)  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Supply Voltage Range for  
Nominal Operation  
8
18  
V
P_4.2.1  
P_4.2.2  
1)  
Supply Voltage Range for  
Extended Operation  
5.3  
28  
V
V 2.2 V  
IN  
IL IL(NOM)  
TJ 25°C  
Parameter  
deviations  
possible  
1)  
VS(EXT)  
5.5  
28  
V
V 2.2 V  
IN  
IL IL(NOM)  
TJ = 150°C  
Parameter  
deviations  
possible  
Supply Voltage Range for  
Extended Operation  
Dynamic Undervoltage  
Capability  
VS(EXT,DYN) 3.22)  
V
V
1)acc. to ISO 7637 P_4.2.3  
1)  
Supply Undervoltage  
Shutdown  
VS(UV)  
4.5  
V 2.2 V  
P_4.2.4  
IN  
RL = 270 Ω  
VS decreasing  
See Figure 20  
Slewrate at OUT  
Slewrate at OUT  
|dVDS/dt|  
|dVDS/dt|  
10  
V/µs 1)|VDS| < 3V  
See Chapter 5.1.4  
P_4.2.7  
P_4.2.8  
1)  
0.2  
V/µs  
V
< VS < 8 V  
S(EXT)  
0 < VDS < 1 V  
t < tON(DELAY)  
See Chapter 5.1.4  
1) Not subject to production test. Specified by design  
2) TA = 25°C; RL = 0.5 ; pulse duration 6 ms; cranking capability is depending on load and must be verified under  
application conditions  
Note:  
Within the functional or operating range, the IC operates as described in the circuit description. The  
electrical characteristics are specified within the conditions given in the Electrical Characteristics  
table.  
Data Sheet  
14  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
General Product Characteristics  
4.3  
Thermal Resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, go to www.jedec.org.  
Table 4  
Thermal Resistance  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
0.5  
1)  
Junction to Case  
RthJC  
K/W  
K/W  
K/W  
P_4.3.1  
P_4.3.2  
P_4.3.3  
1)2)  
1)3)  
Junction to Ambient  
RthJA(2s2p)  
20  
Junction to Ambient  
RthJA  
70  
1) Not subject to production test, specified by design.  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product  
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm  
Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. TA = 25°C.  
Device is dissipating 2 W power.  
3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 1s0p board; the Product  
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with only one top copper layer 1 × 70 µm. TA = 25°C.  
Device is dissipating 2 W power.  
Figure 7 is showing the typical thermal impedance of BTS50010-1TAD mounted according to JEDEC JESD51-  
2,-5,-7 at natural convection on FR4 1s0p and 2s2p boards.  
100  
JEDEC 1s0p / 600mm²  
JEDEC 1s0p / 300mm²  
JEDEC 1s0p / footprint  
10  
JEDEC 2s2p  
1
0.1  
0.01  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
tPULSE [sec]  
Figure 7  
Typical Transient Thermal Impedance Zth(JA) = f(time) for Different PCB Conditions  
Data Sheet  
15  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
5
Functional Description  
5.1  
Power Stage  
The power stage is built by a N-channel power MOSFET (DMOS) with charge pump.  
5.1.1  
Output ON-State Resistance  
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Page 42  
shows the dependencies in terms of temperature and supply voltage, for the typical ON-state resistance. The  
behavior in reverse polarity is described in Chapter 5.3.5.  
A HIGH signal (see Chapter 5.2) at the input pin causes the power DMOS to switch ON with a dedicated slope,  
which is optimized in terms of EMC emission.  
5.1.2  
Switching Resistive Loads  
Figure 8 shows the typical timing when switching a resistive load. The power stage has a defined switching  
behavior. Defined slew rates results in lowest EMC emission at minimum switching losses.  
VOUT  
VOUT  
90% VS  
50% VS  
IOUT  
IOUT  
dVOFF/dt  
dVON/dt  
25% VS  
10% VS  
tOFF(DELAY)  
tON(DELAY)  
VIN  
VIN  
tOFF  
tON  
Figure 8  
Switching a Resistive Load: Timing  
5.1.3  
Switching Inductive Loads  
5.1.3.1 Output Clamping  
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,  
because the inductance intends to continue driving the current. To prevent the destruction of the device due  
to high voltages, there is a Infineon® SMART CLAMPING mechanism implemented that keeps negative output  
voltage to a certain level (VS - VDS(CL)). Please refer to Figure 9 and Figure 10 for details. Nevertheless, the  
maximum allowed load inductance remains limited.  
Data Sheet  
16  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
VS  
RVS  
Smart  
Clamp  
VDS  
IN  
LOGIC  
IL  
VS  
OUT  
GND  
VOUT  
VIN  
L, RL  
Figure 9  
Output Clamp  
VIN  
t
t
VOUT  
VS  
VS-VDS(CL)  
IL  
t
T
j
TJ0  
t
Figure 10 Switching an Inductance  
The BTS50010-1TAD provides Infineon® SMART CLAMPING functionality. To increase the energy capability, the  
clamp voltage VDS(CL) increases with junction temperature TJ and with load current IL. Refer to Page 44.  
5.1.3.2 Maximum Load Inductance  
During demagnetization of inductive loads, energy must be dissipated in the BTS50010-1TAD. This energy can  
be calculated with following equation:  
L
RL  
VS VDS(CL)  
RL × IL  
E = VDS(CL)  
×
×
[
× ln  
(
1 −  
) + IL]  
RL  
VS VDS(CL)  
(5.1)  
Data Sheet  
17  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
Following equation simplifies under the assumption of RL = 0 .  
1
VS  
E = × L × IL2 ×  
2
(
1 −  
)
VS VDS(CL)  
(5.2)  
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 5 for  
the maximum allowed energy dissipation as function of the load current.  
5.1.4  
Switching Active Loads  
When switching generative or electronic loads such as motors or secondary ECUs which have the ability to  
feed back voltage disturbances to the OUT pins, special attention is required about the resulting absolute and  
dynamic voltage VDS between VS pin and OUT pins.  
To maintain device functionality it is required to limit the maximum positive or negative slew rate of  
VDS = VS - VOUT below |dVDS/dt| (parameter P_4.2.7) .  
In case the device operates at low battery voltage (VS < VS(NOM), Min) where the load feeds back a positive output  
voltage reaching almost VS potential (0 < VDS < 1 V), it has to be ensured that for each activation (turn-on  
event), where the device is commanded on by applying VIN(H) at IN pin, a maximum positive or negative slew  
rate of VDS below |dVDS/dt| (parameter P_4.2.8) will not be exceeded until tON(DELAY) has expired.  
