BTT6100-2ERA [INFINEON]

The BTT6100-2ERA is a 100mΩ dual channel Smart High-Side Power Switch, embedded in a PG-TDSO-14, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by a N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive lamps up to 1x P21W 24V or 1x R10W 12V, as well as LEDs in the harsh automotive environment. Diagnostic.;
BTT6100-2ERA
型号: BTT6100-2ERA
厂家: Infineon    Infineon
描述:

The BTT6100-2ERA is a 100mΩ dual channel Smart High-Side Power Switch, embedded in a PG-TDSO-14, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by a N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive lamps up to 1x P21W 24V or 1x R10W 12V, as well as LEDs in the harsh automotive environment. Diagnostic.

文件: 总47页 (文件大小:1342K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PROFET™ +24 V  
BTT6100-2ERA  
Smart High-Side Power Switch Dual Channel, 100 mΩ  
Package PG-TDSO-14  
Marking 6100-2ERA  
1
Overview  
Application  
Suitable for resistive, inductive and capacitive loads  
Replaces electromechanical relays, fuses and discrete circuits  
Most suitable for loads with high inrush current, such as lamps  
Suitable for 12 V and 24 V Trucks and Transportation System  
VBAT  
Voltage Regulator  
OUT VS  
T1  
GND  
CVDD  
Z
CVS  
VS  
VDD  
GPIO  
RDEN  
DEN  
GPIO  
RDSEL  
DSEL  
OUT0  
Microcontroller  
GPIO  
OUT4  
IN0  
IN1  
RIN  
RIN  
COUT  
Valve  
GPIO  
OUT1  
COUT  
IS  
RSENSE  
ADC IN  
GND  
GND  
Bulb  
CSENSE  
D
Application Diagram with BTT6100-2ERA  
Datasheet  
www.infineon.com  
1
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Overview  
Basic Features  
Dual channel device  
Very low stand-by current  
3.3 V and 5 V compatible logic inputs  
Electrostatic discharge protection (ESD)  
Optimized electromagnetic compatibility  
Logic ground independent of load ground  
Very low power DMOS leakage current in OFF state  
Green product (RoHS compliant) and AEC qualified  
Description  
The BTT6100-2ERA is a 100 mdual channel Smart High-Side Power Switch, embedded in a PG-TDSO-14,  
Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by a  
N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is  
specially designed to drive lamps up to 1x P21W 24V or 1x R10W 12V, as well as LEDs in the harsh automotive  
environment.  
Table 1  
Product Summary  
Parameter  
Symbol  
VS(OP)  
Value  
5 V ... 36 V  
65 V  
Operating voltage range  
Maximum supply voltage  
VS(LD)  
Maximum ON state resistance at TJ = 150°C per channel  
Nominal load current (one channel active)  
Nominal load current (all channels active)  
Typical current sense ratio  
RDS(ON)  
IL(NOM)1  
IL(NOM)2  
kILIS  
200 mΩ  
2.6 A  
2.2 A  
600  
Minimum current limitation  
IL5(SC)  
20 A  
Maximum standby current with load at TJ = 25°C  
IS(OFF)  
500 nA  
Diagnostic Functions  
Proportional load current sense multiplexed for the 2 channels  
Open load detection in ON and OFF  
Short circuit to battery and ground indication  
Overtemperature switch off detection  
Stable diagnostic signal during short circuit  
Enhanced kILIS dependency with temperature and load current  
Protection Functions  
Stable behavior during undervoltage  
Reverse polarity protection with external components  
Secure load turn-off during logic ground disconnection with external components  
Overtemperature protection with latch  
Overvoltage protection with external components  
Enhanced short circuit operation  
Datasheet  
2
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Block Diagram  
2
Block Diagram  
Channel 0  
VS  
voltage sen sor  
int ern al  
power  
supply  
over  
temperatu re  
T
clamp for  
ind uctive load  
gate control  
&
charge pump  
IN 0  
driver  
logic  
over current  
switch limit  
DEN  
ESD  
protection  
load current sense and  
open load detection  
OUT 0  
IS  
forward voltage drop detection  
VS  
Channel 1  
T
IN1  
Control and pro tection circuit equivalent to channel 0  
DSEL  
OUT 1  
Block diagramD xS.vsd  
GND  
Figure 1  
Block Diagram for the BTT6100-2ERA  
Datasheet  
3
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
GND  
IN0  
1
2
14  
13  
OUT0  
OUT0  
DEN  
IS  
3
4
5
12  
11  
10  
OUT0  
NC  
DSEL  
OUT1  
6
7
9
8
OUT1  
OUT1  
IN1  
NC  
Pinout dual SO14.vsd  
Figure 2  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Table 2  
Pin Definitions and Functions  
Pin  
1
Symbol Function  
GND  
IN0  
GrouND; Ground connection  
2
INput channel 0; Input signal for channel 0 activation  
3
DEN  
Diagnostic ENable; Digital signal to enable/disable the diagnosis of the  
device  
4
IS  
Sense; Sense current of the selected channel  
5
DSEL  
IN1  
Diagnostic SELection; Digital signal to select the channel to be diagnosed  
INput channel 1; Input signal for channel 1 activation  
Not Connected; No internal connection to the chip  
OUTput 1; Protected high side power output channel 11)  
OUTput 0; Protected high side power output channel 01)  
Voltage Supply; Battery voltage  
6
7, 11  
NC  
8, 9, 10  
12, 13, 14  
Cooling Tab  
OUT1  
OUT0  
VS  
1) All output pins of a given channel must be connected together on the PCB. All pins of an output are internally  
connected together. PCB traces have to be designed to withstand the maximum current which can flow.  
Datasheet  
4
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Pin Configuration  
3.3  
Voltage and Current Definition  
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.  
IVS  
VS  
VDS0  
VS  
IIN0  
IOUT0  
IN0  
IN1  
OUT0  
OUT1  
VIN0  
VDS1  
VOUT0  
VIN1  
IDEN  
DEN  
DSEL  
IS  
IOUT1  
VDEN  
VDSEL  
IIS  
VOUT1  
GND  
VIS  
IGND  
voltage and current convention.vsd  
Figure 3  
Voltage and Current Definition  
Datasheet  
5
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 3  
Absolute Maximum Ratings1)  
TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
Supply Voltages  
Supply voltage  
VS  
-0.3  
0
48  
28  
V
V
P_4.1.1  
P_4.1.2  
Reverse polarity voltage  
-VS(REV)  
t < 2 min  
TA = 25°C  
RL 25 Ω  
ZGND = Diode + 27 Ω  
Supply voltage for short  
circuit protection  
VBAT(SC)  
0
36  
V
RSupply = 10 mΩ  
LSupply = 5 µH  
P_4.1.3  
R
R
ECU= 20 mΩ  
Cable= 16 m/m  
LCable= 1 µH/m,  
l = 0 or 5 m  
See Chapter 6 and  
Figure 28  
Supply voltage for Load  
dump protection  
VS(LD)  
nRSC1  
VIN  
65  
V
2)RI = 2 Ω  
RL = 25 Ω  
P_4.1.12  
P_4.1.4  
Short Circuit Capability  
3)  
Permanent short circuit  
IN pin toggles  
100  
k cycles  
V
_
Input Pins  
Voltage at INPUT pins  
-0.3  
6
7
P_4.1.13  
t < 2 min  
Current through INPUT pins IIN  
-2  
2
mA  
V
P_4.1.14  
P_4.1.15  
Voltage at DEN pin  
VDEN  
-0.3  
6
7
t < 2 min  
Current through DEN pin  
Voltage at DSEL pin  
IDEN  
-2  
2
mA  
V
P_4.1.16  
P_4.1.17  
VDSEL  
-0.3  
6
7
t < 2 min  
Current through DSEL pin  
Sense Pin  
IDSEL  
-2  
2
mA  
P_4.1.18  
Voltage at IS pin  
VIS  
IIS  
-0.3  
-25  
VS  
V
P_4.1.19  
P_4.1.20  
Current through IS pin  
50  
mA  
Datasheet  
6
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
General Product Characteristics  
Table 3  
Absolute Maximum Ratings1)  
TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
Power Stage  
Load current  
| IL |  
IL(LIM)  
A
P_4.1.21  
P_4.1.22  
Power dissipation (DC)  
PTOT  
1.8  
W
TA = 85°C  
TJ < 150°C  
Maximum energy  
dissipation  
Single pulse (one channel)  
EAS  
36  
65  
mJ  
IL(0) = 1.5 A  
P_4.1.23  
TJ(0) = 150°C  
VS = 28 V  
Voltage at power transistor VDS  
Currents  
V
P_4.1.26  
P_4.1.27  
Current through ground pin I GND  
-20  
-150  
20  
20  
mA  
t < 2 min  
Temperatures  
Junction temperature  
Storage temperature  
ESD Susceptibility  
TJ  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.28  
P_4.1.30  
TSTG  
ESD susceptibility (all pins) VESD  
-2  
-4  
2
4
kV  
kV  
4) HBM  
4) HBM  
P_4.1.31  
P_4.1.32  
ESD susceptibility OUT Pin VESD  
vs. GND and VS connected  
ESD susceptibility  
VESD  
VESD  
-500  
-750  
500  
750  
V
V
5) CDM  
5) CDM  
P_4.1.33  
P_4.1.34  
ESD susceptibility pin  
(corner pins)  
1) Not subject to production test. Specified by design  
2) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1  
3) Threshold limit for short circuit failures: 100 ppm. Please refer to the legal disclaimer for short-circuit capability on  
the Back Cover of this document  
4) ESD susceptibility, Human Body Model "HBM" according to AEC Q100-002  
5) ESD susceptibility, Charged Device Model "CDM" according to AEC Q100-011  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Datasheet  
7
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
General Product Characteristics  
4.2  
Functional Range  
Table 4  
Functional Range TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
28  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
36  
Nominal operating voltage VNOM  
Extended operating voltage VS(OP)  
8
5
V
V
2)  
P_4.2.1  
P_4.2.2  
48  
V = 4.5 V  
IN  
RL = 25 Ω  
VDS < 0.5 V  
1)  
Minimum functional supply VS(OP)_MIN  
voltage  
3.8  
3
4.3  
3.5  
5
V
V
V = 4.5 V  
P_4.2.3  
P_4.2.4  
IN  
RL = 25 Ω  
From IOUT = 0 A  
to VDS < 0.5 V;  
see Figure 15  
1)  
Undervoltage shutdown  
VS(UV)  
4.1  
V = 4.5 V  
IN  
V
DEN = 0 V  
RL = 25 Ω  
From VDS < 1 V;  
to IOUT = 0 A  
See Chapter 9.1  
and Figure 15  
2)  
Undervoltage shutdown  
hysteresis  
VS(UV)_HYS  
IGND_1  
850  
2
4
mV  
mA  
P_4.2.13  
P_4.2.5  
Operating current  
One channel active  
VIN = 5.5 V  
VDEN = 5.5 V  
Device in RDS(ON)  
VS = 36 V  
See Chapter 9.1  
Operating current  
All channels active  
IGND_2  
4
6
mA  
µA  
VIN = 5.5 V  
VDEN = 5.5 V  
Device in RDS(ON)  
VS = 36 V  
See Chapter 9.1  
P_4.2.6  
P_4.2.7  
Standby current for whole IS(OFF)  
0.1  
0.5  
1) VS = 36 V  
device with load (ambient)  
VOUT = 0 V  
VIN floating  
VDEN floating  
TJ 85°C  
Datasheet  
8
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
General Product Characteristics  
Table 4  
Functional Range TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Maximum standby current IS(OFF)_150  
for whole device with load  
10  
µA  
VS = 36 V  
OUT = 0 V  
VIN floating  
DEN floating  
P_4.2.10  
V
V
TJ = 150°C  
Standby current for whole IS(OFF_DEN)  
device with load, diagnostic  
active  
0.6  
mA  
2) VS = 36 V  
P_4.2.8  
V
OUT = 0 V  
VIN floating  
DEN = 5.5 V  
V
1) Test at TJ = -40°C only  
2) Not subject to production test. Specified by design.  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
4.3  
Thermal Resistance  
Table 5  
Thermal Resistance  
Parameter  
Symbol  
Values  
Typ.  
2
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Junction to case  
RthJC  
RthJA  
K/W  
K/W  
P_4.3.1  
P_4.3.2  
1)2)  
Junction to ambient  
All channels active  
27  
1) Not subject to production test. Specified by design.  
2) Specified RthJA value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board with 1 W power  
dissipation equally dissipated for both channels at TA=105°C ; The product (chip + package) was simulated on a 76.4  
x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 µm Cu, 2 x 35 µm Cu). Where applicable, a thermal via array  
under the exposed pad contacts the first inner copper layer. Please refer to Figure 4.  
4.3.1  
PCB Set-Up  
70µm  
35µm  
1.5mm  
0.3mm  
PCB 2s2p.vsd  
Figure 4  
2s2p PCB Cross Section  
Datasheet  
9
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
General Product Characteristics  
PCB bottom view  
PCB top view  
1
2
14  
13  
3
4
5
6
7
12  
11  
10  
9
COOLING  
TAB  
VS  
8
thermique SO14.vsd  
Figure 5  
PC Board Top and Bottom View for Thermal Simulation with 600 mm2 Cooling Area  
4.3.2  
Thermal Impedance  
BTT6100-2ERA  
100  
10  
1
2s2p  
1s0p - 600 mm²  
1s0p - 300 mm²  
1s0p - footprint  
0,1  
0,0001  
0,001  
0,01  
0,1  
1
10  
100  
1000  
Time (s)  
Figure 6  
Typical Thermal Impedance. 2s2p PCB set-up according Figure 5  
Datasheet  
10  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
General Product Characteristics  
BTT6100-2ERA  
100  
90  
80  
70  
60  
50  
40  
30  
1s0p - Tambient = 105°C  
0
100  
200  
300  
400  
500  
600  
Cooling area (mm²)  
Figure 7  
Typical Thermal Resistance. PCB set-up 1s0p  
Datasheet  
11  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Power Stage  
5
Power Stage  
The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump.  
5.1  
Output ON-State Resistance  
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 8  
shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The  
behavior in reverse polarity is described in Chapter 6.4.  
180  
160  
150  
160  
140  
140  
130  
120  
120  
110  
100  
100  
90  
80  
80  
60  
70  
60  
40  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
5
10  
15  
20  
25  
30  
35  
Junction Temperature T [°C]  
Supply Voltage V [V]  
J
S
Figure 8  
Typical ON-State Resistance  
A high signal at the input pin (see Chapter 8) causes the power DMOS to switch ON with a dedicated slope,  
which is optimized in terms of EMC emission.  
5.2  
Turn ON/OFF Characteristics with Resistive Load  
Figure 9 shows the typical timing when switching a resistive load.  
IN  
VIN_H  
VIN_L  
t
VOUT  
dV/dt ON  
dV/dt OFF  
tON  
90% VS  
tOFF_delay  
70% VS  
30% VS  
10% VS  
tON_delay  
tOFF  
t
Switching times.vsd  
Figure 9  
Switching a Resistive Load Timing  
Datasheet  
12  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Power Stage  
5.3  
Inductive Load  
5.3.1  
Output Clamping  
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,  
because the inductance intends to continue driving the current. To prevent the destruction of the device by  
avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative  
output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 10 and Figure 11 for details. Nevertheless,  
the maximum allowed load inductance is limited.  
VS  
ZDS(AZ)  
VDS  
IN  
LOGIC  
IL  
VBAT  
GND  
ZGND  
OUT  
VOUT  
VIN  
L, RL  
Ou tput_clamp.vsd  
Figure 10 Output Clamp  
IN  
t
VOUT  
VS  
t
VS-VDS(AZ)  
IL  
t
Switching an inductance.vsd  
Figure 11 Switching an Inductive Load Timing  
Datasheet  
13  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Power Stage  
5.3.2  
Maximum Load Inductance  
During demagnetization of inductive loads, energy has to be dissipated in the BTT6100-2ERA. This energy can  
be calculated with following equation:  
RL IL  
VS VDS(AZ)  
----- ------------------------------  
L
RL  
------------------------------  
VS VDS(AZ)  
E = VDS(AZ)  
ln 1 –  
+ IL  
(5.1)  
RL  
Following equation simplifies under the assumption of RL = 0 .  
VS  
L I2 1 –  
(5.2)  
1
--  
------------------------------  
VS VDS(AZ)  
E =  
2
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 12 for  
the maximum allowed energy dissipation as a function of the load current.  
100  
10  
0.00  
0.50  
1.00  
1.50  
2.00  
2.50  
3.00  
3.50  
4.00  
IL(A)  
Figure 12 Maximum Energy Dissipation Single Pulse, TJ_START = 150°C; VS = 28 V  
Datasheet  
14  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Power Stage  
5.4  
Inverse Current Capability  
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current  
IINV will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 13). The  
output stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that  
particular case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV  
should not be higher than IL(INV). If the channel is OFF, the diagnostic will detect an open load at OFF. If the  
affected channel is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At  
the appearance of VINV, a parasitic diagnostic can be observed. After, the diagnosis is valid and reflects the  
output state. At VINV vanishing, the diagnosis is valid and reflects the output state. During inverse current, no  
protection functions are available.  
VBAT  
VS  
Gate  
driver  
Device  
logic  
VINV  
INV  
Comp.  
IL(INV)  
OUT  
GND  
ZGND  
inverse current.vsd  
Figure 13 Inverse Current Circuitry  
Datasheet  
15  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Power Stage  
5.5  
Electrical Characteristics Power Stage  
Table 6  
Electrical Characteristics: Power Stage  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V , TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
180  
Unit Note or  
Test Condition  
Number  
Min.  
ON-state resistance per channel RDS(ON)_150 150  
Max.  
200  
mΩ  
IL = IL4 = 2 A  
VIN = 4.5 V  
P_5.5.1  
TJ = 150 °C  
See Figure 8  
ON-state resistance per channel RDS(ON)_25  
100  
2.6  
mΩ  
1) TJ = 25°C  
1)TA= 85°C  
TJ < 150°C  
P_5.5.21  
P_5.5.2  
Nominal load current  
One channel active  
IL(NOM)1  
A
Nominal load current  
All channels active  
IL(NOM)2  
2.2  
10  
70  
A
P_5.5.3  
P_5.5.4  
P_5.5.5  
Output voltage drop limitation at VDS(NL)  
small load currents  
22  
75  
mV  
V
IL = IL0 = 50 mA  
See Chapter 9.3  
Drain to source clamping voltage VDS(AZ)  
65  
IDS = 20 mA  
See Figure 11  
See Chapter 9.1  
2)  
VDS(AZ) = [VS - VOUT  
]
Output leakage current per  
channel TJ 85°C  
IL(OFF)  
0.1  
1
0.5  
5
µA  
µA  
V floating  
P_5.5.6  
P_5.5.8  
IN  
VOUT = 0 V  
TJ 85°C  
Output leakage current per  
channel TJ = 150°C  
IL(OFF)_150  
VIN floating  
VOUT = 0 V  
TJ = 150°C  
Slew rate  
30% to 70% VS  
dV/dtON  
-dV/dtOFF  
ΔdV/dt  
0.3  
0.8  
0.8  
0
1.3  
V/µs RL = 25 Ω  
VS = 28 V  
P_5.5.11  
P_5.5.12  
P_5.5.13  
See Figure 9  
See Chapter 9.1  
Slew rate  
70% to 30% VS  
0.3  
1.3  
V/µs  
Slew rate matching  
-0.15  
0.15  
V/µs  
dV/dtON - dV/dtOFF  
Turn-ON time to VOUT = 90% VS  
Turn-OFF time to VOUT = 10% VS  
tON  
20  
70  
70  
0
150  
150  
50  
µs  
µs  
µs  
P_5.5.14  
P_5.5.15  
P_5.5.16  
tOFF  
ΔtSW  
20  
Turn-ON / OFF matching  
-50  
tOFF - tON  
Turn-ON time to VOUT = 10% VS  
Turn-OFF time to VOUT = 90% VS  
tON_delay  
tOFF_delay  
35  
35  
70  
70  
µs  
µs  
P_5.5.17  
P_5.5.18  
Datasheet  
16  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Power Stage  
Table 6  
Electrical Characteristics: Power Stage (cont’d)  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V , TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
320  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Switch ON energy  
EON  
µJ  
1) RL = 25 Ω  
OUT = 90% VS  
P_5.5.19  
V
VS = 36 V  
See Chapter 9.1  
Switch OFF energy  
EOFF  
371  
µJ  
1) RL = 25 Ω  
P_5.5.20  
VOUT = 10% VS  
VS = 36 V  
See Chapter 9.1  
1) Not subject to production test, specified by design.  
2) Test at TJ = -40°C only  
Datasheet  
17  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Protection Functions  
6
Protection Functions  
The device provides integrated protection functions. These functions are designed to prevent the destruction  
of the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside”  
normal operating range. Protection functions are designed for neither continuous nor repetitive operation.  
6.1  
Loss of Ground Protection  
In case of loss of the module ground and the load remains connected to ground, the device protects itself by  
automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN  
pins.  
In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the  
BTT6100-2ERA to ensure switching OFF of channels.  
In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 14 sketches  
the situation.  
ZGND is recommended to be a resistor in series to a diode .  
ZIS(AZ)  
VS  
ZD(AZ)  
VBAT  
ZDS(AZ)  
IS  
RSENSE  
DSEL  
DEN  
IN0  
RDSEL  
RDEN  
RIN  
IOUT(GND)  
LOGIC  
IN1  
RIN  
OUT  
GND  
ZGND  
ZDESD  
L, RL  
RIS  
RIS  
Loss of ground protection.vsd  
Figure 14 Loss of Ground Protection with External Components  
6.2  
Undervoltage Protection  
Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage  
where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold  
ON. If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as  
the supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the  
switch is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in  
the VNOM range. Figure 15 sketches the undervoltage mechanism.  
Datasheet  
18  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Protection Functions  
VOUT  
undervoltage behavio.rvsd  
VS  
VS(UV)  
VS(OP)  
Figure 15 Undervoltage Behavior  
6.3  
Overvoltage Protection  
There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism  
operates properly in the application, the current in the Zener diode has to be limited by a ground resistor.  
Figure 16 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than  
VS(AZ), the power transistor switches ON and in addition the voltage across the logic section is clamped. As a  
result, the internal ground potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin INx,  
DSEL, and DEN rises almost to that potential, depending on the impedance of the connected circuitry. In the  
case the device was ON, prior to overvoltage, the BTT6100-2ERA remains ON. In the case the BTT6100-2ERA  
was OFF, prior to overvoltage, the power transistor can be activated. In the case the supply voltage is in above  
VBAT(SC) and below VDS(AZ), the output transistor is still operational and follows the input. If at least one channel  
is in the ON state, parameters are no longer guaranteed and lifetime is reduced compared to the nominal  
supply voltage range. This especially impacts the short circuit robustness, as well as the maximum energy EAS  
capability. ZGND is recommended to be a resistor in series to a diode.  
ISOV  
ZIS(AZ)  
VS  
VBAT  
IS  
ZD(AZ)  
ZDS(AZ)  
RSENSE  
DSEL  
DEN  
IN0  
RDSEL  
RDEN  
RIN  
LOGIC  
IN1  
RIN  
OUT  
ZDESD  
GND  
ZGND  
L, RL  
RIS  
Overvoltage protection.vsd  
Figure 16 Overvoltage Protection with External Components  
Datasheet  
19  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Protection Functions  
6.4  
Reverse Polarity Protection  
In case of reverse polarity, the intrinsic body diodes of the power DMOS causes power dissipation. The current  
in this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the  
logic pins has to be limited to the maximum current described in Chapter 4.1 with an external resistor.  
Figure 17 shows a typical application. RGND resistor is used to limit the current in the Zener protection of the  
device. Resistors RDSEL, RDEN, and RIN are used to limit the current in the logic of the device and in the ESD  
protection stage. RSENSE is used to limit the current in the sense transistor which behaves as a diode. The  
recommended value for RDEN = RDSEL = RIN = RSENSE = 10 k. ZGND is recommended to be a resistor in series to a  
diode.  
During reverse polarity, no protection functions are available.  
Microcontroller  
ZIS(AZ)  
VS  
protection diodes  
IS  
ZDS(AZ)  
ZD(AZ)  
RSENSE  
VDS(REV)  
DSEL  
DEN  
IN0  
RDSEL  
RDEN  
RIN  
LOGIC  
-VS(REV)  
IN1  
RIN  
OUT  
L, RL  
ZDESD  
GND  
RIS  
ZGND  
Reverse Polarity.vsd  
Figure 17 Reverse Polarity Protection with External Components  
6.5  
Overload Protection  
In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTT6100-2ERA  
offers several protection mechanisms.  
6.5.1  
Current Limitation  
At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the  
maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which  
affects the current flowing in the DMOS.  
6.5.2  
Temperature Limitation in the Power DMOS  
Each channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of  
either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch  
OFF latches the output until the temperature has reached an acceptable value. Figure 18 gives a sketch of the  
situation.  
No retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch  
is switched ON again. Only the IN pin signal toggling can re-activate the power stage (latch behavior).  
Datasheet  
20  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Protection Functions  
IN  
t
IL  
LOAD CURRENT BELOW  
LIMITATION PHASE  
LOAD CURRENT LIMITATION PHASE  
IL(x)SC  
IL(NOM)  
t
TDMOS  
TJ(SC)  
Temperature  
protection phase  
ΔTJ(SW)  
TA  
tsIS(FAULT)  
t
t
tsIS(OC_blank)  
IIS  
IIS(FAULT)  
IL(NOM) / kILIS  
0A  
VDEN  
tsIS(OF F)  
0V  
t
Hard start.vsd  
Figure 18 Overload Protection  
Note:  
For better understanding, the time scale is not linear. The real timing of this drawing is application  
dependant and cannot be described.  
Datasheet  
21  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Protection Functions  
6.6  
Electrical Characteristics for the Protection Functions  
Table 7  
Electrical Characteristics: Protection  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V , TJ = 25°C  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Loss of Ground  
Output leakage current  
while GND disconnected  
IOUT(GND)  
0.1  
mA  
mV  
1)2) VS = 28 V  
See Figure 14  
P_6.6.1  
P_6.6.2  
Reverse Polarity  
Drain source diode voltage VDS(REV)  
200  
650  
700  
3) IL = - 2 A  
during reverse polarity  
TJ = 150°C  
See Figure 17  
Overvoltage  
Overvoltage protection  
VS(AZ)  
65  
20  
70  
75  
V
ISOV = 5 mA  
See Figure 16  
P_6.6.3  
P_6.6.4  
Overload Condition  
4)  
Load current limitation  
IL5(SC)  
25  
80  
30  
A
K
V
= 5 V  
DS  
See Figure 18 and  
Chapter 9.3  
5) See Figure 18  
Dynamic temperature  
increase while switching  
ΔTJ(SW)  
TJ(SC)  
P_6.6.8  
Thermal shutdown  
temperature  
150  
170 5) 200 5) °C  
30  
3) See Figure 18  
P_6.6.10  
P_6.6.11  
2)  
Thermal shutdown  
hysteresis  
ΔTJ(SC)  
K
1) All pins are disconnected except VS and OUT.  
2) Not Subject to production test, specified by design  
3) Test at TJ = +150°C only  
4) Test at TJ = -40°C only  
5) Functional test only  
Datasheet  
22  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Diagnostic Functions  
7
Diagnostic Functions  
For diagnosis purposes, the BTT6100-2ERA provides a combination of digital and analog signals at pin IS.  
These signals are called SENSE. In case the diagnostic is disabled via DEN, pin IS becomes high impedance. In  
case DEN is activated, the sense current of the channel X is enabled/disabled via associated pin DSEL. Table 8  
gives the truth table.  
Table 8  
Diagnostic Truth Table  
DEN  
DSEL  
IS  
0
1
1
don’t care  
Z
0
1
Sense output 0 IIS(0)  
Sense output 1 IIS(1)  
7.1  
IS Pin  
The BTT6100-2ERA provides a sense signal called IIS at pin IS. As long as no “hard” failure mode occurs (short  
circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load  
at OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and  
diagnostic mechanism is described in Figure 19. The accuracy of the sense current depends on temperature  
and load current. The sense pin multiplexes the currents IIS(0) and IIS(1) via the pin DSEL. Thanks to this  
multiplexing, the matching between kILISCHANNEL0 and kILISCHANNEL1 is optimized. Due to the ESD protection, in  
connection to VS, it is not recommended to share the IS pin with other devices if these devices are using  
another battery feed. The consequence is that the unsupplied device would be fed via the IS pin of the  
supplied device.  
VS  
IIS1  
=
IIS0  
=
IL1 / kILIS  
IL0 / kILIS  
IIS(FAULT)  
ZIS(AZ)  
0
1
FAULT  
IS  
DEN  
0
1
DSEL  
Sens es chemati c.vs d  
Figure 19 Diagnostic Block Diagram  
Datasheet  
23  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Diagnostic Functions  
7.2  
SENSE Signal in Different Operating Modes  
Table 9 gives a quick reference for the state of the IS pin during device operation.  
Table 9  
Sense Signal, Function of Operation Mode  
Operation Mode  
Normal operation  
Short circuit to GND  
Overtemperature  
Short circuit to VS  
Open Load  
Input level Channel X DEN1)  
Output Level Diagnostic Output  
OFF H  
Z
Z
~ GND  
Z
Z
Z
VS  
IIS(FAULT)  
< VOL(OFF)  
> VOL(OFF)  
Z
2)  
IIS(FAULT)  
Inverse current  
~ VINV  
~ VS  
< VS  
~ GND  
Z
IIS(FAULT)  
IIS = IL/kILIS  
IIS(FAULT)  
IIS(FAULT)  
IIS(FAULT)  
Normal operation  
Current limitation  
Short circuit to GND  
ON  
Overtemperature TJ(SW)  
event  
Short circuit to VS  
Open Load  
VS  
IIS < IL / kILIS  
IIS < IIS(OL)  
3)  
~ VS  
4)  
Inverse current  
Underload  
~ VINV  
IIS < IIS(OL)  
5)  
~ VS  
IIS (OL)< IIS < IL / kILIS  
Don’t care  
Don’t care  
L
Don’t care  
Z
1) The table doesn’t indicate but it is assumed that the appropriate channel is selected via the DSEL pins.  
2) Stable with additional pull-up resistor.  
3) The output current has to be smaller than IL(OL)  
4) After maximum tINV  
.
.
5) The output current has to be higher than IL(OL)  
.
Datasheet  
24  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Diagnostic Functions  
7.3  
SENSE Signal in the Nominal Current Range  
Figure 20 and Figure 21 show the current sense as a function of the load current in the power DMOS. Usually,  
a pull-down resistor RIS is connected to the current sense IS pin. This resistor has to be higher than 560 to  
limit the power losses in the sense circuitry. A typical value is 1.2 k. The blue curve represents the ideal sense  
current, assuming an ideal kILIS factor value. The red curves shows the accuracy the device provides across full  
temperature range at a defined current.  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
min/max Sense Current  
typical Sense Current  
0
0
0.5  
1
1.5  
2
2.5  
I
[A]  
L
BTT6100-2ERA  
Figure 20 Current Sense for Nominal Load  
7.3.1  
SENSE Signal Variation as a Function of Temperature and Load Current  
In some applications a better accuracy is required at smaller currents. To achieve this accuracy requirement,  
a calibration on the application is possible. To avoid multiple calibration points at different load and  
temperature conditions, the BTT6100-2ERA allows limited derating of the kILIS value, at a given point  
(IL3; TJ = +25°C). This derating is described by the parameter ΔkILIS. Figure 21 shows the behavior of the sense  
current, assuming one calibration point at nominal load at +25°C.  
The blue line indicates the ideal kILIS ratio.  
The green lines indicate the derating on the parameter across temperature and voltage, assuming one  
calibration point at nominal temperature and nominal battery voltage.  
The red lines indicate the kILIS accuracy without calibration.  
1000  
calibrated k  
ILIS  
min/max k  
ILIS  
900  
800  
700  
600  
500  
400  
300  
typical k  
ILIS  
0
0.5  
1
1.5  
2
2.5  
I
[A]  
L
BTT6100-2ERA  
Figure 21 Improved Current Sense Accuracy with One Calibration Point at 0.4 A  
Datasheet  
25  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Diagnostic Functions  
7.3.2  
SENSE Signal Timing  
Figure 22 shows the timing during settling and disabling of the SENSE.  
VINx  
t
ILx  
tONx  
tOFFx  
tONx  
90% of  
IL static  
t
VDEN  
t
IIS  
tsIS(LC)  
tsIS(chC)  
tsIS(OFF)  
tsIS(ON)  
tsIS(ON_DEN)  
90% of  
IS static  
I
t
t
VDSEL  
VINy  
t
ILy  
tONy  
t
current sense settling disabling time .vsd  
Figure 22 Current Sense Settling / Disabling Timing  
Datasheet  
26  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Diagnostic Functions  
7.3.3  
SENSE Signal in Open Load  
7.3.3.1 Open Load in ON Diagnostic  
If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The  
parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the  
power DMOS is below this value, the device recognizes a failure, if the DEN (and DSEL) is selected. In that case,  
the SENSE current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL)  
.
Figure 23 shows the SENSE current behavior in this area. The red curve shows a typical product curve. The  
blue curve shows the ideal current sense.  
IIS  
IIS(OL)  
IL  
IL(OL)  
Sense for OL .vsd  
Figure 23 Current Sense Ratio for Low Currents  
7.3.3.2 Open Load in OFF Diagnostic  
For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the  
calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to  
be taken into account. Figure 24 gives a sketch of the situation. Ileakage defines the leakage current in the  
complete system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion,  
etc... in the application.  
To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel  
x is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized  
by the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is  
switched to the IIS(FAULT)  
.
An additional RPD resistor can be used to pull VOUT to 0 V. Otherwise, the OUT pin is floating. This resistor can  
be used as well for short circuit to battery detection, see Chapter 7.3.4.  
Datasheet  
27  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Diagnostic Functions  
Vbat  
SOL  
VS  
IIS(FAULT)  
ROL  
OL  
comp.  
OUT  
IS  
ILOFF  
Ileakage  
GND  
VOL(OFF)  
ZGND  
Rleakage  
RIS  
RPD  
Open Load in OFF.vsd  
Figure 24 Open Load Detection in OFF Electrical Equivalent Circuit  
7.3.3.3 Open Load Diagnostic Timing  
Figure 25 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please  
note that a delay tsIS(FAULT_OL_OFF) has to be respected after the falling edge of the input, when applying an open  
load in OFF diagnosis request, otherwise the diagnosis can be wrong.  
Load is present  
Open load  
VIN  
VOUT  
t
VS-VOL(OFF)  
shutdown with load  
RDS(ON) x IL  
t
t
IOUT  
tsIS(FAULT_OL_ON_OFF)  
IIS  
tsIS(LC)  
t
Error Settling Disabling Time.vsd  
Figure 25 Sense Signal in Open Load Timing  
Datasheet  
28  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Diagnostic Functions  
7.3.4  
SENSE Signal with OUT in Short Circuit to VS  
In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit  
impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the  
normal operation will flow through the DMOS of the BTT6100-2ERA, which can be recognized at the current  
sense signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In  
that case, an external resistor to ground RSC_VS is required. Figure 26 gives a sketch of the situation.  
Vbat  
VS  
IIS(FAULT)  
VBAT  
OL  
Comp.  
IS  
OUT  
VOL(OFF)  
GND  
RSC_VS  
ZGND  
RIS  
Sh or t c irc uit to Vs .v sd  
Figure 26 Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit  
7.3.5  
SENSE Signal in Case of Overload  
An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or  
the absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the  
thermal shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details.  
In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected.  
The device has a thermal latch behavior, such that when the overtemperature or the exceed dynamic  
temperature condition has disappeared, the DMOS is reactivated only when the IN is toggled LOW to HIGH. If  
the DEN pin is activated, and DSEL pin is selected to the correct channel, the SENSE follows the output stage.  
If no reset of the latch occurs, the device remains in the latching phase and IIS(FAULT) at the IS pin, even though  
the DMOS is OFF.  
7.3.6  
SENSE Signal in Case of Inverse Current  
In the case of inverse current, the sense signal of the affected channel will indicate open load in OFF state and  
indicate open load in ON state. The unaffected channels indicate normal behavior as long as the IINV current is  
not exceeding the maximum value specified in Chapter 5.4.  
Datasheet  
29  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Diagnostic Functions  
7.4  
Electrical Characteristics Diagnostic Function  
Table 10 Electrical Characteristics: Diagnostics  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Load Condition Threshold for Diagnostic  
1)  
Open load detection  
threshold in OFF state  
VS- VOL(OFF)  
4
6
V
V = 0 V  
P_7.5.1  
P_7.5.2  
IN  
VDEN = 4.5 V  
See Figure 25  
Open load detection  
threshold in ON state  
IL(OL)  
5
25  
mA VIN = VDEN = 4.5 V  
IIS(OL) = 22.5 μA  
See Figure 23  
See Chapter 9.4  
Sense Pin  
1)  
IS pin leakage current when IIS_(DIS)  
sense is disabled  
1
0.02  
1
µA  
V
V = 4.5 V  
P_7.5.4  
P_7.5.6  
IN  
VDEN = 0 V  
IL = IL4 = 2 A  
Sense signal saturation  
voltage  
VS- VIS (RANGE)  
3.5  
VIN = 0 V  
VOUT = VS > 10 V  
VDEN = 4.5 V  
IIS = 6 mA  
See Chapter 9.4  
Sense signal maximum  
current in fault condition  
IIS(FAULT)  
6
15  
35  
mA VIS = VIN = VDSEL = 0 V  
OUT = VS > 10 V  
P_7.5.7  
P_7.5.3  
V
VDEN = 4.5 V  
See Figure 19  
See Chapter 9.4  
Sense pin maximum voltage VIS(AZ)  
65  
70  
75  
V
IIS = 5 mA  
See Figure 19  
Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition  
Current sense ratio  
IL0 = 50 mA  
kILIS0  
kILIS1  
kILIS2  
kILIS3  
kILIS4  
ΔkILIS  
-50% 660  
-40% 600  
-15% 600  
-11% 600  
+50%  
+40%  
+15%  
+11%  
+9%  
VIN = 4.5 V  
VDEN = 4.5 V  
See Figure 20  
P_7.5.8  
Current sense ratio  
IL1 = 0.1 A  
P_7.5.9  
TJ = -40°C; 150°C  
Current sense ratio  
IL2 = 0.4 A  
P_7.5.10  
P_7.5.11  
P_7.5.12  
P_7.5.17  
Current sense ratio  
IL3 = 1 A  
Current sense ratio  
IL4 = 2 A  
-9%  
-8  
600  
0
2)  
kILIS derating with current  
+8  
%
k
versus kILIS2  
ILIS3  
and temperature  
See Figure 21  
Datasheet  
30  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Diagnostic Functions  
Table 10 Electrical Characteristics: Diagnostics (cont’d)  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Diagnostic Timing in Normal Condition  
2)  
Current sense settling time tsIS(ON)  
to kILIS function stable after  
positive input slope on both  
INput and DEN  
150  
µs  
µs  
µs  
V
= VIN = 0 to 4.5 V P_7.5.18  
DEN  
VS = 28 V  
RIS = 1.2 kΩ  
C
IL = IL3 = 1 A  
See Figure 22  
1)  
SENSE < 100 pF  
Current sense settling time tsIS(ON_DEN)  
with load current stable and  
transition of the DEN  
10  
15  
V = 4.5 V  
P_7.5.19  
P_7.5.20  
IN  
VDEN = 0 to 4.5 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
IL = IL3 = 1 A  
See Figure 22  
1)  
Current sense settling time tsIS(LC)  
to IIS stable after positive  
input slope on current load  
V = 4.5 V  
IN  
V
DEN = 4.5 V  
RIS = 1.2 kΩ  
SENSE < 100 pF  
C
IL= IL2 = 0.4 A to  
IL = IL3 = 1 A  
See Figure 22  
Diagnostic Timing in Open Load Condition  
1)  
Current sense settling time tsIS(FAULT_OL_  
50  
µs  
µs  
V = 0V  
P_7.5.22  
P_7.5.23  
IN  
to IIS stable for open load  
VDEN = 0 to 4.5 V  
RIS = 1.2 kΩ  
C
VOUT = VS = 28 V  
2)  
OFF)  
detection in OFF state  
SENSE < 100 pF  
Current sense settling time tsIS(FAULT_OL_  
200  
V = 4.5 to 0V  
IN  
to IIS stable for open load  
VDEN = 4.5 V  
ON_OFF)  
detection in ON-OFF  
transition  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
VOUT = VS = 28 V  
See Figure 25  
Diagnostic Timing in Overload Condition  
1) 3) 4)  
Current sense settling time tsIS(FAULT)  
to IIS stable for overload  
detection  
150  
µs  
P_7.5.24  
VIN = VDEN = 0 to 4.5 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
VDS = 5 V  
See Figure 18  
Datasheet  
31  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Diagnostic Functions  
Table 10 Electrical Characteristics: Diagnostics (cont’d)  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
350  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
2)  
Current sense over current tsIS(OC_blank)  
µs  
V = VDEN = 4.5 V  
P_7.5.32  
IN  
blanking time  
RIS = 1.2 kΩ  
SENSE < 100 pF  
C
VDS = 5 V to 0 V  
See Figure 18  
1)  
Diagnostic disable time  
DEN transition to  
IIS < 50% IL /kILIS  
tsIS(OFF)  
20  
20  
µs  
V = 4.5 V  
P_7.5.25  
P_7.5.26  
IN  
VDEN = 4.5 V to 0 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
IL = IL3 = 1 A  
See Figure 22  
Current sense settling time tsIS(ChC)  
µs  
VIN0 = VIN1 = 4.5 V  
from one channel to another  
VDEN = 4.5 V  
VDSEL = 0 to 4.5 V  
RIS = 1.2 kΩ  
C
SENSE < 100 pF  
IL(OUT0) = IL3 = 1 A  
L(OUT1) = IL2 = 0.4 A  
See Figure 22  
I
1) DSEL pin select channel 0 only.  
2) Not subject to production test, specified by design  
3) Functional Test only  
4) Test at TJ = -40°C only  
Datasheet  
32  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Input Pins  
8
Input Pins  
8.1  
Input Circuitry  
The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to  
voltage thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin  
is slowly increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state.  
The input circuitry is compatible with PWM applications. Figure 27 shows the electrical equivalent input  
circuitry. In case the pin is not needed, it must be left opened, or must be connected to device ground (and not  
module ground) via a 10 kΩ input resistor.  
IN  
GND  
Input circuitry .vsd  
Figure 27 Input Pin Circuitry  
8.2  
DEN / DSEL Pin  
The DEN and DSEL pins enable and disable the diagnostic functionality of the device. The pins have the same  
structure as the INput pins, please refer to Figure 27.  
8.3  
Input Pin Voltage  
The IN, DSEL and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined  
region, set by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are  
unknown and depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON  
and OFF, a hysteresis is implemented. This ensures a certain immunity to noise.  
Datasheet  
33  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Input Pins  
8.4  
Electrical Characteristics  
Table 11 Electrical Characteristics: Input Pins  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
INput Pins Characteristics  
Low level input voltage range VIN(L)  
High level input voltage range VIN(H)  
-0.3  
2
0.8  
6
V
See Chapter 9.5 P_8.4.1  
See Chapter 9.5 P_8.4.2  
1) See Chapter 9.5 P_8.4.3  
V
Input voltage hysteresis  
Low level input current  
High level input current  
VIN(HYS)  
IIN(L)  
IIN(H)  
250  
10  
10  
mV  
µA  
µA  
1
25  
25  
VIN = 0.8 V  
P_8.4.4  
P_8.4.5  
2
VIN = 5.5 V  
See Chapter 9.5  
DEN Pin  
Low level input voltage range VDEN(L)  
High level input voltage range VDEN(H)  
-0.3  
2
0.8  
6
V
P_8.4.6  
P_8.4.7  
P_8.4.8  
P_8.4.9  
P_8.4.10  
V
1)  
Input voltage hysteresis  
Low level input current  
High level input current  
DSEL Pin  
VDEN(HYS)  
IDEN(L)  
250  
10  
10  
mV  
µA  
µA  
1
25  
25  
VDEN = 0.8 V  
VDEN = 5.5 V  
IDEN(H)  
2
Low level input voltage range VDSEL(L)  
High level input voltage range VDSEL(H)  
-0.3  
2
0.8  
6
V
P_8.4.11  
P_8.4.12  
P_8.4.13  
P_8.4.14  
P_8.4.15  
V
1)  
Input voltage hysteresis  
Low level input current  
High level input current  
VDSEL(HYS)  
IDSEL(L)  
250  
10  
10  
mV  
µA  
µA  
1
25  
25  
VDSEL = 0.8 V  
VDSEL = 5.5 V  
IDSEL(H)  
2
1) Not subject to production test, specified by design  
Datasheet  
34  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Characterization Results  
9
Characterization Results  
The characterization has been performed on 3 lots, with 3 devices each. Characterization has been performed  
at 8 V, 28 V and 36 V over temperature range.  
9.1  
General Product Characteristics  
P_4.2.3  
P_4.2.4  
5.000  
4.800  
4.600  
4.400  
4.200  
4.000  
3.800  
3.600  
3.400  
3.200  
5.000  
4.500  
4.000  
3.500  
3.000  
2.500  
8V  
28V  
36V  
8V  
28V  
36V  
2.000  
-50  
3.000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Minimum Functional Supply Voltage  
S(OP)_MIN = f(TJ)  
Undervoltage Threshold VS(UV) = f(TJ)  
V
P_4.2.6  
P_4.2.7, P_4.2.10  
4.500  
4.000  
3.500  
3.000  
2.500  
2.000  
1.500  
1.000  
0.500  
3.000  
2.500  
2.000  
1.500  
1.000  
0.500  
0.000  
8V  
28V  
36V  
8V  
28V  
36V  
0.000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Current Consumption for Whole Device with  
Standby Current for Whole Device with  
Load Channels Active IGND_2 = f(TJ;VS)  
Load IS(OFF)= f(TJ;VS)  
Datasheet  
35  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Characterization Results  
9.2  
Power Stage  
P_5.5.4  
P_5.5.5  
20.000  
18.000  
16.000  
14.000  
12.000  
10.000  
8.000  
75.000  
74.000  
73.000  
72.000  
71.000  
70.000  
69.000  
68.000  
67.000  
66.000  
6.000  
4.000  
8V  
8V  
28V  
36V  
28V  
36V  
2.000  
0.000  
65.000  
-50  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Output Voltage Drop Limitation at Low  
Drain to Source Clamp Voltage VDS(AZ) = f(TJ)  
Load Current VDS(NL) = f(TJ)  
P_5.5.11  
P_5.5.12  
2.000  
1.800  
1.600  
1.400  
1.200  
1.000  
0.800  
0.600  
0.400  
0.200  
0.000  
2.000  
1.800  
1.600  
1.400  
1.200  
1.000  
0.800  
0.600  
0.400  
0.200  
0.000  
8V  
8V  
28V  
36V  
28V  
36V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Slew Rate at Turn ON  
dV/dtON = f(TJ;VS), RL = 25  
Slew Rate at Turn OFF  
-dV/dtOFF = f(TJ;VS), RL = 25 Ω  
Datasheet  
36  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Characterization Results  
P_5.5.14  
P_5.5.15  
80.000  
70.000  
60.000  
50.000  
40.000  
30.000  
20.000  
10.000  
0.000  
90.000  
80.000  
70.000  
60.000  
50.000  
40.000  
30.000  
20.000  
10.000  
8V  
8V  
28V  
36V  
28V  
36V  
0.000  
-50  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Turn ON tON = f(TJ;VS), RL = 25 Ω  
Turn OFF tOFF = f(TJ;VS), RL = 25 Ω  
P_5.5.19  
P_5.5.20  
450.000  
400.000  
350.000  
300.000  
250.000  
200.000  
150.000  
100.000  
50.000  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
8V  
8V  
28V  
36V  
28V  
36V  
0.000  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Switch ON Energy EON = f(TJ;VS), RL = 25 Ω  
Switch OFF Energy EOFF = f(TJ;VS), RL = 25 Ω  
Datasheet  
37  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Characterization Results  
9.3  
Protection Functions  
P_6.6.4  
25.000  
20.000  
15.000  
10.000  
5.000  
8V  
28V  
36V  
0.000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Overload Condition in the Low Voltage Area  
L5(SC) = f(TJ)  
I
Datasheet  
38  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Characterization Results  
9.4  
Diagnostic Mechanism  
P_7.5.2  
1.400  
16.000  
1.200  
1.000  
0.800  
0.600  
0.400  
0.200  
0.000  
15.000  
14.000  
13.000  
12.000  
11.000  
8V  
8V  
28V  
36V  
28V  
36V  
10.000  
-50  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Current Sense at no Load  
Open Load Detection ON State Threshold  
IIS = f(TJ;VS), IL = 0 A  
IL(OL)= f(TJ)  
P_7.5.3  
P_7.5.7  
75.000  
74.000  
73.000  
72.000  
71.000  
70.000  
69.000  
68.000  
67.000  
66.000  
65.000  
20.000  
18.000  
16.000  
14.000  
12.000  
10.000  
8.000  
6.000  
4.000  
8V  
8V  
28V  
36V  
28V  
36V  
2.000  
0.000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Sense Signal Maximum Voltage  
IS(AZ) = f(TJ)  
Sense Signal Maximum Current in Fault  
Condition IIS(FAULT)= f(TJ; VS)  
V
Datasheet  
39  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Characterization Results  
9.5  
Input Pins  
P_8.4.1  
P_8.4.2  
1.500  
1.450  
1.400  
1.350  
1.300  
1.250  
1.200  
1.150  
1.100  
1.050  
1.800  
1.750  
1.700  
1.650  
1.600  
1.550  
1.500  
1.450  
8V  
8V  
28V  
36V  
28V  
36V  
1.000  
-50  
1.400  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Input Voltage Threshold  
IN(L)= f(TJ;VS)  
Input Voltage Threshold  
VIN(H)= f(TJ;VS)  
V
P_8.4.3  
P_8.4.5  
500.000  
450.000  
400.000  
350.000  
300.000  
250.000  
200.000  
150.000  
100.000  
50.000  
16.000  
14.000  
12.000  
10.000  
8.000  
6.000  
4.000  
2.000  
0.000  
8V  
8V  
28V  
36V  
28V  
36V  
0.000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Input Voltage Hysteresis  
IN(HYS)= f(TJ;VS)  
Input Current High Level  
IIN(H)= f(TJ)  
V
Datasheet  
40  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Application Information  
10  
Application Information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
VBAT  
Voltage Regulator  
OUT VS  
T1  
GND  
CVDD  
Z
CVS  
VS  
VDD  
GPIO  
RDEN  
DEN  
GPIO  
RDSEL  
DSEL  
OUT0  
Microcontroller  
GPIO  
OUT4  
IN0  
IN1  
RIN  
RIN  
COUT  
Valve  
GPIO  
OUT1  
COUT  
IS  
RSENSE  
ADC IN  
GND  
GND  
Bulb  
CSENSE  
D
Figure 28 Application Diagram with BTT6100-2ERA  
Note:  
This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
Table 12 Bill of Material  
Reference Value  
Purpose  
RIN  
10 kΩ  
Protection of the microcontroller during overvoltage, reverse polarity  
Guarantee BTT6100-2ERA channels OFF during loss of ground  
RDEN  
RDSEL  
RPD  
10 kΩ  
10 kΩ  
47 kΩ  
Protection of the microcontroller during overvoltage, reverse polarity  
Protection of the microcontroller during overvoltage, reverse polarity  
Polarization of the output for short circuit to VS detection  
Improve BTT6100-2ERA immunity to electromagnetic noise  
Datasheet  
41  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Application Information  
Table 12 Bill of Material (cont’d)  
Reference Value  
Purpose  
ROL  
1.5 kΩ  
Ensures polarization of the BTT6100-2ERA output during open load in OFF  
diagnostic  
RIS  
1.2 kΩ  
4.7 kΩ  
Sense resistor  
RSENSE  
Overvoltage, reverse polarity, loss of ground. Value to be tuned with micro  
controller specification.  
CSENSE  
COUT  
T1  
100 pF  
Sense signal filtering.  
10 nF  
Protection of the device during ESD and BCI  
Switch the battery voltage for open load in OFF diagnostic  
Protection of the BTT6100-2ERA during overvoltage  
Protection of the BTT6100-2ERA during reverse polarity  
Dual NPN/PNP  
27 Ω  
RGND  
D
BAS21  
Z
58 V Zener diode Protection of the device during overvoltage  
100 nF Filtering of voltage spikes at the battery line  
CVS  
10.1  
Further Application Information  
Please contact us to get the pin FMEA  
Existing App. Notes  
For further information you may visit www.infineon.com  
Datasheet  
42  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Package Outlines  
11  
Package Outlines  
1)  
3.9 0.1  
1)  
8.65 0.1  
14x  
SEATING COPLANARITY  
PLANE  
0.67 0.25  
6 0.2  
2)  
0.4 0.05  
14x  
BOTTOM VIEW  
14  
8
8
7
14  
1
7
1
INDEX  
MARKING  
6.4 0.1  
1.27  
All dimensions are in units mm  
The drawing is in compliance with ISO 128-30, Projection Method 1[  
]
1)  
2)  
Does not Include plastic or metal protrusion of 0.15 max. per side  
Dambar protrusion shall be maximum 0.1mm total in excess of width lead width  
Figure 29 PG-TDSO-14 (Plastic Dual Small Outline Package) (RoHS-Compliant)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Datasheet  
43  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Revision History  
12  
Revision History  
Version  
Date  
Changes  
1.00  
2019-03-09  
Creation of the datasheet  
Datasheet  
44  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1  
3.2  
3.3  
4
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
PCB Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.1  
5.2  
5.3  
5.3.1  
5.3.2  
5.4  
5.5  
6
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.1  
6.2  
6.3  
6.4  
6.5  
6.5.1  
6.5.2  
6.6  
7
7.1  
7.2  
7.3  
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . . . . . . 25  
SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
SENSE Signal with OUT in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.3.1  
7.3.2  
7.3.3  
7.3.3.1  
7.3.3.2  
7.3.3.3  
7.3.4  
7.3.5  
7.3.6  
7.4  
8
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.1  
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Datasheet  
45  
Rev.1.00  
2019-03-09  
PROFET™ +24 V  
BTT6100-2ERA  
8.2  
8.3  
8.4  
DEN / DSEL Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9
Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Diagnostic Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
9.1  
9.2  
9.3  
9.4  
9.5  
10  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
10.1  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
11  
12  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Datasheet  
46  
Rev.1.00  
2019-03-09  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2019-03-09  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2019 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
BTT6100-2ERA  

相关型号:

BTT6200-1EJA

Buffer/Inverter Based Peripheral Driver,
INFINEON

BTT6200-1ENA

The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is especially designed to drive lamps up to 1 x R10W 24 V or 1 x R5W 12 V, as well as LEDs in the harsh automotive environment.
INFINEON

BTT6200-4EMA

Buffer/Inverter Based Peripheral Driver,
INFINEON

BTT6200-4ESA

The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive lamps up to R10 W 24 V or R5 W 12 V, as well as LEDs in the harsh automotive environment.
INFINEON

BTT62001EJAXUMA1

Buffer/Inverter Based Peripheral Driver, 1A, PDSO8, DSO-8
INFINEON

BTT62004EMAXUMA1

Buffer/Inverter Based Peripheral Driver, 1A, PDSO24, SSOP-24
INFINEON

BTT62004ESAXUMA1

Buffer/Inverter Based Peripheral Driver, 1A, PDSO24, SOP-24
INFINEON

BTT9170KP

PCM Transceiver
ETC

BTT9170KPJ

PCM Transceiver
ETC

BTTLDL020

Logic IC
ETC

BTTLDL020M

Logic IC
ETC

BTTLDL020MX

Logic IC
ETC