BTS71220-4ESE [INFINEON]

The device is integrated in SMART7 technology.;
BTS71220-4ESE
型号: BTS71220-4ESE
厂家: Infineon    Infineon
描述:

The device is integrated in SMART7 technology.

接口集成电路
文件: 总88页 (文件大小:2975K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BTS71220-4ESE  
SPOC™ +2  
2x 9.5 mΩ  
Serial Interface Power Controller  
2x 22.5 mΩ  
Package  
Marking  
PG-TSDSO-24  
71220-4ESE  
1
Overview  
Potential Applications  
Suitable for resistive, inductive and capacitive loads  
Replaces electromechanical relays, fuses and discrete circuits  
Driving capability suitable for 5 A and 3 A loads and high inrush current  
loads such as 55W bulb or equivalent electronic loads (e.g. LED modules)  
and 27W bulb or equivalent electronic loads (e.g. LED modules)  
VBAT  
Optional  
ZWIRE  
Fail-safe  
Control  
Optional  
Logic Supply  
CVSGND  
CVS1  
RGND  
CVSGND  
CVS1  
RGND  
T1  
CVDD  
VS  
GND  
IN  
GND  
VS  
OUT  
VDD  
IN0  
IN1  
EDO  
EDD  
LHI  
RVDD  
EDO_IN  
VDD  
RIN  
GPIO  
GPIO  
GPIO  
GPIO  
RIN  
EDD_DEN  
OUT0  
OUT1  
OUT2  
OUT3  
DEN  
RDEN  
RIN  
EDO_IN  
PRO_IS  
EDD_DEN  
IS  
RLHI  
RCSN  
RSCLK  
CSN  
SCLK  
MISO  
MOSI  
ADC  
CSN  
SCLK  
SO  
DZ2  
CVS2  
RSO  
SI  
RSI  
IS  
RADC  
RIS_PROT  
VSS  
PRO_IS  
DZ1  
CADC  
Logic GND  
Optional  
Application_4ch_ED.emf  
Power GND  
*See Chapter 1 „Potential Applications“  
Chassis GND  
**See Chapter 11.2 „External Components“  
Figure 1  
Application Diagram. Further information in Chapter 11  
Data Sheet  
www.infineon.com  
Rev. 1.10  
2021-03-23  
1
BTS71220-4ESE  
SPOC™ +2  
Overview  
Basic Features  
High-Side Switch with Diagnosis and Embedded Protection  
Part of SPOC™ +2 Family  
Daisy Chain capable SPI interface  
3.3 V and 5 V compatible logic pins  
Slew rate control for internal Channels  
Integrated control for one external smart power switch  
ReverseON for low power dissipation in Reverse Polarity  
Switch ON capability while Inverse Current condition (InverseON)  
Green Product (RoHS compliant)  
Protection Features  
Absolute and dynamic temperature limitation with controlled restart  
Overcurrent protection (tripping) with Programmable Restart Control and Current Threshold  
Undervoltage shutdown  
Overvoltage protection with external components  
Diagnostic Features  
Proportional load current sense multiplexed  
Open Load in ON and OFF state  
Short circuit to ground and battery  
Diagnosis feedback via SPI  
Functional Safety Features  
Limp Home mode  
Monitoring of Input pin status (IN and LHI)  
Checksum verification of Configuration Registers  
Current Sense verification mode  
Product Validation  
Qualified for automotive applications. Product validation according to AEC-Q100 Grade 1.  
Description  
The BTS71220-4ESE is a Serial Interface Power Controller, providing protection functions and diagnosis. The  
device is integrated in SMART7 technology.  
Data Sheet  
2
Rev.1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Overview  
Table 1  
Product Summary  
Parameter  
Symbol  
VS(OP)  
Values  
4.1 V  
Minimum Operating voltage (at switch ON)  
Minimum Operating voltage (cranking)  
Maximum Operating voltage  
Digital Supply voltage  
VS(UV)  
3.1 V  
VS  
28 V  
VDD  
3.3 V or 5 V  
35 V  
Minimum Overvoltage protection (TJ 25 °C)  
Maximum current in Sleep mode (TJ 85 °C)  
Maximum operative current  
VDS(CLAMP)_25  
IVS(SLEEP)_85  
IGND(ACTIVE)  
RDS(ON)_150  
0.7 µA  
7 mA  
Maximum ON-state resistance (TJ = 150 °C)  
16.5 mΩ  
channels 0 and 3  
Maximum ON-state resistance (TJ = 150 °C)  
channels 1 and 2  
RDS(ON)_150  
IL(NOM)  
IL(NOM)  
kILIS  
38 mΩ  
5 A  
Nominal load current (TA = 85 °C)  
channels 0 and 3  
Nominal load current (TA = 85 °C)  
channels 1 and 2  
3 A  
Typical current sense ratio at IL = IL(NOM)  
channels 0 and 3  
5000  
2000  
5 MHz  
Typical current sense ratio at IL = IL(NOM)  
channels 1 and 2  
kILIS  
Serial Clock Frequency  
fSCLK(max)  
Data Sheet  
3
Rev.1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Block Diagram and Terms  
2
Block Diagram and Terms  
2.1  
Block Diagram  
VS  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
VDD  
SO  
Voltage Sensor  
SI  
Ov ertemp eratur e  
T
Overvoltage  
Clamping  
SCLK  
CSN  
LHI  
Gate Co ntrol  
&
Chargepump  
OUT0  
OUT1  
Driver  
Logic  
ESD  
Protection  
+
Ov ercurr ent  
Protection  
OUT2  
OUT3  
ReverseON  
In verseON  
I/O Logic  
IN0  
IN1  
EDO  
EDD  
IS  
Output Voltage Limitation  
Load Current Sense Multiplexer  
Internal Power Supply  
Overvoltage Protection  
Reverse Polarity  
Protection  
VS Mo nitoring  
Limp Home Control  
In ter nal L ogi c Suppl y  
External  
Driver  
Cont rol  
GND Circuitry  
SPI Interface  
GND  
BlockDiagram_4chED.emf  
Figure 2  
Block Diagram of BTS71220-4ESE  
Data Sheet  
4
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Block Diagram and Terms  
2.2  
Terms  
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.  
IVS  
VSIS  
IDD  
VS  
VDD  
ISO  
VS  
SO  
VDSn  
VDD  
SI  
VSO  
SCLK  
CSN  
LHI  
INn  
EDD  
EDO  
IS  
VSI  
ICSN  
I Ln  
OUTn  
ILHI  
VSCLK  
VCSN  
IINn  
VLH I  
IEDD  
VINn  
IEDO  
VOUTn  
VEDD  
IIS  
VEDO  
GND  
IGND  
VIS  
Terms_ED.emf  
Figure 3  
Voltage and Current Convention  
Data Sheet  
5
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
(top view)  
1
2
3
4
5
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
GND  
VDD  
SO  
OUT0  
OUT0  
OUT0  
OUT0  
OUT1  
OUT1  
OUT2  
OUT2  
OUT3  
OUT3  
OUT3  
OUT3  
SI  
SCLK  
CSN  
LHI  
IN0  
IN1  
EDD  
EDO  
IS  
6
VS  
7
8
9
10  
11  
12expos ed pad (bo tto m) 13  
PinOut_SPOC_220_ED.emf  
Figure 4  
Pin Configuration  
Data Sheet  
6
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Table 2  
Pin  
Pin Definition  
Symbol I/O Function  
EP  
VS  
-
Power Supply Voltage  
(exposed pad)  
Battery voltage  
1
GND  
VDD  
SO  
-
-
O
I
Ground  
2
Digital Supply Voltage  
3
Serial output of SPI interface  
4
SI  
Serial input of SPI interface (“high” active)  
Serial clock of SPI interface (“high” active)  
Chip select of SPI interface (“low” active); integrated pull up to VDD  
Limp Home activation signal (“high” active)  
5
SCLK  
CSN  
LHI  
I
6
I
7
I
8, 9  
INn  
I
Input Channel n  
Digital signal to switch ON the channel n (“high” active)  
If not used: connect with a 10 kΩ resistor either to GND pin or to module  
ground  
10  
11  
12  
EDD  
EDO  
IS  
O
O
External driver diagnosis enable signal  
Digital signal to activate the diagnosis of an external controlled device  
External driver output enable signal  
Digital signal to activate the output of an external controlled device  
O
O
Current sense output signal  
21-24 OUTn  
19-20  
Output n  
Protected high-side power output of channel n1)  
17-18  
13-16  
1) All output pins of the channel must be connected together on the PCB. All pins of the output are internally connected  
together. PCB traces have to be designed to withstand the maximum current which can flow.  
Data Sheet  
7
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings - General  
Table 3  
Absolute Maximum Ratings1)  
TJ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Supply pins  
Power Supply Voltage  
Digital Supply Voltage  
Load Dump Voltage  
VS  
-0.3  
-0.3  
28  
5.5  
35  
V
V
V
P_4.1.0.1  
P_4.1.0.29  
P_4.1.0.3  
VDD  
VBAT(LD)  
suppressed  
Load Dump  
acc. to  
ISO16750-2  
(2010).  
Ri = 2 Ω  
Supply Voltage for Short Circuit VBAT(SC)  
Protection  
0
24  
16  
V
V
Setup acc. to  
AEC-Q100-012  
P_4.1.0.25  
P_4.1.0.5  
Reverse Polarity Voltage  
-VBAT(REV)  
t 2 min  
TA = +25 °C  
Setup as  
described in  
Chapter 11  
Current through GND Pin  
Current through VDD Pin  
IGND  
-50  
50  
mA  
RGND according P_4.1.0.9  
to Chapter 11  
IVDD(REV)  
-10  
50  
30  
mA  
ms  
t 2 min  
P_4.1.0.10  
P_4.1.0.35  
Counter Reset Delay Time after tRETRY  
Fault Condition  
Logic & control pins (Digital Input = DI)  
DI = INn, CS, SCLK, SI, LHI  
2)  
Current through DI Pin  
IDI  
-1  
-1  
2
mA  
mA  
P_4.1.0.14  
P_4.1.0.36  
2)  
Current through DI Pin  
IDI(REV)  
10  
Reverse Battery Condition  
t 2 min  
Logic & control pins (Digital Output = DO)  
DO = SO, EDO, EDD  
2)  
Current through DO Pin  
IDO  
-2  
1
1
mA  
mA  
P_4.1.0.33  
P_4.1.0.37  
2)  
Current through DO Pin  
IDO(REV)  
-10  
Reverse Battery Condition  
t 2 min  
Data Sheet  
8
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
General Product Characteristics  
Table 3  
Absolute Maximum Ratings1) (continued)  
TJ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
IS pin  
Voltage at IS Pin  
Current through IS Pin  
VIS  
IIS  
-1.5  
-25  
VS  
V
IIS = 10 μA  
P_4.1.0.16  
P_4.1.0.18  
IIS(SAT),M mA  
AX  
Temperatures  
Junction Temperature  
Storage Temperature  
ESD Susceptibility  
TJ  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.0.19  
P_4.1.0.20  
TSTG  
ESD Susceptibility all Pins  
(HBM)  
VESD(HBM)  
-2  
2
kV  
kV  
V
HBM3)  
HBM3)  
CDM4)  
CDM4)  
P_4.1.0.21  
P_4.1.0.22  
P_4.1.0.23  
P_4.1.0.24  
ESD Susceptibility OUTn vs  
GND and VS connected (HBM)  
VESD(HBM)_OUT -4  
VESD(CDM) -500  
4
ESD Susceptibility all Pins  
(CDM)  
500  
750  
ESD Susceptibility Corner Pins VESD(CDM)_CRN -750  
(pins 1, 12, 13, 24)  
V
1) Not subject to production test - specified by design.  
2) Maximum VDI to be considered for Latch-Up tests: 5.5 V.  
3) ESD susceptibility, Human Body Model "HBM", according to AEC Q100-002.  
4) ESD susceptibility, Charged Device Model "CDM", according to AEC Q100-011.  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Data Sheet  
9
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
General Product Characteristics  
4.2  
Absolute Maximum Ratings - Power Stages  
4.2.1  
Power Stages - 9.5 mΩ channels  
Table 4  
Absolute Maximum Ratings - 9.5 mΩ channels1)  
TJ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Maximum Energy Dissipation EAS  
Single Pulse  
55  
mJ  
IL = 2*IL(NOM)  
TJ(0) = 150 °C  
VS = 28 V  
P_4.2.15.1  
Maximum Energy Dissipation EAR  
Repetitive Pulse  
24  
mJ  
IL = IL(NOM)  
TJ(0) = 85 °C  
VS = 13.5 V  
1M cycles  
P_4.2.15.2  
P_4.2.15.3  
Load Current  
|IL|  
IL(OVL),MAX  
A
1) Not subject to production test - specified by design.  
4.2.2  
Power Stages - 22.5 mΩ channels  
Table 5  
Absolute Maximum Ratings - 22.5 mΩ channels1)  
TJ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Maximum Energy Dissipation EAS  
Single Pulse  
28  
mJ  
IL = 2*IL(NOM)  
TJ(0) = 150 °C  
VS = 28 V  
P_4.2.16.1  
Maximum Energy Dissipation EAR  
Repetitive Pulse  
8.5  
mJ  
IL = IL(NOM)  
TJ(0) = 85 °C  
VS = 13.5 V  
1M cycles  
P_4.2.16.2  
P_4.2.16.3  
Load Current  
|IL|  
IL(OVL),MAX  
A
1) Not subject to production test - specified by design.  
Data Sheet  
10  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
General Product Characteristics  
4.3  
Functional Range  
Table 6  
Functional Range - Supply Voltages and Temperature1)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Power Supply Voltage  
Range for Normal Operation  
VS(NOR)  
6
13.5  
18  
V
P_4.3.0.1  
P_4.3.0.2  
2)3)  
Lower Extended Power  
Supply Voltage Range for  
Operation  
VS(EXT,LOW)  
3.1  
6
V
(parameter  
deviations possible)  
3)  
Upper Extended Power  
Supply Voltage Range for  
Operation  
VS(EXT,UP)  
18  
28  
V
V
P_4.3.0.3  
(parameter  
deviations possible)  
Digital Supply Voltage  
Range  
VDD(NOR)  
TJ  
3.0  
-40  
5.5  
P_4.3.0.4  
P_4.3.0.5  
Junction Temperature  
150 °C  
1) Not subject to production test - specified by design.  
2) In case of VS voltage decreasing: VS(EXT,LOW),MIN = 3.1 V. In case of VS voltage increasing: VS(EXT,LOW),MIN = 4.1 V.  
3) Protection functions still operative.  
Note:  
Within the functional or operating range, the IC operates as described in the circuit description. The  
electrical characteristics are specified within the conditions given in the Electrical Characteristics  
tables.  
4.4  
Thermal Resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, go to www.jedec.org.  
Table 7  
Thermal Resistance1)  
Parameter  
Symbol  
Values  
Typ.  
0.9  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
2)  
Thermal Characterization  
Parameter Junction-Top  
ΨJTOP  
1.5  
K/W  
P_4.4.0.15  
P_4.4.0.16  
2)  
Thermal Resistance  
Junction-to-Case  
RthJC  
0.5  
26  
0.9  
K/W  
simulated at  
exposed pad  
2)  
Thermal Resistance  
Junction to Ambient  
RthJA  
K/W  
P_4.4.0.6  
1) Not subject to production test - specified by design.  
2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the Product (Chip + Package) was  
simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu). Where applicable  
a thermal via array under the exposed pad contacted the first inner copper layer. Simulation done at TA = 105°C,  
P
DISSIPATION = 1 W.  
Data Sheet  
11  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
General Product Characteristics  
4.4.1  
PCB Setup  
70 µm modeled (traces, cooling area)  
70 µm, 5% metalization*  
*: means percentual Cu metalization on each layer  
PCB_Zth_1s0p.emf  
Figure 5  
1s0p PCB Cross Section  
70 µm modeled (traces)  
35 µm, 90% metalization*  
35 µm, 90% metalization*  
70 µm, 5% metalization*  
*: means percentual Cu metalization on each layer  
PCB_Zth_2s2p.emf  
Figure 6  
2s2p PCB Cross Section  
PCB 1s0p + 600 mm2 cooling  
PCB 2s2p / 1s0p footprint  
PCB_sim_setup_TSDSO24.emf  
Figure 7  
PCB setup for thermal simulations  
PCB_2s2p_vias_TSDSO24.emf  
Figure 8  
Thermal vias on PCB for 2s2p PCB setup  
Data Sheet  
12  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
General Product Characteristics  
4.4.2  
Thermal Impedance  
BTS71220-4ESx  
100  
10  
1
0.1  
2s2p  
1s0p - 600 mm²  
1s0p - 300 mm²  
1s0p - footprint  
0.01  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Time [s]  
Figure 9  
Typical Thermal Impedance. PCB setup according Chapter 4.4.1  
BTS71220-4ESx  
90  
80  
70  
60  
50  
40  
30  
1s0p - Ta = 105 °C  
0
100  
200  
300  
400  
500  
600  
Cooling area [mm²]  
Figure 10 Thermal Resistance on 1s0p PCB with various cooling surfaces  
Data Sheet  
13  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Logic Pins  
5
Logic Pins  
The device has 9 digital pins to configure and control the device. They can be grouped based on their function  
into input pins, SPI pins, external driver pins and Limp Home pin.  
5.1  
Input Pins (INn)  
The input pins IN0 and IN1 activate the corresponding output channel, if the device is either in Sleep, Stand-  
by, Ready or in Limp Home mode. The input circuitry is compatible with 3.3V and 5V microcontroller. The  
electrical equivalent of the input circuitry is shown in Figure 11. In case the pin is not used, it must be  
connected with a 10 kΩ resistor either to GND pin or to module ground.  
VS  
IN  
VS(CLAMP)  
IDI  
IDI  
ESD  
VDI(CLAMP)  
VDI  
GND  
IGND  
Input_IN_INTDIO.emf  
Figure 11 Input circuitry  
The logic thresholds for “low” and “high” states are defined by parameters VDI(TH) and VDI(HYS). The relationship  
between these two values is shown in Figure 12. The voltage VIN needed to ensure a “high” state is always  
higher than the voltage needed to ensure a “low” state.  
Data Sheet  
14  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Logic Pins  
VDI  
VDI(TH ),MAX  
VDI(TH)  
VDI(HYS)  
VDI(TH ),MIN  
t
t
Internal channel  
activation signal  
0
x
1
x
0
Input_VDITH_2.emf  
Figure 12 Input Threshold voltages and hysteresis  
There are two ways of using the input pins in combination with the register OUT by programming bit  
HWCR.COLin register HWCR(see Table 35).  
HWCR.COL= 0B: A channel is switched ON either by the according OUT.OUTnbit or by the input pin.  
HWCR.COL= 1B: A channel is switched ON by the according OUT.OUTnbit only, when the input pin is  
“high”. In this configuration, a PWM signal can be applied to the input pin and the channel is activated by  
the SPI register OUT(see Table 35).  
The default state (HWCR.COL= 0B) is the OR-combination of the input signal and the SPI-bit. In Limp Home  
mode (LHI pin set to “high”) the combinatorial logic is in default state to enable a channel activation via the  
input pins only. Figure 13 shows the complete input switch matrix.  
The logic level of the input pins can be monitored via the input status monitor. In case of a “high” level on an  
input pin, the corresponding ICS.INSTnbit is set and cleared on read.  
Data Sheet  
15  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Logic Pins  
MUX111 OUT2 OUT1 OUT3 OUT0  
PCC0  
&
&
&
&
OR  
&
IN0  
IN1  
IIN 0  
Gate Control 0  
Gate Control 3  
OR  
OR  
OR  
&
IIN 2  
Gate Control 1  
Gate Control 2  
COL  
PCC1  
LogicPins_InputMatr ix_4chED_PCC.emf  
Figure 13 Input Switch Matrix  
5.2  
Advanced Features Pins  
5.2.1  
SPI Pins  
The serial peripheral interface (SPI) is a full duplex synchronous serial slave interface, which uses four lines:  
SO, SI, SCLK and CSN. See Chapter 10 for further information.  
5.2.2  
Limp Home Input (LHI) Pin  
For activating the fail-safe state, the device features a Limp Home Input pin. When the pin is set to “high” for  
a time longer than tLHI(AC), the Limp Home mode will be activated. See Chapter 6.1.7 and Chapter 6.1.8 for  
further information.  
5.2.3  
External Driver Pins  
One external smart power driver can be controlled by the BTS71220-4ESE via the external driver control block.  
There are two control outputs available: one output for controlling the input (EDO) and one output for  
diagnosis enable input (EDD). The current sense output of the external smart power driver can be connected  
to the IS pin. For details please refer to the Application Circuit Example in Chapter 11. The external driver  
output signals can be used in Stand-by and Active mode.  
The external driver can be activated via SPI bit OUT.OUT4.  
Note:  
The usable duty cycle range and diagnostic timings depend on the external driver’s characteristics.  
Data Sheet  
16  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Logic Pins  
5.3  
Electrical Characteristics Logic Pins  
VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C  
Digital Input (DI) pins = IN  
Table 8  
Electrical Characteristics: Logic Pins - General  
Parameter  
Symbol  
Values  
Typ.  
1.3  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Digital Input Voltage  
Threshold  
VDI(TH)  
0.8  
2
V
See Figure 11 and P_5.4.0.1  
Figure 12  
1)  
Digital Input Clamping  
Voltage  
VDI(CLAMP1)  
7
V
P_5.4.0.2  
IDI = 1 mA  
See Figure 11 and  
Figure 12  
Digital Input Clamping  
Voltage  
VDI(CLAMP2)  
VDI(HYS)  
IDI(H)  
6.5  
7.5  
0.25  
10  
8.5  
V
IDI = 2 mA  
See Figure 11 and  
Figure 12  
1)  
P_5.4.0.3  
P_5.4.0.4  
P_5.4.0.5  
P_5.4.0.6  
Digital Input Hysteresis  
V
See Figure 11 and  
Figure 12  
Digital Input Current  
(“high”)  
2
25  
25  
µA  
µA  
VDI = 2 V  
See Figure 11 and  
Figure 12  
Digital Input Current (“low”) IDI(L)  
2
10  
VDI = 0.8 V  
See Figure 11 and  
Figure 12  
1) Not subject to production test - specified by design.  
5.4  
Electrical Characteristics Logic Pins - Advanced Features  
Table 9  
Electrical Characteristics: Logic Pins - Advanced  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
SPI pins  
Digital Input Voltage  
Threshold of Pin CSN  
VCSN(TH)  
0.8  
0.8  
0.8  
1.3  
1.3  
1.3  
7
2
V
V
V
V
V
P_5.5.0.1  
P_5.5.0.2  
P_5.5.0.3  
P_5.5.0.4  
P_5.5.0.5  
1)  
Digital Input Voltage  
Threshold of Pin SCLK  
VSCLK(TH)  
VSI(TH)  
VCSN(CLAMP1)  
VCSN(CLAMP2)  
2
Digital Input Voltage  
Threshold of Pin SI  
2
2)  
Digital Input Clamping  
Voltage of Pin CSN  
ICSN = 1 mA  
ICSN = 2 mA  
Digital Input Clamping  
Voltage of Pin CSN  
6.5  
7.5  
8.5  
Data Sheet  
17  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Logic Pins  
Table 9  
Electrical Characteristics: Logic Pins - Advanced (continued)  
Parameter  
Symbol  
Values  
Typ.  
7
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
2)  
Digital Input Clamping  
Voltage of Pin SCLK  
VSCLK(CLAMP1)  
V
P_5.5.0.6  
P_5.5.0.7  
P_5.5.0.8  
P_5.5.0.9  
P_5.5.0.11  
P_5.5.0.13  
P_5.5.0.15  
P_5.5.0.10  
P_5.5.0.12  
P_5.5.0.14  
P_5.5.0.16  
P_5.5.0.18  
P_5.5.0.20  
P_5.5.0.22  
P_5.5.0.23  
P_5.5.0.24  
ISCLK = 1 mA  
ISCLK = 2 mA  
Digital Input Clamping  
Voltage of Pin SCLK  
VSCLK(CLAMP2) 6.5  
7.5  
7
8.5  
V
2)  
Digital Input Clamping  
Voltage of Pin SI  
VSI(CLAMP1)  
VSI(CLAMP2)  
V
ISI = 1 mA  
ISI = 2 mA  
Digital Input Clamping  
Voltage of Pin SI  
6.5  
7.5  
0.25  
0.25  
0.25  
10  
10  
10  
10  
10  
10  
8.5  
V
2)  
Digital Input Hysteresis of VCSN(HYS)  
Pin CSN  
V
See Figure 12  
2)  
Digital Input Hysteresis of VSCLK(HYS)  
Pin SCLK  
V
See Figure 12  
2)  
Digital Input Hysteresis of VSI(HYS)  
Pin SI  
V
See Figure 12  
VCSN = 0.5 V  
Digital Input Current  
(“low”) of Pin CSN  
-ICSN(L)  
-ICSN(H)  
ISCLK(L)  
ISCLK(H)  
ISI(L)  
2
25  
25  
25  
25  
25  
25  
0.5  
VDD  
1
μA  
μA  
μA  
μA  
μA  
μA  
V
Digital Input Current  
(“high”) of Pin CSN  
2
VCSN = 2.6 V  
VSCLK = 0.5 V  
VSCLK = 2.6 V  
VSI = 0.5 V  
Digital Input Current  
(“low”) of Pin SCLK  
2
Digital Input Current  
(“high”) of Pin SCLK  
2
Digital Input Current  
(“low”) of Pin SI  
2
Digital Input Current  
(“high”) of Pin SI  
ISI(H)  
2
VSI = 2.6 V  
Digital Output Voltage  
(“low”) of Pin SO  
VSO(L)  
VSO(H)  
ISO(OFF)  
0
ISO = -0.5 mA  
ISO = 0.5 mA  
Digital Output Voltage  
(“high”) of Pin SO  
VDD  
-
V
0.5 V  
Output Tristate Leakage  
Current of Pin SO  
-1  
μA  
VCSN = VDD  
VSO = 0 V or  
V
CSN = VDD  
VSO = VDD  
LHI pin  
Digital Input Voltage  
Threshold of Pin LHI  
VLHI(TH)  
1.4  
1.9  
7
2.6  
V
V
V
P_5.5.0.25  
P_5.5.0.27  
P_5.5.0.28  
2)  
Digital Input Clamping  
Voltage of Pin LHI  
VLHI(CLAMP1)  
VLHI(CLAMP2)  
ILHI = 1 mA  
ILHI = 2 mA  
Digital Input Clamping  
Voltage of Pin LHI  
6.5  
7.5  
8.5  
Data Sheet  
18  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Logic Pins  
Table 9  
Electrical Characteristics: Logic Pins - Advanced (continued)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
2)  
Digital Input Hysteresis of VLHI(HYS)  
Pin LHI  
0.25  
V
P_5.5.0.29  
P_5.5.0.30  
P_5.5.0.32  
Digital Input Current  
(“high”) of Pin LHI  
ILHI(H)  
ILHI(L)  
10  
10  
32  
24  
65  
45  
µA  
µA  
VLHI = 5 V  
V
DD = 0 V  
VLHI = 0.8 V  
DD = 0 V  
Digital Input Current  
(“low”) of Pin LHI  
V
External Driver Pins  
Digital Output Voltage  
(“low”) of Pin EDO  
VEDO(L)  
VEDO(H)  
VEDD(L)  
VEDD(H)  
0
0.5  
VDD  
0.5  
VDD  
V
V
V
V
IEDO = -0.2 mA  
IEDO = 0.2 mA  
IEDD = -0.2 mA  
IEDD = 0.2 mA  
P_5.5.0.33  
P_5.5.0.34  
P_5.5.0.36  
P_5.5.0.37  
Digital Output Voltage  
(“high”) of Pin EDO  
VDD -  
0.5 V  
Digital Output Voltage  
(“low”) of Pin EDD  
0
Digital Output Voltage  
(“high”) of Pin EDD  
VDD  
0.5 V  
-
1) Functional test only.  
2) Not subject to production test - specified by design.  
Data Sheet  
19  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Supply  
6
Power Supply  
The BTS71220-4ESE is supplied by two supply voltages:  
Power Supply Voltage (VS)  
Digital Supply Voltage (VDD  
)
The VS supply line is connected to a battery feed and used for the driving circuitry of the power stages, while  
DD is used for the SPI logic and for driving SO pin. VS and VDD supply voltages have an undervoltage detection  
V
circuit, which prevents the activation of the associated function in case the measured voltage is below the  
undervoltage threshold. More in detail:  
An undervoltage on VDD supply prevents SPI communication. SPI registers are reset to their default values  
An undervoltage on VS supply switches OFF all channels, even in Limp Home mode. The channels are  
enabled again as soon as VS VS(OP)  
The voltage at pin VS is also monitored. In case of a negative voltage transient on VS resulting in VS < VS(TP) when  
the device is out of Sleep mode, any SPI command sent by the microcontroller is not accepted (see  
Chapter 6.2 and Chapter 10.5 for further information). An overview of channel behavior according to  
different VS and VDD supply voltages is shown in Table 10.  
1)  
Table 10 Device capability as function of VS and VDD  
VDD VDD(PO)  
VDD > VDD(PO)  
(VDD(PO) see P_6.4.1.1)  
VS VS(TP)  
(VS(TP) see P_6.4.0.5)  
Channels are OFF  
SPI registers reset  
Channels are OFF  
SPI registers protected  
SPI communication not available  
SPI communication available2)  
(fSCLK = 0 MHz)  
(fSCLK = 5 MHz)  
Limp Home mode not available  
Channels are OFF  
Limp Home mode not available  
Channels are OFF  
VS(TP) < VS VS(UV)  
(VS(UV) see P_6.4.0.1)  
SPI registers reset  
SPI registers available  
SPI communication not available  
SPI communication available  
(fSCLK = 0 MHz)  
(fSCLK = 5 MHz)  
Limp Home mode available  
(channels are OFF)  
Limp Home mode available  
(channels are OFF)  
3)  
VS > VS(UV)  
Channels cannot be controlled by SPI  
SPI registers reset  
Channels can be controlled by SPI  
SPI registers available  
SPI communication not available  
SPI communication available  
(fSCLK = 0 MHz)  
(fSCLK = 5 MHz)  
Limp Home mode available  
Limp Home mode available  
1) Valid after a successful supply voltage ramp-up.  
2) Write commands are ignored. Furthermore the device responds with STDDIAGonly.  
3) The undervoltage condition on VS supply must be considered. See Chapter 6.2.  
Data Sheet  
20  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Supply  
6.1  
Operation Modes  
BTS71220-4ESE has the following operation modes:  
Sleep mode  
Active mode  
Stand-by mode  
Ready mode  
Limp Home mode  
Limp Home Active mode  
The transition between operation modes is determined according to these variables:  
Digital supply level (VDD  
Logic level at INn pins  
Logic level at LHI pin  
)
Current sense multiplexer state (DCR.MUX)  
Output register state (OUT.OUTn)  
Configuration registers state  
The state diagram including the possible transitions is shown in Figure 14. The behavior of BTS71220-4ESE as  
well as some parameters may change in dependence from the operation mode of the device. Furthermore,  
due to the undervoltage detection circuitry which monitors VS supply voltage, some changes within the same  
operation mode can be seen accordingly.  
There are five parameters describing each operation mode of BTS71220-4ESE:  
Status of the output channels  
Status of SPI registers  
Status of SPI communication  
Current consumption at VS pin (measured by IVS in Sleep mode, IGND in all other operative modes)  
Current consumption at VDD pin (IVDD  
)
Table 11 shows the correlation between operation modes, VS and VDD supply voltages, and the state of the  
most important functions (channel status, SPI communication and SPI registers).  
Data Sheet  
21  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Supply  
LHI = "high"  
Power-up  
Unsupplied  
DCR.MUX  
=
111B or SPI_Reset  
LHI = "low"  
LHI = "high"  
Stand-by  
Sleep  
DCR.MUX  
111B  
OUT.OUTn  
= 1B  
or INn = "high"  
INn = "low" or INn = "low" & SPI_Reset  
OUT.OUTn = 0B or  
SPI_Reset  
INn = "low" &  
OUT.OUTn  
=
0B  
Limp Home  
INn = "high"  
OUT.OUTn  
111B or INn = "high"  
111B & INn = "low"  
= 1B  
DCR.MUX  
DCR.MUX  
LHI = "high"  
LHI = "high" & INn = "low"  
Ready  
=
INn = "low"  
Active  
INn = "high"  
LHI = "high" & INn = "high"  
LHI = "low" & INn = "high"  
Limp Home  
Active  
Note: SPI bits which are not stated are considered to have the default value or are unchanged compared to the previous state. Supplyvoltages are  
considered to be in operative range if not specified different. SPI_Reset is performed if VDD < VDD(PO) or HWCR.RST  
= 1B  
Dashed lines indicate transitions between modes which should not be used for normal operation.  
PowerS up pl y_O pMo des .emf  
Figure 14 Operation Mode state diagram  
Table 11 Device function in relation to operation modes, VDD and VS voltages  
Operative Mode Function  
VS VS(TP)  
VS(TP) VS VS(UV)  
OFF  
VS > VS(UV)  
OFF  
Sleep  
Channels  
OFF  
SPI registers available1)  
available1)  
available1)  
OFF  
available1)  
available1)  
OFF  
SPI comm.  
available1)  
Stand-by  
Ready  
Active  
Channels  
OFF  
SPI registers protected1)  
available1)  
available1)  
available1)  
OFF  
available1)  
available1)  
SPI comm.  
all commands rejected1) available1)  
Channels  
OFF  
OFF  
available1)  
SPI registers protected1)  
SPI comm.  
Channels  
all commands rejected1) available1)  
OFF  
OFF  
follow SPI and/or Input  
pins  
SPI registers protected1)  
available1)  
available1)  
available1)  
follow Input pins  
reset  
SPI comm.  
Channels  
all commands rejected1) available1)  
Limp Home /  
Limp Home  
Active  
OFF  
OFF  
SPI registers protected1)  
reset  
(Diagnosis available)1) (Diagnosis available)1)  
SPI comm.  
all commands  
rejected1)2)  
read-only1)  
read-only1)  
1) In case VDD > VDD(PO) otherwise not available or in reset.  
2) In case all input pins are set to “low”, SPI communication is in read-only mode.  
Data Sheet  
22  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Supply  
6.1.1  
Unsupplied  
In this state, the device is either unsupplied (no voltage applied to VS pin and VDD pin) or the supply voltages  
are both below the corresponding undervoltage threshold.  
6.1.2  
Power-up  
The Power-up condition is entered when one of the supply voltages (VS or VDD) is applied to the device. Both  
supplies are rising until they are above the undervoltage thresholds VS(OP) and VDD(PO) therefore the internal  
Power-On signals are set. The SPI interface can be accessed after wake up time tWU(PO)  
.
6.1.3  
Sleep mode  
The device is in Sleep mode when all Digital Input pins (INn, LHI) are set to “low” and DCR.MUXis still set to  
111B. When BTS71220-4ESE is in Sleep mode, all outputs are OFF. The SPI registers can be programmed if VDD  
> VDD(PO). The current consumption is minimum (see parameter IVS(SLEEP)). No Overtemperature or Overload  
protection mechanism is active when the device is in Sleep mode. The circuitry that monitors VS versus VS(UV)  
and VS versus VS(TP) is disabled. This allows the programming of the registers even if VS < VS(TP)  
.
6.1.4  
Stand-by mode  
The device is in Stand-by mode when DCR.MUX111B and no command to switch ON a channel was received  
(either via SPI or via Input pins). All channels are OFF but the internal supply circuitry is working and therefore  
the device current consumption is increased. A command to switch ON one or more outputs is accepted and  
executed, bringing the device into Active mode. SPI communication is possible.  
6.1.5  
Ready mode  
In Ready mode, one or more outputs received a command to switch ON (either via SPI or via Input pins if  
HWCR.COL= 1B). Nevertheless, all outputs are OFF because of DCR.MUXbits still set to 111B. It is necessary  
to change the value of those bits to bring the device into Active mode and switch ON the channels.  
Note:  
Since OUT register is blanked with DCR.MUX = 111B it is not possible to enter Active mode when  
HWCR.COL bit is set to 1B.  
6.1.6  
Active mode  
Active mode is the normal operation mode of BTS71220-4ESE when no Limp Home condition is set and one or  
more outputs are switched ON. Device current consumption is specified by parameter IGND(ACTIVE). An  
undervoltage condition on VDD supply voltage brings the device into Sleep mode in case all Input pins are set  
to “low”.  
6.1.7  
Limp Home mode  
The device enters Limp Home mode when LHI pin is set to “high” for t > tLHI(AC). SPI registers are reset to the  
default values when Limp Home mode is entered. The corresponding bit in the standard diagnosis  
(STDDIAG.LHI) will be set to 1B once the LHI pin is set to “high” and latched until next STDDIAG  
transmission. See Figure 15 for further information. SPI registers are available for read access. ERRDIAG,  
STDDIAG, WRNDIAG and ICS can be used for diagnosis in Limp Home.  
When the device is in transient protection (VS VS(TP)) and the LHI pin is set to "high", the STDDIAG.LHIbit  
will be set but the device will not change its state to Limp Home mode. Furthermore STDDIAG.VSMONand  
STDDIAG.TERbits will be set to report the battery transient protection.  
Data Sheet  
23  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Supply  
VS  
VS(TP)  
t
t < tLHI(AC )  
LHI  
pin  
t
STDDIAG  
.LHI  
t
Read STDDIAG  
Read STDDIAG  
Read STDDIAG  
SPI  
tLHI(AC )  
tLHI(AC )  
tLHI(AC )  
ava ila ble  
ava ila ble  
re ad-only  
re se t  
ava ila ble  
ava ila ble  
all command reject ed  
protected  
comm.  
registers  
t
Note: Devic e out o f Sleep mod e when SP I comm. „availab le“  
PowerSupply_LimpHomeActive.emf  
Figure 15 Limp Home Activation as function of VS  
6.1.8  
Limp Home Active mode  
Limp Home Active mode is entered when the device is in Limp Home mode and one of the IN pins is set to  
“high”. Overload, Overtemperature and Overvoltage protections are active. Since SPI registers cannot be  
written current sensing is not available.  
Data Sheet  
24  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Supply  
6.1.9  
Definition of Operation modes transition times  
The channel turn-ON time is as defined by parameter tON when BTS71220-4ESE is in Active mode or in Limp  
Home mode. In all other cases, it is necessary to add the transition time required to reach one of the two  
aforementioned operation modes (as shown in Figure 16).  
tLHI(AC)  
tWU(PO)  
Unsupplied  
tTRANS2SLP  
tLHI(AC)  
tLHI(AC)  
+
tTRANS2SLP  
Stand-by  
Sleep  
tTRANS2STBY  
+
tTRANS2STBY  
tON  
tON  
+
tTRANS2STBY  
tTRANS2SLP  
tTRANS2STBY  
tTRANS2SLP  
Limp Home  
tOFF  
tOFF  
+
tON  
tOFF  
+
tLHI(AC)  
+
tTRANS2STBY  
tLHI(AC)  
+
Ready  
Active  
tOFF  
+
tLHI(AC)  
tLHI(AC)  
Limp Home  
Active  
Note: Dashed lines indicate transition timings between modes which should not be used for normal operation.  
PowerS up pl y_O pMo des _Ti min gs.emf  
Figure 16 Transition Time diagram  
6.2  
Undervoltage on VS  
Between VS(OP) and VS(UV) the undervoltage mechanism is triggered. If the device is operative (in Active or Limp  
Home Active mode) and the supply voltage drops below the undervoltage threshold VS(UV), the internal logic  
switches OFF the output channels. When the device is either in Stand-by, Active or Limp Home mode the bit  
STDDIAG.VSMONis set and latched until readout. When the state is changed from Sleep to any other state,  
a delay of t tTRANS2STBY has to be considered until STDDIAG.VSMONis valid.  
As soon as the supply voltage VS is above the operative threshold VS(OP), the channels having the corresponding  
input pin set to “high” or the bit in the OUTregister set to 1B are switched ON again. The restart is delayed with  
a time tDELAY(UV) which protects the device in case the undervoltage condition is caused by a short circuit event  
(according to AEC-Q100-012), as shown in Figure 17.  
Data Sheet  
25  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Supply  
VS  
VS(O P)  
VS(HY S)  
VS(UV )  
VS(TP)  
t
tDEL AY(UV )  
VO UT  
t
STDDIAG.  
VSMON  
t
t
t
Read STDDIAG  
Read STDDIAG  
STDDIAG.  
TER  
Read STDDIAG  
Read STDDIAG  
Opera tio n  
Mode  
Stand-by  
Ac tive  
Sleep  
Ready  
Ac tive  
PowerSupply_UVRVS.emf  
Figure 17 VS undervoltage behavior  
6.3  
Reset Condition  
One of the following conditions reset the SPI registers to their default value:  
V
DD is not present or below the undervoltage threshold VDD(PO)  
SPI registers will be reset to their default values (in the first communication after reset the  
STDDIAG.TERwill be set to 1B).  
Restart counters will not be reset if VS is available or LHI is "high".  
LHI pin is set to “high” for t > tLHI(AC) and VS > VS(TP)  
Configuration registers will be reset to their default values. ERRDIAGand WRNDIAGwill be reset.  
Restart counters will be reset.  
Reset command (HWCR.RST= 1B) is executed and VS > VS(TP)  
Configuration registers will be reset to their default values. ERRDIAG, WRNDIAGand STDDIAGwill not  
be reset.  
Restart counters will not be reset.  
In case all Input pins are set to “low” after any reset condition, all channels are switched OFF.  
Data Sheet  
26  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Supply  
6.4  
Electrical Characteristics Power Supply  
VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C  
Typical resistive loads connected to the outputs for testing (unless otherwise specified):  
9.5 mΩ: RL = 2.6 Ω  
22.5 mΩ: RL = 4.8 Ω  
Table 12 Electrical Characteristics: Power Supply - General  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
VS pin  
Power Supply Undervoltage VS(UV)  
Shutdown  
1.8  
2.0  
0.6  
2.3  
3.0  
1.0  
3.1  
4.1  
1.8  
V
V
V
VS decreasing  
IN = “high” or  
OUT.OUTn= 1B  
From VDS 0.5 V to  
P_6.4.0.1  
V
DS = VS  
See Figure 17  
Power Supply Minimum  
Operating Voltage  
VS(OP)  
VS increasing  
IN = “high”or  
OUT.OUTn= 1B  
From VDS = VS to  
P_6.4.0.3  
P_6.4.0.5  
V
DS 0.5 V  
See Figure 17  
Power Supply Voltage  
Threshold for Battery  
Transients Protection  
VS(TP)  
VS decreasing  
STDDIAG.VSMON= 1B  
STDDIAG.TER= 1B  
DCR.MUX111B  
See Figure 17  
1)  
Power Supply Undervoltage VS(HYS)  
Shutdown Hysteresis  
0.7  
4
V
P_6.4.0.6  
VS(OP) - VS(UV)  
See Figure 17  
1)  
Power Supply Undervoltage tDELAY(UV)  
2.5  
5.5  
ms  
P_6.4.0.10  
Recovery Time  
dVS/dt 0.5 V/µs  
VS 0 V  
See Figure 17  
1)  
Breakdown Voltage  
between GND and VS Pins in  
Reverse Battery  
-VS(REV)  
16  
30  
V
P_6.4.0.9  
IGND(REV) = 14 mA  
TJ = 150 °C  
1) Not subject to production test - specified by design.  
Data Sheet  
27  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Supply  
6.4.1  
Electrical Characteristics Power Supply - SPOC™  
Table 13 Electrical Characteristics: Power Supply - SPOC™  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
VDD pin  
1)  
Digital Supply Operating  
Voltage  
VDD(OP)  
VDD(PO)  
2.45  
1.4  
4.3  
1.9  
1.8  
5.5  
2.3  
2.2  
V
V
V
P_6.4.1.1  
P_6.4.1.9  
P_6.4.1.2  
fSCLK = 5 MHz  
1)  
Digital Supply Power-On  
Reset Threshold Voltage  
VDD increasing  
Digital Supply Undervoltage VDD(UV)  
1.3  
VDD decreasing  
Shutdown  
OUT.OUTn= 1B  
From VDS 0.5 V to  
VDS = VS  
1)  
Digital Supply Undervoltage VDD(HYS)  
Shutdown Hysteresis  
6
0.1  
6.5  
7
8
V
V
V
P_6.4.1.3  
P_6.4.1.11  
P_6.4.1.12  
1)  
Digital Supply Clamping  
Voltage  
VDD(CLAMP1)  
VDD(CLAMP2)  
tWU(PO)  
IDD = 1 mA  
IDD = 20 mA  
Digital Supply Clamping  
Voltage  
1)  
1)  
Power-On Wake Up Time  
5
10  
10  
30  
30  
μs  
μs  
P_6.4.1.13  
P_6.4.1.4  
Transition Time to Stand-by tTRANS2STBY  
Mode  
1)2)  
1)  
Transition Time to Sleep  
Mode  
tTRANS2SLP  
tLHI(AC)  
1
5
60  
40  
μs  
P_6.4.1.5  
P_6.4.1.6  
Limp Home  
10  
20  
µs  
Acknowledgement Time  
1) Not subject to production test - specified by design.  
2) If output channel enters inductive clamping, clamping time has to be added.  
Data Sheet  
28  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Supply  
6.5  
Electrical Characteristics Power Supply - Product Specific  
VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C  
Typical resistive loads connected to the outputs for testing (unless otherwise specified):  
9.5 mΩ: RL = 2.6 Ω  
22.5 mΩ: RL = 4.8 Ω  
6.5.1  
BTS71220-4ESE  
Table 14 Electrical Characteristics: Power Supply BTS71220-4ESE  
Parameter  
Symbol  
Values  
Typ.  
80  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Digital Supply Current  
Consumption in Normal  
Operation  
IDD  
200  
µA  
fSCLK = 0 MHz  
VS > VS(UV)  
P_6.5.31.1  
VCSN = VDD = 5 V  
DCR.MUX111B  
1)2)  
Digital Supply Current  
Consumption in Normal  
Operation during SPI Traffic  
(Average)  
IDD(ACTIVE)  
2.5  
mA  
P_6.5.31.2  
fSCLK = 5 MHz  
VS > VS(UV)  
VDD = 5 V  
VCSN = 0 V  
C
L(SO) = 50 pF  
DCR.MUX111B  
Digital Supply Current  
Consumption in Sleep Mode  
IDD(SLEEP)  
17  
17  
50  
35  
µA  
µA  
fSCLK = 0 MHz  
VS > VS(UV)  
VCSN = VDD = 5 V  
DCR.MUX= 111B  
P_6.5.31.3  
Digital Supply Current  
Consumption in Sleep Mode  
IDD(SLEEP)  
fSCLK = 0 MHz  
VS > VS(UV)  
P_6.5.31.12  
VCSN = VDD = 5 V  
DCR.MUX= 111B  
TJ 85 °C  
2)3)  
Power Supply Current  
IVS(SLEEP)_85  
0.05  
0.7  
µA  
P_6.5.31.4  
Consumption in Sleep Mode  
with Loads at TJ 85 °C  
VS = 18 V  
VOUT = 0 V  
INx = “low”  
TJ 85 °C  
Power Supply Current  
Consumption in Sleep Mode  
with Loads at TJ = 150 °C  
IVS(SLEEP)_150  
2
5
100  
7
µA  
VS = 18 V  
VOUT = 0 V  
INx = “low”  
TJ = 150 °C  
P_6.5.31.5  
P_6.5.31.6  
Operating Current in Active IGND(ACTIVE)  
mA  
VS = 18 V  
Mode (all Channels ON)  
VDD = 5 V  
INx = “high” or  
OUT.OUTn= 1B  
Data Sheet  
29  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Supply  
Table 14 Electrical Characteristics: Power Supply BTS71220-4ESE (continued)  
Parameter  
Symbol  
Values  
Typ.  
80  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Operating Current in Ready IGND(READY)  
Mode  
200  
µA  
VS = 18 V  
CSN = VDD = 5 V  
P_6.5.31.8  
V
fSCLK = 0 MHz  
DCR.MUX= 111B  
OUT.OUTn= 1B  
Operating Current in Stand- IGND(STBY)  
1.25  
2
mA  
VS = 18 V  
P_6.5.31.9  
by Mode  
V
DD = 5 V  
DCR.MUX111B  
1) Test pattern shifted-in on SI: 0101010101010101 and 1010101010101010.  
2) Not subject to production test - specified by design.  
3) If VDD < VDD(PO), LHI = ”low” and any restart counter > 0, IGND(STBY) has to be considered.  
Data Sheet  
30  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Stages  
7
Power Stages  
The high-side power stages are built using a N-channel vertical Power MOSFET with charge pump.  
7.1  
Output ON-State Resistance  
The ON-state resistance RDS(ON) depends mainly on junction temperature TJ. Figure 18 shows the variation of  
RDS(ON) across the whole TJ range. The value “2” on the y-axis corresponds to the maximum RDS(ON) measured  
at TJ = 150 °C.  
RDS(ON) variation over TJ  
2.20  
Reference value:  
"2" = RDS(ON),MAX @ 150 °C  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
Typical  
0.20  
0.00  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
Junction Temperature (°C)  
Figure 18 RDS(ON) variation factor  
The behavior in Reverse Polarity is described in Chapter 8.4.1.  
7.2  
Switching loads  
7.2.1  
Switching Resistive Loads  
When switching resistive loads, the switching times and slew rates shown in Figure 19 can be considered. The  
switch energy values EON and EOFF are proportional to load resistance and times tON and tOFF  
.
Data Sheet  
31  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Stages  
IN /  
OUT.OUTn  
VIN(TH)  
VIN(HYS)  
t
VOUT  
tON  
90% of VS  
tOFF(DELAY)  
70% of VS  
70% of VS  
30% of VS  
(dV/dt)ON  
-(dV/dt)OFF  
30% of VS  
tOFF  
tON(DELAY)  
10% of VS  
t
PDMOS  
EON  
EOFF  
t
Figure 19 Switching a Resistive Load  
7.2.2  
Switching Inductive Loads  
When switching OFF inductive loads with high-side switches, the voltage VOUT drops below ground potential,  
because the inductance intends to continue driving the current. To prevent the destruction of the device due  
to overvoltage, a voltage clamp mechanism is implemented. The clamping structure limits the negative  
output voltage so that VDS = VDS(CLAMP). Figure 20 shows a concept drawing of the implementation. The  
clamping structure protects the device in all operation modes listed in Chapter 6.1.  
VS  
High-side  
Channel  
VS  
VDS  
VSIS(CLAMP)  
VDS(CLAMP)  
IS  
IL  
VOU Tn  
VS(CLAMP)  
OUTn  
GND  
L,  
RL  
IL  
PowerStage_Clamp_INTDIO.emf  
Figure 20 Output Clamp concept  
Data Sheet  
32  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Stages  
During demagnetization of inductive loads, energy has to be dissipated in BTS71220-4ESE. The energy can be  
calculated with Equation (7.1):  
RL IL  
ln 1 ------------------------------------------- + IL  
VS – VDS(CLAMP)  
-------------------------------------------  
RL  
L
RL  
æ
ö
------  
E = VDS(CLAMP)  
(7.1)  
è
ø
VS – VDS(CLAMP)  
The maximum energy, therefore the maximum inductance for a given current, is limited by the thermal design  
of the component.  
7.2.3  
Output Voltage Limitation  
To increase the current sense accuracy, VDS voltage is monitored. When the output current IL decreases while  
the channel is diagnosed (channel selected via DCR.MUX- see Figure 21) bringing VDS equal or lower than  
VDS(SLC), the output DMOS gate is partially discharged. This increases the output resistance so that VDS = VDS(SLC)  
even for very small output currents. The VDS increase allows the current sensing circuitry to work more  
efficiently, providing better kILIS accuracy for output current in the low range.  
IN /  
OUT.OUTn  
t
CS  
DCR.MUX  
110  
000  
110  
t
IL  
t
tsIS(ON)  
tsIS(OFF)  
VDS  
VS  
VDS(SLC)  
t
PowerStage_GBR_diag.emf  
Figure 21 Output Voltage Limitation activation during diagnosis  
7.2.4  
Switching Capacitive Loads  
When switching ON a capacitive load, the capacitance is causing a high inrush current. The current is  
depending on the value of the capacitance, the ESR, the impedance of the system and the slew rate of the  
driver. To improve the load driving capability, BTS71220-4ESE offers a slew rate control feature. When the slew  
rate bit SRC.SRCnis set, the slew rate of the respective channel is reduced to the half (see Chapter 7.4.1).  
Data Sheet  
33  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Stages  
7.3  
Advanced Switching Characteristics  
7.3.1  
Inverse Current behavior  
When VOUT > VS, a current IINV flows into the power output transistor (see Figure 22). This condition is known  
as “Inverse Current”.  
If the channel is in OFF state, the current flows through the intrinsic body diode generating high power losses  
therefore an increase of overall device temperature. This may lead to a switch OFF of unaffected channels due  
to Overtemperature. If the channel is in ON state, RDS(INV) can be expected and power dissipation in the output  
stage is comparable to normal operation in RDS(ON)  
.
During Inverse Current condition, the channel remains in ON or OFF state as long as IINV < IL(INV)  
.
With InverseON, it is possible to switch ON the channel during Inverse Current condition as long as IINV < IL(INV)  
(see Figure 23).  
VBAT  
VS  
Gate  
Driver  
VINV = VOU T > VS  
IINV  
Device  
Logic  
INV  
Comp.  
OUT  
GND  
PowerStage_InvCurr_INTDIO.emf  
Figure 22 Inverse Current Circuitry  
Data Sheet  
34  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Stages  
IN  
IN  
CASE 1 : Switch is ON  
CASE 2 : Switch is OFF  
OFF  
ON  
t
t
t
IL  
IL  
NORMAL  
NORMAL  
NORMAL  
NORMAL  
t
INVERSE  
OFF  
INVERSE  
ON  
DMOS state  
DMOS state  
t
t
CASE 3 : Switch ON into Inverse Current  
CASE 4 : Switch OFF into Inverse Current  
IN  
IN  
OFF  
ON  
OFF  
ON  
t
t
IL  
IL  
NORMAL  
NORMAL  
NORMAL  
NORMAL  
t
t
t
t
INVERSE  
INVERSE  
DMOS state  
DMOS state  
ON  
OFF  
OFF  
ON  
PowerStage_InvCurr_INVON.emf  
Figure 23 InverseON - Channel behavior in case of applied Inverse Current  
Note:  
No protection mechanism like Overtemperature or Overload protection is active during applied  
Inverse Currents.  
7.3.2  
Switching Channels in Parallel  
When switching channels in parallel to drive a single load it may happen that the two channels switch OFF  
asynchronously in case of a fault condition which brings additional stress to the channel that switches OFF  
last. In order to avoid this condition, it is possible to synchronize the protection of two channels when used in  
parallel. There are 2 bits in the SPI (PCS.PCCn), which allow to synchronize channels 0&3 and 1&2. When the  
corresponding PCS.PCCnbit is set, the switch-OFF and restart of the channels are synchronized and the  
current trip levels will be reduced to IL(OVL3). In case the current trip level for one channel is set to the low level  
(OCR.OCTn= 1B), the current for both channels will be reduced to IL(OVL2). Since the restart counters of the  
channels in parallel are synchronized, both channels will latch-OFF as soon one counter has reached  
nRESTART(CR). Due to this reason it is recommended to clear counters before switching channels in parallel. In  
case the slew rate adjustment for one channels is used, (SRC.SRCn= 1B), both channels operating in parallel  
mode will use the adjusted slew rate. When channels are switched in parallel (PCS.PCCn= 1B), the Output  
Voltage Drop Limitation at Small Load Currents is disabled. Therefore the current sense ratio specifications at  
lower currents are not valid. See Chapter 9.7 for further information. To improve current sense accuracy in  
parallel channel operation, parallel mode has to be deactivated (PCS.PCCn= 0B). Since the current sense of  
the two channels used in parallel is not synchronized, the total current has to be calculated out of the current  
sense reading of each single channel. Unless otherwise specified parameter deviations are possible when  
parallel mode is activated.  
Data Sheet  
35  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Stages  
When two channels are used in parallel, the total current capability IL(NOM) is doubled. It has to be ensured that  
the outputs used in parallel mode are connected together with a symmetric and low impedance connection  
either on the PCB or in the wire harness.  
7.3.3  
Cross Current robustness with H-Bridge configuration  
When BTS71220-4ESE is used as high-side switch e.g. in a bridge configuration (therefore paired with a low-  
side switch as shown in Figure 24), the maximum slew rate applied to the output by the low-side switch must  
be lower than | dVOUT / dt |. Otherwise the output stage may turn ON in linear mode (not in RDS(ON)) while the  
low-side switch is commutating. This creates an unprotected overheating for the DMOS due to the cross-  
conduction current.  
VBAT  
R/L cable  
VS  
T
T
INy  
OFF  
ON (DC)  
INx  
OUTy  
OUTx  
| dVOUT / dt |  
Cross  
Current  
Current through Motor  
M
ON (PWM)  
OFF  
Power St age_Passive Slew_SPOC.emf  
Figure 24 High-Side switch used in Bridge configuration  
Data Sheet  
36  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Stages  
7.4  
Electrical Characteristics Power Stages  
VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C  
Typical resistive loads connected to the outputs for testing (unless otherwise specified):  
9.5 mΩ: RL = 2.6 Ω  
22.5 mΩ: RL = 4.8 Ω  
Table 15 Electrical Characteristics: Power Stages - General  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Voltages  
Drain to Source Clamping VDS(CLAMP)_-40 33  
Voltage at TJ = -40 °C  
36.5  
38  
42  
V
V
IL = 5 mA  
P_7.4.0.1  
P_7.4.0.2  
TJ = -40°C  
See Figure 20  
1)  
Drain to Source Clamping VDS(CLAMP)_25 35  
Voltage at TJ 25 °C  
44  
IL = 5 mA  
TJ 25°C  
See Figure 20  
1) Tested at TJ = 150°C.  
7.4.1  
Electrical Characteristics Power Stages - SPOC™  
Table 16 Electrical Characteristics: Power Stages - SPOC™  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Number  
Test Condition  
Min.  
Max.  
Timings  
Switch-ON Delay  
tON(DELAY)  
10  
30  
40  
60  
μs  
μs  
VS = 13.5 V  
VOUT = 10% VS  
PCS.PCCn= 0B  
2)  
P_7.4.2.1  
Switch-ON Delay  
(parallel mode)  
tON(DELAY)  
10  
80  
P_7.4.2.16  
VS = 13.5 V  
VOUT = 10% VS  
PCS.PCCn= 1B  
Switch-OFF Delay  
Switch-ON Time  
tOFF(DELAY)  
tON  
10  
20  
30  
55  
60  
μs  
μs  
VS = 13.5 V  
VOUT = 90% VS  
P_7.4.2.2  
P_7.4.2.3  
100  
VS = 13.5 V  
VOUT = 90% VS  
SRC.SRCn= 0B  
PCS.PCCn= 0B  
2)  
Switch-ON Time  
(parallel mode)  
tON  
20  
70  
125  
μs  
P_7.4.2.20  
VS = 13.5 V  
VOUT = 90% VS  
SRC.SRCn= 0B  
PCS.PCCn= 1B  
Data Sheet  
37  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Stages  
Table 16 Electrical Characteristics: Power Stages - SPOC™ (continued)  
Parameter  
Symbol  
Values  
Typ.  
75  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Switch-ON Time  
tON  
30  
150  
μs  
μs  
μs  
μs  
VS = 13.5 V  
OUT = 90% VS  
SRC.SRCn= 1B  
P_7.4.2.4  
V
Switch-OFF Time  
Switch-OFF Time  
tOFF  
tOFF  
ΔtSW  
20  
55  
75  
0
100  
150  
50  
VS = 13.5 V  
VOUT = 10% VS  
SRC.SRCn= 0B  
P_7.4.2.6  
P_7.4.2.7  
P_7.4.2.9  
30  
VS = 13.5 V  
VOUT = 10% VS  
SRC.SRCn= 1B  
Switch-ON/OFF Matching  
-50  
VS = 13.5 V  
tON - tOFF  
PCS.PCCn= 0B  
Voltage Slope  
Switch-ON Slew Rate  
(dV/dt)ON  
(dV/dt)ON  
0.3  
0.6  
0.3  
0.6  
0.9  
V/μs VS = 13.5 V  
P_7.4.2.11  
P_7.4.2.12  
P_7.4.2.14  
P_7.4.2.15  
VOUT = 30% to 70%  
of VS  
SRC.SRCn= 0B  
Switch-ON Slew Rate  
Switch-OFF Slew Rate  
Switch-OFF Slew Rate  
0.15  
0.45  
0.9  
V/μs VS = 13.5 V  
VOUT = 30% to 70%  
of VS  
SRC.SRCn= 1B  
-(dV/dt)OFF 0.3  
V/μs VS = 13.5 V  
OUT = 70% to 30%  
V
of VS  
SRC.SRCn= 0B  
-(dV/dt)OFF 0.125 0.3  
0.45  
V/μs VS = 13.5 V  
OUT = 70% to 30%  
V
of VS  
SRC.SRCn= 1B  
1)  
Slew Rate Matching  
Δ(dV/dt)SW -30  
0
30  
18  
%
P_7.4.2.17  
P_7.4.2.18  
VS = 13.5 V  
Voltages  
2)  
Output Voltage Drop  
Limitation at Small Load  
Currents  
VDS(SLC)  
2
10  
mV  
IL = IL(OL) = 20 mA  
1) Δ(dV/dt)SW = ((dV/dt)ON - (dV/dt)OFF) / (((dV/dt)ON + (dV/dt)OFF) / 2).  
2) Not subject to production test - specified by design.  
Data Sheet  
38  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Stages  
7.5  
Electrical Characteristics - Power Output Stages  
VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C  
Typical resistive loads connected to the outputs for testing (unless otherwise specified):  
9.5 mΩ: RL = 2.6 Ω  
22.5 mΩ: RL = 4.8 Ω  
7.5.1  
Power Output Stage - 9.5 mΩ  
Table 17 Electrical Characteristics: Power Stages - 9.5 mΩ  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Output characteristics  
1)  
ON-State Resistance at  
TJ = 25 °C  
RDS(ON)_25  
9.5  
mΩ  
P_7.5.15.1  
P_7.5.15.2  
P_7.5.15.3  
P_7.5.15.4  
TJ = 25 °C  
ON-State Resistance at  
TJ = 150 °C  
RDS(ON)_150  
RDS(ON)_CRANK  
RDS(INV)_25  
16.5  
20.5  
mΩ TJ = 150 °C  
ON-State Resistance in  
Cranking  
mΩ TJ = 150 °C  
VS = 3.1 V  
1)  
ON-State Resistance in  
9.5  
mΩ  
Inverse Current at TJ = 25 °C  
TJ = 25 °C  
IL = -IL(NOM)  
1)  
ON-State Resistance in  
Inverse Current at TJ = 150 °C  
RDS(INV)_150  
20.5  
mΩ  
P_7.5.15.5  
P_7.5.15.6  
TJ = 150 °C  
IL = -IL(NOM)  
1)  
ON-State Resistance in  
RDS(REV)_25  
19  
mΩ  
Reverse Polarity at TJ = 25 °C  
TJ = 25 °C  
VS = -13.5 V  
IL = -IL(NOM)  
RSENSE = 1.2 kΩ  
1)  
ON-State Resistance in  
Reverse Polarity at  
TJ = 150 °C  
RDS(REV)_150  
33  
mΩ  
P_7.5.15.7  
TJ = 150 °C  
VS = -13.5 V  
IL = -IL(NOM)  
RSENSE = 1.2 kΩ  
1)  
Nominal Load Current per IL(NOM)  
Channel (all Channels  
Active)  
5
A
P_7.5.15.8  
P_7.5.15.9  
TA = 85 °C  
TJ 150 °C  
1)  
Output Leakage Current at IL(OFF)_85  
TJ 85 °C  
0.06  
0.3  
μA  
VOUT = 0 V  
V
IN = “low” and  
OUT.OUTn= 0B  
TA 85 °C  
Data Sheet  
39  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Stages  
Table 17 Electrical Characteristics: Power Stages - 9.5 mΩ (continued)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Output Leakage Current at IL(OFF)_150  
TJ = 150 °C  
12  
μA  
VOUT = 0 V  
IN = “low” and  
P_7.5.15.10  
V
OUT.OUTn= 0B  
TA = 150 °C  
1)  
Inverse Current Capability  
IL(INV)  
5
A
P_7.5.15.11  
VS < VOUT  
IN = “high” or  
OUT.OUTn= 1B  
Voltage Slope  
1)  
Passive Slew Rate (e.g. for  
Half Bridge Configuration)  
|dVOUT / dt|  
10  
V/μs  
P_7.5.15.12  
P_7.5.15.13  
VS = 13.5 V  
Voltages  
1)  
Drain Source Diode Voltage |VDS(DIODE)  
|
500  
600  
mV  
IL = -190 mA  
TJ = 150 °C  
Switching Energy  
1)  
Switch-ON Energy  
EON  
0.53  
0.68  
mJ  
mJ  
P_7.5.15.14  
P_7.5.15.15  
VS = 18 V  
SRC.SRCn= 0B  
PCS.PCCn= 0B  
1)  
Switch-OFF Energy  
EOFF  
VS = 18 V  
SRC.SRCn= 0B  
PCS.PCCn= 0B  
1) Not subject to production test - specified by design.  
7.5.2  
Power Output Stage - 22.5 mΩ  
Table 18 Electrical Characteristics: Power Stages - 22.5 mΩ  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Output characteristics  
1)  
ON-State Resistance at  
TJ = 25 °C  
RDS(ON)_25  
22.5  
mΩ  
mΩ  
mΩ  
mΩ  
P_7.5.16.1  
P_7.5.16.2  
P_7.5.16.3  
P_7.5.16.4  
TJ = 25 °C  
TJ = 150 °C  
ON-State Resistance at  
TJ = 150 °C  
RDS(ON)_150  
RDS(ON)_CRANK  
RDS(INV)_25  
38  
44  
ON-State Resistance in  
Cranking  
TJ = 150 °C  
VS = 3.1 V  
1)  
ON-State Resistance in  
22.5  
Inverse Current at TJ = 25 °C  
TJ = 25 °C  
IL = -IL(NOM)  
Data Sheet  
40  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Stages  
Table 18 Electrical Characteristics: Power Stages - 22.5 mΩ (continued)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
ON-State Resistance in  
RDS(INV)_150  
44  
mΩ  
P_7.5.16.5  
Inverse Current at TJ = 150 °C  
TJ = 150 °C  
IL = -IL(NOM)  
1)  
ON-State Resistance in  
Reverse Polarity at TJ = 25 °C  
RDS(REV)_25  
RDS(REV)_150  
IL(NOM)  
45  
mΩ  
P_7.5.16.6  
P_7.5.16.7  
TJ = 25 °C  
VS = -13.5 V  
IL = -IL(NOM)  
RSENSE = 1.2 kΩ  
1)  
ON-State Resistance in  
Reverse Polarity at  
TJ = 150 °C  
70  
mΩ  
TJ = 150 °C  
VS = -13.5 V  
IL = -IL(NOM)  
RSENSE = 1.2 kΩ  
1)  
Nominal Load Current per  
Channel (all Channels  
Active)  
3
A
P_7.5.16.8  
P_7.5.16.9  
TA = 85 °C  
TJ 150 °C  
1)  
Output Leakage Current at IL(OFF)_85  
TJ 85 °C  
0.03  
0.15  
μA  
VOUT = 0 V  
V
IN = “low” and  
OUT.OUTn= 0B  
TA 85 °C  
Output Leakage Current at IL(OFF)_150  
TJ = 150 °C  
3
10  
μA  
VOUT = 0 V  
P_7.5.16.10  
P_7.5.16.11  
V
IN = “low” and  
OUT.OUTn= 0B  
TA = 150 °C  
1)  
Inverse Current Capability  
IL(INV)  
A
VS < VOUT  
IN = “high” or  
OUT.OUTn= 1B  
Voltage Slope  
1)  
Passive Slew Rate (e.g. for  
Half Bridge Configuration)  
|dVOUT / dt|  
10  
V/μs  
P_7.5.16.12  
P_7.5.16.13  
VS = 13.5 V  
Voltages  
1)  
Drain Source Diode Voltage |VDS(DIODE)  
|
500  
600  
mV  
IL = -190 mA  
TJ = 150 °C  
Data Sheet  
41  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Power Stages  
Table 18 Electrical Characteristics: Power Stages - 22.5 mΩ (continued)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Switching Energy  
1)  
Switch-ON Energy  
EON  
0.30  
mJ  
mJ  
P_7.5.16.14  
VS = 18 V  
SRC.SRCn= 0B  
PCS.PCCn= 0B  
1)  
Switch-OFF Energy  
EOFF  
0.38  
P_7.5.16.15  
VS = 18 V  
SRC.SRCn= 0B  
PCS.PCCn= 0B  
1) Not subject to production test - specified by design.  
Data Sheet  
42  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Protection  
8
Protection  
The BTS71220-4ESE is protected against Overtemperature, Overload, Reverse Battery (with ReverseON) and  
Overvoltage. Overtemperature and Overload protections are working when the device is not in Sleep mode.  
Overvoltage protection works in all operation modes. Reverse Battery protection works when the GND and VS  
pins are reverse supplied.  
8.1  
Overtemperature Protection  
The device incorporates both an absolute (TJ(ABS)) and a dynamic (TJ(DYN)) temperature protection circuitry for  
each channel. An increase of junction temperature TJ above either one of the two thresholds (TJ(ABS) or TJ(DYN)  
)
switches OFF the overheated channel to prevent destruction. The corresponding WRNDIAG.WRNnbits are set  
and cleared on read. The channel remains switched OFF until junction temperature has reached the “Restart”  
condition described in Table 19. The behavior is shown in Figure 25 (absolute Overtemperature Protection)  
and Figure 26 (dynamic Overtemperature Protection). TJ(REF) is the reference temperature used for dynamic  
temperature protection.  
IN /  
OUT.OUTn  
t
IL  
IL(O VL)  
t
TJ  
TJ(ABS)  
t
IIS  
t
Internal  
counter  
0
0
1
2
t
WRNDIAG.WRNn  
1
0
t
Read WRNDIAG  
Protect ion_OT_Resta rt.emf  
Figure 25 Overtemperature Protection (Absolute)  
Data Sheet  
43  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Protection  
IN /  
OUT.OUTn  
t
IL  
IL(O VL)  
t
TJ  
TJ(ABS)  
TJ(start)  
TJ(REF)  
t
t
IIS  
Internal  
counter  
0
0
1
2
3
4
5
6
nRESTART(CR) + 1  
0
0
1
1
t
t
t
WRNDIAG.WRNn  
ERRDIAG.ERRn  
1
0
1
1
Read WRNDIAG  
Read WRNDIAG  
0
1
0
HWCR.CLC = 1B  
Protection_dT_Restart.emf  
Figure 26 Overtemperature Protection (Dynamic)  
When the Overtemperature protection circuitry allows the channel to be switched ON again, the restart  
strategy described in Chapter 8.3.1 is followed.  
Data Sheet  
44  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Protection  
8.2  
Overload Protection  
The BTS71220-4ESE is protected in case of Overload or short circuit to ground. Two Overload thresholds are  
defined (see Figure 27) and selected automatically depending on the voltage VDS across the power DMOS:  
I
L(OVL0) when VDS < 13 V  
IL(OVL1) when VDS > 22 V  
In addition, the Overload threshold can be reduced by setting OCR.OCTn.  
Overload threshold variation ("1" = IL(OVL0) @ VDS = 5 V)  
1.1  
IL(OVL0)  
OCR.OCTn = 0  
OCR.OCTn = 1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IL(OVL1)  
4
8
12  
16  
20  
24  
28  
Drain Source Voltage (V)  
Figure 27 Overload current thresholds  
When IL IL(OVL) (either IL(OVL0) or IL(OVL1)), the channel is switched OFF. The channel is allowed to restart  
according to the restart strategy described in Chapter 8.3.1.  
8.3  
Protection and Diagnosis in case of Fault  
Any event that triggers a protection mechanism (either Overtemperature or Overload) has 3 consequences:  
The affected channel switches OFF and the internal counter is incremented  
The current sense of the affected channel is set to high impedance  
The corresponding WRNDIAG.WRNnare set to 1B and latched until readout.  
The channel can be switched ON again if all the protection mechanisms fulfill the “restart” conditions  
described in Table 19 and the internal restart counter is enabled (RCD.RCDnset to 0B).  
Data Sheet  
45  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Protection  
Table 19 Protection “Restart” Condition  
Fault condition  
Switch OFF event  
TJ TJ(ABS) or (TJ - TJ(REF)) TJ(DYN)  
“Restart” Condition  
Overtemperature  
TJ < TJ(ABS) and (TJ - TJ(REF)) < TJ(DYN)  
(including hysteresis)  
nRESTART < nRESTART(CR)  
RCD.RCDn= 0  
Overload  
IL IL(OVL)  
IL < 50 mA  
TJ within TJ(ABS) and TJ(DYN) ranges  
(including hysteresis)  
nRESTART < nRESTART(CR)  
RCD.RCDn= 0  
8.3.1  
Restart Strategy  
When INx or OUT.OUTnis set to “high”, the corresponding channel is switched ON. In case of fault condition  
the output stage is switched OFF. The channel is allowed to restart only in case the “restart” conditions for the  
protection mechanisms are fulfilled (see Table 19). The WRNDIAG.WRNnis set during Overcurrent shutdown.  
It is reset when the internal fault signal is cleared and the WRNDIAGis transmitted, unless latched state is  
reached by exceeding nRESTART(CR). The next Overcurrent event set the WRNDIAG.WRNnagain. In case the  
automatic restarts are not required, they can be deactivated by setting RCD.RCDnto 1B. When RCD.RCDnis  
set to 1B, the restart counter will be reset. When a channel reaches latched state, the corresponding  
ERRDIAG.ERRnbit is set. The restart latch and counter are cleared by setting the SPI bit HWCR.CLCto 1B. If  
the input pin is “high” or OUT.OUTnis still set to 1B, the channel is switched ON immediately after the  
command that set HWCR.CLC bit to 1B. To ensure an adequate cool down after latch-OFF condition,  
application software needs to wait for t > tRETRY before restarting the channel.  
The restart strategy is shown in Figure 28.  
IN/  
OUT.OUTn  
t
Short circuit  
to ground  
t
1)  
t > tRETRY  
IL  
IL(O VL)  
t
t
0
0
0
0
0
0
Internal  
counter  
0
0
0
1
2
3
4
4
5
5
6
6
nRESTART(CR) + 1  
1
1
2
2
... nRESTART(CR) + 1  
1
1
0
0
0
WRNDIAG.WRNn  
RCS.RCSn  
1
0
1
1
t
Read WRNDIAG  
1
2
3
7
...  
7
1
t
HWCR.CLC = 1B  
1) Note: Maximum peak current depend ing on s ystem impedance  
RCD.RCDn  
=
1B  
HWCR.CLC = 1B  
Protect ion_Resta rt.emf  
Figure 28 Restart Strategy timing diagram  
Data Sheet  
46  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Protection  
tL HI(AC)  
t
<
tDEL AY(CR)  
t
tDEL AY(CR)  
t tRETRY  
IN  
t
t
t
LHI  
Short circuit  
to ground  
1)  
IL  
IL(O VL)  
t
t
Internal  
counter  
0
0
1
2
3
4
5
0
6
nRESTART(CR) + 1  
0
1
2
3
4
5
6
nRESTART(CR) + 1  
0
0
1
2
3
4
5
6 nRESTART(CR) + 1  
WRNDIAG.WRNn  
1
1
1
0
1
1
1
t
Read WRNDIAG  
Read WRNDIAG  
Read WRNDIAG  
Read WRNDIAG  
Read WRNDIAG  
Protection_Restart_LH.emf  
1) Note: Maxim um peak current depend ing on s ystem impeda nce  
Figure 29 Restart Strategy timing diagram in Limp Home  
8.4  
Additional protections  
8.4.1  
Reverse Polarity Protection  
In Reverse Polarity condition (also known as Reverse Battery), the output stages are switched ON (see  
parameter RDS(REV)) because of ReverseON feature which limits the power dissipation in the output stages.  
Each ESD diode of the logic contributes to total power dissipation. The reverse current through the output  
stages must be limited by the connected loads. The current through digital power supply VDD and Digital Input  
pins has to be limited as well by an external resistor (please refer to the Absolute Maximum Ratings listed in  
Chapter 4.1 and to Application Information in Chapter 11).  
Figure 30 shows a typical application including a device with ReverseON. A current flowing into GND pin  
(-IGND) during Reverse Polarity condition is necessary to activate ReverseON, therefore a resistive path  
between module ground and device GND pin must be present.  
Data Sheet  
47  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Protection  
-VBAT(REV)  
5V (reverse protected)  
IVDD  
RVDD  
VDD  
VS  
High-side Channel  
VDD  
µC  
IDI  
DO  
DI  
RDI  
ReverseON  
OUTn  
-IO UT  
GND  
IS  
GND  
L, C, R  
-IIS  
-IGN D  
Protection_RevBatt_SPI.emf  
Figure 30 Reverse Battery Protection (application example)  
8.4.2  
Overvoltage Protection  
In the case of supply voltages between VS(EXT,UP) and VBAT(LD), the output transistors are still operational and  
follow the input pins or the OUTregister. In addition to the output clamp for inductive loads as described in  
Chapter 7.2.2, there is a clamp mechanism available for Overvoltage protection for the logic and the output  
channels, monitoring the voltage between VS and GND pins (VS(CLAMP)).  
Data Sheet  
48  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Protection  
8.5  
Protection against loss of connection  
8.5.1  
Loss of Battery and Loss of Load  
The loss of connection to battery or to the load has no influence on device robustness when load and wire  
harness are purely resistive. In case of driving an inductive load, the energy stored in the inductance must be  
handled. BTS71220-4ESE can handle the inductivity of the wire harness up to 10 µH with IL(NOM). In case of  
applications where currents and/or the aforementioned inductivity are exceeded, an external suppressor  
diode (like diode DZ2 shown in Chapter 11) is recommended to handle the energy and to provide a well-  
defined path to the load current.  
Note:  
In case of a lost battery connection the VS monitoring function protects the SPI registers as soon the  
device is out of Sleep mode. This means that any command sent to the device will be ignored and the  
device will just send back the STDDIAG. Furthermore, the status of the LHI pin is blanked, which  
means that it is not possible to enter Limp Home mode.  
8.5.2  
Loss of Ground  
In case of loss of device ground, it is recommended to have a resistor connected between any Digital Input pin  
and the microcontroller to ensure a channel switch OFF (as described in Chapter 11).  
Note:  
In case any Digital Input pin is pulled to ground (either by a resistor or active) a parasitic ground path  
is available, which could keep the device operational during loss of device ground. The same  
behavior applies for the SPI functionality.  
Data Sheet  
49  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Protection  
8.6  
Electrical Characteristics Protection  
VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C  
Typical resistive loads connected to the outputs for testing (unless otherwise specified):  
9.5 mΩ: RL = 2.6 Ω  
22.5 mΩ: RL = 4.8 Ω  
Table 20 Electrical Characteristics: Protection - General  
Parameter  
Symbol  
Values  
Typ.  
175  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)2)  
Thermal Shutdown  
Temperature (Absolute)  
TJ(ABS)  
150  
200  
°C  
P_8.6.0.1  
P_8.6.0.2  
P_8.6.0.3  
P_8.6.0.6  
See Figure 25  
3)  
Thermal Shutdown  
Hysteresis (Absolute)  
THYS(ABS)  
TJ(DYN)  
30  
K
See Figure 25  
3)  
Thermal Shutdown  
Temperature (Dynamic)  
80  
K
See Figure 26  
Power Supply Clamping  
Voltage at TJ = -40 °C  
VS(CLAMP)_-40 33  
36.5  
42  
V
IVS = 5 mA  
TJ = -40 °C  
See Figure 20  
2)  
Power Supply Clamping  
Voltage at TJ 25 °C  
VS(CLAMP)_25 35  
38  
44  
V
V
P_8.6.0.7  
P_8.6.0.8  
IVS = 5 mA  
TJ 25 °C  
See Figure 20  
3)  
Power Supply Voltage  
Threshold for Overcurrent  
Threshold Reduction in case  
of Short Circuit  
VS(JS)  
20.5  
22.5  
24.5  
Setup acc. to AEC-  
Q100-012  
1) Functional test only.  
2) Tested at TJ = 150°C only.  
3) Not subject to production test - specified by design.  
8.6.1  
Electrical Characteristics Protection - SPOC™  
Table 21 Electrical Characteristics: Protection - SPOC™  
Parameter  
Symbol  
Values  
Typ.  
70  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Counter Reset Delay Time  
after Fault Condition in Limp  
Home  
tDELAY(CR)  
40  
100  
ms  
P_8.6.2.1  
LHI = “high”  
INx = “low”  
1)  
Automatic Restarts in Case nRESTART(CR)  
of Fault after a Counter  
Reset  
6
P_8.6.2.2  
1) Not subject to production test - specified by design.  
Data Sheet  
50  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Protection  
8.7  
Electrical Characteristics Protection - Power Output Stages  
VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C  
Typical resistive loads connected to the outputs for testing (unless otherwise specified):  
9.5 mΩ: RL = 2.6 Ω  
22.5 mΩ: RL = 4.8 Ω  
8.7.1  
Protection Power Output Stage - 9.5 mΩ  
Table 22 Electrical Characteristics: Protection - 9.5 mΩ  
Parameter  
Symbol  
Values  
Typ.  
89  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Overload Detection Current IL(OVL0)  
79  
99  
A
P_8.7.15.3  
High Level  
OCR.OCTn= 0B  
TJ = -40 °C to 50 °C  
dI/dt = 0.4 A/µs  
2)  
Overload Detection Current IL(OVL0)  
65  
72  
79  
A
P_8.7.15.4  
High Level  
OCR.OCTn= 0B  
TJ = 150 °C  
dI/dt = 0.4 A/µs  
2)  
Overload Detection Current IL(OVL2)  
Low Level  
36  
38  
45  
54  
54  
62  
A
A
P_8.7.15.2  
P_8.7.15.6  
OCR.OCTn= 1B  
dI/dt = 0.4 A/µs  
2)3)  
Overload Detection Current IL(OVL3)  
High Level (parallel mode)  
OCR.OCTn= 0B  
PCS.PCCn= 1B  
dI/dt = 0.4 A/µs  
2)  
Overload Detection Current IL(OVL1)  
at High VDS  
54  
54  
A
A
P_8.7.15.5  
P_8.7.15.7  
dI/dt = 0.4 A/µs  
2)  
Overload Detection Current IL(OVL_JS)  
Jump Start Condition  
OCR.OCTn= 0B  
VS > VS(JS)  
dI/dt = 0.4 A/µs  
1) Tested at TJ = -40 °C.  
2) Not subject to production test - specified by design.  
3) IL(OVL3) applies for one channel. Total current for two channels in parallel IL(OVL) 2 x IL(OVL3)  
.
Data Sheet  
51  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Protection  
8.7.2  
Protection Power Output Stage - 22.5 mΩ  
Table 23 Electrical Characteristics: Protection - 22.5 mΩ  
Parameter  
Symbol  
Values  
Typ.  
48  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Overload Detection Current IL(OVL0)  
44  
53  
A
P_8.7.16.3  
High Level  
OCR.OCTn= 0B  
TJ = -40 °C to 50 °C  
dI/dt = 0.2 A/µs  
2)  
Overload Detection Current IL(OVL0)  
35  
39  
44  
A
P_8.7.16.4  
High Level  
OCR.OCTn= 0B  
TJ = 150 °C  
dI/dt = 0.2 A/µs  
2)  
Overload Detection Current IL(OVL2)  
Low Level  
19  
22  
24  
31  
29  
36  
A
A
P_8.7.16.2  
P_8.7.16.6  
OCR.OCTn= 1B  
dI/dt = 0.2 A/µs  
2)3)  
Overload Detection Current IL(OVL3)  
High Level (parallel mode)  
OCR.OCTn= 0B  
PCS.PCCn= 1B  
dI/dt = 0.2 A/µs  
2)  
Overload Detection Current IL(OVL1)  
at High VDS  
29  
29  
A
A
P_8.7.16.5  
P_8.7.16.7  
dI/dt = 0.2 A/µs  
2)  
Overload Detection Current IL(OVL_JS)  
Jump Start Condition  
OCR.OCTn= 0B  
VS > VS(JS)  
dI/dt = 0.2 A/µs  
1) Tested at TJ = -40 °C.  
2) Not subject to production test - specified by design.  
3) IL(OVL3) applies for one channel. Total current for two channels in parallel IL(OVL) 2 x IL(OVL3)  
.
Data Sheet  
52  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Diagnosis  
9
Diagnosis  
For diagnosis purpose, the BTS71220-4ESE provides a current sense at pin IS as well as a diagnosis feedback  
via SPI. In case of disabled diagnostic, IS pin becomes high impedance. The integrated current sense  
multiplexer is controlled via SPI.  
A sense resistor RSENSE must be connected between IS pin and module ground if the current sense diagnosis is  
used. RSENSE value has to be higher than 820 Ω (or 400 Ω when a central Reverse Battery protection is present  
on the battery feed) to limit the power losses in the sense circuitry. A typical value is RSENSE = 1.2 kΩ.  
Due to the internal connection between IS pin and VS supply voltage, it is not recommended to connect the IS  
pin to the sense current output of other devices, if they are supplied by a different battery feed or using a  
different sense concept.  
See Figure 31 for details as an overview. For diagnosis feedback at different operation modes, please see  
Chapter 9.2.  
VS  
IIS0  
Temperature  
Sensor  
T
Latch  
Gate  
Control  
Overcurrent  
Protection  
OR  
OUT3  
OUT2  
OUT1  
OUT0  
Latch  
ERR0  
Load  
Current  
Sense  
Channel 0  
VS  
VDS(SB)  
DCR.MUX  
DCR.SBM  
Current Sense Multiplexer  
IS  
RSENSE  
Diag nosis_4ch.emf  
Figure 31 Diagnosis block diagram  
Data Sheet  
53  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Diagnosis  
9.1  
Overview  
Table 24 gives a quick reference to the state of the IS pin during BTS71220-4ESE operation.  
Table 24 Diagnosis feedback, Function of Operation Mode  
Operation Mode  
Input level VOUT  
Current sense IIS  
WRNDIAG STDDIAG  
OUT.OUTn  
.WRNn  
.SBM  
Normal operation Low / 0B  
~ GND  
~ GND  
Z
Z
Z
Z
Z
0
0
1
0
1
1
x
0
OFF  
Short circuit to GND  
Overtemperature  
Short circuit to VS  
Open Load  
VS  
< VS - VDS(SB)  
> VS - VDS(SB)  
Z
Z
0
0
1
0
1)  
Sense verification2)  
x
IIS(VER)  
x
0
0
1
1
0
0
x
0
0
0
x
1
x
0
0
0
0
Normal operation High / 1B  
~ VS  
< VS  
~ GND  
Z
IIS = IL(NOM) / kILIS  
ON  
Overload  
IIS = IL / kILIS  
Short circuit to GND  
Overtemperature  
Short circuit to VS  
Open Load  
Z
Z
VS  
IIS < IL / kILIS  
IIS = IIS(EN)  
3)  
~ VS  
Sense verification2)  
x
IIS(VER)  
4)  
Under load (e.g.  
Output Voltage  
~ VS  
IIS(EN) < IIS < IL(NOM) / kILIS  
Limitation  
condition)  
1) With additional pull-up resistor.  
2) DCR.MUX= 101B.  
3) The output current has to be smaller than IL(OL)  
.
4) The output current has to be higher than IL(OL)  
.
Data Sheet  
54  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Diagnosis  
9.2  
Diagnosis Word at SPI  
Diagnostic information about the status of each channel is provided through SPI. The fault flags, an OR  
combination of the overtemperature flags and the Overload monitoring signals are provided in the WRNDIAG  
register.  
The Overload monitoring signals are latched in the WRNDIAG.WRNnbits and cleared each time the WRNDIAG  
is transmitted via SPI unless the maximum number of restarts is reached and the channel protects itself. The  
protection latches are cleared by SPI command HWCR.CLC.  
9.3  
Diagnosis in ON state  
A current proportional to the load current (ratio kILIS = IL / IIS) is provided at pin IS when the following conditions  
are fulfilled:  
A power output stage is switched ON with VDS < VDS(SB)  
The diagnosis is enabled for that channel  
No fault (as described in Chapter 8.3) is present  
If a “hard” failure mode is present or occurs for the channel selected using the DCR.MUXbits, the IS pin  
remains in or changes to “high impedance” state.  
9.3.1  
Current Sense (kILIS)  
The accuracy of the sense current depends on temperature and load current. IIS increases linearly with IL  
output current until it reaches the saturation current IIS(SAT). In case of Open Load at the output stage (IL close  
to 0 A), the maximum sense current IIS(EN) (no load, diagnosis enabled) is specified. This condition is shown in  
Figure 33. The blue line represents the ideal kILIS line, while the red lines show the behavior of a typical  
product.  
An external RC filter between IS pin and microcontroller ADC input pin is recommended to reduce signal ripple  
and oscillations (a minimum time constant of 1 µs for the RC filter is recommended).  
The kILIS factor is specified with limits that take into account effects due to temperature, supply voltage and  
manufacturing process. Tighter limits are possible (within a defined current window) with calibration:  
A well-defined and precise current (IL(CAL)) is applied at the output during End of Line test at customer side  
The corresponding current at IS pin is measured and the kILIS is calculated (kILIS @ IL(CAL)  
)
Within the current range going from IL(CAL)_L to IL(CAL)_H the kILIS is equal to kILIS @ IL(CAL) with limits defined by  
ΔkILIS  
The derating of kILIS after calibration is calculated using the formulas in Figure 32 and it is specified by ΔkILIS  
Diagnosis_dKILIS.emf  
Figure 32 ΔkILIS calculation formulas  
The calibration is intended to be performed at TA(CAL) = 25°C. The parameter ΔkILIS includes the drift  
overtemperature as well as the drift over the current range from IL(CAL)_L to IL(CAL)_H  
.
Data Sheet  
55  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Diagnosis  
IIS  
IIS(OL)  
IIS(EN)  
IL( OL )  
IL  
Di agnosis _O LO N.emf  
Figure 33 Current Sense Ratio in Open Load at ON condition  
9.3.2  
Current Sense Multiplexer  
There is a current sense multiplexer implemented in the BTS71220-4ESE that routes the sense current of the  
selected channel to the diagnosis pin IS. The channel is selected via SPI register DCR.MUX. The sense current  
can also be disabled by SPI register DCR.MUX. For details on timing of the current sense multiplexer, refer to  
Figure 34. In addition DCR.MUXis used in combination with other SPI bits to address further functions of the  
device. To verify the function of the current sensing path in ON and OFF state, the device offers a sense  
verification mode. In this mode a predefined current IIS(VER) is provided on the current sense pin independent  
on the load condition of any channel. This enables the microcontroller to verify the sense path at any time. The  
sense verification mode is enabled when DCR.MUX= 101B.  
All commands and functions involving the DCR.MUXbits are listed below:  
The main function of DCR.MUXis to switch the current sense multiplexer  
Executing PCS.CLCS= 1B clears the counter and latches OFF the channel selected by DCR.MUX  
Executing PCS.SRCS= 1B the slew rate of the channel selected by DCR.MUXwill be changed. See  
Chapter 7.4.1 for further information  
When reading RCS.RCSnbits, the status of the internal counter of the channel selected by DCR.MUXis  
responded  
When setting DCR.MUX= 101B the sense verification mode is enabled  
When setting PCS.SRCS= 1b, the slew rate of the channel selected by DCR.MUXwill be adjusted  
Data Sheet  
56  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Diagnosis  
CSN  
DCR.MUX  
110  
001  
010  
110  
t
tsI S(ON)  
tsI S(CC)  
tsIS (O FF)  
IIS  
t
Diagnosis_MuxTiming.emf  
Figure 34 Current Sense Multiplexer Timings  
9.4  
Diagnosis in OFF state  
When a power output stage is in OFF state, the BTS71220-4ESE can measure the output voltage and compare  
it with a threshold voltage. In this way, using some additional external components (a pull-down resistor and  
a switchable pull-up current source), it is possible to detect if the load is missing or if there is a short circuit to  
battery.  
9.4.1  
Switch Bypass Monitor  
To detect short circuit to VS, there is a switch bypass monitor implemented. In case of short circuit between  
the output pin OUT and VS in ON state, the current flows through the power transistor as well as through the  
short circuit (bypass) with undefined share between the two. As a result, the current sense signal shows lower  
values than expected by the load current. In OFF state, the output voltage remains close to VS potential which  
leads to a small VDS. The switch bypass monitor compares the threshold VDS(SB) with the voltage VDS across the  
power transistor of that channel which is selected by the current sense multiplexer (DCR.MUX). The result of  
the comparison can be read in the standard diagnosis STDDIAG.SBM. In addition the switch bypass monitor  
can be used to detect an Open Load in OFF state. In this case a switchable pull-up resistor has to be placed to  
pull the OUT to VS potential.  
9.5  
SENSE Timings  
Figure 35 shows the timing during settling tsIS(ON) and disabling tsIS(OFF) of the SENSE (including the case of load  
change). As a proper signal cannot be established before the load current is stable (therefore before tON),  
tsIS(DIAG) = tsIS(ON) + tON.  
IN /  
OUT.OUTn  
OF F  
ON  
OF F  
t
t
tOFF  
S
EN SE  
EN ABLE  
tON  
tON(D ELA Y)  
tOFF(D ELA Y)  
IL  
t
t
tdI S (O FF )  
tsIS(D IAG )  
tsIS(LC)  
tsIS(OFF)  
tsIS(ON)  
IIS  
Diagnosis_Sense Timi ng.emf  
Figure 35 SENSE Settling / Disabling Timing  
Data Sheet  
57  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Diagnosis  
9.6  
Electrical Characteristics Diagnosis  
VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C  
Typical resistive loads connected to the outputs for testing (unless otherwise specified):  
9.5 mΩ: RL = 2.6 Ω  
22.5 mΩ: RL = 4.8 Ω  
Table 25 Electrical Characteristics: Diagnosis - General  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
SENSE Saturation Current  
IIS(SAT)  
4.2  
15  
mA  
P_9.6.0.12  
RSENSE = 1.2 kΩ  
1)  
SENSE Saturation Current  
IIS(SAT)  
5
15  
mA  
P_9.6.0.17  
RSENSE = 1.2 kΩ  
VS = 8 V to 18 V  
SENSE Leakage Current  
when Disabled  
IIS(OFF)  
0.01  
0.2  
0.5  
1
µA  
µA  
IL IL(NOM)  
VIS = 0 V  
DCR.MUX= 110B  
1)  
P_9.6.0.2  
P_9.6.0.3  
SENSE Leakage Current  
IIS(EN)_85  
when Enabled at TJ 85 °C  
TJ 85 °C  
DCR.MUX≠  
<110B,111B>  
See Figure 33  
SENSE Leakage Current  
when Enabled at TJ = 150 °C  
IIS(EN)_150  
1
2
1
µA  
V
TJ = 150 °C  
DCR.MUX≠  
<110B,111B>  
See Figure 33  
1)  
P_9.6.0.11  
P_9.6.0.6  
Saturation Voltage in kILIS  
Operation  
VSIS_k  
0.5  
VS = 6 V  
(VS - VIS)  
INx = “high” or  
OUT.OUTn= 1B  
IL 2 * IL(NOM)  
Power Supply to IS Pin  
Clamping Voltage at  
TJ = -40 °C  
VSIS(CLAMP)_-40 33  
36.5  
38  
42  
44  
V
V
IIS = 1 mA  
TJ = -40 °C  
See Figure 20  
2)  
P_9.6.0.9  
Power Supply to IS Pin  
Clamping Voltage at  
TJ 25 °C  
VSIS(CLAMP)_25 35  
P_9.6.0.10  
IIS = 1 mA  
TJ 25 °C  
See Figure 20  
1) Not subject to production test - specified by design.  
2) Tested at TJ = 150°C.  
Data Sheet  
58  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Diagnosis  
9.6.1  
Electrical Characteristics Diagnosis - SPOC™  
Table 26 Electrical Characteristics: Diagnosis - Thresholds, Timings  
Parameter  
Symbol  
Values  
Typ.  
1.9  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Switch Bypass Monitor  
Threshold  
VDS(SB)  
tsIS(ON)  
1.3  
2.5  
V
OFF state  
P_9.6.2.1  
P_9.6.2.2  
SENSE Settling Time with  
Nominal Load Current  
Stable  
8
20  
60  
µs  
VS = 13.5 V  
IL = IL(NOM)  
DCR.MUX: 110B →  
001B  
2)  
SENSE Settling Time with  
Small Load Current Stable  
tsIS(ON)_SLC  
µs  
µs  
µs  
P_9.6.2.10  
P_9.6.2.4  
P_9.6.2.11  
VS = 13.5 V  
IL = IL(CAL)_OL  
DCR.MUX: 110B →  
001B  
1)  
SENSE Settling Time after  
Channel Change  
tsIS(CC)  
20  
60  
VS = 13.5 V  
IL = IL(NOM)  
DCR.MUX: 001B →  
010B  
2)  
SENSE Settling Time after  
Channel Change with Small  
Load Current  
tsIS(CC)_SLC  
VS = 13.5 V  
Start channel:  
IL = IL(CAL)  
End channel:  
IL = IL(CAL)_OL  
DCR.MUX: 001B →  
010B  
1)  
SENSE Disable Time  
tsIS(OFF)  
20  
µs  
P_9.6.2.5  
VS = 13.5 V  
IL = IL(NOM)  
DCR.MUX: 010B →  
110B  
2)  
SENSE Settling Time after  
Load Change  
tsIS(LC)  
20  
µs  
µs  
P_9.6.2.6  
2)  
SENSE Settling Time after  
Load Change with Small  
Load Current  
tsIS(LC)_SLC  
250  
400  
P_9.6.2.12  
VS = 13.5 V  
from IL = IL(CAL) to  
IL = IL(CAL)_OL  
2)  
SENSE Disable Time after  
Channel Deactivation  
tdIS(OFF)  
IIS(VER)  
20  
µs  
P_9.6.2.7  
SENSE Current in Sense  
Verification Mode  
400  
500  
600  
µA  
DCR.MUX= 101B P_9.6.2.8  
1) Production test for functionality within parameter limits.  
2) Not subject to production test - specified by design.  
Data Sheet  
59  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Diagnosis  
9.7  
Electrical Characteristics Diagnosis - Power Output Stages  
VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C  
Typical resistive loads connected to the outputs for testing (unless otherwise specified):  
9.5 mΩ: RL = 2.6 Ω  
22.5 mΩ: RL = 4.8 Ω  
9.7.1  
Diagnosis Power Output Stage - 9.5 mΩ  
Table 27 Electrical Characteristics: Diagnosis - 9.5 mΩ - high range1)  
Parameter  
Symbol  
Values  
Typ.  
18  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
2)  
Open Load Output Current IL(OL)_4u  
at IIS = 4 µA  
5
50  
mA  
P_9.7.15.1  
P_9.7.15.4  
P_9.7.15.7  
P_9.7.15.9  
P_9.7.15.12  
P_9.7.15.15  
P_9.7.15.17  
P_9.7.15.19  
P_9.7.15.40  
IIS = IIS(OL) = 4 µA  
2)  
Current Sense Ratio at  
IL = IL02  
kILIS02  
kILIS05  
kILIS07  
kILIS10  
kILIS13  
kILIS15  
kILIS17  
ΔkILIS(OL)  
-65% 5000  
-60% 5000  
-55% 5000  
-40% 5000  
-24% 5000  
+65%  
+60%  
+55%  
+40%  
+24%  
+8%  
IL02 = 20 mA  
2)  
Current Sense Ratio at  
IL = IL05  
IL05 = 100 mA  
2)  
Current Sense Ratio at  
IL = IL07  
IL07 = 250 mA  
2)  
Current Sense Ratio at  
IL = IL10  
IL10 = 1 A  
Current Sense Ratio at  
IL = IL13  
IL13 = 2.8 A  
Current Sense Ratio at  
IL = IL15  
-8%  
-8%  
-30  
5000  
5000  
0
IL15 = 5.5 A  
Current Sense Ratio at  
IL = IL17  
+8%  
IL17 = 10 A  
2)3)  
SENSE Current Derating  
with Low Current  
Calibration  
+30  
%
%
IL(CAL)_OL = IL05  
IL(CAL)_OL_H = IL07  
IL(CAL)_OL_L = IL02  
TA(CAL) = 25 °C  
2)3)  
SENSE Current Derating  
with Nominal Current  
Calibration  
ΔkILIS(NOM) -9  
0
+9  
P_9.7.15.41  
IL(CAL) = IL15  
IL(CAL)_H = IL17  
IL(CAL)_L = IL13  
TA(CAL) = 25 °C  
1) Parameter valid only if KRC.KRCn= 0B.  
2) Parameter valid only if PCS.PCCn= 0B.  
3) Not subject to production test - specified by design.  
Data Sheet  
60  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Diagnosis  
Table 28 Electrical Characteristics: Diagnosis - 9.5 mΩ - low range1)  
Parameter  
Symbol  
Values  
Typ.  
9
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
2)3)  
Open Load Output Current IL(OL)_4u  
at IIS = 4 µA  
2
15  
mA  
P_9.7.15.20  
P_9.7.15.22  
P_9.7.15.24  
P_9.7.15.27  
P_9.7.15.30  
P_9.7.15.32  
P_9.7.15.34  
P_9.7.15.36  
P_9.7.15.39  
P_9.7.15.42  
IIS = IIS(OL) = 4 µA  
2)3)  
Current Sense Ratio at  
IL = IL01  
kILIS01  
kILIS03  
kILIS05  
kILIS07  
kILIS08  
kILIS10  
kILIS12  
kILIS15  
ΔkILIS(OL)  
-65% 1660  
-60% 1660  
-55% 1660  
-45% 1660  
-35% 1660  
-24% 1660  
+65%  
+60%  
+55%  
+45%  
+35%  
+24%  
+8%  
IL01 = 10 mA  
2)3)  
Current Sense Ratio at  
IL = IL03  
IL03 = 30 mA  
2)3)  
Current Sense Ratio at  
IL = IL05  
IL05 = 100 mA  
2)3)  
Current Sense Ratio at  
IL = IL07  
IL07 = 250 mA  
2)3)  
Current Sense Ratio at  
IL = IL08  
IL08 = 450 mA  
3)  
Current Sense Ratio at  
IL = IL10  
IL10 = 1 A  
3)  
Current Sense Ratio at  
IL = IL12  
-8%  
-8%  
-30  
1660  
1660  
0
IL12 = 2 A  
3)  
Current Sense Ratio at  
IL = IL15  
+8%  
IL15 = 5.5 A  
2)4)  
SENSE Current Derating  
with Low Current  
Calibration  
+30  
%
%
IL(CAL)_OL = IL03  
IL(CAL)_OL_H = IL05  
IL(CAL)_OL_L = IL01  
TA(CAL) = 25 °C  
2)4)  
SENSE Current Derating  
with Nominal Current  
Calibration  
ΔkILIS(NOM) -9  
0
+9  
P_9.7.15.43  
IL(CAL) = IL10  
IL(CAL)_H = IL12  
IL(CAL)_L = IL08  
TA(CAL) = 25 °C  
1) Parameter valid only if KRC.KRCn= 1B.  
2) Parameter valid only if PCS.PCCn= 0B.  
3) kILIS accuracy valid if 1 µs RC filter is placed at ADC input.  
4) Not subject to production test - specified by design.  
Data Sheet  
61  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Diagnosis  
9.7.2  
Diagnosis Power Output Stage - 22.5 mΩ  
Table 29 Electrical Characteristics: Diagnosis - 22.5 mΩ - high range1)  
Parameter  
Symbol  
Values  
Typ.  
7
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
2)  
Open Load Output Current IL(OL)_4u  
at IIS = 4 µA  
2
15  
mA  
P_9.7.16.1  
P_9.7.16.3  
P_9.7.16.5  
P_9.7.16.7  
P_9.7.16.9  
P_9.7.16.12  
P_9.7.16.14  
P_9.7.16.17  
P_9.7.16.37  
IIS = IIS(OL) = 4 µA  
2)  
Current Sense Ratio at  
IL = IL01  
kILIS01  
kILIS03  
kILIS05  
kILIS07  
kILIS10  
kILIS12  
kILIS15  
ΔkILIS(OL)  
-65% 2000  
-60% 2000  
-55% 2000  
-45% 2000  
-24% 2000  
+65%  
+60%  
+55%  
+45%  
+24%  
+8%  
IL01 = 10 mA  
2)  
Current Sense Ratio at  
IL = IL03  
IL03 = 30 mA  
2)  
Current Sense Ratio at  
IL = IL05  
IL05 = 100 mA  
2)  
Current Sense Ratio at  
IL = IL07  
IL07 = 250 mA  
IL10 = 1 A  
Current Sense Ratio at  
IL = IL10  
Current Sense Ratio at  
IL = IL12  
-8%  
-8%  
-30  
2000  
2000  
0
IL12 = 2 A  
Current Sense Ratio at  
IL = IL15  
+8%  
IL15 = 5.5 A  
2)3)  
SENSE Current Derating  
with Low Current  
Calibration  
+30  
%
%
IL(CAL)_OL = IL03  
IL(CAL)_OL_H = IL05  
IL(CAL)_OL_L = IL01  
TA(CAL) = 25 °C  
3)  
SENSE Current Derating  
with Nominal Current  
Calibration  
ΔkILIS(NOM) -9  
0
+9  
P_9.7.16.38  
IL(CAL) = IL12  
IL(CAL)_H = IL15  
IL(CAL)_L = IL10  
TA(CAL) = 25 °C  
1) Parameter valid only if KRC.KRCn= 0B.  
2) Parameter valid only if PCS.PCCn= 0B.  
3) Not subject to production test - specified by design.  
Data Sheet  
62  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Diagnosis  
Table 30 Electrical Characteristics: Diagnosis - 22.5 mΩ - low range1)  
Parameter  
Symbol  
Values  
Typ.  
3.2  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
2)3)  
Open Load Output Current IL(OL)_4u  
at IIS = 4 µA  
0.5  
6
mA  
P_9.7.16.18  
P_9.7.16.19  
P_9.7.16.20  
P_9.7.16.23  
P_9.7.16.26  
P_9.7.16.29  
P_9.7.16.31  
P_9.7.16.33  
P_9.7.16.35  
P_9.7.16.39  
IIS = IIS(OL) = 4 µA  
2)3)  
Current Sense Ratio at  
IL = IL00  
kILIS00  
kILIS01  
kILIS03  
kILIS05  
kILIS07  
kILIS08  
kILIS10  
kILIS12  
ΔkILIS(OL)  
-65% 660  
-60% 660  
-55% 660  
-45% 660  
-30% 660  
-20% 660  
+65%  
+60%  
+55%  
+45%  
+30%  
+20%  
+8%  
IL00 = 5 mA  
2)3)  
Current Sense Ratio at  
IL = IL01  
IL01 = 10 mA  
2)3)  
Current Sense Ratio at  
IL = IL03  
IL03 = 30 mA  
2)3)  
Current Sense Ratio at  
IL = IL05  
IL05 = 100 mA  
2)3)  
Current Sense Ratio at  
IL = IL07  
IL07 = 250 mA  
3)  
Current Sense Ratio at  
IL = IL08  
IL08 = 450 mA  
3)  
Current Sense Ratio at  
IL = IL10  
-8%  
-8%  
-30  
660  
660  
0
IL10 = 1 A  
3)  
Current Sense Ratio at  
IL = IL12  
+8%  
IL12 = 2 A  
2)4)  
SENSE Current Derating  
with Low Current  
Calibration  
+30  
%
%
IL(CAL)_OL = IL01  
IL(CAL)_OL_H = IL03  
IL(CAL)_OL_L = IL00  
TA(CAL) = 25 °C  
2)4)  
SENSE Current Derating  
with Nominal Current  
Calibration  
ΔkILIS(NOM) -9  
0
+9  
P_9.7.16.40  
IL(CAL) = IL10  
IL(CAL)_H = IL12  
IL(CAL)_L = IL08  
TA(CAL) = 25 °C  
1) Parameter valid only if KRC.KRCn= 1B.  
2) Parameter valid only if PCS.PCCn= 0B.  
3) kILIS accuracy valid if 1 µs RC filter is placed at ADC input.  
4) Not subject to production test - specified by design.  
Data Sheet  
63  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Serial Peripheral Interface (SPI)  
10  
Serial Peripheral Interface (SPI)  
The serial peripheral interface (SPI) is a full duplex synchronous serial slave interface, which uses four lines:  
SO, SI, SCLK and CSN. Data is transferred by the lines SI and SO at the rate given by SCLK. The falling edge of  
CSN indicates the beginning of an access. Data is sampled-in on line SI at the falling edge of SCLK and shifted  
out on line SO at the rising edge of SCLK. Each access must be terminated by a rising edge of CSN. A modulo 8  
counter ensures that data is taken only when a multiple of 8 bit has been transferred. The interface provides  
daisy chain capability with modulo 8 bit SPI devices.  
MSB  
6
6
5
5
4
4
3
3
2
2
1
1
LSB  
LSB  
SO  
SI  
MSB  
CSN  
SCLK  
time  
SPI _8bit.emf  
Figure 36 Serial Peripheral Interface  
10.1  
SPI Signal Description  
CSN - Chip Select Negated  
The system microcontroller selects the BTS71220-4ESE by means of the CSN pin. Whenever the pin is in “low”  
state, data transfer can take place. When CSN is in “high” state, any signals at the SCLK and SI pins are ignored  
and SO is forced into a “high impedance” state.  
CSN “high” to “low” Transition  
The requested information is transferred into the shift register.  
SO changes from “high impedance” state to “low” state.  
CSN “low” to “high” Transition  
Command decoding is only done, when after the falling edge of CSN exactly a multiple (1, 2, 3, …) of eight  
SCLK signals have been detected. In case of an incorrect SCLK count, the transmission error flag  
(STDDIAG.TER) is set and the command is ignored.  
Data from shift register is transferred into the addressed register.  
SCLK - Serial Clock  
This input pin clocks the internal shift register. The serial input (SI) transfers data into the shift register on the  
falling edge of SCLK while the serial output (SO) shifts diagnostic information out on the rising edge of the  
serial clock. It is essential that the SCLK pin is in “low” state whenever chip select CSN makes any transition,  
otherwise the command may not be accepted.  
SI - Serial Input  
Serial input data bits are shifted in at this pin, the most significant bit first. SI information is read on the falling  
edge of SCLK. The input data consists of two parts, control bits followed by data bits. Please refer to  
Chapter 10.5 for further information.  
Data Sheet  
64  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Serial Peripheral Interface (SPI)  
SO Serial Output  
Data is shifted out serially at this pin, the most significant bit first. SO is in “high impedance” state until the  
CSN pin goes to “low” state. New data will appear at the SO pin following the rising edge of SCLK.  
Please refer to Chapter 10.5 for further information.  
10.2  
Daisy Chain Capability  
The SPI of BTS71220-4ESE provides daisy chain capability for modulo 8 bit SPI devices. In this configuration  
several devices are activated by the same CSN signal MCSN. The SI line of one device is connected with the SO  
line of another device (see Figure 37), in order to build a chain. The end of the chain is connected to the output  
and input of the master device, MO and MI respectively. The master device provides the master clock MCLK  
which is connected to the SCLK line of each device in the chain.  
device 1  
SPI  
device 2  
SPI  
device 3  
SPI  
SI  
SO  
SI  
SO  
SI  
SO  
MOSI  
MISO  
MCSN  
MCLK  
SPI_DaisyChain_1.emf  
Figure 37 Daisy Chain Configuration  
In the SPI block of each device, there is one shift register where each bit from SI line is shifted in each SCLK.  
The bit is shifted out on SO pin. After eight SCLK cycles, the data transfer for one device is finished. In single  
chip configuration, the CSN line must turn “high” to make the device acknowledge the transferred data. In  
daisy chain configuration, the data shifted out at device 1 has been shifted into device 2. When using three  
devices in daisy chain, three times 8 bits have to be shifted through the devices. After that, the MCSN line must  
turn “high” (see Figure 38).  
MOSI  
MISO  
frame device 3  
frame device 2  
frame device 1  
response device 3  
response device 2  
response device 1  
MCSN  
MSCLK  
8 clocks  
8 clocks  
8 clocks  
SPI_DaisyChain_2.emf  
Figure 38 Data Transfer in Daisy Chain Configuration  
Data Sheet  
65  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Serial Peripheral Interface (SPI)  
10.3  
Timing Diagrams  
tCSN(LEAD)  
tSCLK (P)  
tCSN(LAG )  
tCSN(TD)  
VCSN(TH), max  
VCSN(TH), mi n  
CSN  
tSCLK (H)  
tSCLK (L)  
VSCLK (TH), max  
VSCLK (TH), mi n  
SCLK  
SI  
tSI(SU)  
tSI(H)  
VSI(TH), max  
VSI(TH), mi n  
tSO(EN)  
tSO(V)  
tSO(DI S)  
VSO(H)  
VSO(L)  
SO  
SPI_Timings.emf  
Figure 39 Timing Diagram SPI Access  
Data Sheet  
66  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Serial Peripheral Interface (SPI)  
10.4  
Electrical Characteristics  
VDD = 3.0 V to 5.5 V, VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VDD = 5.0 V, VS = 13.5 V, TJ = 25 °C  
Table 31 Electrical Characteristics Serial Peripheral Interface (SPI)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Timings  
1)  
1)  
1)  
1)  
Enable Lead Time (falling CSN tCSN(LEAD) 200  
to rising SCLK)  
ns  
ns  
ns  
ns  
ns  
P_10.4.0.1  
P_10.4.0.2  
P_10.4.0.3  
P_10.4.0.4  
P_10.4.0.5  
Enable Lag Time (falling SCLK tCSN(LAG)  
to rising CSN)  
200  
500  
Transfer Delay Time (rising CSN tCSN(TD)  
to falling CSN)  
Output Enable Time (falling  
CSN to SO valid)  
tSO(EN)  
tSO(DIS)  
30  
30  
100  
100  
CL(SO) = 50 pF  
1)  
Output Disable Time (rising  
CSN to SO tristate)  
CL(SO) = 50 pF  
1)  
Serial Clock Frequency  
Serial Clock Period  
fSCLK  
0
5
MHz  
ns  
P_10.4.0.6  
P_10.4.0.7  
P_10.4.0.8  
P_10.4.0.9  
P_10.4.0.10  
1)  
1)  
1)  
1)  
tSCLK(P)  
tSCLK(H)  
tSCLK(L)  
tSI(SU)  
200  
90  
90  
20  
Serial Clock “High” Time  
Serial Clock “Low” Time  
ns  
ns  
Data Setup Time (required  
Time SI to falling SCLK)  
ns  
1)  
Data Hold Time (falling SCLK to tSI(H)  
SI)  
20  
ns  
ns  
P_10.4.0.11  
P_10.4.0.12  
1)  
Output Data Valid Time with  
Capacitive Load  
tSO(V)  
60  
CL(SO) = 50 pF  
1) Not subject to production test - specified by design.  
Data Sheet  
67  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Serial Peripheral Interface (SPI)  
10.5  
SPI Protocol  
The relationship between SI and SO content during SPI communication is shown in Figure 40. SI line  
represents the frame sent from the µC and SO line is the answer provided by BTS71220-4ESE. The “previous  
response” means that the frame sent back depends on the command frame sent from the µC before.  
SI  
frame A  
frame B  
frame C  
previous  
response  
response to  
frame A  
response to  
frame B  
SO  
SPI_SI2SO.emf  
Figure 40 Relationship between SI and SO during SPI communication  
The SPI protocol provides the answer to a command frame only with the next transmission triggered by the  
µC. The responses of write commands are deterministic and can be decoded as STDDIAG or WRNDIAG frame.  
For responses of read commands previous transmission has to be considered for decoding.  
More in detail, the sequence of commands to “read” and “write” the content of a register will look as follows:  
SI  
write register A  
write register B  
STDDIAG  
read register A  
WRNDIAG  
new command  
previous  
response  
register A  
content  
SO  
SPI_RWseq_a.emf  
Figure 41 Register content sent back to µC (a)  
SI  
write register A  
read register A  
STDDIAG  
write register B  
new command  
WRNDIAG  
previous  
response  
register A  
content  
SO  
SPI_RWseq_b.emf  
Figure 42 Register content sent back to µC (b)  
There are 3 special situations where the frame sent back to the µC doesn't depend on the previous received  
frame:  
In case an error in transmission happened during the previous frame (for instance, the clock pulses were  
not multiple of 8), shown in Figure 43  
When BTS71220-4ESE digital supply comes out of Power-On reset condition, as shown in Figure 44  
When VS < VS(TP) and DCR.MUX111B, as shown in Figure 45  
Data Sheet  
68  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Serial Peripheral Interface (SPI)  
frame A  
(error in transmission)  
SI  
(new command)  
STDDIAG + TER  
SO  
(previous response)  
SPI_SO_TER.emf  
Figure 43 SPI response after an error in transmission  
VDD  
VDD(PO)  
SI  
frame A  
frame B  
frame C  
STDDIAG  
+ TER + SLP  
SO  
(SO=“Z“)  
response frame B  
SPI_SO_POR.emf  
Figure 44 SPI response after coming out of Power-On reset at VDD  
VS  
VS(TP),max  
VS(TP),min  
t
t
STDDIAG.  
0
x
1
x
1
0
VSMON  
frame B  
frame C  
frame D  
frame E  
frame A  
(response)  
SI  
(response to  
frame A)  
STDDIAG + TER  
+ VSMON  
STDDIAG + TER  
+ VSMON  
(response to  
frame D)  
SO  
Note: Valid if the device is out of Sleep mode.  
SPI_SO_VS MON.emf  
Figure 45 SPI response in case of voltage drop on battery  
A summary of all possible SPI commands is presented in Table 32, including the answer that BTS71220-4ESE  
will send back at the next transmission.  
Data Sheet  
69  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Serial Peripheral Interface (SPI)  
Table 32 SPI Command Summary  
Requested Operation  
Frame sent to SPOC™ (SI pin)  
Frame received from SPOC™  
(SO pin) with the next command  
Write OUTregister  
DCR.SWR= xB  
100dddddB  
where:  
00ddddddB - STDDIAGor  
01ddddddB - WRNDIAG  
dddddB” = new OUTregister content (Standard Diagnosis or Warning  
Diagnosis will be sent alternating)  
Read OUTregister  
Read RCSregister  
0xxxaaaaB  
100dddddB  
(“dddddB” = OUTregister content)  
where:  
“aaaaB” = ADDR11)  
(“xB” = don't care)  
0xxxaaaaB  
10000dddB  
where:  
(“dddB” = RCSregister content)  
“aaaaB” = ADDR11)  
(“xB” = don't care)  
Write Configuration  
registers  
11aaddddB  
00ddddddB - STDDIAG  
01ddddddB - WRNDIAG  
(Standard Diagnosis or Warning  
Diagnosis will be sent alternating)  
where:  
aaB” = ADDR01)  
ddddB” = new register content  
Read Configuration registers 0xxxaaaaB  
11aaddddB  
where:  
where:  
“aaaaB” = ADDR11)  
aaB” = ADDR01)  
ddddB” = register content  
(“xB” = don't care)  
Read Warning Diagnosis  
Read Standard Diagnosis  
Read Error Diagnosis  
0xxxx001B  
(“xB” = don't care)  
0100ddddB - WRNDIAG  
(Warning Diagnosis)  
0xxxx010B  
(“xB” = don't care)  
00ddddddB - STDDIAG  
(Standard Diagnosis)  
0xxxx011B  
0100ddddB - ERRDIAG  
(“xB” = don't care)  
(Error Diagnosis)  
1) ADDR0and ADDR1are defined according to Table 33.  
Data Sheet  
70  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Serial Peripheral Interface (SPI)  
10.6  
SPI Diagnosis Registers  
10.6.1  
Diagnosis Registers - Read Commands  
Name  
7
6
5
4
3
2
1
0
WRNDIAG  
STDDIAG  
ERRDIAG  
0
0
0
x
x
x
x
x
x
x
x
x
0
0
0
0
0
0
0
1
1
1
0
1
10.6.2  
Diagnosis Registers - Responses  
Name  
7
6
5
4
3
2
1
0
Default  
WRNDIAG  
STDDIAG  
0
0
1
0
0
0
WRNDIAG.WRNn  
40H  
STDDIAG STDDIAG STDDIAG STDDIAG STDDIAG STDDIAG 24H  
.TER  
.CSV  
.LHI  
.SLP  
.SBM  
.VSMON  
ERRDIAG  
0
1
0
0
ERRDIAG.ERRn  
40H  
Field  
Bits  
Type  
Description  
STDDIAG.TER  
5
r
Transmission Error  
0B Previous transmission was successful (modulo 8 clocks  
received)  
1B (default) Previous transmission failed or first transmission  
after Power-On reset or VS < VS(TP) if STDDIAG.VSMON= 1B  
STDDIAG.CSV  
4
r
Checksum Verification1)  
0B (default) Checksum verification was pass or no checksum  
calculated  
1B Previous checksum verification was fail  
STDDIAG.LHI  
STDDIAG.SLP  
STDDIAG.SBM  
3
2
1
r
r
r
r
Limp Home monitor  
0B (default) “Low” level at pin LHI  
1B “High” level at pin LHI  
Sleep mode monitor  
0B Device out of Sleep mode  
1B (default) Device is in Sleep mode  
Switch Bypass Monitor2)  
0B VDS < VDS(SB)  
1B VDS > VDS(SB)  
STDDIAG.VSMON 0  
VS monitor  
0B (default) VS always > VS(UV) since last Standard Diagnosis  
readout  
1B VS < VS(UV) at least once or VS < VS(TP) if STDDIAG.TER= 1B  
Data Sheet  
71  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Serial Peripheral Interface (SPI)  
Field  
Bits  
Type  
Description  
WRNDIAG.WRNn 3:0  
r
Warning Diagnosis of Channel n  
n = 3 to 0  
0B (default) No failure  
1B Overcurrent, Overtemperature or delta T detected  
ERRDIAG.ERRn 3:0  
n = 3 to 0  
r
Error Diagnosis of Channel n  
0B (default) No failure  
1B Channel latched OFF  
1) See Chapter 10.8 for details on checksum calculation.  
2) The switch bypass monitor compares the threshold VDS(SB) with the voltage VDS across the power transistor of that  
channel which is selected by the current sense multiplexer (DCR.MUX).  
10.7  
SPI Configuration Registers  
The following table provides an overview on the registers available and the available address space.  
Table 33 Register Overview  
Name  
OUT  
SWR 1)  
x/0 2)  
1
RB  
0
ADDR0  
(na)  
ADDR1  
0000  
Content  
Output configuration  
Restart counter status (read-only)  
RCS  
0
(na)  
1000  
SRC  
OCR  
RCD  
KRC  
PCS  
HWCR  
ICS  
DCR  
1
0
1
0
1
0
1
x
0
1
1
1
1
1
1
1
(na)  
00  
00  
01  
01  
10  
10  
11  
1001  
0100  
1100  
0101  
1101  
0110  
1110  
x111  
Slew Rate Control register (read-only)  
Overcurrent threshold configuration  
Restart counter disable  
KILIS range control  
Parallel channel and Slew Rate control  
Hardware configuration  
Input status & checksum input  
Diagnostic configuration and Swap bit  
1) DCR.SWRbit is only changed for write commands. For read commands it is used as part of the read address.  
2) For writing to OUTregister DCR.SWR= x, for read address DCR.SWR= 0B.  
Table 34 Configuration Registers - Write Commands RB-0  
Bit  
7
7
6
5
5
4
3
3
2
2
1
1
0
0
Name SWR  
RB  
4
OUT  
x
1
0
0
OUT.OUTn1)  
1) OUT.OUT4controls the logic state of EDO pin.  
Table 35 Configuration Registers - Write Commands RB-1  
Bit  
7
7
6
5
4
3
3
2
2
1
0
0
Name SWR  
RB  
ADDR0  
1
OCR  
RCD  
KRC  
0
1
0
1
1
1
1
1
1
0
0
0
0
0
1
OCR.OCTn  
RCD.RCDn  
KRC.KRCn  
Data Sheet  
72  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Serial Peripheral Interface (SPI)  
Table 35 Configuration Registers - Write Commands RB-1  
Bit  
7
7
6
5
4
3
2
2
1
1
0
0
Name SWR  
RB  
ADDR0  
3
PCS  
HWCR  
ICS  
DCR  
1
0
1
x
1
1
1
1
1
1
1
1
0
1
1
1
1
0
0
1
PCS.PCCn  
PCS.CLCS PCS.SRCS  
0
HWCR.COL HWCR.RST HWCR.CLC  
ICS.CSRn1)  
DCR.SWR DCR.MUX  
1) See Chapter 10.8 for details on checksum calculation.  
Table 36 Configuration Registers - Read Commands  
Bit  
7
7
6
6
5
5
4
4
3
2
1
0
Name  
OUT  
RCS  
SRC  
OCR  
RCD  
KRC  
PCS  
HWCR  
ICS  
DCR  
ADDR1  
0
0
0
0
0
0
0
0
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
1
1
0
1
0
1
0
1
x
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
0
0
1
0
0
1
1
0
0
1
Data Sheet  
73  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Serial Peripheral Interface (SPI)  
Table 37 Configuration Registers - Responses  
Bit  
7
7
6
6
5
5
4
3
3
2
2
1
1
0
0
Name  
OUT  
RCS  
SRC  
OCR  
RCD  
KRC  
PCS  
HWCR  
ICS  
DCR  
4
Default  
80H  
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
OUT.OUTn1)  
0
1
0
0
1
1
0
0
1
0
RCS.RCSn  
80H  
SRC.SRCn  
OCR.OCTn  
RCD.RCDn  
KRC.KRCn  
PCS.PCCn  
0
90H  
C0H  
C0H  
D0H  
D0H  
E2H  
0
0
HWCR.COL HWCR.SLP 0  
ICS.INSTn  
0
0
E0H  
DCR.SWR DCR.MUX  
F7H  
1) OUT.OUT4controls the logic state of EDO pin.  
Field  
Bits  
Type Description  
RB  
6
rw  
rw  
r
Register Bank  
0B (default) Read/write to OUT/RCSregister  
1B Read/write to other registers  
OUT.OUTn  
n = 4 to 0  
4:0  
2:0  
Output Control Register of Channel n  
0B (default) channel is OFF  
1B Channel is ON  
RCS.RCSn  
n = 2 to 0  
Restart Counter Status of Channel selected via MUX  
000B (default) Restart counter value = 0  
001B Restart counter value = 1  
010B Restart counter value = 2  
011B Restart counter value = 3  
100B Restart counter value = 4  
101B Restart counter value = 5  
110B Restart counter value = 6  
111B Restart counter value = 7  
SRC.SRCn  
n = 3 to 0  
3:0  
3:0  
3:0  
3:0  
r
Set Slew Rate control for Channel n (read only)  
0B (default) Normal Slew Rate  
1B Adjusted Slew Rate  
OCR.OCTn  
n = 3 to 0  
rw  
rw  
rw  
Set Overcurrent Level for Channel n  
0B (default) High level of overcurrent threshold IL(OVL0)  
1B Low level of overcurrent threshold IL(OVL2)  
RCD.RCDn  
n = 3 to 0  
Set Restart Strategy for Channel n  
0B (default) Automatic restart mode  
1B Latch mode  
KRC.KRCn  
n = 3 to 0  
Set Current Sense Ratio Range for Channel n  
0B (default) High range of current sense ratio  
1B Low range of current sense ratio  
Data Sheet  
74  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Serial Peripheral Interface (SPI)  
Field  
Bits  
Type Description  
PCS.SRCS  
0
w
Set Slew Rate control for Channel selected by DCR.MUX  
0B (default) Normal Slew Rate  
1B Adjusted Slew Rate  
PCS.CLCS  
1
w
Clear Restart Counters and Latches for Channel selected by DCR.MUX  
0B (default) Restart counters and latches are untouched  
1B Restart counters and latches are reset  
PCS.PCCn  
3:2  
rw  
Parallel Channel Configuration  
n = 1 to 0  
00B (default) Channels are operating independent  
01B OUT0 + OUT3 are in parallel configuration  
10B OUT1 + OUT2 are in parallel configuration  
11B OUT0 + OUT3 and OUT1 + OUT2 are in parallel configuration  
HWCR.CLC  
HWCR.RST  
HWCR.SLP  
HWCR.COL  
0
1
1
2
w
w
r
Clear Restart Counters and Latches  
0B (default) Restart counters and latches are untouched  
1B Restart counters and latches are reset for all channels  
Reset Command  
0B (default) Normal operation  
1B Execute reset command  
Sleep Mode  
0B Device is awake  
1B (default) DCR.MUX= 111B  
rw  
Input Combinatorial Logic Configuration  
0B (default) Input signal OR-combined with according OUTregister bit1)  
1B Input signal AND-combined with according OUTregister bit  
ICS.CSRn  
n = 3 to 0  
3:0  
1:0  
w
r
Checksum Input Register  
4 bit Checksum is written to this register  
ICS.INSTn  
n = 1 to 0  
Input Status Monitor Channel n  
0B (default) Input signal is “low”  
1B Input signal is “high”  
Data Sheet  
75  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Serial Peripheral Interface (SPI)  
Field  
Bits  
Type Description  
rw Set Current Sense Multiplexer Configuration in OFF state  
DCR.MUX  
2:0  
000B IS pin is “high impedance”  
001B IS pin is “high impedance”  
010B IS pin is “high impedance”  
011B IS pin is “high impedance”  
100B Diagnosis enable of external driver activated (EDD set to “high”)  
101B Current sense verification mode  
110B IS pin is “high impedance”  
111B Sleep mode (IS pin is “high impedance”)  
Set Multiplexer Configuration in ON state  
000B Current sense of channel 0 is routed to IS pin  
001B Current sense of channel 1 is routed to IS pin  
010B Current sense of channel 2 is routed to IS pin  
011B Current sense of channel 3 is routed to IS pin  
100B Diagnosis enable of external driver activated (EDD set to “high”)  
101B Current sense verification mode  
110B IS pin is “high impedance”  
111B Sleep mode (IS pin is “high impedance”)  
DCR.SWR  
3
rw  
Switch Register  
0B (default) Registers OUT, OCR, KRC, HWCRand DCRcan be written  
1B  
Registers OUT, RCD, PCS, ICSand DCRcan be written  
1) In Limp Home mode (LHI pin set to “high”) the combinatorial logic is switched to OR-mode.  
Data Sheet  
76  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Serial Peripheral Interface (SPI)  
10.8  
SPI Checksum Verification  
BTS71220-4ESE offers a simple parity check to identify unexpected content or unintended changes of  
configuration registers. For the checksum calculation a subset of the configuration bits is used, which is  
expected not to be changed periodically. The checksum calculation is an easy column parity calculation. The  
configuration bits which are used for the calculation are shown in Table 39. The SPI master writes the result  
to ICS.CSRn. After the 4bit checksum is written to ICSregister, the device is doing once the comparison and  
the result can be read within the next STDDIAGframe in the bit STDDIAG.CSV. The STDDIAG.CSVbit is  
cleared with the next STDDIAGreadout. In case the ICSregister is not written, the checksum comparison is  
disabled and the bit STDDIAG.CSV= 0B. If Limp Home mode is entered after ICS.CSRnis written but before  
STDDIAG.CSVis read, the checksum verification is not valid. Same applies in case STDDIAG.TERand  
STDDIAG.VSMONare set to 1B. In these cases checksum verification result shall be discarded.  
Table 38 Conventions for parity calculation  
Number of ‘1’ in a column  
Result with EVEN-parity  
Result with ODD-parity  
EVEN  
ODD  
0
1
1
0
Table 39 Checksum calculation bit matrix  
Name  
OCR  
3
2
1
0
OCT3  
RCD3  
KRC3  
SRC3  
0
OCT2  
RCD2  
KRC2  
SRC2  
COL  
OCT1  
RCD1  
KRC1  
SRC1  
PCC  
OCT0  
RCD0  
KRC0  
SRC0  
PCC0  
odd  
RCD  
KRC  
SRC  
HWCR/PCS  
Parity  
ICS  
even  
CSR3  
odd  
even  
CSR1  
CSR2  
CSR0  
Table 40 Checksum calculation bit matrix example  
Name  
OCR  
3
2
1
0
0
1
0
0
RCD  
1
0
0
0
KRC  
0
1
1
0
SRC  
0
0
1
0
HWCR/PCS  
Parity  
ICS  
0
0
0
0
even  
1
odd  
1
even  
0
odd  
1
Data Sheet  
77  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Serial Peripheral Interface (SPI)  
10.9  
SPI command quick list  
A summary of the most used SPI commands (read and write operations) is shown in Table 154.  
Table 41 SPI command quick list  
Name  
OUT  
RCS  
SRC  
OCR  
RCD  
KRC  
PCS  
HWCR  
ICS  
DCR  
“read” command 1)  
0xxx0000B  
0xxx1000B  
0xxx1001B  
0xxx0100B  
0xxx1100B  
0xxx0101B  
0xxx1101B  
0xxx0110B  
0xxx1110B  
0xxxx111B  
“write” command 2)  
SWR 3)  
10ddddddB  
x
1100ddddB  
1100ddddB  
1101ddddB  
1101ddddB  
1110ddddB  
1110ddddB  
1111ddddB  
0
1
0
1
0
1
x
WRNDIAG  
STDDIAG  
0xxx0001B  
0xxx0010B  
0xxx0011B  
ERRDIAG  
1) x = don’t care bits.  
2) d = data bits.  
3) DCR.SWRbit needs to be set for writing a register. For reading a register the DCR.SWRbit is part of the read address.  
Data Sheet  
78  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Application Information  
11  
Application Information  
Note:  
11.1  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Application setup - SPOC™  
VBAT  
Optional  
ZWIRE  
Fail-safe  
Control  
Optional  
Logic Supply  
CVSGND  
CVS1  
RGND  
CVSGND  
CVS1  
RGND  
T1  
CVDD  
VS  
GND  
IN  
GND  
VS  
OUT  
VDD  
IN0  
IN1  
EDO  
EDD  
LHI  
RVDD  
EDO_IN  
VDD  
RIN  
GPIO  
GPIO  
GPIO  
GPIO  
RIN  
EDD_DEN  
OUT0  
OUT1  
OUT2  
OUT3  
DEN  
RDEN  
RIN  
EDO_IN  
PRO_IS  
EDD_DEN  
IS  
RLHI  
RCSN  
RSCLK  
CSN  
SCLK  
MISO  
MOSI  
ADC  
CSN  
SCLK  
SO  
DZ2  
CVS2  
RSO  
SI  
RSI  
IS  
RADC  
RIS_PROT  
VSS  
PRO_IS  
DZ1  
CADC  
Logic GND  
Optional  
Application_4ch_ED.emf  
Power GND  
*See Chapter 1 „Potential Applications“  
Chassis GND  
**See Chapter 11.2 „External Components“  
Figure 46 Application Diagram  
Note:  
This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
Data Sheet  
79  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Application Information  
11.2  
External Components  
Table 42 Suggested Component values  
Reference  
RVDD  
Value  
470 Ω  
4.7 kΩ  
Purpose  
Device logic protection  
RIN  
Protection of the microcontroller during overvoltage, reverse polarity  
Guarantee BTS71220-4ESE output OFF during Loss of Ground  
RIS_PROT  
4.7 kΩ  
Protection resistor for overvoltage, reverse polarity and Loss of Ground  
Value to be tuned with µC specification  
RSENSE  
RADC  
RCSN  
RSCLK  
RSO  
1.2 kΩ  
4.7 kΩ  
1.2 kΩ  
1.2 kΩ  
1.2 kΩ  
1.2 kΩ  
4.7 kΩ  
4.7 kΩ  
4.7 kΩ  
220 pF  
Sense resistor  
µC-ADC voltage spikes filtering  
Protection of the µC during overvoltage and reverse polarity  
Protection of the µC during overvoltage and reverse polarity  
Protection of the µC during overvoltage and reverse polarity  
Protection of the µC during overvoltage and reverse polarity  
Protection of the µC during overvoltage and reverse polarity  
Protection of the device during overvoltage, reverse polarity of external driver  
Protection of the device during overvoltage, reverse polarity of external driver  
RSI  
RLHI  
REDO  
REDD  
CADC  
µC-ADC voltage spikes filtering  
A time constant (RADC * CADC) longer than 1 µs is recommended  
CVDD  
470 nF  
Digital supply voltage spikes filtering and for improved robustness against  
battery voltage transients  
CVS1  
100 nF  
-
Battery voltage spikes filtering  
CVS2  
Filtering / buffer capacitor located at VBAT connector  
Battery voltage spikes filtering  
CVS3  
100 nF  
22 nF  
10 nF  
47 Ω  
CVSGND  
COUT  
RGND  
Battery voltage spikes filtering  
For improved electromagnetic compatibility (EMC)  
Ground voltage spikes filtering for improved robustness against battery  
voltage transients  
T1  
BC 807  
Switch the battery voltage for Open Load in OFF diagnosis  
RPD  
47 kΩ  
Output polarization (pull-down)  
Ensure polarization of BTS71220-4ESE output to distinguish between Open  
Load and Short to VS in OFF diagnosis  
ROL  
1.5 kΩ  
Output polarization (pull-up)  
Ensure polarization of BTS71220-4ESE output during Open Load in OFF  
diagnosis  
Note:  
The suggested component values above are determined for typical applications with 5 V  
microcontrollers. Based on the application circuit and the used components connected to  
BTS71220-4ESE, it could be necessary to adjust the recommended values to stay below the  
maximum ratings for all components under all operating conditions (e.g. reverse battery, transients  
on battery, etc.).  
Data Sheet  
80  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Application Information  
11.3  
Further Application Information  
Please contact us for information regarding the Pin FMEA  
For further information you may contact http://www.infineon.com/  
Data Sheet  
81  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Package Outlines  
12  
Package Outlines  
ꢀꢁ  
ꢀꢁ  
ꢆꢃꢈꢄsꢂꢃꢀ  
ꢋꢃꢊsꢂꢃꢀ  
'
ꢂꢃꢀ  
ꢂꢃꢀ  
ꢅ[  
ꢅ[  
ꢂꢃꢈꢌsꢂꢃꢅꢄ  
&
ꢂꢃꢂꢆ &  
ꢅꢍ[  
6($7,1* &23/$1$5,7<  
ꢂꢃꢅ '  
ꢅꢍ[  
sꢂꢃꢅ  
3/$1(  
ꢅꢁ  
ꢂꢃꢅꢄsꢂꢃꢂꢄ  
ꢂꢃꢅꢄ  
$
$ꢎ% &  
ꢅꢍ[  
%27720 9,(:  
'
ꢂꢃꢀꢄ  
ꢅꢍ  
ꢀꢋ  
ꢀꢋ  
ꢅꢍ  
ꢀꢅ  
ꢀꢅ  
,1'(;  
0$5.,1*  
ꢈꢃꢍsꢂꢃꢀ  
%
ꢂꢃꢀꢄ  
$ꢎ%  
ꢂꢃꢈꢄ  
ꢀꢁ '2(6 127 ,1&/8'( 3/$67,& 25 0(7$/ 3527586,21 2) ꢂꢃꢀꢄ 0$;ꢃ 3(5 6,'(  
ꢅꢁ '$0%$5 352786,21 6+$// %( 0$;,080 ꢂꢃꢀ00 727$/ ,1 (;&(66 2) /($' :,'7+  
ꢋꢁ ',67$1&( )520 &(1(5/,1( (;326(' 3$' 72 3$&.$*( &(17(5/,1(  
$// ',0(16,216 $5( ,1 81,76 00  
7+( '5$:,1* ,6 ,1 &203/,$1&( :,7+ ,62 ꢀꢅꢆ ꢇ 352-(&7,21 0(7+2' ꢀ >  
@
Figure 47 PG-TSDSO-24 (Thin (Slim) Dual Small Outline 24 pins) Package drawing  
Data Sheet  
82  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Package Outlines  
ꢂꢃꢈꢄ  
ꢂꢃꢋꢅꢄ  
ꢂꢃꢍꢄ  
ꢂꢃꢈꢄ  
ꢂꢃꢋꢅꢄ  
ꢂꢃꢍꢄ  
ꢈꢃꢍ  
ꢅꢃꢊ  
ꢀꢃꢈꢄ  
FRSSHU  
VROGHU PDVN  
VWHQFLO DSHUWXUHV  
$// ',0(16,216 $5( ,1 81,76 00  
Figure 48 PG-TSDSO-24 (Thin (Slim) Dual Small Outline 24 pins) Package pads and stencil  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
Data Sheet  
83  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Revision History  
13  
Revision History  
Table 43 BTS71220-4ESE - List of changes  
Revision  
Changes  
1.10, 2021-03-23 General: Datasheet quality improved  
General: updated (ReverSave™ ReverseON)  
General: updated (channel description)  
Icon “PRO-SIL™ ISO 26262-ready” added to front page  
Chapter 1 updated (Package description)  
Chapter 1 updated (Potential Applications updated and Product Validation added)  
Harmonization of Application Diagram (Figure 1, Figure 46)  
P_4.4.0.15, P_4.4.0.16 updated (Typ. value and Max. value)  
P_6.4.0.10 updated (Note or Test Condition)  
P_6.4.1.5 updated (Max. value updated and footnote added)  
P_6.5.31.2 added  
P_9.6.0.6 updated parameter name  
P_9.6.0.17 added  
P_9.6.2.11 footnote removed  
Figure 14 and Figure 16 updated  
Figure 28 and Figure 29 updated  
Figure 33 updated  
Figure 37 and Figure 38 updated  
Chapter 10.4 typical value for VDD harmonized  
Chapter 11 updated (figures and descriptions)  
1.00, 2018-06-11 Data Sheet available  
Data Sheet  
84  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Table of Contents  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2
2.1  
2.2  
Block Diagram and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4
4.1  
4.2  
4.2.1  
4.2.2  
4.3  
4.4  
4.4.1  
4.4.2  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute Maximum Ratings - General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute Maximum Ratings - Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power Stages - 9.5 mΩ channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power Stages - 22.5 mΩ channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
PCB Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5
5.1  
5.2  
5.2.1  
5.2.2  
5.2.3  
5.3  
Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Input Pins (INn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Advanced Features Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
SPI Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Limp Home Input (LHI) Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
External Driver Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical Characteristics Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical Characteristics Logic Pins - Advanced Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.4  
6
6.1  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Unsupplied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Stand-by mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Ready mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Limp Home mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Limp Home Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Definition of Operation modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Undervoltage on VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Reset Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Electrical Characteristics Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Electrical Characteristics Power Supply - SPOC™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Electrical Characteristics Power Supply - Product Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
BTS71220-4ESE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
6.1.8  
6.1.9  
6.2  
6.3  
6.4  
6.4.1  
6.5  
6.5.1  
7
7.1  
7.2  
Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Switching loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Data Sheet  
85  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Table of Contents  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.3  
7.3.1  
7.3.2  
7.3.3  
7.4  
7.4.1  
7.5  
7.5.1  
7.5.2  
Switching Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Switching Inductive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Output Voltage Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Switching Capacitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Advanced Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Inverse Current behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Switching Channels in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Cross Current robustness with H-Bridge configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Electrical Characteristics Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Electrical Characteristics Power Stages - SPOC™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Electrical Characteristics - Power Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Power Output Stage - 9.5 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Power Output Stage - 22.5 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
8
8.1  
8.2  
8.3  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Protection and Diagnosis in case of Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Restart Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Additional protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Protection against loss of connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Loss of Battery and Loss of Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Loss of Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Electrical Characteristics Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Electrical Characteristics Protection - SPOC™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Electrical Characteristics Protection - Power Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Protection Power Output Stage - 9.5 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Protection Power Output Stage - 22.5 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
8.3.1  
8.4  
8.4.1  
8.4.2  
8.5  
8.5.1  
8.5.2  
8.6  
8.6.1  
8.7  
8.7.1  
8.7.2  
9
9.1  
9.2  
9.3  
9.3.1  
9.3.2  
9.4  
9.4.1  
9.5  
9.6  
9.6.1  
9.7  
Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Diagnosis Word at SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Diagnosis in ON state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Current Sense (kILIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Current Sense Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Diagnosis in OFF state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Switch Bypass Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
SENSE Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Electrical Characteristics Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Electrical Characteristics Diagnosis - SPOC™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Electrical Characteristics Diagnosis - Power Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Diagnosis Power Output Stage - 9.5 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Diagnosis Power Output Stage - 22.5 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
9.7.1  
9.7.2  
10  
10.1  
10.2  
Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
SPI Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Daisy Chain Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Data Sheet  
86  
Rev. 1.10  
2021-03-23  
BTS71220-4ESE  
SPOC™ +2  
Table of Contents  
10.3  
10.4  
10.5  
10.6  
10.6.1  
10.6.2  
10.7  
10.8  
10.9  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
SPI Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
SPI Diagnosis Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Diagnosis Registers - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Diagnosis Registers - Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
SPI Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
SPI Checksum Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
SPI command quick list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
11  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Application setup - SPOC™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
11.1  
11.2  
11.3  
12  
13  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Data Sheet  
87  
Rev. 1.10  
2021-03-23  
Please read the Important Notice and Warnings at the end of this document  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2021-03-23  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
© 2021 Infineon Technologies AG.  
All Rights Reserved.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
Z8F65320939  

相关型号:

BTS71220-4ESP

The device is integrated in SMART7 technology.
INFINEON

BTS712N1

Smart Four Channel Highside Power Switch (Overload protection Current limitation Short-circuit protection Thermal shutdown)
INFINEON

BTS712N1XUMA1

Buffer/Inverter Based Peripheral Driver, 0.3A, MOS, PDSO20, GREEN, PLASTIC, SOP-20
INFINEON

BTS712N1_10

Smart Four Channel Highside Power Switch
INFINEON

BTS716

Smart High-Side Power Switch Four Channels: 4 x 140mз Status Feedback
INFINEON

BTS716G

Smart High-Side Power Switch Four Channels: 4 x 140mз Status Feedback
INFINEON

BTS716GB

Smart High-Side Power Switch Four Chanmels : 4 x 140mΩ Status Feedback
INFINEON

BTS716GBXUMA1

Buffer/Inverter Based Peripheral Driver, 4 Driver, 5.3A, MOS, PDSO20, ROHS COMPLIANT, PLASTIC, SOP-20
INFINEON

BTS716GXUMA1

Buffer/Inverter Based Peripheral Driver, 5.3A, PDSO20, GREEN, PLASTIC, SOP-20
INFINEON

BTS716G_07

Smart High-Side Power Switch
INFINEON

BTS7200-2EPA

PROFET™+2 12V | Automotive Smart High-Side Switch
INFINEON

BTS7200-2EPC

Buffer/Inverter Based Peripheral Driver,
INFINEON