CPV364MK [INFINEON]

IGBT SIP MODULE Short Circuit Rated UltraFast IGBT; IGBT模块SIP短路额定IGBT超快
CPV364MK
型号: CPV364MK
厂家: Infineon    Infineon
描述:

IGBT SIP MODULE Short Circuit Rated UltraFast IGBT
IGBT模块SIP短路额定IGBT超快

双极性晶体管
文件: 总8页 (文件大小:411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Previous Datasheet  
Index  
Next Data Sheet  
PD - 5.037  
CPV364MK  
Short Circuit Rated UltraFast IGBT  
IGBT SIP MODULE  
Features  
1
• Short Circuit Rated - 10µs @ 125°C, V GE = 15V  
Fully isolated printed circuit board mount package  
• Switching-loss rating includes all "tail" losses  
• HEXFREDTM soft ultrafast diodes  
• Optimized for high operating frequency (over 5kHz)  
See Fig. 1 for Current vs. Frequency curve  
D1  
D2  
D3  
D4  
D5  
D6  
Q1  
Q2  
Q3  
Q4  
Q5  
3
6
9
4
15  
10  
16  
Q6  
12  
18  
Product Summary  
Output Current in a Typical 20 kHz Motor Drive  
7
13  
19  
8.8 ARMS per phase (2.7 kW total) with T C = 90°C, TJ = 125°C, Supply Voltage 360Vdc,  
Power Factor 0.8, Modulation Depth 80% (See Figure 1)  
Description  
The IGBT technology is the key to International Rectifier's advanced line of IMS  
(Insulated Metal Substrate) Power Modules. These modules are more efficient  
than comparable bipolar transistor modules, while at the same time having the  
simpler gate-drive requirements of the familiar power MOSFET. This superior  
technology has now been coupled to a state of the art materials system that  
maximizes power throughput with low thermal resistance. This package is highly  
suited to power applications and where space is at a premium.  
These new short circuit rated devices are especially suited for motor control and  
other totem-pole applications requiring short circuit withstand capability.  
IMS-2  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VCES  
Collector-to-Emitter Voltage  
600  
V
IC @ TC = 25°C  
Continuous Collector Current, each IGBT  
Continuous Collector Current, each IGBT  
Pulsed Collector Current  
24  
IC @ TC = 100°C  
13  
ICM  
48  
A
ILM  
Clamped Inductive Load Current  
Diode Continuous Forward Current  
Diode Maximum Forward Current  
Short Circuit Withstand Time  
48  
IF @ TC = 100°C  
9.3  
IFM  
48  
10  
tsc  
µs  
V
VGE  
Gate-to-Emitter Voltage  
± 20  
VISOL  
Isolation Voltage, any terminal to case, 1 min.  
Maximum Power Dissipation, each IGBT  
2500  
63  
VRMS  
W
PD @ TC = 25°C  
PD @ TC = 100°C Maximum Power Dissipation, each IGBT  
25  
TJ  
Operating Junction and  
-40 to +150  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
Mounting torque, 6-32 or M3 screw.  
°C  
300 (0.063 in. (1.6mm) from case)  
5-7 lbf•in (0.55 - 0.8 N•m)  
Thermal Resistance  
Parameter  
Typ.  
Max.  
Units  
R
R
R
θJC (IGBT)  
Junction-to-Case, each IGBT, one IGBT in conduction  
Junction-to-Case, each diode, one diode in conduction  
Case-to-Sink, flat, greased surface  
2.0  
3.0  
θJC (DIODE)  
θCS (MODULE)  
°C/W  
0.1  
Wt  
Weight of module  
20 (0.7)  
g (oz)  
Revision 2  
C-979  
To Order  
 
Previous Datasheet  
Index  
Next Data Sheet  
CPV364MK  
Electrical Characteristics @ T = 25°C (unless otherwise specified)  
J
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)CES  
Collector-to-Emitter Breakdown Voltage  
600  
3.0  
11  
0.63  
2.1  
2.6  
2.2  
V
VGE = 0V, IC = 250µA  
V(BR)CES/TJ Temp. Coeff. of Breakdown Voltage  
V/°C VGE = 0V, IC = 1.0mA  
IC = 13A  
VCE(on)  
Collector-to-Emitter Saturation Voltage  
Gate Threshold Voltage  
3.1  
VGE = 15V  
V
IC = 24A  
See Fig. 2, 5  
IC = 13A, TJ = 150°C  
VCE = VGE, IC = 250µA  
VGE(th)  
5.5  
VGE(th)/TJ Temp. Coeff. of Threshold Voltage  
-13  
18  
mV/°C VCE = VGE, IC = 250µA  
gfe  
Forward Transconductance  
S
VCE = 100V, IC = 20A  
VGE = 0V, VCE = 600V  
ICES  
Zero Gate Voltage Collector Current  
250  
3500  
1.7  
1.6  
±500  
µA  
VGE = 0V, VCE = 600V, TJ = 150°C  
VFM  
IGES  
Diode Forward Voltage Drop  
1.3  
1.2  
V
IC = 15A  
See Fig. 13  
IC = 15A, TJ = 150°C  
VGE = ±20V  
Gate-to-Emitter Leakage Current  
nA  
Switching Characteristics @ T = 25°C (unless otherwise specified)  
J
Parameter  
Min. Typ. Max. Units  
Conditions  
Qg  
Total Gate Charge (turn-on)  
Gate - Emitter Charge (turn-on)  
Gate - Collector Charge (turn-on)  
Turn-On Delay Time  
Rise Time  
10  
61  
13  
22  
70  
55  
90  
20  
35  
IC = 20A  
Qge  
Qgc  
td(on)  
tr  
nC  
ns  
VCC = 400V  
See Fig. 8  
TJ = 25°C  
IC = 13A, VCC = 480V  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
130 200  
VGE = 15V, RG = 10Ω  
47  
0.65  
0.37  
1.0  
71  
Energy losses include "tail" and  
diode reverse recovery.  
See Fig. 9, 10, 11, 18  
Eon  
Eoff  
Ets  
tsc  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Short Circuit Withstand Time  
mJ  
µs  
1.5  
VCC = 360V, TJ = 125°C  
VGE = 15V, RG = 10, VCPK < 500V  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
Rise Time  
66  
48  
60  
TJ = 150°C,  
See Fig. 9, 10, 11, 18  
ns  
IC = 13A, VCC = 480V  
VGE = 15V, RG = 10Ω  
Energy losses include "tail" and  
diode reverse recovery.  
VGE = 0V  
Turn-Off Delay Time  
Fall Time  
250  
140  
1.6  
1500  
190  
17  
Ets  
Total Switching Loss  
Input Capacitance  
mJ  
pF  
ns  
A
Cies  
Coes  
Cres  
trr  
Output Capacitance  
Reverse Transfer Capacitance  
Diode Reverse Recovery Time  
VCC = 30V  
See Fig. 7  
ƒ = 1.0MHz  
42  
TJ = 25°C See Fig.  
74 120  
TJ = 125°C  
TJ = 25°C See Fig.  
TJ = 125°C 15  
TJ = 25°C See Fig.  
TJ = 125°C 16  
A/µs TJ = 25°C See Fig.  
TJ = 125°C 17  
14  
IF = 15A  
Irr  
Diode Peak Reverse Recovery Current  
Diode Reverse Recovery Charge  
4.0  
6.5  
6.0  
10  
V R = 200V  
Qrr  
80 180  
220 600  
nC  
di/dt = 200A/µs  
di(rec)M/dt  
Diode Peak Rate of Fall of Recovery  
During tb  
188  
160  
Notes:  
VCC=80%(VCES), VGE=20V, L=10µH,  
RG= 10, ( See fig. 19 )  
Pulse width 5.0µs,  
single shot.  
Repetitive rating; V GE=20V, pulse width limited  
by max. junction temperature. ( See fig. 20)  
Pulse width 80µs; duty factor 0.1%.  
C-980  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV364MK  
15  
12  
9
4.7  
3.7  
2.8  
1.9  
0.9  
6
TC= 90°C  
TJ = 125°C  
3
Power Factor = 0.8  
Modulation Depth = 0.8  
VCC = 60% of Rated Voltage  
0
0
0.1  
1
10  
100  
f, Frequency (kHz)  
Fig. 1 - RMS Current and Output Power, Synthesized Sine Wave  
100  
10  
1
1000  
100  
T = 150°C  
J
T = 150°C  
J
T = 25°C  
J
10  
T = 25°C  
J
VGE = 15V  
VCC = 100V  
20µs PULSE WIDTH  
5µs PULSE WIDTH  
A
A
0.1  
1
0.1  
1
10  
5
10  
15  
20  
V
, Collector-to-Emitter Voltage (V)  
V
, Gate-to-Emitter Voltage (V)  
GE  
CE  
Fig. 3 - Typical Transfer Characteristics  
Fig. 2 - Typical Output Characteristics  
C-981  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV364MK  
25  
20  
15  
10  
5
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
VGE = 15V  
VGE = 15V  
80µs PULSE WIDTH  
IC = 26A  
IC = 13A  
IC = 6.5A  
A
A
0
25  
50  
75  
100  
125  
150  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
T
, Case Temperature (°C)  
T , Case Temperature (°C)  
C
C
Fig. 5 - Collector-to-Emitter Voltage vs.  
Fig. 4 - Maximum Collector Current vs.  
Case Temperature  
Case Temperature  
10  
D
=
0.50  
1
0.20  
0.10  
0.0 5  
P
D M  
0.1  
t
1
0 .02  
0 .01  
t
2
SIN G LE P UL SE  
(T H ER M A L R E SP O NS E )  
N otes:  
1 . D uty factor D  
=
t
/ t  
1
2
2. Pea k T = P  
x Z  
+ T  
C
D M  
J
thJC  
1
0.01  
0.00001  
0.0001  
0.001  
0.01  
0.1  
10  
t
, Rectangular Pulse D ura tion (sec)  
1
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case  
C-982  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV364MK  
2500  
20  
16  
12  
8
V
C
C
C
= 0V,  
f = 1MHz  
VCE = 400V  
IC = 25A  
GE  
ies  
res  
oes  
= C + C  
,
C
SHORTED  
ge  
gc  
gc  
ce  
= C  
= C + C  
2000  
1500  
1000  
500  
0
ce  
gc  
C
ies  
C
oes  
4
C
res  
A
A
0
1
10  
100  
0
20  
40  
60  
80  
V
, Collector-to-Emitter Voltage (V)  
Q , Total Gate Charge (nC)  
g
CE  
Fig. 7 - Typical Capacitance vs.  
Fig. 8 - Typical Gate Charge vs.  
Collector-to-Emitter Voltage  
Gate-to-Emitter Voltage  
10  
1.20  
1.16  
1.12  
1.08  
1.04  
1.00  
0.96  
RG = 10  
VCC = 480V  
VGE = 15V  
TC = 25°C  
IC = 13A  
VGE = 15V  
VCC = 480V  
IC = 26A  
IC = 13A  
IC = 6.5A  
1
A
A
0.1  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
0
10  
20  
30  
40  
50  
60  
T , Case Temperature (°C)  
R
, Gate Resistance ()  
C
G
Fig. 9 - Typical Switching Losses vs. Gate  
Fig. 10 - Typical Switching Losses vs.  
Resistance  
Case Temperature  
C-983  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV364MK  
4.0  
1000  
100  
10  
RG = 10Ω  
TC = 150°C  
VCC = 480V  
VGE = 20V  
TJ = 125°C  
VGE = 15V  
3.0  
2.0  
1.0  
0.0  
SAFE OPERATING AREA  
A
A
1
1
10  
100  
1000  
0
10  
20  
30  
V
, Collector-to-Emitter Voltage (V)  
I , Collector-to-Emitter Current (A)  
CE  
C
Fig. 12 - Turn-Off SOA  
Fig. 11 - Typical Switching Losses vs.  
Collector-to-Emitter Current  
100  
10  
T = 150°C  
J
T = 125°C  
J
T = 25°C  
J
1
0.8  
1.2  
1.6  
2.0  
2.4  
Forward Voltage Drop - V  
(V)  
FM  
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current  
C-984  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV364MK  
100  
10  
1
100  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
80  
I
= 30A  
F
I
= 30A  
F
I
= 15A  
F
60  
40  
20  
I
= 15A  
F
I
= 5.0A  
F
I
= 5.0A  
F
100  
1000  
100  
1000  
di /dt - (A/µs)  
f
di /dt - (A/µs)  
f
Fig. 15 - Typical Recovery Current vs. dif/dt  
Fig. 14 - Typical Reverse Recovery vs. dif/dt  
1000  
800  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
600  
I
= 30A  
F
I
= 5.0A  
F
400  
200  
0
I
= 15A  
F
I
= 15A  
F
I
= 30A  
F
I
= 5.0A  
F
100  
100  
1000  
100  
1000  
di /dt - (A/µs)  
f
di /dt - (A/µs)  
f
Fig. 16 - Typical Stored Charge vs. dif/dt  
Fig. 17 - Typical di(rec)M/dt vs. dif/dt  
C-985  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV364MK  
90% Vge  
Same type  
device as  
D.U.T.  
+Vge  
Vce  
430µF  
80%  
90% Ic  
10% Vce  
of Vce  
Ic  
D.U.T.  
Ic  
5% Ic  
td(off)  
tf  
t1+5µS  
Eoff = Vce ic dt  
t1  
Fig. 18a - Test Circuit for Measurement of  
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf  
t1  
t2  
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining  
Eoff, td(off), tf  
trr  
id dt  
tx  
trr  
GATE VOLTAGE D.U.T.  
Qrr =  
Ic  
10% +Vg  
+Vg  
tx  
10% Irr  
10% Vcc  
Vcc  
DUT VOLTAGE  
AND CURRENT  
Vce  
Vpk  
Irr  
10% Ic  
Vcc  
Ipk  
90% Ic  
Ic  
DIODE RECOVERY  
WAVEFORMS  
5% Vce  
tr  
td(on)  
t2  
Vce ie dt  
Eon =  
t2  
t4  
Erec = Vd id dt  
t3  
t1  
DIODE REVERSE  
t1  
RECOVERY ENERGY  
t3  
t4  
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,  
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,  
Defining Erec, trr, Qrr, Irr  
Defining Eon, td(on), tr  
Refer to Section D for the following:  
Appendix D: Section D - page D-6  
Fig. 18e - Macro Waveforms for Test Circuit of Fig. 18a  
Fig. 19 - Clamped Inductive Load Test Circuit  
Fig. 20 - Pulsed Collector Current Test Circuit  
Package Outline 5 - IMS-2 Package (13 pins)  
Section D - page D-14  
C-986  
To Order  

相关型号:

CPV364MM

Short Circuit Rated Fast IGBT
INFINEON

CPV364MU

IGBT SIP MODULE Ultra-Fast IGBT
INFINEON
FERROXCUBE
FERROXCUBE

CPVS-ER9.5-1S-8P-Z

ER cores and acces sories
FERROXCUBE

CPVS-RM4-1S-6P

RM cores and accessories
FERROXCUBE

CPW

Wirewound Resistors, Commercial Power, Axial Lead
VISHAY

CPW02100R0FB14

RES 100 OHM 2W 1% AXIAL
VISHAY

CPW02100R0JB14

RES 100 OHM 2W 5% AXIAL
VISHAY

CPW02100R0JE14

RES 100 OHM 2W 5% AXIAL
VISHAY

CPW0210R00FB14

RES 10 OHM 2W 1% AXIAL
VISHAY

CPW0212R00JE14

RES 12 OHM 2W 5% AXIAL
VISHAY