Also in the case of low VS and low VDS during the rising edge of IN, the device might not turn on. Figure 11  
shows the worst case boundary condition. In such condition, if the device does not turn on, it will be latched.  
2
1.5  
1
0.5  
0
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5  
VS [V]  
Figure 11 Boundary conditions for switching active loads at low VS with low initial VDS voltage .  
( Not subject to production test, specified by design)  
For loads that generate steady or dynamic voltage at the OUT pins which is higher than voltage at VS pin  
please consider Chapter 5.1.5.  
Data Sheet  
18  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
5.1.5  
Inverse Current Capability  
In case of inverse current, meaning a voltage VOUT(INV) at the output higher than the supply voltage VS, a current  
IL(INV) will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 12). In  
case the IN pin is HIGH, the power DMOS is already activated and will continue to remain in ON state during  
the inverse event. In case, the input goes from “L” to “H”, the DMOS will be activated even during an inverse  
event. Under inverse condition, the device is not overtemperature / overload protected. During inverse mode  
at ON the sense pin will provide a leakage current of less or equal to IIS0. Due to the limited speed of INV  
comparator, the inverse duration needs to be limited.  
VBAT  
VS  
Gate  
driver  
VOUT (INV)  
IL(INV)  
INV
Comp.  
OUT  
GND  
Figure 12 Inverse Current Circuitry  
(a) Inverse spike during ON -mode  
(b) Inverse spike during ON -mode  
for times > tp,INV,noFAULT  
(c) Inverse spike during ON -mode with short  
circuit after leaving Inverse mode  
for short times (< tp,INV,noFAULT  
)
VOUT  
VOUT  
VOUT  
VS  
VS  
VS  
t
t
t
> tp, IN V ,n o FAU L T  
< tp, IN V ,n o FAU L T  
IIS  
IIS  
IIS  
tOFF (trip )  
IIS (fault )  
IIS (fault )  
tsIS(ON)  
tp, n o IN V, FAU L T  
tpIS(FAULT )  
t
t
t
Internal Fault -flag set  
Figure 13 Inverse Behavior - Timing Diagram  
Data Sheet  
19  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
5.1.6  
PWM Switching  
The switching losses during this operation should be properly considered (see following equation):  
TOTAL = (switching_ON_energy + switching_OFF_energy + IL2 × RDS(ON) × tDC) / period  
P
PWM switching application slightly above tIN(RESETDELAY) parameter (see Figure 26) with calculated power  
dissipation PTOTAL > PTOT parameter limit causes an effective increase in TJ(TRIP) parameter.  
In the event of a fault condition it has to be ensured, that the PWM frequency will not exceed a maximum retry  
frequency of fFAULT (parameter P_4.1.9). With this measure the short circuit robustness nRSC1 (parameter  
P_4.1.4) can be utilized. Operation at nominal PWM frequency can only be restored, once the fault condition  
is overcome.  
VIN  
VIN_H  
VIN_L  
t
P
PTOT  
t
tDC  
Figure 14 Switching in PWM  
5.1.7  
Advanced switch-off behavior  
In order to reduce device stress when switching OFF critical loads and/or critical load conditions, the device  
provides an advanced switch off functionality which results in a typically ten times faster switch off behavior.  
This fast switch off functionality is triggered by one the following conditions:  
The device is commanded off by applying VIN(L) at the IN pin. During the switch OFF operation the OUT pins’  
voltage in respect to GND pin drops to typically -3 V or below (typically VOUT VGND -3 V).  
The device is commanded on or is already in on-state. The device then detects a short circuit condition  
(IL ICL(0)) and initiates a protective switch off. Please refer to Chapter 5.3.6.1 and Chapter 5.3.6.2 for  
details.  
Data Sheet  
20  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
5.2  
Input Pins  
5.2.1  
Input Circuitry  
The input circuitry is compatible with 3.3 V and 5 V microcontrollers or can be directly driven by VS. The  
concept of the input pin is to react to voltage threshold. With the Schmitt trigger, the output is either ON or  
OFF. Figure 15 shows the electrical equivalent input circuitry.  
RVS  
VS  
IN  
IIN  
GND  
Figure 15 Input Pin Circuitry  
5.2.2  
Input Pin Voltage  
The IN uses a comparator with hysteresis. The switching ON / OFF takes place in a defined region, set by the  
threshold VIN(L) Max and VIN(H) Min. The exact value where ON and OFF take place depends on the process, as well  
as the temperature. To avoid cross talk and parasitic turn ON and OFF, an hysteresis is implemented. This  
ensures immunity to noise.  
5.3  
Protection Functions  
The device provides embedded protective functions. Integrated protection functions are designed to prevent  
the destruction of the IC from fault conditions described in the Data Sheet. Fault conditions are considered as  
“outside” normal operating range. Protection functions are designed neither for continuous nor for repetitive  
operation.  
Figure 16 describes the typical functionality of the diagnosis and protection block.  
Data Sheet  
21  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
VS  
VDS  
Vb,IS  
VS  
ESD  
protection  
RVS  
VS(int)  
cu rrent  
sense  
IN  
2V  
&
Driver  
IIS (fault)  
Ove r-  
current  
IL  
IS  
1
0
(IL/dkILI S) ± IIS 0  
OUT  
VIS  
tIN(RESET  
IIS  
DEL AY)  
VS-VOUT >3V  
&
R
Q
Q
RIS  
IL>ICL  
1  
&
FAULT  
S
30mV  
ΤJ > ΤJ(TRIP)  
driver logic inversecomparator  
GND  
Figure 16 Diagram of Diagnosis & Protection Block  
5.3.1  
Loss of Ground Protection  
In case of loss of module or device ground, where the load remains connected to ground, the device protects  
itself by automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage  
applied at IN pin. It is recommended to use input resistors between the microcontroller and the  
BTS50010-1TAD to ensure switching OFF of channel. In case of loss of module or device ground, a current  
(IOUT(GND)) can flow out of the DMOS. Figure 17 sketches the situation.  
Vbat  
RVS  
VS  
RIN  
OUT  
IN  
VIN  
IS  
GND  
RIS  
Figure 17 Loss of Ground Protection with External Components  
5.3.2  
Protection during Loss of Load or Loss of VS Condition  
In case of loss of load with charged primary inductances the supply voltage transient has to be limited. It is  
recommended to use a Zener diode, a varistor or VS clamping power switches with connected loads in parallel.  
The voltage must be limited according to the minimum value of the parameter 6.1.33 indicated in Table 6.  
Data Sheet  
22  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
In case of loss of VS connection with charged inductive loads, a current path with sufficient load current  
capability has to be provided, to demagnetize the charged inductances. It is recommended to protect the  
device using a Zener diode together with a diode (VZ1 + VD1 < 16 V), with path (A) or path (B) as shown in  
Figure 18.  
For a proper restart of the device after loss of VS, the input voltage must be delayed compared to the supply  
voltage ramp up. This can be realized by a capacitor between IN and GND (see Figure 31).  
For higher clamp voltages, currents through all pins have to be limited according to the maximum ratings.  
Please see Figure 18 and Figure 19 for details.  
ext. components acc.  
to either(A) or (B)  
VBAT  
required, not both  
(A)  
RVS  
VS  
D1  
(B)  
OUT  
Z1  
IN IS  
RIN  
GND  
D1  
Z1  
RIS  
Inductive  
Load  
VIN  
Figure 18 Loss of VS  
VBAT  
L/R cable  
RVS  
VS  
Z2  
OUT  
IN IS  
GND  
RIN  
RIS  
R/L cable  
Load  
VIN  
Figure 19 Loss of Load  
Data Sheet  
23  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
5.3.3  
Undervoltage Behavior  
If the device is already ON and the power supply decreases but remains above the VS(UV), no effect is observed  
and the device keeps on working normally (case 1, Figure 20)  
If the power supply falls below the VS(UV) but remains above the VS(EXT,DYN), the device turns off, but it turns  
automatically on again when the power supply goes above Min. VS(EXT) (case 2, Figure 20).  
In case the power supply becomes lower than VS(EXT,DYN), the device turns off and can be switched on again only  
after a reset signal at the IN pin, provided that the power supply is higher than Min. VS(EXT) (case 3, Figure 20).  
1
2
3
MIN VS(EXT)  
VS(UV)  
VS(EXT,DYN)  
Always ON  
1
2
turn OFF, automatic turn ON when V SMIN VS(EXT)  
3
turn OFF, turn ON with IN reset with V MIN VS(EXT)  
S
Figure 20 Undervoltage Behavior  
Data Sheet  
24  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
5.3.4  
Overvoltage Protection  
In case VS(SC)_max < VS < VDS(CL), the device will switch ON/OFF normally as in the nominal voltage range.  
Parameters may deviate from the specified limits and lifetime is reduced. This specially impacts the short  
circuit robustness, as well as the maximum energy EAS and EAR the device can handle.  
The BTS50010-1TAD provides Infineon® SMART CLAMPING functionality, which suppresses excessive transient  
overvoltage by actively clamping the overvoltage across the power stage and the load. This is achieved by  
controlling the clamp voltage VDS(CL) depending on the junction temperature TJ and the load current IL (see  
Figure 21 for details).  
VBA T  
RVS  
VS  
RIN  
VIN  
IN  
OUT  
IS  
GND  
RIS  
Figure 21 Overvoltage Protection with External Components  
5.3.5  
Reverse Polarity Protection  
In case of reverse polarity, the intrinsic body diode of the power DMOS causes power dissipation. To limit the  
risk of overtemperature, the device provides Infineon® ReverSave™ functionality. The power in this intrinsic  
body diode is limited by turning the DMOS ON. The DMOS resistance is then equal to RDS(REV)  
.
Additionally, the current into the logic has to be limited. The device includes a RVS resistor which limits the  
current in the diodes. To avoid overcurrent in the RVS resistor, it is nevertheless recommended to use a RIN  
resistor. Please refer to maximum current described in Chapter 4.1.  
Figure 22 shows a typical application.  
RIS is used to limit the current in the sense transistor, which behaves as a diode.  
The recommended typical value for RIN is 4.7 kand for RIS 1 k.  
Data Sheet  
25  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
-VBA T  
RVS  
IRVS  
VS  
RIN  
IN  
IIN  
OUT  
-IL  
IS  
GND  
DOUT  
GND  
RIS  
-IGND  
-IIS  
Figure 22 Reverse Polarity Protection with External Components  
5.3.6  
Overload Protection  
In case of overload, high inrush current or short circuit to ground, the BTS50010-1TAD offers several protection  
mechanisms. Any protective switch OFF latches the output. To restart the device, it is necessary to set  
IN = LOW for t > tIN(RESETDELAY). This behavior is known as latch behavior. Figure 26 gives a sketch of the  
situation.  
5.3.6.1 Activation of the Switch into Short Circuit (Short Circuit Type 1)  
When the switch is activated into short circuit, the current will raise until reaching the ICL(0) value. After tOFF(TRIP)  
,
the device will turn OFF and latches until the IN pin is set to low for t > tIN(RESETDELAY). Under certain supply  
undervoltage shutdown conditions (for example VS < VS(EXT,DYN)) the latched fault may be reset. For overload  
(short circuit or overtemperature), the maximum retry cycle (ffault) under fault condition must be considered.  
5.3.6.2 Short Circuit Appearance when the Device is already ON (Short Circuit Type 2)  
When the device is in ON state and a short circuit to ground appears at the output (SC2) with an overcurrent  
higher than ICL(0) for a time longer than tOFF(TRIP), the device automatically turns OFF and latches until the IN pin  
is set to low for t > tIN(RESETDELAY). Under certain supply undervoltage shutdown conditions (for example  
VS < VS(EXT,DYN)) the latched fault may be reset.  
5.3.6.3 Influence of the battery wire inductance  
The wire between the battery and the VS pin includes typically some parasitic inductance.  
When the device switches off due to a short circuit event, the energy stored in the line inductance together  
with the capacitance (either the capacitor placed at VS pin or the internal capacitance between drain and  
source) could trigger an oscillatory behavior on the supply line at short circuit turn-off (see Figure 23), whose  
frequency depends on the inductance and capacitance values.  
Data Sheet  
26  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
ILoad  
ICL  
Short circuit detected  
t
VS  
Oscillations of the  
VS voltage  
VBAT  
t
Figure 23 Oscillations at VS pin  
The oscillations can pull the VS pin voltage to GND or even below. In some cases this behaviour may cause the  
device to reset the fault generated by the overcurrent event. As consequence the device may switch on again,  
as soon as the VS reaches an adequate value. The short circuit condition will be detected again and then the  
device will switch off. Short circuits and resets of the fault condition may repeatedly occur (see Figure 24).  
Short circuits detected  
ILoad  
ICL  
t
Figure 24 Consecutive short circuit events  
Data Sheet  
27  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
Potential solutions to dampen such oscillation and to achieve an effectively latching overcurrent protection  
is a RC snubber network, which needs to be connected between the VS pin and device or module GND.  
Figure 25 shows RC snubber circuits for each GND connection. For detailed information see Chapter 7.  
VS  
VS  
IN  
IS  
IN  
IS  
OUT  
GND  
OUT  
GND  
Figure 25 RC Snubber circuits: between VS pin and module GND; between VS pin and device GND  
The design of the most suitable RC snubber network is beyond the scope of this chapter. Nevertheless the  
recommendation given in Chapter 7 contribute to effectively dampen the oscillation for typical line  
inductance and CVS.  
5.3.7  
Temperature Limitation in the Power DMOS  
The BTS50010-1TAD incorporates an absolute (TJ(TRIP)) temperature sensor. Activation of the sensor will cause  
an overheated channel to switch OFF to prevent destruction. The device restarts when the IN pin is set to low  
for t > tIN(RESETDELAY) and the temperature has decreased below TJ(TRIP) - TJ(TRIP). Under certain undervoltage  
shutdown conditions (for example below VS(EXT,DYN)) the latched fault might be reset.  
Data Sheet  
28  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
tIN(RESETDELAY)  
IN  
IL  
t
tOFF(TRIP)  
tOFF (TRIP)  
ICL(1)  
ICL(0)  
t
TJ  
TJ(TRIP)  
TA  
t
t
IIS  
I
IS(FAULT)  
0
Figure 26 Overload Protection  
The current sense exact signal timing can be found in the Chapter 5.4. It is represented here only for device’s  
behavior understanding.  
In order to allow the device to detect overtemperature conditions and react effectively, it is recommended to  
limit the power dissipation below PTOT (parameter 4.1.15).  
5.4  
Diagnostic Functions  
For diagnosis purposes, the BTS50010-1TAD provides a combination of digital and analog signal at pin IS.  
5.4.1  
IS Pin  
The BTS50010-1TAD provides an enhanced current sense signal called IIS at pin IS. As long as no “hard” failure  
mode occurs (short circuit to GND / overcurrent / overtemperature) and the condition VIS VOUT - 5 V is fulfilled,  
a proportional signal to the load current is provided. The complete IS pin and diagnostic mechanism is  
described in Figure 27. The accuracy of the sense current depends on temperature and load current. In case  
of failure, a fixed IIS(FAULT) is provided. In order to enable the fault current reporting, the condition VS - VOUT > 2 V  
must be fulfilled. In order to get the fault current in the specified range, the condition VS - VIS 5 V must be  
fulfilled.  
Data Sheet  
29  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
Vs  
RVS  
RSenseMos  
VS-VOUT>2V  
IIS(FAULT)  
( IL / dkILIS ) ± IIS(0)  
FAULT  
ZIS(AZ)  
&
1
IS  
0
Figure 27 Diagnostic Block Diagram  
5.4.2  
SENSE Signal in Different Operation Modes  
Table 5  
Sense Signal, Function of Operation Mode1)  
Operation mode  
Normal operation  
Short circuit to GND  
Overtemperature  
Short circuit to VS  
Open Load  
Input Level  
Output Level VOUT Diagnostic Output (IS)2)  
LOW (OFF)  
~ GND  
GND  
~ GND  
VS  
IIS(OFF)  
IIS(OFF)  
IIS(OFF)  
IIS(OFF)  
Z
IIS(OFF)  
Inverse current  
> VS  
~ VS  
< VS  
GND  
~ GND  
VS  
IIS(OFF)  
Normal operation  
Overcurrent condition  
Short circuit to GND  
Overtemperature (after the event)  
Short circuit to VS  
Open Load  
HIGH (ON)  
IIS = (IL / dkILIS) ± IIS0  
IIS = (IL / dkILIS) ± IIS0 or IIS(FAULT)  
IIS(FAULT)  
IIS(FAULT)  
IIS < IL / dkILIS ± IIS0  
VS  
IIS0  
Inverse current  
> VS  
<IIS0  
1) Z = High Impedance  
2) See Chapter 5.4.3 for Current Sense Range and Improved Current Sense Accuracy.  
5.4.3  
SENSE Signal in the Nominal Current Range  
Figure 28 and Figure 29 show the current sense as function of the load current in the power DMOS. Usually, a  
pull-down resistor RIS is connected to the current sense pin IS. A typical value is 1 k. The dotted curve  
represents the typical sense current, assuming a typical dkILIS factor value. The range between the two solid  
curves shows the sense accuracy range that the device is able to provide, at a defined current.  
IL  
dkILIS  
IIS  
=
+ IIS0 with (IIS ≥ 0)  
(5.3)  
Data Sheet  
30  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
where the definition of dkILIS is:  
IL4 IL1  
IIS4 IIS1  
dkILIS  
=
(5.4)  
(5.5)  
and the definition of IIS0 is:  
IL1  
IIS0 = IIS1  
dkILIS  
3.5  
3
2.5  
2
1.5  
1
0.5  
IIS0(max)  
0
0
20  
IL1  
40  
IL2  
60  
80  
IL3  
100  
120  
140  
160  
IL4  
IL[A]  
Figure 28 Current Sense for Nominal and Overload Condition  
5.4.3.1 SENSE Signal Variation and Calibration  
In some applications, an enhanced accuracy is required around the device nominal current range IL(NOM). To  
achieve this accuracy requirement, a calibration on the application is possible. After two point calibration, the  
BTS50010-1TAD will have a limited IIS value spread at different load currents and temperature conditions. The  
IIS variation can be described with the parameters (dkILIS(cal)) and the IIS0(cal). The blue solid line in Figure 29  
is the current sense ratio after the two point calibration at a given temperature. The slope of this line is defined  
as follows:  
IIS(cal)2 IIS(cal)1  
1
=
dkILIS(cal) IL(cal)2 IL(cal)1  
(5.6)  
Data Sheet  
31  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
The offset is defined as follows:  
IL(cal)1  
dkILIS(cal)  
IL(cal)2  
dkILIS(cal)  
IIS0(cal) = IIS(cal)1  
= IIS(cal)2  
(5.7)  
The bluish area in Figure 29 is the range where the current sense ratio can vary across temperature and load  
current after performing the calibration. The accuracy of the load current sensing is improved and, given a  
sense current value IIS (measured in the application), the load current can be calculated as follow, using the  
absolute value for (dkILIS(cal)) instead of % values:  
IL = dkILIS(cal)  
×
(
1 + ∆(dkILIS(cal)  
)
)
×
(
IIS IIS0(cal) ∆IIS0(cal)  
)
(5.8)  
where dkILIS(cal) is the current sense ratio measured after two-points calibration (defined in Equation (5.6)),  
IS0(cal) is the current sense offset (calculated after two points calibration, see Equation (5.7)), and IIS0(cal) is the  
I
additional variation of the individual offset over life time and temperature. For a calibration at 25°C IIS0(cal)  
varies over temperature and life time for all positive IIS0(cal) within the differences of the temperature  
dependent Max. limits. All negative IIS0(cal) vary within the differences of the temperature dependent Min.  
limits.  
For positive IIS0(cal) values (IIS0(cal) > 0):  
Max IIS0 (@TJ = 150°C)
Max IIS0 (@TJ = 25°C) ≤ ∆IIS0(cal) ≤ Max IIS0 (@TJ = -40°C)
Max IIS0 (@TJ = 25°C)  
(5.9)  
For negative IIS0(cal) values (IIS0(cal) < 0):  
Min IIS0 (@TJ = 150°C)
Min IIS0 (@TJ = 25°C) ≥ ∆IIS0(cal) ≥ Min IIS0 (@TJ = -40°C)
Min IIS0 (@TJ = 25°C)  
(5.10)  
Equation (5.8) actually provides four solutions for load current, considering that (dkILIS(cal)) and IIS0(cal) can  
be both positive and negative. The load current IL for any sense current IIS will spread between a minimum IL  
value resulting from the combination of lowest (dkILIS(cal)) value and highest IIS0(cal) and a maximum IL value  
resulting from the combination of highest (dkILIS(cal)) value and lowest IIS0(cal)  
.
Data Sheet  
32  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
IIS  
1/dkILIS(min)  
ΔdkILIS(cal)  
1/dkILIS(cal)  
ΔdkILIS(cal)  
1/dkILIS(max)  
IIS(cal)2  
IIS  
IIS(cal)1  
ΔIIS0(cal)  
IIS0(cal)  
Max IL  
Min IL Typ IL  
IL  
IL(cal)1  
IL(cal)2  
ΔIIS0(cal)  
Figure 29 Improved Current Sense Accuracy after 2-Point Calibration  
Data Sheet  
33  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Functional Description  
5.4.3.2 SENSE Signal Timing  
Figure 30 shows the timing during settling and disabling of the sense.  
tOF F<tIN(RESETD EL AY)  
VIN  
tOF F>tIN(RESETD EL AY)  
Short /  
Overtemp.  
t
t
t
VOUT  
IIS  
IIS(fault)  
IIS 1.. 4  
t
latch  
no  
reset  
reset  
VIN  
VIN  
t
Short  
circuit  
t
tO N  
IL  
90% of  
IL static  
t
t
t
VOUT  
VOUT  
IIS  
3V  
ts IS(O N)  
tpIS(O N)_90  
t
IIS  
90% of  
IS static  
IIS(fault)  
IIS 1.. 4  
ts IS(LC)  
t
t
tpIS(FAU LT)  
Figure 30 Fault Acknowledgement  
5.4.3.3 SENSE Signal in Case of Short Circuit to VS  
In case of a short circuit between OUT and VS, a major part of the load current will flow through the short  
circuit. As a result, a lower current compared to the nominal operation will flow through the DMOS of the  
BTS50010-1TAD, which can be recognized at the current sense signal.  
5.4.3.4 SENSE Signal in Case of Over Load  
An over load condition is defined by a current flowing out of the DMOS reaching the current over load ICL or the  
junction temperature reaches the thermal shutdown temperature TJ(TRIP). Please refer to Chapter 5.3.6 for  
details. In that case, the SENSE signal will be in the range of IIS(FAULT) when the IN pin stays HIGH.  
This is a device with latch functionality. The state of the device will remain and the sense signal will remain on  
IIS(FAULT) until a reset signal comes from the IN pin. For example, when a thermal shutdown occurs, even when  
the over temperature condition has disappeared, the DMOS can only be reactivated when a reset signal is sent  
to the IN pin.  
Data Sheet  
34  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Electrical Characteristics BTS50010-1TAD  
6
Electrical Characteristics BTS50010-1TAD  
6.1  
Electrical Characteristics Table  
Table 6  
Electrical Characteristics: BTS50010-1TAD  
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified)  
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Operating and Standby Currents  
Operating Current (Channel IGND(ACTIVE)  
Active)  
1.2  
8
3
mA VIN 2.2 V  
P_6.1.1  
P_6.1.2  
Standby Current for Whole IVS(OFF)  
Device with Load  
18  
µA 1)VS = 18 V  
VOUT = 0 V  
VIN 0.8 V  
TJ 85°C  
See Page 41  
Maximum Standby Current IVS(OFF)  
for Whole Device with Load  
22  
130  
µA VS = 18 V  
VOUT = 0 V  
P_6.1.3  
VIN 0.8 V  
TJ 150°C  
See Page 41  
Power Stage  
ON-State Resistance in  
Forward Condition  
RDS(ON)  
1.6  
2
2.0  
3.2  
mIL = 150 A  
VIN 2.2 V  
P_6.1.4  
P_6.1.5  
TJ = 150°C  
See Page 42  
ON-State Resistance in  
Forward Condition, Low  
Battery Voltage  
RDS(ON)  
mIL = 20 A  
VIN 2.2 V  
VS = 5.5 V  
TJ = 150°C  
See Page 42  
ON-State Resistance in  
Forward Condition  
RDS(ON)  
RDS(INV)  
RDS(INV)  
1.0  
1.6  
1.0  
m1)IL = 150 A  
VIN 2.2 V  
P_6.1.6  
P_6.1.7  
P_6.1.8  
TJ = 25°C  
See Page 42  
ON-State Resistance in  
Inverse Condition  
2.1  
mIL = -150 A  
VIN 2.2 V  
TJ = 150°C  
See Figure 12  
m1)IL = -150 A  
VIN 2.2 V  
ON-State Resistance in  
Inverse Condition  
TJ = 25°C  
See Figure 12  
Data Sheet  
35  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Electrical Characteristics BTS50010-1TAD  
Table 6  
Electrical Characteristics: BTS50010-1TAD (cont’d)  
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified)  
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Nominal Load Current  
IL(NOM)  
VDS(CL)  
40  
48  
A
TA = 85°C2)  
TJ 150°C  
P_6.1.9  
Drain to Source Smart  
Clamp Voltage VDS(CL) = VS -  
VOUT  
28  
46  
V
IDS = 50 mA  
See Page 44  
P_6.1.11  
1)  
Output Leakage Current  
Output Leakage Current  
Turn ON Slew Rate  
IL(OFF)  
3
15  
µA  
V 0.8 V  
P_6.1.13  
P_6.1.14  
IN  
V
OUT = 0 V  
TJ 85°C  
IL(OFF)  
20  
110  
µA VIN 0.8 V  
VOUT = 0 V  
TJ = 150°C  
dVON/dt  
-dVOFF/dt  
tON  
0.05 0.23 0.5  
V/µs RL = 0.5 Ω  
VS = 13.5 V  
P_6.1.15  
P_6.1.16  
P_6.1.17  
P_6.1.18  
P_6.1.19  
P_6.1.20  
P_6.1.21  
VOUT = 25% to 50% VS  
See Figure 8  
See Page 42  
Turn OFF Slew Rate  
VOUT = 50% to 25% VS  
0.05 0.25 0.55 V/µs  
Turn ON Time to  
VOUT = 90% VS  
175  
315  
60  
700  
735  
150  
520  
µs  
µs  
µs  
µs  
Turn OFF Time to  
VOUT = 10% VS  
tOFF  
Turn ON Time to  
VOUT = 10% VS  
tON(DELAY)  
tOFF(DELAY)  
EON  
Turn OFF Time to  
230  
7
VOUT = 90% VS  
Switch ON Energy  
mJ 1)RL = 0.5 Ω  
VS = 13.5 V  
See Page 43  
Switch OFF Energy  
EOFF  
5
mJ 1)RL = 0.5 Ω  
VS = 13.5 V  
P_6.1.22  
See Page 43  
Data Sheet  
36  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Electrical Characteristics BTS50010-1TAD  
Table 6  
Electrical Characteristics: BTS50010-1TAD (cont’d)  
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified)  
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Input Pin  
LOW Level Input Voltage  
HIGH Level Input Voltage  
Input Voltage Hysteresis  
LOW Level Input Current  
HIGH Level Input Current  
Protection: Loss of Ground  
VIN(L)  
VIN(H)  
VIN(HYS)  
IIN(L)  
0.8  
V
See Page 44  
P_6.1.23  
P_6.1.24  
P_6.1.25  
P_6.1.26  
P_6.1.27  
2.2  
V
See Page 44  
1)  
200  
mV  
8
µA VIN = 0.8 V  
µA VIN 2.2 V  
IIN(H)  
80  
Output Leakage Current  
while Module GND  
Disconnected  
IOUT(GND_M)  
0
0
20  
20  
110  
110  
µA 1)3)VS = 18 V  
VOUT = 0 V  
P_6.1.28  
IS a IN pins open  
GND pin open  
TJ = 150°C  
See Figure 17  
Output Leakage Current  
While Device GND  
Disconnected  
IOUT(GND)  
µA VS = 18 V  
P_6.1.29  
GND pin open  
VIN 2.2 V  
1 kpull down  
from IS to GND  
4.7 kto IN pin  
TJ = 150°C  
See Figure 17  
See Page 45  
Protection: Reverse Polarity  
ON-State Resistance in  
Reverse Polarity  
RDS(REV)  
RDS(REV)  
RVS  
2.2  
mVS = 0 V  
GND = VIN = 16 V  
P_6.1.30  
P_6.1.31  
P_6.1.32  
V
IL = -20 A  
TJ = 150°C  
See Figure 22  
ON-State Resistance in  
Reverse Polarity  
1.1  
60  
m1)VS = 0 V  
GND = VIN = 16 V  
V
IL = -20 A  
TJ = 25°C  
See Page 45  
Integrated Resistor  
90  
TJ = 25°C  
Data Sheet  
37  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Electrical Characteristics BTS50010-1TAD  
Table 6  
Electrical Characteristics: BTS50010-1TAD (cont’d)  
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified)  
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Protection: Overvoltage  
Overvoltage Protection  
VS to GND Pin  
VS(AZ)_GND  
VS(AZ)_IS  
64  
64  
70  
70  
80  
80  
V
V
See Figure 21  
See Page 44  
P_6.1.33  
Overvoltage Protection  
VS to IS Pin  
GND and IN pin P_6.1.34  
open  
See Figure 21  
See Page 44  
Protection: Overload  
Current Trip Detection Level ICL(0)  
150  
160  
190  
200  
220  
16  
A
VS = 13.5 V, static P_6.1.35  
TJ = 150°C  
See Figure 26  
ICL(0)  
A
VS = 13.5 V, static  
TJ = -40 ... 25°C  
See Figure 26  
1)VS = 13.5 V  
dIL/dt = 1 A/µs  
See Page 45  
Current Trip Maximum Level ICL(1)  
270  
A
1)  
Overload Shutdown Delay  
Time  
tOFF(TRIP)  
µs  
P_6.1.36  
Thermal Shutdown  
Temperature  
TJ(TRIP)  
150  
1701) 2001) °C  
See Figure 26  
P_6.1.37  
P_6.1.38  
1)  
Thermal Shutdown  
Hysteresis  
TJ(TRIP)  
10  
K
Diagnostic Function: Sense Pin  
1)  
Sense Signal Current in Fault IIS(FAULT)  
Condition  
3.5  
3.5  
6
6
8
8
mA  
mA  
V
= 4.5 V  
P_6.1.40  
P_6.1.57  
IN  
VS - VIS 5 V  
1)  
Sense Signal Saturation  
Current  
IIS(LIM)  
V = 4.5 V  
IN  
VS - VIS 5 V  
Data Sheet  
38  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Electrical Characteristics BTS50010-1TAD  
Table 6  
Electrical Characteristics: BTS50010-1TAD (cont’d)  
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified)  
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Diagnostic Function: Current Sense Ratio Signal in the Nominal Area, Stable Current Load Condition  
Current Sense Differential  
Ratio  
dkILIS  
44500 52100 59100 –  
IL4 = 150 A  
IL1 = 20 A  
See  
P_6.1.41  
Equation (5.4)  
4)  
Calculated Sense Offset  
Current  
IL = IL0 = 0 A  
IIS0  
-235 20  
274  
180  
80  
µA  
µA  
µA  
V 2.2 V  
P_6.1.42  
IN  
VS - VIS 5 V  
TJ = -40°C  
See Figure 28  
1)4)  
IIS0  
-162  
-88  
8
V 2.2 V  
IN  
VS - VIS 5 V  
TJ = 25°C  
See Figure 28  
4)  
IIS0  
-4  
V 2.2 V  
IN  
VS - VIS 5 V  
TJ = 150°C  
See Figure 28  
Sense Current  
IL = IL1 = 20 A  
IIS1  
IIS2  
IIS3  
IIS4  
103  
442  
392  
776  
702  
µA VIN 2.2 V  
VS - VIS 5 V  
See Figure 28  
1)  
P_6.1.43  
P_6.1.44  
P_6.1.45  
P_6.1.46  
P_6.1.12  
Sense Current  
IL = IL2 = 40 A  
1131 µA  
V 2.2 V  
IN  
VS - VIS 5 V  
See Figure 28  
1)  
Sense Current  
IL = IL3 = 80 A  
1.12 1.54 1.99 mA  
V 2.2 V  
IN  
VS - VIS 5 V  
See Figure 28  
Sense Current  
IL = IL4 = 150 A  
2.30 2.89 3.49 mA VIN 2.2 V  
VS - VIS 5 V  
See Figure 28  
Current Sense Ratio Spread (dkILIS(cal)(-40°C)  
between -40°C and 25°C for  
)
-3  
4.5  
%
1)dkILIS(cal)(­40°C)  
/
dkILIS(cal)(25°C)  
)
Repetitive Operation  
See Figure 29  
See Page 46  
Current Sense Ratio Spread (dkILIS(cal)(150°C)  
between 150°C and 25°C for  
)
-8.5  
-3  
%
1)dkILIS(cal)(150°C)  
dkILIS(cal)(25°C)  
/
P_6.1.39  
)
Repetitive Operation  
See Figure 29  
See Page 46  
Data Sheet  
39  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Electrical Characteristics BTS50010-1TAD  
Table 6  
Electrical Characteristics: BTS50010-1TAD (cont’d)  
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified)  
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Diagnostic Function: Diagnostic Timing in Normal Condition  
Current Sense Propagation tpIS(ON)_90  
Time until 90% of IIS Stable  
After Positive Input Slope on  
IN Pin  
0
700  
µs VIN 2.2 V  
VS = 13.5 V  
P_6.1.48  
RL = 0.5 Ω  
See Figure 30  
Current Sense Settling Time tsIS(ON)  
to IIS Stable after Positive  
Input Slope on IN Pin  
3000 µs VIN 2.2 V  
VS = 13.5 V  
P_6.1.49  
RL = 0.5 Ω  
See Figure 30  
IIS Leakage Current when IN IIS(OFF)  
Disabled  
0
0.05  
50  
1
µA VIN 0.8 V  
P_6.1.50  
P_6.1.51  
RIS = 1k Ω  
1)  
Current Sense Settling Time tsIS(LC)  
after Load Change  
µs  
µs  
V 2.2 V  
IN  
dIL/dt = 0.4 A/µs  
Diagnostic Function: Diagnostic Timing in Overload Condition  
1)  
Current Sense Propagation tpIS(FAULT)  
Time for Short Circuit  
Detection  
0
100  
V 2.2 V  
P_6.1.52  
P_6.1.53  
IN  
from VOUT = VS -  
3 V to IIS(FAULT)_min  
See Figure 30  
1)  
Delay Time to Reset Fault  
Signal at IS Pin after Turning  
OFF VIN  
tIN(RESETDELAY)  
250  
1000 1500 µs  
Timing: Inverse Behavior  
Propagation Time From  
tp,INV,noFAULT  
tp,noINV,FAULT  
4
µs 1)See Figure 13 P_6.1.55  
µs 1)See Figure 13 P_6.1.56  
VOUT > VS to Fault Disable  
Propagation Time from  
10  
VOUT < VS to Fault Enable  
1) Not subject to production test, specified by design.  
2) Value is calculated from the parameters typ. RthJA(2s2p), with 65 K temperature increase, typ. and max. RDS(ON)  
3) All pins are disconnected except VS and OUT.  
.
4) Value is calculated from the parameters dkILIS and IIS1  
.
Data Sheet  
40  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Electrical Characteristics BTS50010-1TAD  
6.2  
Typical Performance Characteristics  
Standby Current for Whole Device with Load,  
Standby Current for Whole Device with Load,  
IVS(OFF) = f(VS, TJ)  
IVS(OFF) = f(TJ) at VS = 13.5 V  
35  
20  
18  
16  
14  
12  
10  
8
-40°C  
0°C  
30  
25  
20  
15  
10  
5
25°C  
85°C  
100°C  
125°C  
150°C  
6
4
2
0
0
0
-40 -20  
0
20 40 60 80 100 120 140 160  
5
10  
15  
20  
25  
30  
TJ [°C]  
VS [V]  
GND Leakage Current  
GND Leakage Current  
IGND(OFF) = f(VS, TJ)  
IGND(OFF) = f(TJ) at VS = 13.5 V  
4.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-40°C  
0°C  
25°C  
85°C  
100°C  
125°C  
150°C  
0
5
10  
15  
20  
25  
30  
-40 -20  
0
20 40 60 80 100 120 140 160  
VS [V]  
TJ [°C]  
Data Sheet  
41  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Electrical Characteristics BTS50010-1TAD  
ON State Resistance  
ON State Resistance  
RDS(ON) = f(VS, TJ), IL = 20 A ... 150 A  
RDS(ON) = f(TJ),VS = 13.5 V, IL = 20 A ... 150 A  
3.0  
2.0  
1.5  
1.0  
0.5  
0.0  
-40°C  
25°C  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
150°C  
0
5
10  
15  
20  
25  
30  
-40 -20  
0
20 40 60 80 100 120 140 160  
VS [V]  
TJ [°C]  
Turn ON Time  
Turn OFF Time  
tON = f(VS, TJ), RL = 0.5 Ω  
tOFF = f(VS, TJ), RL = 0.5 Ω  
1000  
1000  
-40°C  
25°C  
-40°C  
25°C  
150°C  
150°C  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
VS [V]  
VS [V]  
Data Sheet  
42  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Electrical Characteristics BTS50010-1TAD  
Slew Rate at Turn ON  
Slew Rate at Turn OFF  
dVON / dt = f(VS, TJ), RL = 0.5 Ω  
dVOFF / dt = f(VS, TJ), RL = 0.5 Ω  
0.5  
0.5  
-40°C  
-40°C  
25°C  
25°C  
0.4  
0.3  
0.2  
0.1  
0.0  
0.4  
0.3  
0.2  
0.1  
0.0  
150°C  
150°C  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
VS [V]  
VS [V]  
Switch ON Energy  
Switch OFF Energy  
EON = f(VS, TJ), RL = 0.5 Ω  
EOFF = f(VS, TJ), RL = 0.5 Ω  
60  
60  
-40°C  
-40°C  
25°C  
50  
25°C  
50  
150°C  
150°C  
40  
40  
30  
20  
10  
0
30  
20  
10  
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
VS [V]  
VS [V]  
Data Sheet  
43  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Electrical Characteristics BTS50010-1TAD  
Drain to Source Clamp Voltage  
Overvoltage Protection  
VDS(CL) = f(TJ), IL = 50 mA  
VS(AZ)_GND = f(TJ), VS(AZ)_IS = f(TJ)  
44  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
42  
40  
38  
36  
34  
32  
30  
-40 -20  
0
20 40 60 80 100 120 140 160  
-40 -20  
0
20 40 60 80 100 120 140 160  
TJ [°C]  
TJ [°C]  
LOW Level Input Voltage  
HIGH Level Input Voltage  
VIN(L) = f(VS, TJ)  
VIN(H) = f(VS, TJ)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-40°C  
25°C  
-40°C  
25°C  
150°C  
150°C  
0.0  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
VS [V]  
VS [V]  
Data Sheet  
44  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Electrical Characteristics BTS50010-1TAD  
Output Leakage Current while Device GND  
Overload Detection Current  
Disconnected, IOUT(GND) = f(VS, TJ)  
ICL(1) = f(dIL/dt, TJ), VS = 13.5 V  
40  
400  
-40°C  
-40°C  
25°C  
350  
35  
25°C  
150°C  
300  
30  
150°C  
25  
20  
15  
10  
5
250  
200  
150  
100  
50  
0
0
0
2
4
6
8
10  
0
5
10  
15  
20  
25  
30  
dIL/dt [A/µsec]  
VS [V]  
Resistance in ReverSave™  
Resistance in ReverSave™  
RDS(REV) = f(VS, TJ), IL = -150 A  
RDS(REV) = f(VS, TJ), IL = -20 A  
3.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-40°C  
25°C  
-40°C  
25°C  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
150°C  
150°C  
4
6
8
10  
12  
14  
16  
4
6
8
10  
12  
14  
16  
VS [V]  
VS [V]  
Data Sheet  
45  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Electrical Characteristics BTS50010-1TAD  
Input Current  
Input Current  
IIN = f(TJ); VS = 13.5 V; VIN(L) = 0.8V; VIN(H) = 5.0 V  
IIN(H) = f(VIN, TJ); VS = 13.5 V  
60  
70  
-40°C  
I_IN_L  
25°C  
60  
I_IN_H  
50  
150°C  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
-40 -20  
0
20 40 60 80 100 120 140 160  
0
2
4
6
8
10  
12  
14  
TJ [  
°C]  
VIN [V]  
GND current  
Current Sense Differential Ratio  
I
GND(ACTIVE) = f(VS, TJ); VIN = 2.2 V  
dkILIS = f(TJ)  
1.6  
55  
53  
51  
49  
47  
45  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-40°C  
25°C  
150°C  
-50  
0
50  
100  
150  
0
5
10  
15  
20  
25  
30  
TJ [°C]  
VS [V]  
Data Sheet  
46  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Application Information  
7
Application Information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
VBAT  
R/L cable  
(A)  
ext. components acc.  
to either (A) or (B)  
required, not both  
ZA  
ZB  
RS  
CVS  
VDD  
CS  
VS  
VDD  
RIN  
OUT  
IN  
IS  
GPIO  
Micro controller  
A/D IN  
COUT  
RIS_PROT  
R/L cable  
CIN  
GND  
VSS  
RIS  
CSENSE  
(B)  
RGND  
Load  
Figure 31 Application Diagram with BTS50010-1TAD  
Note:  
This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
Data Sheet  
47  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Application Information  
Table 7  
Reference  
RGND  
Bill of material  
Value  
Purpose  
4 Ω  
Resistor of RC snubber network Option B, damps possible oscillation of the  
VS pin voltage in combination with CVS  
RIN  
4.7 kΩ  
Protection of the microcontroller during overvoltage, reverse polarity  
allows BTS50010-1TAD channels OFF during loss of ground  
RIS  
1 kΩ  
Sense resistor  
RIS_PROT  
4.7 kΩ  
Protection of the microcontroller during overvoltage  
Protection of the BTS50010-1TAD during reverse polarity  
RS  
Za  
Zb  
3.9 Ω  
Resistor of RC snubber network Option A, damps possible oscillation of the  
VS pin voltage with improved EMC behavior  
Zener diode  
Zener diode  
Protection of the BTS50010-1TAD during loss of load with primary charged  
inductance, see Chapter 5.3.2  
Protection of the BTS50010-1TAD during loss of battery or against huge  
negative pulse at OUT (like ISO pulse 1), see Chapter 5.3.2  
CSENSE  
CVS  
10 nF  
Sense signal filtering  
100 nF  
10 nF  
Improved EMC behavior (in layout, pls. place close to the pins)  
Improved EMC behavior (in layout, pls. place close to the pins)  
COUT  
CIN  
150 nF  
BTS50010-1TAD tends to latched switch-off due to short negative  
transients on supply pin; CIN automatically resets the device  
CS  
4.7 µF  
Capacitor of RC snubber network Option A, damps possible oscillation of  
the VS pin voltage with improved EMC behavior  
7.1  
Further Application Information  
Please contact us for information regarding the pin FMEA  
For further information you may contact http://www.infineon.com/  
Data Sheet  
48  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Package Outlines  
8
Package Outlines  
Dimensions in mm  
Figure 32 PG-TO-263-7-10 (RoHS-Compliant)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e. Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
49  
Rev. 1.1  
2017-03-30  
BTS50010-1TAD  
Smart High-Side Power Switch  
Revision History  
9
Revision History  
Revision  
Date  
Changes  
1.1  
2017-03-30 Chapter “5.1.4”: add “no turn on” graph  
Update footnote 8) page 11  
1.0  
2016-09-16 Data Sheet created from Preliminary Data Sheet.  
Data Sheet  
50  
Rev. 1.1  
2017-03-30  
Please read the Important Notice and Warnings at the end of this document  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,  
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,  
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,  
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2017-03-30  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2017 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY