C161KLMHABXUMA1 [INFINEON]

Microcontroller, 16-Bit, 20MHz, CMOS, PQFP80, 0.65 MM PITCH, PLASTIC, MQFP-80;
C161KLMHABXUMA1
型号: C161KLMHABXUMA1
厂家: Infineon    Infineon
描述:

Microcontroller, 16-Bit, 20MHz, CMOS, PQFP80, 0.65 MM PITCH, PLASTIC, MQFP-80

微控制器
文件: 总68页 (文件大小:1080K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, V2.0, Jan. 2001  
C161K  
C161O  
16-Bit Single-Chip Microcontroller  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
Edition 2001-01  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München, Germany  
© Infineon Technologies AG 2001.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, V2.0, Jan. 2001  
C161K  
C161O  
16-Bit Single-Chip Microcontroller  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
C161K/O  
Revision History:  
2001-01  
V2.0  
Previous Version:  
03.97  
09.96  
(Preliminary)  
(Advance Information)  
Page  
All  
Subjects (major changes since last revision)  
Converted to Infineon layout  
C161V removed  
All  
2
Ordering Codes and Cross-Reference replaced with Derivative Synopsis  
Open drain functionality described for P2, P3, P6  
Bidirectional reset introduced  
5 - 8  
8
19  
Figure updated  
28, 29  
32 - 56  
35  
Revised description of Absolute Max. Ratings and Operating Conditions  
Specifications for reduced supply voltage introduced  
Reduced power consumption  
36, 37  
38, 39  
41 - 56  
Clock Generation Modes added  
Description of External Clock Drive improved  
Standard 25-MHz timing introduced (timing granularity 2 ns)  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
16-Bit Single-Chip Microcontroller  
C166 Family  
C161K/O  
C161K/O  
• High Performance 16-bit CPU with 4-Stage Pipeline  
– 80 ns Instruction Cycle Time at 25 MHz CPU Clock  
– 400 ns Multiplication (16 × 16 bit), 800 ns Division (32 / 16 bit)  
– Enhanced Boolean Bit Manipulation Facilities  
– Additional Instructions to Support HLL and Operating Systems  
– Register-Based Design with Multiple Variable Register Banks  
– Single-Cycle Context Switching Support  
– 16 MBytes Total Linear Address Space for Code and Data  
– 1024 Bytes On-Chip Special Function Register Area  
• 16-Priority-Level Interrupt System with 20 Sources, Sample-Rate down to 40 ns  
• 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via  
Peripheral Event Controller (PEC)  
• Clock Generation via prescaler or via direct clock input  
• On-Chip Memory Modules  
– 2 KBytes On-Chip Internal RAM (IRAM) on C161O,  
1 KByte IRAM on C161K  
• On-Chip Peripheral Modules  
– Two Multi-Functional General Purpose Timer Units with 5 Timers on C161O,  
one Timer Unit with 3 Timers on C161K  
– Two Serial Channels (Synchronous/Asynchronous and High-Speed-Synchronous)  
• Up to 4 MBytes External Address Space for Code and Data  
– Programmable External Bus Characteristics for Different Address Ranges  
– Multiplexed or Demultiplexed External Address/Data Buses with 8-Bit or 16-Bit  
Data Bus Width  
– Four Programmable Chip-Select Signals on C161O,  
two Chip-Select Signals on C161K  
• Idle and Power Down Modes  
• Programmable Watchdog Timer  
• Up to 63 General Purpose I/O Lines  
• Power Supply: the C161K/O can operate from a 5 V or a 3 V power supply  
• Supported by a Large Range of Development Tools like C-Compilers,  
Macro-Assembler Packages, Emulators, Evaluation Boards, HLL-Debuggers,  
Simulators, Logic Analyzer Disassemblers, Programming Boards  
• On-Chip Bootstrap Loader  
• 80-Pin MQFP Package (0.65 mm pitch)  
Data Sheet  
1
V2.0, 2001-01  
C161K  
C161O  
This document describes several derivatives of the C161 group. Table 1 enumerates  
these derivatives and summarizes the differences. As this document refers to all of these  
derivatives, some descriptions may not apply to a specific product.  
Table 1  
Derivative1)  
C161K/O Derivative Synopsis  
Max. Oper. Operating  
Frequency Voltage  
IRAM Nr of Ext. CAP  
[KB] CSs Intr. IN  
SAF-C161K-LM  
20 MHz  
20 MHz  
25 MHz  
25 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
25 MHz  
25 MHz  
20 MHz  
20 MHz  
4.5 to 5.5 V  
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
4
4
4
4
7
7
7
7
7
7
---  
SAB-C161K-LM  
4.5 to 5.5 V  
4.5 to 5.5 V  
4.5 to 5.5 V  
3.0 to 3.6 V  
3.0 to 3.6 V  
4.5 to 5.5 V  
4.5 to 5.5 V  
4.5 to 5.5 V  
4.5 to 5.5 V  
3.0 to 3.6 V  
3.0 to 3.6 V  
---  
SAF-C161K-L25M  
SAB-C161K-L25M  
SAF-C161K-LM3V  
SAB-C161K-LM3V  
SAF-C161O-LM  
SAB-C161O-LM  
SAF-C161O-L25M  
SAB-C161O-L25M  
SAF-C161O-LM3V  
---  
---  
---  
---  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
SAB-C161O-LM3V  
1)  
This Data Sheet is valid for devices starting with and including design step HA.  
For simplicity all versions are referred to by the term C161K/O throughout this document.  
Ordering Information  
The ordering code for Infineon microcontrollers provides an exact reference to the  
required product. This ordering code identifies:  
the derivative itself, i.e. its function set, the temperature range, and the supply voltage  
the package and the type of delivery.  
For the available ordering codes for the C161K/O please refer to the Product Catalog  
Microcontrollers, which summarizes all available microcontroller variants.  
Note: The ordering codes for Mask-ROM versions are defined for each product after  
verification of the respective ROM code.  
Data Sheet  
2
V2.0, 2001-01  
C161K  
C161O  
Introduction  
The C161K/O is a derivative of the Infineon C166 Family of full featured single-chip  
CMOS microcontrollers. It combines high CPU performance (up to 12.5 million  
instructions per second) with peripheral functionality and enhanced IO-capabilities. The  
C161K/O is especially suited for cost sensitive applications.  
VDD  
VSS  
Port 0  
16 Bit  
XTAL1  
XTAL2  
RSTIN  
Port 1  
16 Bit  
RSTOUT  
Port 2  
7 Bit  
NMI  
EA  
C161  
Port 3  
12 Bit  
ALE  
Port 4  
6 Bit  
RD  
WR/WRL  
Port 5  
2 Bit  
Port 6  
4 Bit  
MCL02949  
Figure 1  
Logic Symbol  
Data Sheet  
3
V2.0, 2001-01  
C161K  
C161O  
Pin Configuration MQFP Package  
(top view)  
VSS  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P1H.5/A13  
P1H.4/A12  
P1H.3/A11  
P1H.2/A10  
P1H.1/A9  
XTAL1  
XTAL2  
VDD  
2
3
4
P3.2/CAPIN  
P3.3/T3OUT  
P3.4/T3EUD  
P3.5/T4IN  
5
6
P1H.0/A8  
7
P1L.7/A7  
8
P1L.6/A6  
P3.6/T3IN  
9
P1L.5/A5  
P3.7/T2IN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P1L.4/A4  
C161K/O  
P3.8/MRST  
P3.9/MTSR  
P3.10/TxD0  
P3.11/RxD0  
P3.12/BHE/WRH  
P3.13/SCLK  
P4.0/A16  
P1L.3/A3  
P1L.2/A2  
P1L.1/A1  
P1L.0/A0  
P0H.7/AD15  
P0H.6/AD14  
P0H.5/AD13  
P0H.4/AD12  
P0H.3/AD11  
P0H.2/AD10  
P4.1/A17  
P4.2/A18  
P4.3/A19  
MCP04858  
Figure 2  
Note: The marked signals are only available in the C161O.  
Please also refer to the detailed description below (shaded lines).  
Data Sheet  
4
V2.0, 2001-01  
C161K  
C161O  
Table 2  
Pin Definitions and Functions  
Symbol Pin  
Input Function  
Outp.  
Num  
XTAL1 2  
I
XTAL1:  
Input to the oscillator amplifier and input  
to the internal clock generator  
XTAL2 3  
O
XTAL2:  
Output of the oscillator amplifier circuit.  
To clock the device from an external source, drive XTAL1,  
while leaving XTAL2 unconnected. Minimum and maximum  
high/low and rise/fall times specified in the AC  
Characteristics must be observed.  
P3  
IO  
Port 3 is a 12-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 3 outputs can be configured as push/  
pull or open drain drivers. The Port 3 pins serve for following  
alternate functions:  
P3.2  
5
I
CAPIN  
GPT2 Register CAPREL Capture Input  
This alternate input is only available in the C161O.  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P3.8  
P3.9  
P3.10  
P3.11  
P3.12  
6
7
8
9
10  
11  
12  
13  
14  
15  
O
I
I
I
I
I/O  
I/O  
O
I/O  
O
O
I/O  
T3OUT  
T3EUD  
T4IN  
T3IN  
T2IN  
MRST  
MTSR  
TxD0  
RxD0  
BHE  
GPT1 Timer T3 Toggle Latch Output  
GPT1 Timer T3 External Up/Down Control Input  
GPT1 Timer T4 Count/Gate/Reload/Capture Inp  
GPT1 Timer T3 Count/Gate Input  
GPT1 Timer T2 Count/Gate/Reload/Capture Inp  
SSC Master-Receive/Slave-Transmit Inp./Outp.  
SSC Master-Transmit/Slave-Receive Outp./Inp.  
ASC0 Clock/Data Output (Async./Sync.)  
ASC0 Data Input (Async.) or Inp./Outp. (Sync.)  
External Memory High Byte Enable Signal,  
External Memory High Byte Write Strobe  
SSC Master Clock Output / Slave Clock Input  
WRH  
SCLK  
P3.13  
16  
P4  
IO  
Port 4 is a 6-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 4 can be used to output the segment  
address lines:  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
17  
18  
19  
20  
23  
24  
O
O
O
O
O
O
A16 Least Significant Segment Address Line  
A17 Segment Address Line  
A18 Segment Address Line  
A19 Segment Address Line  
A20 Segment Address Line  
A21 Most Significant Segment Address Line  
Data Sheet  
5
V2.0, 2001-01  
C161K  
C161O  
Table 2  
Pin Definitions and Functions (contd)  
Symbol Pin  
Input Function  
Outp.  
Num  
RD  
25  
O
External Memory Read Strobe. RD is activated for every  
external instruction or data read access.  
WR/  
WRL  
26  
O
External Memory Write Strobe. In WR-mode this pin is  
activated for every external data write access. In WRL-mode  
this pin is activated for low byte data write accesses on a 16-  
bit bus, and for every data write access on an 8-bit bus. See  
WRCFG in register SYSCON for mode selection.  
ALE  
EA  
27  
28  
O
I
Address Latch Enable Output. Can be used for latching the  
address into external memory or an address latch in the  
multiplexed bus modes.  
External Access Enable pin. A low level at this pin during and  
after Reset forces the C161K/O to begin instruction  
execution out of external memory. A high level forces  
execution out of the internal program memory.  
ROMlessversions must have this pin tied to 0.  
PORT0  
P0L.0-7 29-36  
IO  
PORT0 consists of the two 8-bit bidirectional I/O ports P0L  
and P0H. It is bit-wise programmable for input or output via  
direction bits. For a pin configured as input, the output driver  
is put into high-impedance state. In case of an external bus  
configuration, PORT0 serves as the address (A) and  
address/data (AD) bus in multiplexed bus modes and as the  
data (D) bus in demultiplexed bus modes.  
P0H.0-7 39-46  
Demultiplexed bus modes:  
Data Path Width:  
P0L.0 P0L.7:  
P0H.0 P0H.7:  
8-bit  
D0 D7  
I/O  
16-bit  
D0 D7  
D8 D15  
Multiplexed bus modes:  
Data Path Width:  
P0L.0 P0L.7:  
P0H.0 P0H.7:  
8-bit  
16-bit  
AD0 AD7 AD0 AD7  
A8 A15 AD8 AD15  
PORT1  
P1L.0-7 47-54  
IO  
PORT1 consists of the two 8-bit bidirectional I/O ports P1L  
and P1H. It is bit-wise programmable for input or output via  
direction bits. For a pin configured as input, the output driver  
is put into high-impedance state. PORT1 is used as the 16-  
bit address bus (A) in demultiplexed bus modes and also  
after switching from a demultiplexed bus mode to a  
multiplexed bus mode.  
P1H.0-7 55-62  
Data Sheet  
6
V2.0, 2001-01  
C161K  
C161O  
Table 2  
Pin Definitions and Functions (contd)  
Symbol Pin  
Input Function  
Outp.  
Num  
RSTIN 65  
I/O  
Reset Input with Schmitt-Trigger characteristics. A low level  
at this pin while the oscillator is running resets the C161K/O.  
An internal pullup resistor permits power-on reset using only  
a capacitor connected to VSS. A spike filter suppresses input  
pulses < 10 ns. Input pulses >100 ns safely pass the filter.  
The minimum duration for a safe recognition should be  
100 ns + 2 CPU clock cycles.  
In bidirectional reset mode (enabled by setting bit BDRSTEN  
in register SYSCON) the RSTIN line is internally pulled low  
for the duration of the internal reset sequence upon any reset  
(HW, SW, WDT). See note below this table.  
Note: To let the reset configuration of PORT0 settle a reset  
duration of ca. 1 ms is recommended.  
RST  
OUT  
66  
67  
O
I
Internal Reset Indication Output. This pin is set to a low level  
when the part is executing either a hardware-, a software- or  
a watchdog timer reset. RSTOUT remains low until the EINIT  
(end of initialization) instruction is executed.  
NMI  
Non-Maskable Interrupt Input. A high to low transition at this  
pin causes the CPU to vector to the NMI trap routine. When  
the PWRDN (power down) instruction is executed, the NMI  
pin must be low in order to force the C161K/O to go into  
power down mode. If NMI is high, when PWRDN is  
executed, the part will continue to run in normal mode.  
If not used, pin NMI should be pulled high externally.  
P6  
IO  
Port 6 is a 4-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 6 outputs can be configured as push/  
pull or open drain drivers.  
The Port 6 pins also serve for alternate functions:  
P6.0  
P6.1  
P6.2  
P6.3  
68  
69  
O
O
CS0  
CS1  
Chip Select 0 Output  
Chip Select 1 Output  
70  
71  
O
O
CS2  
CS3  
Chip Select 2 Output  
Chip Select 3 Output  
These chip select outputs are only available in the C161O.  
Data Sheet  
7
V2.0, 2001-01  
C161K  
C161O  
Table 2  
Pin Definitions and Functions (contd)  
Symbol Pin  
Input Function  
Outp.  
Num  
P2  
IO  
Port 2 is a 7-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 2 outputs can be configured as push/  
pull or open drain drivers. The following Port 2 pins serve for  
alternate functions:  
P2.9  
72  
73  
74  
75  
I
I
I
I
EX1IN  
EX2IN  
EX3IN  
EX4IN  
Fast External Interrupt 1 Input  
Fast External Interrupt 2 Input  
Fast External Interrupt 3 Input  
Fast External Interrupt 4 Input  
P2.10  
P2.11  
P2.12  
76  
77  
78  
I
I
I
EX5IN  
EX6IN  
EX7IN  
Fast External Interrupt 5 Input  
Fast External Interrupt 6 Input  
Fast External Interrupt 7 Input  
These external interrupts are only available in the C161O.  
P5  
I
Port 5 is a 2-bit input-only port with Schmitt-Trigger char. The  
pins of Port 5 also serve as timer inputs:  
P5.14  
P5.15  
79  
80  
I
I
T4EUD  
T2EUD  
GPT1 Timer T4 External Up/Down Control Input  
GPT1 Timer T2 External Up/Down Control Input  
VDD  
4, 22,  
Digital Supply Voltage:  
37, 64  
+ 5 V or + 3 V during normal operation and idle mode.  
2.5 V during power down mode.  
VSS  
1, 21,  
Digital Ground.  
38, 63  
Note: The following behavioral differences must be observed when the bidirectional  
reset is active:  
Bit BDRSTEN in register SYSCON cannot be changed after EINIT and is cleared  
automatically after a reset.  
The reset indication flags always indicate a long hardware reset.  
The PORT0 configuration is treated like on a hardware reset. Especially the bootstrap  
loader may be activated when P0L.4 is low.  
Pin RSTIN may only be connected to external reset devices with an open drain output  
driver.  
A short hardware reset is extended to the duration of the internal reset sequence.  
Data Sheet  
8
V2.0, 2001-01  
C161K  
C161O  
Functional Description  
The architecture of the C161K/O combines advantages of both RISC and CISC  
processors and of advanced peripheral subsystems in a very well-balanced way. In  
addition the on-chip memory blocks allow the design of compact systems with maximum  
performance.  
The following block diagram gives an overview of the different on-chip components and  
of the advanced, high bandwidth internal bus structure of the C161K/O.  
Note: All time specifications refer to a CPU clock of 25 MHz  
(see definition in the AC Characteristics section).  
C166-Core  
ProgMem  
IRAM  
Internal  
RAM  
16  
16  
Data  
Data  
32  
16  
Internal  
ROM  
Area  
Instr. / Data  
CPU  
1/2 Kbyte  
XTAL  
Osc  
PEC  
External Instr. / Data  
16-Level  
Priority  
Interrupt Controller  
WDT  
16  
Interrupt Bus  
Peripheral Data Bus  
16  
ASC0 SSC GPT1 GPT2  
(USART)  
(SPI)  
T2  
T3  
T4  
EBC  
8
8
XBUS Control  
External Bus  
Control  
8
T5  
T6  
BRGen  
BRGen  
Port 0  
16  
Port 1  
Port 3  
Port 5  
6
16  
15  
MCB04323_1ko  
Figure 3  
Block Diagram  
The program memory, the internal RAM (IRAM) and the set of generic peripherals are  
connected to the CPU via separate buses. A fourth bus, the XBUS, connects external  
resources as well as additional on-chip resources, the X-Peripherals (see Figure 3).  
Data Sheet  
9
V2.0, 2001-01  
C161K  
C161O  
Memory Organization  
The memory space of the C161K/O is configured in a Von Neumann architecture which  
means that code memory, data memory, registers and I/O ports are organized within the  
same linear address space which includes 16 MBytes. The entire memory space can be  
accessed bytewise or wordwise. Particular portions of the on-chip memory have  
additionally been made directly bitaddressable.  
The C161K/O is prepared to incorporate on-chip program memory (not in the ROM-less  
derivatives, of course) for code or constant data. The internal ROM area can be mapped  
either to segment 0 or segment 1.  
On-chip Internal RAM (IRAM) is provided (1 KByte in the C161K, 2 KBytes in the  
C161O) as a storage for user defined variables, for the system stack, general purpose  
register banks and even for code. A register bank can consist of up to 16 wordwide (R0  
to R15) and/or bytewide (RL0, RH0, , RL7, RH7) so-called General Purpose Registers  
(GPRs).  
1024 bytes (2 × 512 bytes) of the address space are reserved for the Special Function  
Register areas (SFR space and ESFR space). SFRs are wordwide registers which are  
used for controlling and monitoring functions of the different on-chip units. Unused SFR  
addresses are reserved for future members of the C166 Family.  
In order to meet the needs of designs where more memory is required than is provided  
on chip, up to 4 MBytes of external RAM and/or ROM can be connected to the  
microcontroller.  
Data Sheet  
10  
V2.0, 2001-01  
C161K  
C161O  
External Bus Controller  
All of the external memory accesses are performed by a particular on-chip External Bus  
Controller (EBC). It can be programmed either to Single Chip Mode when no external  
memory is required, or to one of four different external memory access modes, which are  
as follows:  
16-/18-/20-/22-bit Addresses, 16-bit Data, Demultiplexed  
16-/18-/20-/22-bit Addresses, 16-bit Data, Multiplexed  
16-/18-/20-/22-bit Addresses, 8-bit Data, Multiplexed  
16-/18-/20-/22-bit Addresses, 8-bit Data, Demultiplexed  
In the demultiplexed bus modes, addresses are output on PORT1 and data is input/  
output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses  
and data use PORT0 for input/output.  
Important timing characteristics of the external bus interface (Memory Cycle Time,  
Memory Tri-State Time, Length of ALE and Read Write Delay) have been made  
programmable to allow the user the adaption of a wide range of different types of  
memories and external peripherals.  
In addition, up to 4 independent address windows may be defined (via register pairs  
ADDRSELx / BUSCONx) which control the access to different resources with different  
bus characteristics. These address windows are arranged hierarchically where  
BUSCON4 overrides BUSCON3 and BUSCON2 overrides BUSCON1. All accesses to  
locations not covered by these 4 address windows are controlled by BUSCON0.  
Up to 2 or 4 external CS signals (1 or 3 windows plus default, depending on the device)  
can be generated in order to save external glue logic. The C161K/O offers the possibility  
to switch the CS outputs to an unlatched mode. In this mode the internal filter logic is  
switched off and the CS signals are directly generated from the address. The unlatched  
CS mode is enabled by setting CSCFG (SYSCON.6).  
For applications which require less than 4 MBytes of external memory space, this  
address space can be restricted to 1 MByte, 256 KByte, or to 64 KByte. In this case  
Port 4 outputs four, two, or no address lines at all. It outputs all 6 address lines, if an  
address space of 4 MBytes is used.  
Data Sheet  
11  
V2.0, 2001-01  
C161K  
C161O  
Central Processing Unit (CPU)  
The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic  
and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a  
separate multiply and divide unit, a bit-mask generator and a barrel shifter.  
Based on these hardware provisions, most of the C161K/Os instructions can be  
executed in just one machine cycle which requires 80 ns at 25 MHz CPU clock. For  
example, shift and rotate instructions are always processed during one machine cycle  
independent of the number of bits to be shifted. All multiple-cycle instructions have been  
optimized so that they can be executed very fast as well: branches in 2 cycles, a 16 × 16  
bit multiplication in 5 cycles and a 32-/16 bit division in 10 cycles. Another pipeline  
optimization, the so-called Jump Cache, allows reducing the execution time of  
repeatedly performed jumps in a loop from 2 cycles to 1 cycle.  
CPU  
16  
Internal  
RAM  
SP  
STKOV  
STKUN  
MDH  
MDL  
R15  
Exec. Unit  
Instr. Ptr.  
Instr. Reg.  
Mul/Div-HW  
Bit-Mask Gen  
General  
Purpose  
Registers  
R15  
ALU  
32  
4-Stage  
Pipeline  
(16-bit)  
ROM  
Barrel - Shifter  
Context Ptr.  
R0  
PSW  
SYSCON  
BUSCON 0  
BUSCON 1  
BUSCON 2  
BUSCON 3  
BUSCON 4  
16  
R0  
ADDRSEL 1  
ADDRSEL 2  
ADDRSEL 3  
ADDRSEL 4  
Data Page Ptr.  
Code Seg. Ptr.  
MCB02147  
Figure 4  
CPU Block Diagram  
Data Sheet  
12  
V2.0, 2001-01  
C161K  
C161O  
The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal.  
These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer  
(CP) register determines the base address of the active register bank to be accessed by  
the CPU at any time. The number of register banks is only restricted by the available  
internal RAM space. For easy parameter passing, a register bank may overlap others.  
A system stack of up to 1024 words is provided as a storage for temporary data. The  
system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the  
stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly  
compared against the stack pointer value upon each stack access for the detection of a  
stack overflow or underflow.  
The high performance offered by the hardware implementation of the CPU can efficiently  
be utilized by a programmer via the highly efficient C161K/O instruction set which  
includes the following instruction classes:  
Arithmetic Instructions  
Logical Instructions  
Boolean Bit Manipulation Instructions  
Compare and Loop Control Instructions  
Shift and Rotate Instructions  
Prioritize Instruction  
Data Movement Instructions  
System Stack Instructions  
Jump and Call Instructions  
Return Instructions  
System Control Instructions  
Miscellaneous Instructions  
The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes  
and words. A variety of direct, indirect or immediate addressing modes are provided to  
specify the required operands.  
Data Sheet  
13  
V2.0, 2001-01  
C161K  
C161O  
Interrupt System  
With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of  
internal program execution), the C161K/O is capable of reacting very fast to the  
occurrence of non-deterministic events.  
The architecture of the C161K/O supports several mechanisms for fast and flexible  
response to service requests that can be generated from various sources internal or  
external to the microcontroller. Any of these interrupt requests can be programmed to  
being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).  
In contrast to a standard interrupt service where the current program execution is  
suspended and a branch to the interrupt vector table is performed, just one cycle is  
stolenfrom the current CPU activity to perform a PEC service. A PEC service implies a  
single byte or word data transfer between any two memory locations with an additional  
increment of either the PEC source or the destination pointer. An individual PEC transfer  
counter is implicity decremented for each PEC service except when performing in the  
continuous transfer mode. When this counter reaches zero, a standard interrupt is  
performed to the corresponding source related vector location. PEC services are very  
well suited, for example, for supporting the transmission or reception of blocks of data.  
The C161K/O has 8 PEC channels each of which offers such fast interrupt-driven data  
transfer capabilities.  
A separate control register which contains an interrupt request flag, an interrupt enable  
flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via  
its related register, each source can be programmed to one of sixteen interrupt priority  
levels. Once having been accepted by the CPU, an interrupt service can only be  
interrupted by a higher prioritized service request. For the standard interrupt processing,  
each of the possible interrupt sources has a dedicated vector location.  
Fast external interrupt inputs are provided to service external interrupts with high  
precision requirements. These fast interrupt inputs feature programmable edge  
detection (rising edge, falling edge or both edges).  
Software interrupts are supported by means of the TRAPinstruction in combination with  
an individual trap (interrupt) number.  
Table 3 shows all of the possible C161K/O interrupt sources and the corresponding  
hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.  
Note: Interrupt nodes which are not used by associated peripherals, may be used to  
generate software controlled interrupt requests by setting the respective interrupt  
request bit (xIR).  
Data Sheet  
14  
V2.0, 2001-01  
C161K  
C161O  
Table 3  
C161K/O Interrupt Nodes  
Source of Interrupt or Request  
PEC Service Request Flag  
Enable  
Flag  
Interrupt Vector  
Trap  
Vector  
Location Number  
External Interrupt 1  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
External Interrupt 5  
External Interrupt 6  
External Interrupt 7  
GPT1 Timer 2  
CC9IR  
CC10IR  
CC11IR  
CC12IR  
CC13IR  
CC14IR  
CC15IR  
T2IR  
CC9IE  
CC10IE  
CC11IE  
CC12IE  
CC13IE  
CC14IE  
CC15IE  
T2IE  
CC9INT  
000064H 19H  
CC10INT 000068H 1AH  
CC11INT 00006CH 1BH  
CC12INT 000070H 1CH  
CC13INT 000074H 1DH  
CC14INT 000078H 1EH  
CC15INT 00007CH 1FH  
T2INT  
T3INT  
T4INT  
T5INT  
T6INT  
CRINT  
S0TINT  
000088H 22H  
00008CH 23H  
000090H 24H  
000094H 25H  
000098H 26H  
00009CH 27H  
0000A8H 2AH  
GPT1 Timer 3  
T3IR  
T3IE  
GPT1 Timer 4  
T4IR  
T4IE  
GPT2 Timer 5  
T5IR  
T5IE  
GPT2 Timer 6  
T6IR  
T6IE  
GPT2 CAPREL Reg.  
ASC0 Transmit  
CRIR  
CRIE  
S0TIR  
S0TIE  
S0TBIE  
S0RIE  
S0EIE  
SCTIE  
SCRIE  
SCEIE  
ASC0 Transmit Buffer S0TBIR  
S0TBINT 00011CH 47H  
ASC0 Receive  
ASC0 Error  
S0RIR  
S0EIR  
SCTIR  
SCRIR  
SCEIR  
S0RINT  
S0EINT  
SCTINT  
SCRINT  
SCEINT  
0000ACH 2BH  
0000B0H 2CH  
0000B4H 2DH  
0000B8H 2EH  
0000BCH 2FH  
SSC Transmit  
SSC Receive  
SSC Error  
Note: The shaded interrupt nodes are only available in the C161O, not in the C161K.  
Data Sheet  
15  
V2.0, 2001-01  
C161K  
C161O  
The C161K/O also provides an excellent mechanism to identify and to process  
exceptions or error conditions that arise during run-time, so-called Hardware Traps.  
Hardware traps cause immediate non-maskable system reaction which is similar to a  
standard interrupt service (branching to a dedicated vector table location). The  
occurrence of a hardware trap is additionally signified by an individual bit in the trap flag  
register (TFR). Except when another higher prioritized trap service is in progress, a  
hardware trap will interrupt any actual program execution. In turn, hardware trap services  
can normally not be interrupted by standard or PEC interrupts.  
Table 4 shows all of the possible exceptions or error conditions that can arise during run-  
time:  
Table 4  
Hardware Trap Summary  
Exception Condition  
Trap  
Flag  
Trap  
Vector  
Vector  
Location  
Trap  
Number  
Trap  
Priority  
Reset Functions:  
Hardware Reset  
Software Reset  
W-dog Timer Overflow  
RESET  
RESET  
RESET  
000000H  
000000H  
000000H  
00H  
00H  
00H  
III  
III  
III  
Class A Hardware Traps:  
Non-Maskable Interrupt NMI  
NMITRAP 000008H  
STOTRAP 000010H  
STUTRAP 000018H  
02H  
04H  
06H  
II  
II  
II  
Stack Overflow  
Stack Underflow  
STKOF  
STKUF  
Class B Hardware Traps:  
Undefined Opcode  
Protected Instruction  
Fault  
UNDOPC BTRAP  
PRTFLT BTRAP  
000028H  
000028H  
0AH  
0AH  
I
I
Illegal Word Operand  
Access  
Illegal Instruction  
Access  
Illegal External Bus  
Access  
ILLOPA  
ILLINA  
ILLBUS  
BTRAP  
BTRAP  
BTRAP  
000028H  
000028H  
000028H  
0AH  
0AH  
0AH  
I
I
I
Reserved  
[2CH –  
3CH]  
[0BH –  
0FH]  
Software Traps  
TRAP Instruction  
Any  
Any  
Current  
CPU  
Priority  
[000000H[00H –  
0001FCH] 7FH]  
in steps  
of 4H  
Data Sheet  
16  
V2.0, 2001-01  
C161K  
C161O  
General Purpose Timer (GPT) Unit  
The GPT unit represents a very flexible multifunctional timer/counter structure which  
may be used for many different time related tasks such as event timing and counting,  
pulse width and duty cycle measurements, pulse generation, or pulse multiplication.  
The GPT unit incorporates five 16-bit timers which are organized in two separate  
modules, GPT1 and GPT2. Each timer in each module may operate independently in a  
number of different modes, or may be concatenated with another timer of the same  
module.  
Each of the three timers T2, T3, T4 of module GPT1 can be configured individually for  
one of four basic modes of operation, which are Timer, Gated Timer, Counter, and  
Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from  
the CPU clock, divided by a programmable prescaler, while Counter Mode allows a timer  
to be clocked in reference to external events.  
Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the  
operation of a timer is controlled by the gatelevel on an external input pin. For these  
purposes, each timer has one associated port pin (TxIN) which serves as gate or clock  
input. The maximum resolution of the timers in module GPT1 is 16 TCL.  
The count direction (up/down) for each timer is programmable by software or may  
additionally be altered dynamically by an external signal on a port pin (TxEUD) to  
facilitate e.g. position tracking.  
In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected  
to the incremental position sensor signals A and B via their respective inputs TxIN and  
TxEUD. Direction and count signals are internally derived from these two input signals,  
so the contents of the respective timer Tx corresponds to the sensor position. The third  
position sensor signal TOP0 can be connected to an interrupt input.  
Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer over-  
flow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out  
monitoring of external hardware components, or may be used internally to clock timers  
T2 and T4 for measuring long time periods with high resolution.  
In addition to their basic operating modes, timers T2 and T4 may be configured as reload  
or capture registers for timer T3. When used as capture or reload registers, timers T2  
and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a  
signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2  
or T4 triggered either by an external signal or by a selectable state transition of its toggle  
latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite  
state transitions of T3OTL with the low and high times of a PWM signal, this signal can  
be constantly generated without software intervention.  
Data Sheet  
17  
V2.0, 2001-01  
C161K  
C161O  
T2EUD  
fCPU  
T2IN  
U/D  
Interrupt  
Request  
2n : 1  
GPT1 Timer T2  
T2  
Mode  
Control  
Reload  
Capture  
Interrupt  
Request  
fCPU  
2n : 1  
Toggle FF  
T3OTL  
T3  
Mode  
Control  
T3IN  
GPT1 Timer T3  
T3OUT  
U/D  
T3EUD  
Other  
Timers  
Capture  
Reload  
T4IN  
T4  
Mode  
Control  
Interrupt  
Request  
2n : 1  
GPT1 Timer T4  
U/D  
fCPU  
T4EUD  
MCT02141  
n = 3 10  
Figure 5  
Block Diagram of GPT1  
With its maximum resolution of 8 TCL, the GPT2 module provides precise event control  
and time measurement. It includes two timers (T5, T6) and a capture/reload register  
(CAPREL). Both timers can be clocked with an input clock which is derived from the CPU  
clock. The count direction (up/down) for each timer is programmable by software.  
Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6,  
which changes its state on each timer overflow/underflow.  
The state of this latch may be used to clock timer T5. The overflows/underflows of timer  
T6 can cause a reload from the CAPREL register. The CAPREL register may capture  
the contents of timer T5 based on an external signal transition on the corresponding port  
pin (CAPIN), and timer T5 may optionally be cleared after the capture procedure. This  
allows the C161K/O to measure absolute time differences or to perform pulse  
multiplication without software overhead.  
Data Sheet  
18  
V2.0, 2001-01  
C161K  
C161O  
The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of  
GPT1 timer T3s inputs T3IN and/or T3EUD. This is especially advantageous when T3  
operates in Incremental Interface Mode.  
Note: Block GPT2 is only available in the C161O, not in the C161K.  
fCPU  
2n : 1  
T5  
Mode  
Control  
U/D  
Interrupt  
Request  
GPT2 Timer T5  
Clear  
Capture  
T3  
Interrupt  
Request  
MUX  
CT3  
CAPIN  
GPT2 CAPREL  
Interrupt  
Request  
T6OTL  
GPT2 Timer T6  
U/D  
T6OUT  
T6  
Mode  
Control  
fCPU  
2n : 1  
Other  
Timers  
MCB02938  
n = 2 9  
Figure 6  
Block Diagram of GPT2  
Data Sheet  
19  
V2.0, 2001-01  
C161K  
C161O  
Serial Channels  
Serial communication with other microcontrollers, processors, terminals or external  
peripheral components is provided by two serial interfaces with different functionality, an  
Asynchronous/Synchronous Serial Channel (ASC0) and a High-Speed Synchronous  
Serial Channel (SSC).  
The ASC0 is upward compatible with the serial ports of the Infineon 8-bit microcontroller  
families and supports full-duplex asynchronous communication at up to 781 kBaud and  
half-duplex synchronous communication at up to 3.1 MBaud (@ 25 MHz CPU clock).  
A dedicated baud rate generator allows to set up all standard baud rates without  
oscillator tuning. For transmission, reception and error handling 4 separate interrupt  
vectors are provided. In asynchronous mode, 8- or 9-bit data frames are transmitted or  
received, preceded by a start bit and terminated by one or two stop bits. For  
multiprocessor communication, a mechanism to distinguish address from data bytes has  
been included (8-bit data plus wake up bit mode).  
In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a  
shift clock which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop  
back option is available for testing purposes.  
A number of optional hardware error detection capabilities has been included to increase  
the reliability of data transfers. A parity bit can automatically be generated on  
transmission or be checked on reception. Framing error detection allows to recognize  
data frames with missing stop bits. An overrun error will be generated, if the last  
character received has not been read out of the receive buffer register at the time the  
reception of a new character is complete.  
The SSC supports full-duplex synchronous communication at up to 6.25 MBaud  
(@ 25 MHz CPU clock). It may be configured so it interfaces with serially linked  
peripheral components. A dedicated baud rate generator allows to set up all standard  
baud rates without oscillator tuning. For transmission, reception, and error handling three  
separate interrupt vectors are provided.  
The SSC transmits or receives characters of 2 16 bits length synchronously to a shift  
clock which can be generated by the SSC (master mode) or by an external master (slave  
mode). The SSC can start shifting with the LSB or with the MSB and allows the selection  
of shifting and latching clock edges as well as the clock polarity.  
A number of optional hardware error detection capabilities has been included to increase  
the reliability of data transfers. Transmit and receive error supervise the correct handling  
of the data buffer. Phase and baudrate error detect incorrect serial data.  
Data Sheet  
20  
V2.0, 2001-01  
C161K  
C161O  
Watchdog Timer  
The Watchdog Timer represents one of the fail-safe mechanisms which have been  
implemented to prevent the controller from malfunctioning for longer periods of time.  
The Watchdog Timer is always enabled after a reset of the chip, and can only be  
disabled in the time interval until the EINIT (end of initialization) instruction has been  
executed. Thus, the chips start-up procedure is always monitored. The software has to  
be designed to service the Watchdog Timer before it overflows. If, due to hardware or  
software related failures, the software fails to do so, the Watchdog Timer overflows and  
generates an internal hardware reset and pulls the RSTOUT pin low in order to allow  
external hardware components to be reset.  
The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by 2/128.  
The high byte of the Watchdog Timer register can be set to a prespecified reload value  
(stored in WDTREL) in order to allow further variation of the monitored time interval.  
Each time it is serviced by the application software, the high byte of the Watchdog Timer  
is reloaded. Thus, time intervals between 20 µs and 336 ms can be monitored  
(@ 25 MHz).  
The default Watchdog Timer interval after reset is 5.24 ms (@ 25 MHz).  
Parallel Ports  
The C161K/O provides up to 63 I/O lines which are organized into six input/output ports  
and one input port. All port lines are bit-addressable, and all input/output lines are  
individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O  
ports are true bidirectional ports which are switched to high impedance state when  
configured as inputs. The output drivers of three I/O ports can be configured (pin by pin)  
for push/pull operation or open-drain operation via control registers. During the internal  
reset, all port pins are configured as inputs.  
All port lines have programmable alternate input or output functions associated with  
them. All port lines that are not used for these alternate functions may be used as general  
purpose IO lines.  
PORT0 and PORT1 may be used as address and data lines when accessing external  
memory, while Port 4 outputs the additional segment address bits A21/19/17 A16 in  
systems where segmentation is enabled to access more than 64 KBytes of memory.  
Port 6 provides optional chip select signals.  
Port 3 includes alternate functions of timers, serial interfaces, and the optional bus  
control signal BHE/WRH.  
Port 5 is used for timer control signals.  
Data Sheet  
21  
V2.0, 2001-01  
C161K  
C161O  
Instruction Set Summary  
Table 5 lists the instructions of the C161K/O in a condensed way.  
The various addressing modes that can be used with a specific instruction, the operation  
of the instructions, parameters for conditional execution of instructions, and the opcodes  
for each instruction can be found in the C166 Family Instruction Set Manual.  
This document also provides a detailed description of each instruction.  
Table 5  
Mnemonic  
ADD(B)  
ADDC(B)  
SUB(B)  
SUBC(B)  
MUL(U)  
DIV(U)  
Instruction Set Summary  
Description  
Bytes  
2 / 4  
2 / 4  
2 / 4  
2 / 4  
Add word (byte) operands  
Add word (byte) operands with Carry  
Subtract word (byte) operands  
Subtract word (byte) operands with Carry  
(Un)Signed multiply direct GPR by direct GPR (16-16-bit) 2  
(Un)Signed divide register MDL by direct GPR (16-/16-bit) 2  
(Un)Signed long divide reg. MD by direct GPR (32-/16-bit) 2  
DIVL(U)  
CPL(B)  
NEG(B)  
AND(B)  
OR(B)  
Complement direct word (byte) GPR  
Negate direct word (byte) GPR  
Bitwise AND, (word/byte operands)  
Bitwise OR, (word/byte operands)  
Bitwise XOR, (word/byte operands)  
Clear direct bit  
2
2
2 / 4  
2 / 4  
2 / 4  
2
XOR(B)  
BCLR  
BSET  
Set direct bit  
2
BMOV(N)  
Move (negated) direct bit to direct bit  
AND/OR/XOR direct bit with direct bit  
4
BAND, BOR,  
BXOR  
4
BCMP  
Compare direct bit to direct bit  
4
4
BFLDH/L  
Bitwise modify masked high/low byte of bit-addressable  
direct word memory with immediate data  
CMP(B)  
CMPD1/2  
CMPI1/2  
PRIOR  
Compare word (byte) operands  
2 / 4  
Compare word data to GPR and decrement GPR by 1/2 2 / 4  
Compare word data to GPR and increment GPR by 1/2  
2 / 4  
2
Determine number of shift cycles to normalize direct  
word GPR and store result in direct word GPR  
SHL / SHR  
ROL / ROR  
ASHR  
Shift left/right direct word GPR  
2
2
2
Rotate left/right direct word GPR  
Arithmetic (sign bit) shift right direct word GPR  
Data Sheet  
22  
V2.0, 2001-01  
C161K  
C161O  
Table 5  
Instruction Set Summary (contd)  
Description  
Mnemonic  
MOV(B)  
MOVBS  
MOVBZ  
Bytes  
Move word (byte) data  
2 / 4  
Move byte operand to word operand with sign extension 2 / 4  
Move byte operand to word operand. with zero extension 2 / 4  
JMPA, JMPI,  
JMPR  
Jump absolute/indirect/relative if condition is met  
4
JMPS  
J(N)B  
JBC  
Jump absolute to a code segment  
4
4
4
4
Jump relative if direct bit is (not) set  
Jump relative and clear bit if direct bit is set  
Jump relative and set bit if direct bit is not set  
JNBS  
CALLA, CALLI,  
CALLR  
Call absolute/indirect/relative subroutine if condition is met 4  
CALLS  
PCALL  
Call absolute subroutine in any code segment  
4
4
Push direct word register onto system stack and call  
absolute subroutine  
TRAP  
Call interrupt service routine via immediate trap number  
Push/pop direct word register onto/from system stack  
2
2
4
PUSH, POP  
SCXT  
Push direct word register onto system stack and update  
register with word operand  
RET  
Return from intra-segment subroutine  
Return from inter-segment subroutine  
2
2
2
RETS  
RETP  
Return from intra-segment subroutine and pop direct  
word register from system stack  
RETI  
Return from interrupt service subroutine  
Software Reset  
2
SRST  
4
IDLE  
Enter Idle Mode  
4
PWRDN  
SRVWDT  
DISWDT  
EINIT  
Enter Power Down Mode (supposes NMI-pin being low)  
Service Watchdog Timer  
4
4
Disable Watchdog Timer  
4
Signify End-of-Initialization on RSTOUT-pin  
Begin ATOMIC sequence  
4
ATOMIC  
EXTR  
2
Begin EXTended Register sequence  
Begin EXTended Page (and Register) sequence  
Begin EXTended Segment (and Register) sequence  
Null operation  
2
EXTP(R)  
EXTS(R)  
NOP  
2 / 4  
2 / 4  
2
Data Sheet  
23  
V2.0, 2001-01  
C161K  
C161O  
Special Function Registers Overview  
The following table lists all SFRs which are implemented in the C161K/O in alphabetical  
order.  
Bit-addressable SFRs are marked with the letter bin column Name. SFRs within the  
Extended SFR-Space (ESFRs) are marked with the letter Ein column Physical  
Address. Registers within on-chip X-peripherals are marked with the letter Xin column  
Physical Address.  
An SFR can be specified via its individual mnemonic name. Depending on the selected  
addressing mode, an SFR can be accessed via its physical address (using the Data  
Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).  
Note: The shaded registers are only available in the C161O, not in the C161K.  
Table 6  
Name  
C161K/O Registers, Ordered by Name  
Physical 8-Bit Description  
Reset  
Value  
Address  
FE18H  
FE1AH  
FE1CH  
FE1EH  
Addr.  
0CH  
0DH  
0EH  
0FH  
86H  
ADDRSEL1  
ADDRSEL2  
ADDRSEL3  
ADDRSEL4  
Address Select Register 1  
0000H  
0000H  
0000H  
0000H  
0XX0H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
FC00H  
0000H  
0000H  
Address Select Register 2  
Address Select Register 3  
Address Select Register 4  
BUSCON0 b FF0CH  
BUSCON1 b FF14H  
BUSCON2 b FF16H  
BUSCON3 b FF18H  
BUSCON4 b FF1AH  
Bus Configuration Register 0  
Bus Configuration Register 1  
Bus Configuration Register 2  
Bus Configuration Register 3  
Bus Configuration Register 4  
GPT2 Capture/Reload Register  
EX2IN Interrupt Control Register  
EX3IN Interrupt Control Register  
EX4IN Interrupt Control Register  
EX5IN Interrupt Control Register  
8AH  
8BH  
8CH  
8DH  
25H  
CAPREL  
CC10IC  
CC11IC  
CC12IC  
CC13IC  
CC14IC  
CC15IC  
CC9IC  
CP  
FE4AH  
b FF8CH  
b FF8EH  
b FF90H  
b FF92H  
b FF94H  
b FF96H  
b FF8AH  
FE10H  
C6H  
C7H  
C8H  
C9H  
CAH EX6IN Interrupt Control Register  
CBH EX7IN Interrupt Control Register  
C5H  
08H  
B5H  
04H  
EX1IN Interrupt Control Register  
CPU Context Pointer Register  
CRIC  
b FF6AH  
FE08H  
GPT2 CAPREL Interrupt Ctrl. Reg.  
CPU Code Seg. Pointer Reg. (read only)  
CSP  
Data Sheet  
24  
V2.0, 2001-01  
C161K  
C161O  
Table 6  
Name  
C161K/O Registers, Ordered by Name (contd)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
DP0H  
DP0L  
DP1H  
DP1L  
DP2  
b F102H E 81H  
b F100H E 80H  
b F106H E 83H  
b F104H E 82H  
P0H Direction Control Register  
P0L Direction Control Register  
P1H Direction Control Register  
P1L Direction Control Register  
Port 2 Direction Control Register  
Port 3 Direction Control Register  
Port 4 Direction Control Register  
Port 6 Direction Control Register  
CPU Data Page Pointer 0 Reg. (10 bits)  
CPU Data Page Pointer 1 Reg. (10 bits)  
CPU Data Page Pointer 2 Reg. (10 bits)  
CPU Data Page Pointer 3 Reg. (10 bits)  
External Interrupt Control Register  
Identifier  
00H  
00H  
00H  
00H  
b FFC2H  
b FFC6H  
b FFCAH  
b FFCEH  
FE00H  
E1H  
E3H  
E5H  
E7H  
00H  
01H  
02H  
03H  
0000H  
0000H  
00H  
DP3  
DP4  
DP6  
00H  
DPP0  
DPP1  
DPP2  
DPP3  
EXICON  
IDCHIP  
IDMANUF  
IDMEM  
IDMEM2  
IDPROG  
MDC  
0000H  
0001H  
0002H  
0003H  
0000H  
05XXH  
1820H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
00H  
FE02H  
FE04H  
FE06H  
b F1C0H E E0H  
F07CH E 3EH  
F07EH E 3FH  
F07AH E 3DH  
F076H E 3BH  
F078H E 3CH  
Identifier  
Identifier  
Identifier  
Identifier  
b FF0EH  
FE0CH  
87H  
06H  
07H  
CPU Multiply Divide Control Register  
CPU Multiply Divide Reg. High Word  
CPU Multiply Divide Reg. Low Word  
Port 2 Open Drain Control Register  
Port 3 Open Drain Control Register  
Port 6 Open Drain Control Register  
Constant Value 1s Register (read only)  
Port 0 High Reg. (Upper half of PORT0)  
Port 0 Low Reg. (Lower half of PORT0)  
Port 1 High Reg. (Upper half of PORT1)  
Port 1 Low Reg.(Lower half of PORT1)  
Port 2 Register  
MDH  
MDL  
FE0EH  
ODP2  
ODP3  
ODP6  
ONES  
P0H  
b F1C2H E E1H  
b F1C6H E E3H  
b F1CEH E E7H  
b FF1EH  
b FF02H  
b FF00H  
b FF06H  
b FF04H  
b FFC0H  
8FH  
81H  
80H  
83H  
82H  
E0H  
FFFFH  
00H  
P0L  
00H  
P1H  
00H  
P1L  
00H  
P2  
0000H  
Data Sheet  
25  
V2.0, 2001-01  
C161K  
C161O  
Table 6  
Name  
C161K/O Registers, Ordered by Name (contd)  
Physical 8-Bit Description  
Reset  
Value  
Address  
b FFC4H  
b FFC8H  
b FFA2H  
b FFCCH  
FEC0H  
Addr.  
E2H  
E4H  
D1H  
E6H  
60H  
61H  
62H  
63H  
64H  
65H  
66H  
67H  
88H  
P3  
Port 3 Register  
0000H  
00H  
P4  
Port 4 Register (8 bits)  
P5  
Port 5 Register (read only)  
XXXXH  
00H  
P6  
Port 6 Register (8 bits)  
PECC0  
PECC1  
PECC2  
PECC3  
PECC4  
PECC5  
PECC6  
PECC7  
PSW  
PEC Channel 0 Control Register  
PEC Channel 1 Control Register  
PEC Channel 2 Control Register  
PEC Channel 3 Control Register  
PEC Channel 4 Control Register  
PEC Channel 5 Control Register  
PEC Channel 6 Control Register  
PEC Channel 7 Control Register  
CPU Program Status Word  
System Startup Config. Reg. (Rd. only)  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
XXH  
FEC2H  
FEC4H  
FEC6H  
FEC8H  
FECAH  
FECCH  
FECEH  
b FF10H  
RP0H  
S0BG  
b F108H E 84H  
FEB4H  
5AH  
Serial Channel 0 Baud Rate Generator  
Reload Register  
0000H  
S0CON  
S0EIC  
b FFB0H  
b FF70H  
FEB2H  
D8H  
B8H  
59H  
Serial Channel 0 Control Register  
0000H  
0000H  
XXH  
Serial Channel 0 Error Interrupt Ctrl. Reg  
S0RBUF  
Serial Channel 0 Receive Buffer Reg.  
(read only)  
S0RIC  
b FF6EH  
B7H  
Serial Channel 0 Receive Interrupt  
Control Register  
0000H  
0000H  
00H  
S0TBIC  
S0TBUF  
S0TIC  
b F19CH E CEH Serial Channel 0 Transmit Buffer  
Interrupt Control Register  
FEB0H  
b FF6CH  
FE12H  
58H  
B6H  
09H  
Serial Channel 0 Transmit Buffer  
Register (write only)  
Serial Channel 0 Transmit Interrupt  
Control Register  
0000H  
SP  
CPU System Stack Pointer Register  
SSC Baudrate Register  
FC00H  
0000H  
0000H  
SSCBR  
F0B4H E 5AH  
SSCCON b FFB2H  
D9H  
SSC Control Register  
Data Sheet  
26  
V2.0, 2001-01  
C161K  
C161O  
Table 6  
Name  
C161K/O Registers, Ordered by Name (contd)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
SSCEIC  
SSCRB  
SSCRIC  
SSCTB  
SSCTIC  
STKOV  
STKUN  
b FF76H  
BBH  
SSC Error Interrupt Control Register  
SSC Receive Buffer  
0000H  
XXXXH  
0000H  
0000H  
0000H  
FA00H  
FC00H  
1)0XX0H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
2)00XXH  
0000H  
F0B2H E 59H  
b FF74H  
BAH  
SSC Receive Interrupt Control Register  
SSC Transmit Buffer  
F0B0H E 58H  
b FF72H  
B9H  
0AH  
0BH  
89H  
20H  
A0H  
B0H  
21H  
A1H  
B1H  
22H  
A2H  
B2H  
23H  
A3H  
B3H  
24H  
A4H  
B4H  
D6H  
57H  
D7H  
8EH  
SSC Transmit Interrupt Control Register  
CPU Stack Overflow Pointer Register  
CPU Stack Underflow Pointer Register  
CPU System Configuration Register  
GPT1 Timer 2 Register  
FE14H  
FE16H  
SYSCON b FF12H  
T2  
FE40H  
b FF40H  
b FF60H  
FE42H  
T2CON  
T2IC  
T3  
GPT1 Timer 2 Control Register  
GPT1 Timer 2 Interrupt Control Register  
GPT1 Timer 3 Register  
T3CON  
T3IC  
T4  
b FF42H  
b FF62H  
FE44H  
GPT1 Timer 3 Control Register  
GPT1 Timer 3 Interrupt Control Register  
GPT1 Timer 4 Register  
T4CON  
T4IC  
T5  
b FF44H  
b FF64H  
FE46H  
GPT1 Timer 4 Control Register  
GPT1 Timer 4 Interrupt Control Register  
GPT2 Timer 5 Register  
T5CON  
T5IC  
T6  
b FF46H  
b FF66H  
FE48H  
GPT2 Timer 5 Control Register  
GPT2 Timer 5 Interrupt Control Register  
GPT2 Timer 6 Register  
T6CON  
T6IC  
TFR  
b FF48H  
b FF68H  
b FFACH  
FEAEH  
GPT2 Timer 6 Control Register  
GPT2 Timer 6 Interrupt Control Register  
Trap Flag Register  
WDT  
Watchdog Timer Register (read only)  
Watchdog Timer Control Register  
Constant Value 0s Register (read only)  
WDTCON b FFAEH  
ZEROS  
b FF1CH  
1)  
The system configuration is selected during reset.  
2)  
The reset value depends on the indicated reset source.  
Data Sheet  
27  
V2.0, 2001-01  
C161K  
C161O  
Absolute Maximum Ratings  
Table 7  
Absolute Maximum Rating Parameters  
Parameter  
Symbol  
Limit Values  
Unit Notes  
min.  
max.  
150  
150  
6.5  
Storage temperature  
Junction temperature  
TST  
TJ  
-65  
-40  
-0.5  
°C  
°C  
V
under bias  
Voltage on VDD pins with VDD  
respect to ground (VSS)  
Voltage on any pin with  
respect to ground (VSS)  
VIN  
-0.5  
-10  
V
DD + 0.5 V  
Input current on any pin  
during overload condition  
10  
mA  
mA  
Absolute sum of all input  
currents during overload  
condition  
|100|  
Power dissipation  
PDISS  
1.5  
W
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
During absolute maximum rating overload conditions (VIN > VDD or VIN < VSS) the  
voltage on VDD pins with respect to ground (VSS) must not exceed the values  
defined by the absolute maximum ratings.  
Data Sheet  
28  
V2.0, 2001-01  
C161K  
C161O  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct  
operation of the C161K/O. All parameters specified in the following sections refer to  
these operating conditions, unless otherwise noticed.  
Table 8  
Operating Condition Parameters  
Parameter  
Symbol  
Limit Values  
Unit Notes  
min.  
max.  
Standard  
digital supply voltage  
(5 V versions)  
VDD  
4.5  
5.5  
V
Active mode,  
CPUmax = 25 MHz  
f
2.51)  
3.0  
5.5  
3.6  
V
V
Power Down mode  
Reduced  
VDD  
Active mode,  
digital supply voltage  
(3 V versions)  
fCPUmax = 20 MHz  
2.51)  
3.6  
V
V
Power Down mode  
Digital ground voltage  
Overload current  
VSS  
IOV  
0
Reference voltage  
mA Per pin2)3)  
±5  
3)  
Absolute sum of overload Σ|IOV|  
50  
mA  
currents  
External Load  
Capacitance  
CL  
TA  
100  
pF  
Ambient temperature  
0
70  
°C  
°C  
°C  
SAB-C161K/O …  
SAF-C161K/O …  
SAK-C161K/O …  
-40  
-40  
85  
125  
1)  
Output voltages and output currents will be reduced when VDD leaves the range defined for active mode.  
2)  
Overload conditions occur if the standard operatings conditions are exceeded, i.e. the voltage on any pin  
exceeds the specified range (i.e. VOV > VDD + 0.5 V or VOV < VSS - 0.5 V). The absolute sum of input overload  
currents on all pins may not exceed 50 mA. The supply voltage must remain within the specified limits.  
Proper operation is not guaranteed if overload conditions occur on functional pins such as XTAL1, RD, WR,  
etc.  
3)  
Not 100% tested, guaranteed by design and characterization.  
Data Sheet  
29  
V2.0, 2001-01  
C161K  
C161O  
Parameter Interpretation  
The parameters listed in the following partly represent the characteristics of the C161K/  
O and partly its demands on the system. To aid in interpreting the parameters right, when  
evaluating them for a design, they are marked in column Symbol:  
CC (Controller Characteristics):  
The logic of the C161K/O will provide signals with the respective timing characteristics.  
SR (System Requirement):  
The external system must provide signals with the respective timing characteristics to  
the C161K/O.  
DC Characteristics (Standard Supply Voltage Range)  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Limit Values Unit Test Condition  
min.  
max.  
Input low voltage (TTL,  
all except XTAL1)  
VIL SR -0.5  
0.2 VDD  
- 0.1  
V
Input low voltage XTAL1  
VIL2 SR -0.5  
0.3 VDD  
V
V
Input high voltage (TTL,  
all except RSTIN and XTAL1)  
VIH SR 0.2 VDD VDD  
+ 0.9 0.5  
+
+
+
Input high voltage RSTIN  
(when operated as input)  
VIH1 SR 0.6 VDD VDD  
V
V
V
0.5  
Input high voltage XTAL1  
VIH2 SR 0.7 VDD VDD  
0.5  
Output low voltage  
VOL CC –  
0.45  
I
OL = 2.4 mA  
(PORT0, PORT1, Port 4, ALE,  
RD, WR, BHE, RSTOUT,  
RSTIN2))  
Output low voltage  
(all other outputs)  
V
OL1 CC –  
0.45  
V
IOL = 1.6 mA  
Output high voltage3)  
(PORT0, PORT1, Port 4, ALE,  
RD, WR, BHE, RSTOUT)  
VOH CC 2.4  
0.9VDD  
V
V
I
OH = -2.4 mA  
OH = -0.5 mA  
I
Output high voltage3)  
(all other outputs)  
V
OH1CC 2.4  
0.9VDD  
IOZ1 CC –  
V
V
I
OH = -1.6 mA  
OH = -0.5 mA  
I
Input leakage current (Port 5)  
±200  
±500  
-10  
nA 0 V < VIN < VDD  
nA 0.45 V < VIN < VDD  
µA VIN = VIH1  
Input leakage current (all other) IOZ2 CC –  
RSTIN inactive current4)  
5)  
IRSTH  
Data Sheet  
30  
V2.0, 2001-01  
C161K  
C161O  
DC Characteristics (Standard Supply Voltage Range) (contd)  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Limit Values Unit Test Condition  
min.  
-100  
max.  
6)  
RSTIN active current4)  
RD/WR inact. current7)  
RD/WR active current7)  
ALE inactive current7)  
ALE active current7)  
Port 6 inactive current7)  
Port 6 active current7)  
PORT0 configuration current7) IP0H  
IRSTL  
µA VIN = VIL  
5)  
IRWH  
-40  
µA  
µA  
µA  
µA  
µA  
µA  
V
V
V
V
V
V
OUT = 2.4 V  
6)  
IRWL  
-500  
OUT = VOLmax  
OUT = VOLmax  
OUT = 2.4 V  
5)  
IALEL  
40  
6)  
IALEH  
500  
5)  
IP6H  
-40  
OUT = 2.4 V  
6)  
IP6L  
-500  
OUT = VOL1max  
5)  
-10  
µA VIN = VIHmin  
µA VIN = VILmax  
µA 0 V < VIN < VDD  
6)  
IP0L  
-100  
XTAL1 input current  
Pin capacitance8)  
(digital inputs/outputs)  
IIL CC –  
CIO CC –  
±20  
10  
pF f = 1 MHz  
TA = 25 °C  
1)  
Keeping signal levels within the levels specified in this table, ensures operation without overload conditions.  
For signal levels outside these specifications also refer to the specification of the overload current IOV  
.
2)  
3)  
Valid in bidirectional reset mode only.  
This specification is not valid for outputs which are switched to open drain mode. In this case the respective  
output will float and the voltage results from the external circuitry.  
4)  
5)  
6)  
7)  
8)  
These parameters describe the RSTIN pullup, which equals a resistance of ca. 50 to 250 k.  
The maximum current may be drawn while the respective signal line remains inactive.  
The minimum current must be drawn in order to drive the respective signal line active.  
This specification is valid during Reset and during Adapt-mode.  
Not 100% tested, guaranteed by design and characterization.  
Data Sheet  
31  
V2.0, 2001-01  
C161K  
C161O  
DC Characteristics (Reduced Supply Voltage Range)  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Limit Values Unit Test Condition  
min.  
max.  
Input low voltage (TTL,  
all except XTAL1)  
VIL SR -0.5  
0.8  
V
Input low voltage XTAL1  
VIL2 SR -0.5  
VIH SR 1.8  
0.3 VDD  
V
V
Input high voltage (TTL,  
all except RSTIN and XTAL1)  
VDD  
0.5  
+
+
+
Input high voltage RSTIN  
(when operated as input)  
VIH1 SR 0.6 VDD VDD  
V
V
V
0.5  
Input high voltage XTAL1  
VIH2 SR 0.7 VDD VDD  
0.5  
Output low voltage  
VOL CC –  
0.45  
I
OL = 1.6 mA  
(PORT0, PORT1, Port 4, ALE,  
RD, WR, BHE, RSTOUT,  
RSTIN2))  
Output low voltage  
(all other outputs)  
Output high voltage3)  
V
OL1 CC –  
0.45  
V
V
I
OL = 1.0 mA  
OH = -0.5 mA  
VOH CC 0.9 VDD  
I
(PORT0, PORT1, Port 4, ALE,  
RD, WR, BHE, RSTOUT)  
Output high voltage3)  
(all other outputs)  
V
OH1 CC 0.9 VDD  
V
IOH = -0.25 mA  
Input leakage current (Port 5) IOZ1 CC –  
±200  
±500  
-10  
nA 0 V < VIN < VDD  
nA 0.45 V < VIN < VDD  
µA VIN = VIH1  
Input leakage current (all other) IOZ2 CC –  
5)  
RSTIN inactive current4)  
RSTIN active current4)  
RD/WR inact. current7)  
RD/WR active current7)  
ALE inactive current7)  
ALE active current7)  
IRSTH  
6)  
IRSTL  
-100  
µA VIN = VIL  
5)  
IRWH  
-10  
µA  
µA  
µA  
µA  
µA  
µA  
V
V
V
V
V
V
OUT = 2.4 V  
6)  
IRWL  
-500  
OUT = VOLmax  
OUT = VOLmax  
OUT = 2.4 V  
5)  
6)  
IALEL  
20  
IALEH  
500  
5)  
Port 6 inactive current7)  
Port 6 active current7)  
IP6H  
-10  
OUT = 2.4 V  
6)  
IP6L  
-500  
OUT = VOL1max  
Data Sheet  
32  
V2.0, 2001-01  
C161K  
C161O  
DC Characteristics (Reduced Supply Voltage Range) (contd)  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Limit Values Unit Test Condition  
min.  
max.  
-5  
5)  
PORT0 configuration current7) IP0H  
µA VIN = VIHmin  
µA VIN = VILmax  
µA 0 V < VIN < VDD  
6)  
IP0L  
-100  
XTAL1 input current  
Pin capacitance8)  
(digital inputs/outputs)  
IIL CC –  
CIO CC –  
±20  
10  
pF f = 1 MHz  
TA = 25 °C  
1)  
Keeping signal levels within the levels specified in this table, ensures operation without overload conditions.  
For signal levels outside these specifications also refer to the specification of the overload current IOV  
.
2)  
3)  
Valid in bidirectional reset mode only.  
This specification is not valid for outputs which are switched to open drain mode. In this case the respective  
output will float and the voltage results from the external circuitry.  
4)  
5)  
6)  
7)  
8)  
These parameters describe the RSTIN pullup, which equals a resistance of ca. 50 to 250 k.  
The maximum current may be drawn while the respective signal line remains inactive.  
The minimum current must be drawn in order to drive the respective signal line active.  
This specification is valid during Reset and during Adapt-mode.  
Not 100% tested, guaranteed by design and characterization.  
Data Sheet  
33  
V2.0, 2001-01  
C161K  
C161O  
Power Consumption C161K/O (Standard Supply Voltage Range)  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
min. max.  
Unit Test Condition  
Power supply current (active) IDD5  
with all peripherals active  
15 +  
1.8 × fCPU  
mA RSTIN = VIL  
CPU in [MHz]1)  
mA RSTIN = VIH1  
CPU in [MHz]1)  
f
Idle mode supply current  
with all peripherals active  
IIDX5  
2 +  
0.4 × fCPU  
f
2)  
Power-down mode supply  
current  
IPDO5  
50  
µA  
VDD = VDDmax  
1)  
The supply current is a function of the operating frequency. This dependency is illustrated in Figure 7.  
These parameters are tested at VDDmax and maximum CPU clock with all outputs disconnected and all inputs  
at VIL or VIH.  
2)  
This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to  
0.1 V or at VDD - 0.1 V to VDD, all outputs (including pins configured as outputs) disconnected.  
Power Consumption C161K/O (Reduced Supply Voltage Range)  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
min. max.  
Unit Test Condition  
Power supply current (active)  
with all peripherals active  
IDD3  
3 +  
1.3 × fCPU  
mA RSTIN = VIL  
f
CPU in [MHz]1)  
Idle mode supply current  
with all peripherals active  
IIDX3  
IPDO3  
1 +  
0.4 × fCPU  
mA RSTIN = VIH1  
CPU in [MHz]1)  
f
2)  
Power-down mode supply  
current  
30  
µA  
VDD = VDDmax  
1)  
The supply current is a function of the operating frequency. This dependency is illustrated in Figure 7.  
These parameters are tested at VDDmax and maximum CPU clock with all outputs disconnected and all inputs  
at VIL or VIH.  
2)  
This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to  
0.1 V or at VDD - 0.1 V to VDD, all outputs (including pins configured as outputs) disconnected.  
Data Sheet  
34  
V2.0, 2001-01  
C161K  
C161O  
I
mA  
IDD5max  
100  
80  
60  
40  
20  
0
IDD5typ  
IDD3max  
IDD3typ  
IIDX5max  
IIDX3max  
IIDX5typ  
IIDX3typ  
fCPU  
0
10  
20  
30  
40 MHz  
MCD04860  
Figure 7  
Supply/Idle Current as a Function of Operating Frequency  
Data Sheet  
35  
V2.0, 2001-01  
C161K  
C161O  
AC Characteristics  
Definition of Internal Timing  
The internal operation of the C161K/O is controlled by the internal CPU clock fCPU. Both  
edges of the CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus cycles)  
operations.  
The specification of the external timing (AC Characteristics) therefore depends on the  
time between two consecutive edges of the CPU clock, called TCL(see Figure 8).  
Direct Clock Drive  
fOSC  
TCL  
fCPU  
TCL  
Prescaler Operation  
fOSC  
TCL  
fCPU  
MCT04826  
TCL  
Figure 8  
Generation Mechanisms for the CPU Clock  
The CPU clock signal fCPU can be generated from the oscillator clock signal fOSC via  
different mechanisms. The duration of TCLs and their variation (and also the derived  
external timing) depends on the used mechanism to generate fCPU. This influence must  
be regarded when calculating the timings for the C161K/O.  
The used mechanism to generate the basic CPU clock is selected by bitfield CLKCFG  
in register RP0H.7-5. Upon a long hardware reset register RP0H is loaded with the logic  
levels present on the upper half of PORT0 (P0H), i.e. bitfield CLKCFG represents the  
logic levels on pins P0.15-13 (P0H.7-5).  
Table 9 associates the combinations of these three bits with the respective clock  
generation mode.  
Data Sheet  
36  
V2.0, 2001-01  
C161K  
C161O  
Table 9  
C161K/O Clock Generation Modes  
CPU Frequency External Clock  
CLKCFG  
(P0H.7-5)  
Notes  
f
CPU = fOSC × F Input Range  
0 X X  
f
f
OSC × 1  
1 to 25 MHz  
2 to 50 MHz  
Direct drive1)  
1 X X  
OSC / 2  
CPU clock via prescaler  
1)  
The maximum frequency depends on the duty cycle of the external clock signal.  
Prescaler Operation  
When prescaler operation is configured (CLKCFG = 1XXB) the CPU clock is derived  
from the internal oscillator (input clock signal) by a 2:1 prescaler.  
The frequency of fCPU is half the frequency of fOSC and the high and low time of fCPU (i.e.  
the duration of an individual TCL) is defined by the period of the input clock fOSC  
.
The timings listed in the AC Characteristics that refer to TCLs therefore can be  
calculated using the period of fOSC for any TCL.  
Direct Drive  
When direct drive is configured (CLKCFG = 0XXB) the CPU clock is directly driven from  
the internal oscillator with the input clock signal.  
The frequency of fCPU directly follows the frequency of fOSC so the high and low time of  
f
CPU (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock  
fOSC  
.
The timings listed below that refer to TCLs therefore must be calculated using the  
minimum TCL that is possible under the respective circumstances. This minimum value  
can be calculated via the following formula:  
TCLmin = 1/fOSC × DCmin  
(DC = duty cycle)  
For two consecutive TCLs the deviation caused by the duty cycle of fOSC is compensated  
so the duration of 2TCL is always 1/fOSC. The minimum value TCLmin therefore has to  
be used only once for timings that require an odd number of TCLs (1, 3, ). Timings that  
require an even number of TCLs (2, 4, ) may use the formula 2TCL = 1/fOSC  
.
Data Sheet  
37  
V2.0, 2001-01  
C161K  
C161O  
AC Characteristics  
Table 10  
External Clock Drive XTAL1 (Standard Supply Voltage Range)  
(Operating Conditions apply)  
Parameter  
Symbol Direct Drive  
1:1  
max.  
Prescaler  
2:1  
Unit  
min.  
Oscillator period tOSC SR 40  
High time1)  
Low time1)  
Rise time1)  
min.  
20  
6
max.  
6
6
ns  
ns  
ns  
ns  
ns  
t1  
t2  
t3  
t4  
SR 202)  
SR 202)  
SR –  
6
10  
10  
Fall time1)  
SR –  
1)  
The clock input signal must reach the defined levels VIL2 and VIH2  
.
2)  
The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency (fCPU) in  
direct drive mode depends on the duty cycle of the clock input signal.  
Table 11  
External Clock Drive XTAL1 (Reduced Supply Voltage Range)  
(Operating Conditions apply)  
Parameter  
Symbol  
Direct Drive  
1:1  
Prescaler  
2:1  
Unit  
min.  
Oscillator period tOSC SR 50  
max.  
min.  
25  
8
max.  
6
6
ns  
ns  
ns  
ns  
ns  
High time1)  
Low time1)  
Rise time1)  
t1  
t2  
t3  
t4  
SR 252)  
SR 252)  
SR –  
8
10  
10  
Fall time1)  
SR –  
1)  
The clock input signal must reach the defined levels VIL2 and VIH2  
.
2)  
The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency (fCPU) in  
direct drive mode depends on the duty cycle of the clock input signal.  
Data Sheet  
38  
V2.0, 2001-01  
C161K  
C161O  
t1  
t3  
t4  
VIH2  
VIL  
0.5 VDD  
t2  
tOSC  
MCT02534  
Figure 9  
External Clock Drive XTAL1  
Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is  
limited to a range of 4 MHz to 40 MHz.  
It is strongly recommended to measure the oscillation allowance (or margin) in the  
final target system (layout) to determine the optimum parameters for the oscillator  
operation. Please refer to the limits specified by the crystal supplier.  
When driven by an external clock signal it will accept the specified frequency  
range. Operation at lower input frequencies is possible but is guaranteed by  
design only (not 100% tested).  
Data Sheet  
39  
V2.0, 2001-01  
C161K  
C161O  
Testing Waveforms  
2.4 V  
1.8 V  
0.8 V  
1.8 V  
0.8 V  
Test Points  
0.45 V  
AC inputs during testing are driven at 2.4 V for a logic 1and 0.45 V for a logic 0.  
Timing measurements are made at IH min for a logic 1and IL max for a logic 0.  
V
V
MCA04414  
Figure 10  
Input Output Waveforms  
VLoad + 0.1 V  
VOH - 0.1 V  
Timing  
Reference  
Points  
VLoad - 0.1 V  
VOL + 0.1 V  
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs,  
but begins to float when a 100 mV change from the loaded VOH  
/
VOL level occurs (IOH  
/
I
OL = 20 mA).  
MCA00763  
Figure 11  
Float Waveforms  
Data Sheet  
40  
V2.0, 2001-01  
C161K  
C161O  
Memory Cycle Variables  
The timing tables below use three variables which are derived from the BUSCONx  
registers and represent the special characteristics of the programmed memory cycle.  
The following table describes, how these variables are to be computed.  
Table 12  
Memory Cycle Variables  
Symbol Values  
Description  
ALE Extension  
tA  
TCL × <ALECTL>  
Memory Cycle Time Waitstates tC  
Memory Tristate Time  
2TCL × (15 - <MCTC>)  
2TCL × (1 - <MTTC>)  
tF  
Note: Please respect the maximum operating frequency of the respective derivative.  
AC Characteristics  
Multiplexed Bus (Standard Supply Voltage Range)  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2tA + tC + tF (120 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz 1 / 2TCL = 1 to 25 MHz  
min.  
max.  
min.  
max.  
ALE high time  
t5 CC 10 + tA  
t6 CC 4 + tA  
t7 CC 10 + tA  
t8 CC 10 + tA  
t9 CC -10 + tA  
t10 CC –  
TCL - 10  
+ tA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
TCL - 16  
+ tA  
TCL - 10  
+ tA  
ALE falling edge to RD,  
WR (with RW-delay)  
TCL - 10  
+ tA  
ALE falling edge to RD,  
WR (no RW-delay)  
-10 + tA  
Address float after RD,  
WR (with RW-delay)  
6
6
Address float after RD,  
WR (no RW-delay)  
t11 CC –  
26  
TCL + 6  
RD, WR low time  
(with RW-delay)  
t12 CC 30 + tC  
2TCL - 10 –  
+ tC  
Data Sheet  
41  
V2.0, 2001-01  
C161K  
C161O  
Multiplexed Bus (Standard Supply Voltage Range) (contd)  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2tA + tC + tF (120 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz 1 / 2TCL = 1 to 25 MHz  
min. max.  
min.  
max.  
RD, WR low time  
(no RW-delay)  
t13 CC 50 + tC  
3TCL - 10 –  
+ tC  
ns  
RD to valid data in  
(with RW-delay)  
t14 SR –  
20 + tC  
40 + tC  
0
2TCL - 20 ns  
+ tC  
RD to valid data in  
(no RW-delay)  
t15 SR –  
3TCL - 20 ns  
+ tC  
ALE low to valid data in  
t16 SR –  
40 + tA  
+ tC  
3TCL - 20 ns  
+ tA + tC  
Address to valid data in  
t17 SR –  
50 + 2tA  
+ tC  
4TCL - 30 ns  
+ 2tA + tC  
Data hold after RD  
rising edge  
t18 SR 0  
ns  
Data float after RD  
Data valid to WR  
Data hold after WR  
t19 SR –  
26 + tF  
2TCL - 14 ns  
+ tF  
t22 CC 20 + tC  
t23 CC 26 + tF  
2TCL - 20 –  
+ tC  
ns  
ns  
ns  
ns  
ns  
2TCL - 14 –  
+ tF  
ALE rising edge after RD, t25 CC 26 + tF  
WR  
2TCL - 14 –  
+ tF  
Address hold after RD,  
WR  
ALE falling edge to CS1) t38 CC -4 - tA  
CS low to Valid Data In1) t39 SR –  
t27 CC 26 + tF  
2TCL - 14 –  
+ tF  
10 - tA  
- 4 - tA  
10 - tA  
40 + tC  
+ 2tA  
3TCL - 20 ns  
+ tC + 2tA  
CS hold after RD, WR1) t40 CC 46 + tF  
3TCL - 14 –  
+ tF  
ns  
ns  
ns  
ALE fall. edge to RdCS, t42 CC 16 + tA  
WrCS (with RW delay)  
TCL - 4  
+ tA  
ALE fall. edge to RdCS, t43 CC -4 + tA  
-4  
WrCS (no RW delay)  
+ tA  
Data Sheet  
42  
V2.0, 2001-01  
C161K  
C161O  
Multiplexed Bus (Standard Supply Voltage Range) (contd)  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2tA + tC + tF (120 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz 1 / 2TCL = 1 to 25 MHz  
min.  
max.  
min.  
max.  
Address float after RdCS, t44 CC –  
WrCS (with RW delay)  
0
0
ns  
ns  
Address float after RdCS, t45 CC –  
WrCS (no RW delay)  
20  
TCL  
RdCS to Valid Data In  
(with RW delay)  
t46 SR –  
t47 SR –  
16 + tC  
2TCL - 24 ns  
+ tC  
RdCS to Valid Data In  
(no RW delay)  
36 + tC  
3TCL - 24 ns  
+ tC  
RdCS, WrCS Low Time t48 CC 30 + tC  
(with RW delay)  
2TCL - 10 –  
+ tC  
ns  
ns  
ns  
ns  
RdCS, WrCS Low Time t49 CC 50 + tC  
(no RW delay)  
3TCL - 10 –  
+ tC  
Data valid to WrCS  
t50 CC 26 + tC  
2TCL - 14 –  
+ tC  
Data hold after RdCS  
Data float after RdCS  
t51 SR 0  
t52 SR –  
0
20 + tF  
2TCL - 20 ns  
+ tF  
Address hold after  
RdCS, WrCS  
t54 CC 20 + tF  
t56 CC 20 + tF  
2TCL - 20 –  
+ tF  
ns  
ns  
Data hold after WrCS  
2TCL - 20 –  
+ tF  
1)  
These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are  
specified together with the address and signal BHE (see figures below).  
Data Sheet  
43  
V2.0, 2001-01  
C161K  
C161O  
AC Characteristics  
Multiplexed Bus (Reduced Supply Voltage Range)  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2tA + tC + tF (150 ns at 20 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 20 MHz 1 / 2TCL = 1 to 20 MHz  
min.  
max.  
min.  
max.  
ALE high time  
t5 CC 11 + tA  
t6 CC 5 + tA  
t7 CC 15 + tA  
t8 CC 15 + tA  
t9 CC -10 + tA  
t10 CC –  
TCL - 14  
+ tA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
TCL - 20  
+ tA  
TCL - 10  
+ tA  
ALE falling edge to RD,  
WR (with RW-delay)  
TCL - 10  
+ tA  
ALE falling edge to RD,  
WR (no RW-delay)  
-10 + tA  
Address float after RD,  
WR (with RW-delay)  
6
6
Address float after RD,  
WR (no RW-delay)  
t11 CC –  
31  
TCL + 6  
RD, WR low time  
(with RW-delay)  
t12 CC 34 + tC  
t13 CC 59 + tC  
t14 SR –  
2TCL - 16 –  
+ tC  
RD, WR low time  
(no RW-delay)  
3TCL - 16 –  
+tC  
RD to valid data in  
(with RW-delay)  
22 + tC  
47 + tC  
0
2TCL - 28 ns  
+ tC  
RD to valid data in  
(no RW-delay)  
t15 SR –  
3TCL - 28 ns  
+ tC  
ALE low to valid data in  
t16 SR –  
45 + tA  
+ tC  
3TCL - 30 ns  
+ tA + tC  
Address to valid data in  
t17 SR –  
57 + 2tA  
+ tC  
4TCL - 43 ns  
+ 2tA + tC  
Data hold after RD  
rising edge  
t18 SR 0  
ns  
Data Sheet  
44  
V2.0, 2001-01  
C161K  
C161O  
Multiplexed Bus (Reduced Supply Voltage Range) (contd)  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2tA + tC + tF (150 ns at 20 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 20 MHz 1 / 2TCL = 1 to 20 MHz  
min.  
max.  
min.  
max.  
Data float after RD  
Data valid to WR  
Data hold after WR  
t19 SR –  
36 + tF  
2TCL - 14 ns  
+ tF  
t22 CC 24 + tC  
t23 CC 36 + tF  
2TCL - 26 –  
+ tC  
ns  
ns  
ns  
ns  
ns  
2TCL - 14 –  
+ tF  
ALE rising edge after RD, t25 CC 36 + tF  
WR  
2TCL - 14 –  
+ tF  
Address hold after RD,  
WR  
ALE falling edge to CS1) t38 CC -8 - tA  
CS low to Valid Data In1) t39 SR –  
t27 CC 36 + tF  
2TCL - 14 –  
+ tF  
10 - tA  
-8 - tA  
10 - tA  
47+ tC  
+ 2tA  
3TCL - 28 ns  
+ tC + 2tA  
CS hold after RD, WR1) t40 CC 57 + tF  
3TCL - 18 –  
+ tF  
ns  
ns  
ns  
ns  
ns  
ALE fall. edge to RdCS, t42 CC 19 + tA  
WrCS (with RW delay)  
TCL - 6  
+ tA  
ALE fall. edge to RdCS, t43 CC -6 + tA  
WrCS (no RW delay)  
-6  
+ tA  
Address float after RdCS, t44 CC –  
WrCS (with RW delay)  
0
0
Address float after RdCS, t45 CC –  
WrCS (no RW delay)  
25  
TCL  
RdCS to Valid Data In  
(with RW delay)  
t46 SR –  
t47 SR –  
20 + tC  
2TCL - 30 ns  
+ tC  
RdCS to Valid Data In  
(no RW delay)  
45 + tC  
3TCL - 30 ns  
+ tC  
RdCS, WrCS Low Time t48 CC 38 + tC  
(with RW delay)  
2TCL - 12 –  
+ tC  
ns  
ns  
RdCS, WrCS Low Time t49 CC 63 + tC  
(no RW delay)  
3TCL - 12 –  
+ tC  
Data Sheet  
45  
V2.0, 2001-01  
C161K  
C161O  
Multiplexed Bus (Reduced Supply Voltage Range) (contd)  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2tA + tC + tF (150 ns at 20 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 20 MHz 1 / 2TCL = 1 to 20 MHz  
min. max.  
min.  
max.  
Data valid to WrCS  
t50 CC 28 + tC  
2TCL - 22 –  
+ tC  
ns  
Data hold after RdCS  
Data float after RdCS  
t51 SR 0  
t52 SR –  
0
ns  
30 + tF  
2TCL - 20 ns  
+ tF  
Address hold after  
RdCS, WrCS  
t54 CC 30 + tF  
t56 CC 30 + tF  
2TCL - 20 –  
+ tF  
ns  
ns  
Data hold after WrCS  
2TCL - 20 –  
+ tF  
1)  
These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are  
specified together with the address and signal BHE (see figures below).  
Data Sheet  
46  
V2.0, 2001-01  
C161K  
C161O  
t5  
t16  
t25  
ALE  
t38  
t39  
t40  
CSxL  
t17  
t27  
A21-A16  
Address  
(A15-A8)  
BHE, CSxE  
t54  
t19  
t6  
t7  
t18  
Read Cycle  
Address  
Data IN  
BUS  
t8  
t10  
t14  
t12  
`
RD  
t42  
t44  
t51  
t52  
t46  
t48  
RdCSx  
t23  
Write Cycle  
Address  
Data OUT  
BUS  
t8  
t10  
t22  
t56  
t12  
WR, WRL,  
WRH  
t42  
t44  
t50  
t48  
WrCSx  
MCT04861  
Figure 12  
External Memory Cycle:  
Multiplexed Bus, With Read/Write Delay, Normal ALE  
Data Sheet  
47  
V2.0, 2001-01  
C161K  
C161O  
t5  
t16  
t25  
ALE  
t38  
t39  
t40  
CSxL  
t17  
t27  
A21-A16  
Address  
(A15-A8)  
BHE, CSxE  
t6  
t54  
t19  
t7  
t18  
Read Cycle  
Address  
Data IN  
BUS  
t8  
t10  
t14  
t12  
RD  
t42  
t4  
t51  
t52  
t46  
t48  
RdCSx  
t23  
Write Cycle  
Address  
Data OUT  
BUS  
t8  
t10  
t22  
t56  
t12  
WR, WRL,  
WRH  
t42  
t44  
t50  
t48  
WrCSx  
MCT04862  
Figure 13  
External Memory Cycle:  
Multiplexed Bus, With Read/Write Delay, Extended ALE  
Data Sheet  
48  
V2.0, 2001-01  
C161K  
C161O  
t5  
t16  
t25  
ALE  
t38  
t39  
t40  
CSxL  
t17  
t27  
A21-A16  
Address  
(A15-A8)  
BHE, CSxE  
t54  
t19  
t6  
t7  
t18  
Read Cycle  
Address  
Data IN  
BUS  
t9  
t11  
t15  
t13  
RD  
t43  
t45  
t51  
t52  
t47  
t49  
RdCSx  
t23  
Write Cycle  
Address  
Data OUT  
BUS  
t9  
t11  
t22  
t56  
t13  
WR, WRL,  
WRH  
t43  
t45  
t50  
t49  
WrCSx  
MCT04863  
Figure 14  
External Memory Cycle:  
Multiplexed Bus, No Read/Write Delay, Normal ALE  
Data Sheet  
49  
V2.0, 2001-01  
C161K  
C161O  
t5  
t16  
t25  
ALE  
t38  
t39  
t40  
CSxL  
t17  
t27  
A21-A16  
Address  
(A15-A8)  
BHE, CSxE  
t6  
t54  
t19  
t7  
t18  
Read Cycle  
Address  
Data IN  
BUS  
t9  
t11  
t15  
t13  
RD  
t43  
t45  
t51  
t47  
t49  
t52  
RdCSx  
t23  
Write Cycle  
Address  
Data OUT  
BUS  
t9  
t11  
t22  
t56  
t13  
WR, WRL,  
WRH  
t43  
t45  
t50  
t49  
WrCSx  
MCT04864  
Figure 15  
External Memory Cycle:  
Multiplexed Bus, No Read/Write Delay, Extended ALE  
Data Sheet  
50  
V2.0, 2001-01  
C161K  
C161O  
AC Characteristics  
Demultiplexed Bus (Standard Supply Voltage Range)  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2tA + tC + tF (80 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock  
= 25 MHz  
Variable CPU Clock Unit  
1 / 2TCL = 1 to 25 MHz  
min.  
max.  
min.  
max.  
ALE high time  
t5 CC 10 + tA  
TCL - 10  
+ tA  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
t6 CC 4 + tA  
TCL - 16  
+ tA  
ALE falling edge to RD, t8 CC 10 + tA  
WR (with RW-delay)  
TCL - 10  
+ tA  
ALE falling edge to RD, t9 CC -10 + tA  
WR (no RW-delay)  
-10  
+ tA  
RD, WR low time  
(with RW-delay)  
t12 CC 30 + tC  
t13 CC 50 + tC  
t14 SR –  
2TCL - 10 –  
+ tC  
RD, WR low time  
(no RW-delay)  
3TCL - 10 –  
+ tC  
RD to valid data in  
(with RW-delay)  
20 + tC  
40 + tC  
0
2TCL - 20 ns  
+ tC  
RD to valid data in  
(no RW-delay)  
t15 SR –  
3TCL - 20 ns  
+ tC  
ALE low to valid data in t16 SR –  
Address to valid data in t17 SR –  
40 +  
tA + tC  
3TCL - 20 ns  
+ tA + tC  
50 +  
2tA + tC  
4TCL - 30 ns  
+ 2tA + tC  
Data hold after RD  
rising edge  
t18 SR 0  
ns  
Data float after RD rising t20 SR –  
26 +  
2tA + tF  
2TCL - 14 ns  
+ 22tA  
+ tF  
1)  
edge (with RW-delay1))  
1)  
Data float after RD rising t21 SR –  
10 +  
2tA + tF  
TCL - 10  
ns  
1)  
edge (no RW-delay1))  
+ 22tA  
1)  
+ tF  
Data Sheet  
51  
V2.0, 2001-01  
C161K  
C161O  
Demultiplexed Bus (Standard Supply Voltage Range) (contd)  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2tA + tC + tF (80 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock  
= 25 MHz  
Variable CPU Clock Unit  
1 / 2TCL = 1 to 25 MHz  
min.  
max.  
min.  
max.  
Data valid to WR  
t22 CC 20 + tC  
2TCL - 20 –  
+ tC  
ns  
ns  
ns  
Data hold after WR  
t24 CC 10 + tF  
t26 CC -10 + tF  
TCL - 10  
+ tF  
ALE rising edge after  
RD, WR  
-10 + tF  
Address hold after WR2) t28 CC 0 + tF  
ALE falling edge to CS3) t38 CC -4 - tA  
CS low to Valid Data In3) t39 SR –  
0 + tF  
-4 - tA  
ns  
ns  
10 - tA  
10 - tA  
40 +  
3TCL - 20 ns  
tC + 2tA  
+ tC + 2tA  
CS hold after RD, WR3) t41 CC 6 + tF  
TCL - 14  
ns  
ns  
+ tF  
ALE falling edge to  
RdCS, WrCS (with RW-  
delay)  
t42 CC 16 + tA  
t43 CC -4 + tA  
TCL - 4  
+ tA  
ALE falling edge to  
RdCS, WrCS (no RW-  
delay)  
-4  
+ tA  
ns  
RdCS to Valid Data In  
(with RW-delay)  
t46 SR –  
t47 SR –  
16 + tC  
2TCL - 24 ns  
+ tC  
RdCS to Valid Data In  
(no RW-delay)  
36 + tC  
3TCL - 24 ns  
+ tC  
RdCS, WrCS Low Time t48 CC 30 + tC  
(with RW-delay)  
2TCL - 10 –  
+ tC  
ns  
ns  
ns  
ns  
RdCS, WrCS Low Time t49 CC 50 + tC  
(no RW-delay)  
3TCL - 10 –  
+ tC  
Data valid to WrCS  
t50 CC 26 + tC  
t51 SR 0  
2TCL - 14 –  
+ tC  
Data hold after RdCS  
0
Data Sheet  
52  
V2.0, 2001-01  
C161K  
C161O  
Demultiplexed Bus (Standard Supply Voltage Range) (contd)  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2tA + tC + tF (80 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock  
= 25 MHz  
Variable CPU Clock Unit  
1 / 2TCL = 1 to 25 MHz  
min.  
t53 SR –  
max.  
min.  
max.  
Data float after RdCS  
(with RW-delay)1)  
20 + tF  
2TCL - 20 ns  
+ 2tA + tF  
1)  
Data float after RdCS  
(no RW-delay)1)  
t68 SR –  
0 + tF  
TCL - 20  
ns  
+ 2tA + tF  
1)  
Address hold after  
RdCS, WrCS  
t55 CC -6 + tF  
t57 CC 6 + tF  
-6 + tF  
ns  
ns  
Data hold after WrCS  
TCL - 14  
+ tF  
1)  
RW-delay and tA refer to the next following bus cycle (including an access to an on-chip X-Peripheral).  
2)  
Read data are latched with the same clock edge that triggers the address change and the rising RD edge.  
Therefore address changes before the end of RD have no impact on read cycles.  
3)  
These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are  
specified together with the address and signal BHE (see figures below).  
Data Sheet  
53  
V2.0, 2001-01  
C161K  
C161O  
AC Characteristics  
Demultiplexed Bus (Reduced Supply Voltage Range)  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2tA + tC + tF (100 ns at 20 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock  
= 20 MHz  
Variable CPU Clock Unit  
1 / 2TCL = 1 to 20 MHz  
min.  
max.  
min.  
max.  
ALE high time  
t5 CC 11 + tA  
TCL - 14  
+ tA  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
t6 CC 5 + tA  
TCL - 20  
+ tA  
ALE falling edge to RD, t8 CC 15 + tA  
WR (with RW-delay)  
TCL - 10  
+ tA  
ALE falling edge to RD, t9 CC -10 + tA  
WR (no RW-delay)  
-10  
+ tA  
RD, WR low time  
(with RW-delay)  
t12 CC 34 + tC  
t13 CC 59 + tC  
t14 SR –  
2TCL - 16 –  
+ tC  
RD, WR low time  
(no RW-delay)  
3TCL - 16 –  
+ tC  
RD to valid data in  
(with RW-delay)  
22 + tC  
47 + tC  
0
2TCL - 28 ns  
+ tC  
RD to valid data in  
(no RW-delay)  
t15 SR –  
3TCL - 28 ns  
+ tC  
ALE low to valid data in t16 SR –  
Address to valid data in t17 SR –  
45 +  
tA + tC  
3TCL - 30 ns  
+ tA + tC  
57 +  
2tA + tC  
4TCL - 43 ns  
+ 2tA + tC  
Data hold after RD  
rising edge  
t18 SR 0  
ns  
Data float after RD rising t20 SR –  
36 +  
2tA + tF  
2TCL - 14 ns  
+ 22tA  
+ tF  
1)  
edge (with RW-delay1))  
1)  
Data float after RD rising t21 SR –  
15 +  
2tA + tF  
TCL - 10  
ns  
1)  
edge (no RW-delay1))  
+ 22tA  
1)  
+ tF  
Data Sheet  
54  
V2.0, 2001-01  
C161K  
C161O  
Demultiplexed Bus (Reduced Supply Voltage Range) (contd)  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2tA + tC + tF (100 ns at 20 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock  
= 20 MHz  
Variable CPU Clock Unit  
1 / 2TCL = 1 to 20 MHz  
min.  
max.  
min.  
max.  
Data valid to WR  
t22 CC 24 + tC  
2TCL - 26 –  
+ tC  
ns  
ns  
ns  
Data hold after WR  
t24 CC 15 + tF  
t26 CC -12 + tF  
TCL - 10  
+ tF  
ALE rising edge after  
RD, WR  
-12 + tF  
Address hold after WR2) t28 CC 0 + tF  
ALE falling edge to CS3) t38 CC -8 - tA  
CS low to Valid Data In3) t39 SR –  
0 + tF  
-8 - tA  
ns  
ns  
10 - tA  
10 - tA  
47 +  
3TCL - 28 ns  
tC + 2tA  
+ tC + 2tA  
CS hold after RD, WR3) t41 CC 9 + tF  
TCL - 16  
ns  
ns  
+ tF  
ALE falling edge to  
RdCS, WrCS (with RW-  
delay)  
t42 CC 19 + tA  
t43 CC -6 + tA  
TCL - 6  
+ tA  
ALE falling edge to  
RdCS, WrCS (no RW-  
delay)  
-6  
+ tA  
ns  
RdCS to Valid Data In  
(with RW-delay)  
t46 SR –  
t47 SR –  
20 + tC  
2TCL - 30 ns  
+ tC  
RdCS to Valid Data In  
(no RW-delay)  
45 + tC  
3TCL - 30 ns  
+ tC  
RdCS, WrCS Low Time t48 CC 38 + tC  
(with RW-delay)  
2TCL - 12 –  
+ tC  
ns  
ns  
ns  
ns  
RdCS, WrCS Low Time t49 CC 63 + tC  
(no RW-delay)  
3TCL - 12 –  
+ tC  
Data valid to WrCS  
t50 CC 28 + tC  
t51 SR 0  
2TCL - 22 –  
+ tC  
Data hold after RdCS  
0
Data Sheet  
55  
V2.0, 2001-01  
C161K  
C161O  
Demultiplexed Bus (Reduced Supply Voltage Range) (contd)  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2tA + tC + tF (100 ns at 20 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock  
= 20 MHz  
Variable CPU Clock Unit  
1 / 2TCL = 1 to 20 MHz  
min.  
t53 SR –  
max.  
min.  
max.  
Data float after RdCS  
(with RW-delay)1)  
30 + tF  
2TCL - 20 ns  
+ 2tA + tF  
1)  
Data float after RdCS  
(no RW-delay)1)  
t68 SR –  
5 + tF  
TCL - 20  
ns  
+ 2tA + tF  
1)  
Address hold after  
RdCS, WrCS  
t55 CC -16 + tF  
t57 CC 9 + tF  
-16 + tF  
ns  
ns  
Data hold after WrCS  
TCL - 16  
+ tF  
1)  
RW-delay and t refer to the next following bus cycle (including an access to an on-chip X-Peripheral).  
A
2)  
Read data are latched with the same clock edge that triggers the address change and the rising RD edge.  
Therefore address changes before the end of RD have no impact on read cycles.  
3)  
These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are  
specified together with the address and signal BHE (see figures below).  
Data Sheet  
56  
V2.0, 2001-01  
C161K  
C161O  
t5  
t16  
t26  
ALE  
t38  
t39  
t41  
CSxL  
t28  
t17  
A21-A16  
A15-A0  
Address  
BHE, CSxE  
t55  
t6  
t20  
Read Cycle  
t18  
BUS  
Data IN  
(D15-D8)  
D7-D0  
t8  
t14  
t12  
RD  
t42  
t51  
t46  
t48  
t53  
RdCSx  
Write Cycle  
t24  
BUS  
(D15-D8)  
D7-D0  
Data OUT  
t8  
t22  
t57  
t12  
WR, WRL,  
WRH  
t42  
t50  
t48  
WrCSx  
MCT04865  
Figure 16  
External Memory Cycle:  
Demultiplexed Bus, With Read/Write Delay, Normal ALE  
Data Sheet  
57  
V2.0, 2001-01  
C161K  
C161O  
t5  
t16  
t26  
ALE  
t38  
t39  
t41  
CSxL  
t17  
t28  
A21-A16  
A15-A0  
Address  
BHE, CSxE  
t6  
t55  
t20  
Read Cycle  
t18  
BUS  
Data IN  
(D15-D8)  
D7-D0  
t8  
t14  
t12  
RD  
t42  
t51  
t46  
t48  
t53  
RdCSx  
Write Cycle  
t24  
BUS  
Data OUT  
(D15-D8)  
D7-D0  
t8  
t22  
t57  
t12  
WR, WRL,  
WRH  
t42  
t50  
t48  
WrCSx  
MCT04866  
Figure 17  
External Memory Cycle:  
Demultiplexed Bus, With Read/Write Delay, Extended ALE  
Data Sheet  
58  
V2.0, 2001-01  
C161K  
C161O  
t5  
t16  
t26  
ALE  
t38  
t39  
t41  
CSxL  
t28  
t17  
A21-A16  
A15-A0  
Address  
BHE, CSxE  
t55  
t6  
t21  
Read Cycle  
t18  
BUS  
Data IN  
(D15-D8)  
D7-D0  
t9  
t15  
t13  
RD  
t43  
t51  
t47  
t49  
t68  
RdCSx  
Write Cycle  
t24  
BUS  
(D15-D8)  
D7-D0  
Data OUT  
t22  
t57  
t9  
t13  
WR, WRL,  
WRH  
t43  
t50  
t49  
WrCSx  
MCT04867  
Figure 18  
External Memory Cycle:  
Demultiplexed Bus, No Read/Write Delay, Normal ALE  
Data Sheet  
59  
V2.0, 2001-01  
C161K  
C161O  
t5  
t16  
t26  
ALE  
t38  
t39  
t41  
CSxL  
t17  
t28  
A21-A16  
A15-A0  
Address  
BHE, CSxE  
t6  
t55  
t21  
Read Cycle  
t18  
BUS  
Data IN  
(D15-D8)  
D7-D0  
t9  
t15  
t13  
RD  
t43  
t51  
t47  
t49  
t68  
RdCSx  
Write Cycle  
t24  
BUS  
Data OUT  
(D15-D8)  
D7-D0  
t9  
t22  
t57  
t13  
WR, WRL,  
WRH  
t43  
t50  
t49  
WrCSx  
MCT04868  
Figure 19  
External Memory Cycle:  
Demultiplexed Bus, No Read/Write Delay, Extended ALE  
Data Sheet  
60  
V2.0, 2001-01  
C161K  
C161O  
Package Outlines  
P-MQFP-80-1 (SMD)  
(Plastic Metric Quad Flat Package)  
H
0.65  
±0.08  
0.88  
80x  
0.3  
C
0.1  
12.35  
17.2  
14 1)  
M
0.12  
A-B D C  
0.2 A-B D 80x  
0.2 A-B D 4x  
H
D
B
A
80  
1
Index Marking  
0.6x45˚  
1) Does not include plastic or metal protrusions of 0.25 max per side  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book Package Information.  
Dimensions in mm  
SMD = Surface Mounted Device  
Data Sheet  
61  
V2.0, 2001-01  
Infineon goes for Business Excellence  
Business excellence means intelligent approaches and clearly  
defined processes, which are both constantly under review and  
ultimately lead to good operating results.  
Better operating results and business excellence mean less  
idleness and wastefulness for all of us, more professional  
success, more accurate information, a better overview and,  
thereby, less frustration and more satisfaction.”  
Dr. Ulrich Schumacher  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  
Home > Microcontrollers > 16-Bit Microcontrollers > C166® Family >  
C161K, C161O  
C161K, C161O  
The Basic 16-bit Microcontrollers  
C161K/O members of the C166 family offer all benefits of a full 16-bit microcontroller at the average price of an 8-bit controller. The C161 product range is focused on price  
sensitive applications such as in consumer products. Grouped around the 25 MHz C166 core a variety of basic peripherals have been chosen for optimal product and  
system costs.  
Development Tools, Software and Training  
SK-161 Starter Kit  
Product Type List  
Product Type /  
Datasheet  
Order Info  
Packages  
Green Max Clock  
Frequency  
SRAM (incl.  
Cache)  
CAN  
Nodes  
A / D input lines (incl.  
FADC)  
Program  
Memory  
Matching Results: 6  
20.0 MHz  
1.0 KByte  
2.0 KByte  
0
0
0.0 KByte  
reset all selections  
SAB-C161O-LM  
SAF-C161O-LM  
reset  
reset  
reset  
reset  
reset  
in  
PG-MQFP-  
80  
20.0 MHz  
20.0 MHz  
2.0 KByte  
2.0 KByte  
0
0
0
0
0.0 KByte  
0.0 KByte  
production  
in  
PG-MQFP-  
80  
production  
SAB-C161O-LM 3V HA  
SAF-C161O-LM 3V HA  
in  
PG-MQFP-  
80  
20.0 MHz  
20.0 MHz  
2.0 KByte  
2.0 KByte  
0
0
0
0
0.0 KByte  
0.0 KByte  
production  
in  
PG-MQFP-  
80  
production  
SAB-C161K-LM HA  
SAF-C161K-LM  
in  
P-MQFP-80  
20.0 MHz  
20.0 MHz  
1.0 KByte  
1.0 KByte  
0
0
0
0
0.0 KByte  
0.0 KByte  
production  
in  
PG-MQFP-  
80  
production  
© 1999 - 2007 Infineon Technologies AG - Usage of this website is subject to our  
Usage Terms - Imprint - Contact - Privacy Policy  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY