CY14B101LA-SP45XI [INFINEON]

nvSRAM (non-volatile SRAM);
CY14B101LA-SP45XI
型号: CY14B101LA-SP45XI
厂家: Infineon    Infineon
描述:

nvSRAM (non-volatile SRAM)

静态存储器
文件: 总31页 (文件大小:1079K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
CY14B101LA  
CY14B101NA  
1-Mbit (128 K × 8/64 K × 16) nvSRAM  
CY14B101LA/CY14B101NA, 1-Mbit (128  
K × 8/64 K × 16) nvSRAM  
Packages  
Features  
32-pin small-outline integrated circuit (SOIC)  
44-/54-pin thin small outline package (TSOP) Type II  
20 ns, 25 ns, and 45 ns access times  
48-pin shrink small-outline package (SSOP)  
48-ball fine-pitch ball grid array (FBGA)  
Internally organized as 128 K × 8 (CY14B101LA) or 64 K × 16  
(CY14B101NA)  
Pb-free and restriction of hazardous substances (RoHS)  
compliant  
Hands off automatic STORE on power-down with only a small  
capacitor  
STORE to QuantumTrap nonvolatile elements initiated by  
software, device pin, or AutoStore on power-down  
Functional Description  
The Cypress CY14B101LA/CY14B101NA is a fast static RAM  
(SRAM), with a nonvolatile element in each memory cell. The  
memory is organized as 128 K bytes of 8 bits each or 64 K words  
of 16 bits each. The embedded nonvolatile elements incorporate  
QuantumTrap technology, producing the world’s most reliable  
nonvolatile memory. The SRAM provides infinite read and write  
cycles, while independent nonvolatile data resides in the highly  
reliable QuantumTrap cell. Data transfers from the SRAM to the  
nonvolatile elements (the STORE operation) takes place  
automatically at power-down. On power-up, data is restored to  
the SRAM (the RECALL operation) from the nonvolatile memory.  
Both the STORE and RECALL operations are also available  
under software control.  
RECALL to SRAM initiated by software or power-up  
Infinite read, write, and RECALL cycles  
1 million STORE cycles to QuantumTrap  
20 year data retention  
Single 3 V +20% to –10% operation  
Industrial temperature  
For a complete list of related resources, click here.  
Logic Block Diagram [1, 2, 3]  
VCAP  
VCC  
Quatrum Trap  
1024 X 1024  
R
O
W
A5  
A6  
A7  
A8  
A9  
POWER  
CONTROL  
STORE  
RECALL  
D
E
C
O
D
E
R
STORE/RECALL  
CONTROL  
HSB  
STATIC RAM  
ARRAY  
1024 X 1024  
A12  
A13  
A14  
SOFTWARE  
DETECT  
A15  
A14 - A2  
A16  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
I
N
P
U
T
B
U
F
F
E
R
S
DQ5  
DQ6  
DQ7  
COLUMN I/O  
DQ8  
DQ9  
DQ10  
OE  
COLUMN DEC  
WE  
DQ11  
DQ12  
DQ13  
DQ14  
CE  
BLE  
A0 A1 A2 A3 A4 A10 A11  
DQ15  
BHE  
Notes  
1. Address A –A for × 8 configuration and Address A –A for × 16 configuration.  
0
16  
0
15  
2. Data DQ –DQ for × 8 configuration and Data DQ –DQ for × 16 configuration.  
0
7
0
15  
3. BHE and BLE are applicable for × 16 configuration only.  
Cypress Semiconductor Corporation  
Document Number: 001-42879 Rev. *S  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 24, 2020  
CY14B101LA  
CY14B101NA  
Contents  
Pinouts ..............................................................................3  
Pin Definitions ..................................................................5  
Device Operation ..............................................................6  
SRAM Read ................................................................6  
SRAM Write .................................................................6  
AutoStore Operation ....................................................6  
Hardware STORE Operation .......................................6  
Hardware RECALL (Power-up) ...................................7  
Software STORE .........................................................7  
Software RECALL .......................................................7  
Preventing AutoStore ..................................................8  
Data Protection ............................................................8  
Maximum Ratings .............................................................9  
Operating Range ...............................................................9  
DC Electrical Characteristics ..........................................9  
Data Retention and Endurance .....................................10  
Capacitance ....................................................................10  
Thermal Resistance ........................................................10  
AC Test Loads ................................................................11  
AC Test Conditions ........................................................11  
AC Switching Characteristics .......................................12  
SRAM Read Cycle ....................................................12  
SRAM Write Cycle .....................................................12  
Switching Waveforms ....................................................12  
AutoStore/Power-Up RECALL .......................................15  
Switching Waveforms ....................................................15  
Software Controlled STORE/RECALL Cycle ................16  
Switching Waveforms ....................................................16  
Hardware STORE Cycle .................................................17  
Switching Waveforms ....................................................17  
Truth Table For SRAM Operations ................................18  
Ordering Information ......................................................19  
Ordering Code Definitions .........................................20  
Package Diagrams ..........................................................21  
Acronyms ........................................................................26  
Document Conventions .................................................26  
Units of Measure .......................................................26  
Document History Page .................................................27  
Sales, Solutions, and Legal Information ......................30  
Worldwide Sales and Design Support .......................30  
Products ....................................................................30  
PSoC® Solutions .......................................................30  
Cypress Developer Community .................................30  
Technical Support .....................................................30  
Document Number: 001-42879 Rev. *S  
Page 2 of 30  
CY14B101LA  
CY14B101NA  
Pinouts  
Figure 1. Pin Diagram – 44-pin TSOP II  
[5]  
A
NC  
NC  
1
2
0
NC  
NC  
44  
43  
42  
41  
1
2
44  
43  
42  
41  
HSB  
NC  
[7]  
[4]  
A
1
[6]  
A
3
4
5
6
7
8
A
3
4
5
6
2
NC  
NC  
NC  
A
A
0
15  
[5]  
[4]  
A
3
A
1
OE  
A
4
A
2
BHE  
40  
39  
40  
39  
CE  
A
3
BLE  
DQ  
16  
DQ  
38  
37  
36  
35  
34  
A
4
7
8
38  
37  
36  
35  
34  
0
1
2
3
A
15  
15  
DQ  
CE  
DQ  
DQ  
DQ  
OE  
14  
13  
DQ  
44-pin TSOP II  
DQ  
DQ  
V
9
10  
44-pin TSOP II  
9
10  
DQ  
DQ  
V
0
1
7
[8]  
(× 8)  
DQ  
V
(× 16)  
12  
6
11  
12  
13  
14  
11  
12  
13  
14  
CC  
V
SS  
CC  
SS  
Top View  
(not to scale)  
V
Top View  
(not to scale)  
SS  
V
DQ  
V
V
33  
32  
31  
33  
32  
31  
CC  
SS  
CC  
DQ  
DQ  
DQ  
DQ  
4
5
11  
2
3
5
DQ  
DQ  
DQ  
DQ  
DQ  
V
10  
4
15  
16  
17  
18  
WE  
A
5
15  
16  
17  
18  
6
7
30  
29  
28  
27  
26  
25  
24  
23  
DQ  
DQ  
30  
29  
28  
27  
26  
25  
24  
23  
9
8
CAP  
A
14  
A
6
WE  
A
V
A
13  
12  
CAP  
A
A
7
5
A
14  
A
6
A
19  
20  
21  
22  
19  
20  
21  
22  
A
A
8
A
13  
11  
A
9
A
7
A
12  
10  
A
8
NC  
NC  
A
A
NC  
NC  
11  
A
9
10  
Figure 2. Pin Diagram – 48-pin SSOP and 32-pin SOIC  
V
CAP  
48  
47  
V
CC  
1
2
3
A
16  
A
15  
A
14  
46  
45  
44  
43  
42  
HSB  
WE  
A
12  
4
A
7
5
A
A
13  
A
6
6
8
A
5
A
9
7
NC  
A
4
8
41  
40  
NC  
A
11  
9
48-pin SSOP  
32-pin SOIC  
NC  
NC  
NC  
10  
11  
12  
13  
14  
39  
NC  
NC  
NC  
(×8)  
(×8)  
38  
37  
36  
Top View  
(not to scale)  
Top View  
(not to scale)  
V
SS  
V
SS  
NC  
NC  
NC  
35  
NC  
DQ0  
15  
16  
17  
18  
19  
20  
21  
34  
33  
32  
31  
DQ6  
OE  
A
3
A
2
A
10  
A
1
30  
29  
28  
CE  
DQ7  
A
0
DQ1  
DQ2  
NC  
DQ5  
DQ4  
DQ3  
22  
23  
24  
27  
26  
25  
NC  
V
CC  
Notes  
4. Address expansion for 2-Mbit. NC pin not connected to die.  
5. Address expansion for 4-Mbit. NC pin not connected to die.  
6. Address expansion for 8-Mbit. NC pin not connected to die.  
7. Address expansion for 16-Mbit. NC pin not connected to die.  
8. HSB pin is not available in 44-pin TSOP II (× 16) package.  
Document Number: 001-42879 Rev. *S  
Page 3 of 30  
CY14B101LA  
CY14B101NA  
Pinouts (continued)  
Figure 3. 48-ball FBGA and 54-pin TSOP II pinout  
NC  
1
54  
53  
52  
51  
50  
49  
HSB  
48-FBGA  
[12]  
[11]  
NC  
(x8)  
NC  
A
0
2
3
[10]  
NC  
Top View  
(not to scale)  
[9]  
A
1
NC  
4
A
2
A
15  
5
A
3
OE  
BHE  
BLE  
DQ  
15  
DQ  
14  
6
1
2
4
3
5
6
48  
47  
46  
45  
A
4
7
CE  
8
A
A
A
2
NC  
OE  
NC  
NC  
NC  
NC  
0
1
A
B
C
DQ  
DQ  
0
1
9
10  
11  
12  
13  
14  
54 - TSOP II  
(x16)  
A
A
4
CE NC  
NC DQ4  
V
3
DQ  
DQ  
V
44  
43  
42  
41  
40  
39  
DQ  
2
3
13  
DQ  
12  
A
A
6
DQ0  
V
CC  
V
5
SS  
Top View  
V
SS  
V
CC  
(not to scale)  
[9]  
NC  
DQ  
A
DQ  
11  
DQ  
10  
DQ5  
DQ6  
NC  
4
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CC  
D
E
F
SS DQ1  
7
DQ  
5
38  
37  
36  
35  
DQ  
DQ  
DQ  
9
DQ  
8
A
V
V
SS  
VCAP  
6
7
CC  
DQ2  
NC  
16  
WE  
A
5
V
CAP  
A
A
15  
DQ3  
NC  
DQ7  
14  
A
14  
34  
33  
32  
31  
30  
29  
28  
A
6
A
13  
A
A
G
H
HSB  
WE NC  
[11]  
13  
12  
A
A
7
A
8
12  
A
11  
[10]  
NC  
A
A
9
A
11  
A
8
10  
NC  
A
10  
A
9
NC  
NC  
NC  
25  
26  
27  
NC  
NC  
NC  
Notes  
9. Address expansion for 2-Mbit. NC pin not connected to die.  
10. Address expansion for 4-Mbit. NC pin not connected to die.  
11. Address expansion for 8-Mbit. NC pin not connected to die.  
12. Address expansion for 16-Mbit. NC pin not connected to die.  
Document Number: 001-42879 Rev. *S  
Page 4 of 30  
CY14B101LA  
CY14B101NA  
Pin Definitions  
Pin Name  
A0–A16  
I/O Type  
Description  
Address inputs. Used to select one of the 131,072 bytes of the nvSRAM for × 8 configuration.  
Address inputs. Used to select one of the 65,536 words of the nvSRAM for × 16 configuration.  
Bidirectional data I/O lines for × 8 configuration. Used as input or output lines depending on operation.  
Bidirectional Data I/O Lines for × 16 configuration. Used as input or output lines depending on operation.  
Input  
A0–A15  
DQ0–DQ7  
DQ0–DQ15  
WE  
Input/Output  
Input  
Write Enable input, Active LOW. When the chip is enabled and WE is LOW, data on the I/O pins is written  
to the specific address location.  
Input  
Input  
Chip Enable input, Active LOW. When LOW, selects the chip. When HIGH, deselects the chip.  
CE  
OE  
Output Enable, Active LOW. The active LOW OE input enables the data output buffers during read  
cycles. I/O pins are tristated on deasserting OE HIGH.  
Input  
Input  
Byte High Enable, Active LOW. Controls DQ15–DQ8.  
BHE  
Byte Low Enable, Active LOW. Controls DQ7–DQ0.  
BLE  
VSS  
Ground  
Ground for the device. Must be connected to the ground of the system.  
VCC  
Power supply Power supply inputs to the device. 3.0 V +20%, –10%  
HSB[13]  
Input/Output Hardware STORE Busy (HSB). When LOW, this output indicates that a Hardware STORE is in progress.  
When pulled LOW, external to the chip, it initiates a nonvolatile STORE operation. After each Hardware  
and Software STORE operation HSB is driven HIGH for a short time (tHHHD) with standard output high  
current and then a weak internal pull-up resistor keeps this pin HIGH (external pull-up resistor connection  
optional).  
VCAP  
NC  
Power supply AutoStore capacitor. Supplies power to the nvSRAM during power loss to store data from SRAM to  
nonvolatile elements.  
No connect No connect. This pin is not connected to the die.  
Note  
13. HSB pin is not available in 44-pin TSOP II (× 16) package.  
Document Number: 001-42879 Rev. *S  
Page 5 of 30  
CY14B101LA  
CY14B101NA  
Note If the capacitor is not connected to VCAP pin, AutoStore  
must be disabled using the soft sequence specified in Preventing  
AutoStore on page 8. In case AutoStore is enabled without a  
capacitor on VCAP pin, the device attempts an AutoStore  
operation without sufficient charge to complete the store. This  
corrupts the data stored in nvSRAM.  
Device Operation  
The CY14B101LA/CY14B101NA nvSRAM is made up of two  
functional components paired in the same physical cell. They are  
an SRAM memory cell and a nonvolatile QuantumTrap cell. The  
SRAM memory cell operates as a standard fast static RAM. Data  
in the SRAM is transferred to the nonvolatile cell (the STORE  
operation), or from the nonvolatile cell to the SRAM (the RECALL  
operation). Using this unique architecture, all cells are stored and  
recalled in parallel. During the STORE and RECALL operations,  
SRAM read and write operations are inhibited. The  
CY14B101LA/CY14B101NA supports infinite reads and writes  
similar to a typical SRAM. In addition, it provides infinite RECALL  
operations from the nonvolatile cells and up to 1 million STORE  
operations. See the Truth Table For SRAM Operations on page  
18 for a complete description of read and write modes.  
Figure 4 shows the proper connection of the storage capacitor  
(VCAP) for automatic STORE operation. See the DC Electrical  
Characteristics on page 9 for the size of VCAP. The voltage on  
the VCAP pin is driven to VCC by a regulator on the chip. A pull-up  
should be placed on WE to hold it inactive during power-up. This  
pull-up is effective only if the WE signal is tristate during  
power-up. Many MPUs tristate their controls on power-up. This  
should be verified when using the pull-up. When the nvSRAM  
comes out of power-on-RECALL, the MPU must be active or the  
WE held inactive until the MPU comes out of reset.  
SRAM Read  
To reduce unnecessary nonvolatile stores, AutoStore and  
Hardware STORE operations are ignored unless at least one  
write operation has taken place since the most recent STORE or  
RECALL cycle. Software initiated STORE cycles are performed  
regardless of whether a write operation has taken place. The  
HSB signal is monitored by the system to detect if an AutoStore  
cycle is in progress.  
The CY14B101LA/CY14B101NA performs a read cycle when  
CE and OE are LOW and WE and HSB are HIGH. The address  
specified on pins A0–16 or A0–15 determines which of the 131,072  
data bytes or 65,536 words of 16 bits each are accessed. Byte  
enables (BHE, BLE) determine which bytes are enabled to the  
output, in the case of 16-bit words. When the read is initiated by  
an address transition, the outputs are valid after a delay of tAA  
(read cycle 1). If the read is initiated by CE or OE, the outputs  
are valid at tACE or at tDOE, whichever is later (read cycle 2). The  
data output repeatedly responds to address changes within the  
tAA access time without the need for transitions on any control  
input pins. This remains valid until another address change or  
until CE or OE is brought HIGH, or WE or HSB is brought LOW.  
Figure 4. AutoStore Mode  
VCC  
0.1 uF  
VCC  
SRAM Write  
A write cycle is performed when CE and WE are LOW and HSB  
is HIGH. The address inputs must be stable before entering the  
write cycle and must remain stable until CE or WE goes HIGH at  
the end of the cycle. The data on the common I/O pins DQ0–15  
are written into the memory if the data is valid tSD before the end  
of a WE-controlled write or before the end of a CE-controlled  
write. The Byte Enable inputs (BHE, BLE) determine which bytes  
are written, in the case of 16-bit words. Keep OE HIGH during  
the entire write cycle to avoid data bus contention on common  
I/O lines. If OE is left LOW, internal circuitry turns off the output  
buffers tHZWE after WE goes LOW.  
WE  
VCAP  
VCAP  
VSS  
Hardware STORE Operation  
AutoStore Operation  
The CY14B101LA/CY14B101NA provides the HSB[14] pin to  
control and acknowledge the STORE operations. Use the HSB  
pin to request a Hardware STORE cycle. When the HSB pin is  
driven LOW, the CY14B101LA/CY14B101NA conditionally  
initiates a STORE operation after tDELAY. An actual STORE cycle  
only begins if a write to the SRAM has taken place since the last  
STORE or RECALL cycle. The HSB pin also acts as an open  
drain driver (internal 100 kΩ weak pull-up resistor) that is  
internally driven LOW to indicate a busy condition when the  
STORE (initiated by any means) is in progress.  
The CY14B101LA/CY14B101NA stores data to the nvSRAM  
using one of the following three storage operations: Hardware  
STORE activated by HSB; Software STORE activated by an  
address sequence; AutoStore on device power-down. The  
AutoStore operation is a unique feature of QuantumTrap  
technology  
and  
is  
enabled  
by  
default  
on  
the  
CY14B101LA/CY14B101NA.  
During a normal operation, the device draws current from VCC to  
charge a capacitor connected to the VCAP pin. This stored  
charge is used by the chip to perform a single STORE operation.  
If the voltage on the VCC pin drops below VSWITCH, the part  
automatically disconnects the VCAP pin from VCC. A STORE  
operation is initiated with power provided by the VCAP capacitor.  
Note After each Hardware and Software STORE operation HSB  
is driven HIGH for a short time (tHHHD) with standard output high  
current and then remains HIGH by internal 100 kΩ pull-up  
resistor.  
Note  
14. HSB pin is not available in 44-pin TSOP II (× 16) package.  
Document Number: 001-42879 Rev. *S  
Page 6 of 30  
CY14B101LA  
CY14B101NA  
SRAM write operations that are in progress when HSB is driven  
LOW by any means are given time (tDELAY) to complete before  
the STORE operation is initiated. However, any SRAM write  
cycles requested after HSB goes LOW are inhibited until HSB  
returns HIGH. In case the write latch is not set, HSB is not driven  
LOW by the CY14B101LA/CY14B101NA. But any SRAM read  
and write cycles are inhibited until HSB is returned HIGH by MPU  
or other external source.  
To initiate the Software STORE cycle, the following read  
sequence must be performed:  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x8FC0 Initiate STORE cycle  
During any STORE operation, regardless of how it is initiated,  
the CY14B101LA/CY14B101NA continues to drive the HSB pin  
LOW, releasing it only when the STORE is complete. Upon  
completion of the STORE operation, the nvSRAM memory  
access is inhibited for tLZHSB time after HSB pin returns HIGH.  
Leave the HSB unconnected if it is not used.  
The software sequence may be clocked with CE controlled reads  
or OE controlled reads, with WE kept HIGH for all the six READ  
sequences. After the sixth address in the sequence is entered,  
the STORE cycle commences and the chip is disabled. HSB is  
driven LOW. After the tSTORE cycle time is fulfilled, the SRAM is  
activated again for the read and write operation.  
Hardware RECALL (Power-up)  
During power-up or after any low power condition  
(VCC< VSWITCH), an internal RECALL request is latched. When  
VCC again exceeds the VSWITCH on power up, a RECALL cycle  
is automatically initiated and takes tHRECALL to complete. During  
this time, the HSB pin is driven LOW by the HSB driver and all  
reads and writes to nvSRAM are inhibited.  
Software RECALL  
Data is transferred from the nonvolatile memory to the SRAM by  
a software address sequence. A Software RECALL cycle is  
initiated with a sequence of read operations in a manner similar  
to the Software STORE initiation. To initiate the RECALL cycle,  
the following sequence of CE or OE controlled read operations  
must be performed:  
Software STORE  
Data is transferred from the SRAM to the nonvolatile memory by  
a software address sequence. The CY14B101LA/CY14B101NA  
Software STORE cycle is initiated by executing sequential CE or  
OE controlled read cycles from six specific address locations in  
exact order. During the STORE cycle an erase of the previous  
nonvolatile data is first performed, followed by a program of the  
nonvolatile elements. After a STORE cycle is initiated, further  
input and output are disabled until the cycle is completed.  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x4C63 Initiate RECALL cycle  
Internally, RECALLis a two step procedure. First, the SRAM data  
is cleared. Next, the nonvolatile information is transferred into the  
SRAM cells. After the tRECALL cycle time, the SRAM is again  
ready for read and write operations. The RECALL operation  
does not alter the data in the nonvolatile elements.  
Because a sequence of READs from specific addresses is used  
for STORE initiation, it is important that no other read or write  
accesses intervene in the sequence, or the sequence is aborted  
and no STORE or RECALL takes place.  
Table 1. Mode Selection  
[16]  
A15–A0  
Mode  
I/O  
Power  
Standby  
Active  
CE  
WE  
OE  
BHE, BLE[15]  
H
X
X
X
X
X
X
Not selected  
Read SRAM  
Write SRAM  
Output high Z  
Output data  
Input data  
L
L
L
H
L
L
X
L
L
L
X
Active  
Active[17]  
H
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8B45  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore  
Output data  
Output data  
Output data  
Output data  
Output data  
Output data  
Disable  
Notes  
15. BHE and BLE are applicable for x16 configuration only.  
16. While there are 17 address lines on the CY14B101LA (16 address lines on the CY14B101NA), only the 13 address lines (A - A ) are used to control software modes.  
14  
2
Rest of the address lines are do not care.  
17. The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a nonvolatile cycle.  
Document Number: 001-42879 Rev. *S  
Page 7 of 30  
CY14B101LA  
CY14B101NA  
Table 1. Mode Selection (continued)  
[16]  
BHE, BLE[15]  
A15–A0  
Mode  
I/O  
Power  
CE  
WE  
OE  
L
H
L
X
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4B46  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore  
Output data  
Output data  
Output data  
Output data  
Output data  
Output data  
Active[18]  
Enable  
[18]  
L
L
H
H
L
L
X
X
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile  
STORE  
Output data  
Output data  
Output data  
Output data  
Output data  
Output high Z  
Active ICC2  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile  
RECALL  
Output data  
Output data  
Output data  
Output data  
Output data  
Output high Z  
Active[18]  
If the AutoStore function is disabled or reenabled, a manual  
STORE operation (Hardware or Software) must be issued to  
save the AutoStore state through subsequent power-down  
cycles. The part comes from the factory with AutoStore enabled  
and 0x00 written in all cells.  
Preventing AutoStore  
The AutoStore function is disabled by initiating an AutoStore  
disable sequence. A sequence of read operations is performed  
in a manner similar to the Software STORE initiation. To initiate  
the AutoStore disable sequence, the following sequence of CE  
or OE controlled read operations must be performed:  
Data Protection  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x8B45 AutoStore Disable  
The CY14B101LA/CY14B101NA protects data from corruption  
during low voltage conditions by inhibiting all externally initiated  
STORE and write operations. The low voltage condition is  
detected when VCC is less than VSWITCH  
.
If the  
CY14B101LA/CY14B101NA is in a write mode (both CE and WE  
are LOW) at power-up, after a RECALL or STORE, the write is  
inhibited until the SRAM is enabled after tLZHSB (HSB to output  
active). This protects against inadvertent writes during power-up  
or brown out conditions.  
The AutoStore is reenabled by initiating an AutoStore enable  
sequence. A sequence of read operations is performed in a  
manner similar to the Software RECALL initiation. To initiate the  
AutoStore enable sequence, the following sequence of CE or OE  
controlled read operations must be performed:  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x4B46 AutoStore Enable  
Note  
18. The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a nonvolatile cycle.  
Document Number: 001-42879 Rev. *S  
Page 8 of 30  
CY14B101LA  
CY14B101NA  
Package power dissipation  
capability (TA = 25 °C) ................................................. 1.0 W  
Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the  
device. These user guidelines are not tested.  
Surface mount Pb soldering  
temperature (3 Seconds) ......................................... +260 °C  
Storage temperature ................................ –65 °C to +150 °C  
DC output current (1 output at a time, 1s duration) .... 15 mA  
Maximum accumulated storage time:  
Static discharge voltage  
(per MIL-STD-883, Method 3015) ......................... > 2001 V  
At 150 °C ambient temperature ...................... 1000 h  
At 85 °C ambient temperature .................... 20 Years  
Latch up current .................................................... > 200 mA  
Maximum junction temperature ................................. 150 °C  
Supply voltage on VCC relative to VSS ...........–0.5 V to 4.1 V  
Operating Range  
Voltage applied to outputs  
in High Z state .................................... –0.5 V to VCC + 0.5 V  
Range  
Industrial  
Ambient Temperature  
VCC  
Input voltage .......................................0.5 V to VCC + 0.5 V  
–40 °C to +85 °C  
2.7 V to 3.6 V  
Transient voltage (< 20 ns) on  
any pin to ground potential .................2.0 V to VCC + 2.0 V  
DC Electrical Characteristics  
Over the Operating Range  
Parameter  
VCC  
Description  
Power supply voltage  
Average VCC current  
Test Conditions  
Min  
2.7  
Typ [19]  
Max  
Unit  
3.0  
3.6  
V
ICC1  
tRC = 20 ns  
RC = 25 ns  
tRC = 45 ns  
70  
70  
52  
mA  
mA  
mA  
t
Values obtained without output loads  
(IOUT = 0 mA)  
ICC2  
ICC3  
Average VCC current during  
STORE  
All inputs don’t care, VCC = Max  
Average current for duration tSTORE  
10  
mA  
mA  
Average VCC current at  
tRC = 200 ns, VCC(Typ), 25 °C  
All inputs cycling at CMOS levels.  
Values obtained without output loads  
(IOUT = 0 mA)  
35  
ICC4  
ISB  
Average VCAP current during  
AutoStore cycle  
All inputs don’t care. Average current for  
duration tSTORE  
5
5
mA  
mA  
VCC standby current  
CE > (VCC – 0.2 V).  
VIN < 0.2 V or > (VCC – 0.2 V).  
Standby current level after nonvolatile cycle  
is complete.  
Inputs are static. f = 0 MHz  
[20]  
IIX  
Input leakage current (except  
HSB)  
VCC = Max, VSS < VIN < VCC  
–1  
+1  
µA  
Input leakage current (for HSB) VCC = Max, VSS < VIN < VCC  
Off-state output leakage current VCC = Max, VSS < VOUT < VCC  
–100  
–1  
+1  
+1  
µA  
µA  
IOZ  
,
CE or OE > VIH or BHE/BLE > VIH or WE < VIL  
VIH  
VIL  
Input HIGH voltage  
Input LOW voltage  
Output HIGH voltage  
Output LOW voltage  
2.0  
VSS – 0.5  
2.4  
VCC + 0.5  
V
V
V
V
0.8  
VOH  
VOL  
IOUT = –2 mA  
IOUT = 4 mA  
0.4  
Notes  
19. Typical values are at 25 °C, V = V  
. Not 100% tested.  
CC(Typ)  
CC  
20. The HSB pin has I  
= -2 µA for V of 2.4 V when both active high and low drivers are disabled. When they are enabled standard V and V are valid. This  
OUT  
O
H
O
H
O
L
parameter is characterized but not tested.  
Document Number: 001-42879 Rev. *S  
Page 9 of 30  
CY14B101LA  
CY14B101NA  
DC Electrical Characteristics (continued)  
Over the Operating Range  
Parameter  
Description  
Storage capacitor  
Test Conditions  
Min  
61  
Typ [19]  
Max  
180  
VCC  
Unit  
µF  
V
[21]  
VCAP  
Between VCAP pin and VSS  
68  
[22, 23]  
VVCAP  
Maximum voltage driven on VCAP VCC = Max  
pin by the device  
Data Retention and Endurance  
Over the Operating Range  
Parameter  
Description  
Min  
20  
Unit  
Years  
K
DATAR  
NVC  
Data retention  
Nonvolatile STORE operations  
1,000  
Capacitance  
Parameter[23]  
Description  
Test Conditions  
Max  
Unit  
pF  
CIN  
Input capacitance (except BHE, BLE and HSB)  
Input capacitance (for BHE, BLE and HSB)  
Output capacitance (except HSB)  
TA = 25 °C, f = 1 MHz, VCC = VCC(Typ)  
7
8
7
8
pF  
COUT  
pF  
Output capacitance (for HSB)  
pF  
Thermal Resistance  
54-pin  
48-pin 48-ball 44-pin  
32-pin  
Parameter[23]  
Description  
Test Conditions  
Unit  
TSOP II SSOP  
FBGA TSOP II SOIC  
ΘJA  
Thermal resistance  
(junction to ambient)  
Test  
conditions  
follow 36.4  
37.47  
24.71  
48.19  
6.5  
41.74  
11.90  
41.55 °C/W  
24.43 °C/W  
standard test methods and  
procedures for measuring  
thermal  
ΘJC  
Thermal resistance  
(junction to case)  
10.13  
impedance,  
in  
accordance  
with  
EIA/JESD51.  
Notes  
21. Min V  
value guarantees that there is a sufficient charge available to complete a successful AutoStore operation. Max V  
value guarantees that the capacitor  
CAP  
CAP  
on V  
is charged to a minimum voltage during a Power-Up RECALL cycle so that an immediate power-down cycle can complete a successful AutoStore. Therefore  
CAP  
it is always recommended to use a capacitor within the specified min and max limits. See application note AN43593 for more details on V  
options.  
CAP  
22. Maximum voltage on V  
pin (V  
) is provided for guidance when choosing the V  
capacitor. The voltage rating of the V capacitor across the operating  
CAP  
VCAP  
CAP  
CAP  
temperature range should be higher than the V  
voltage.  
VCAP  
23. These parameters are guaranteed by design and are not tested.  
Document Number: 001-42879 Rev. *S  
Page 10 of 30  
CY14B101LA  
CY14B101NA  
AC Test Loads  
Figure 5. AC Test Loads  
577 Ω  
for tristate specs  
577 Ω  
3.0 V  
3.0 V  
R1  
R1  
OUTPUT  
OUTPUT  
R2  
789 Ω  
R2  
789 Ω  
5 pF  
30 pF  
AC Test Conditions  
Input pulse levels ...................................................0 V to 3 V  
Input rise and fall times (10%–90%) ........................... < 3 ns  
Input and output timing reference levels ....................... 1.5 V  
Document Number: 001-42879 Rev. *S  
Page 11 of 30  
CY14B101LA  
CY14B101NA  
AC Switching Characteristics  
Over the Operating Range  
Parameters [24]  
20 ns  
25 ns  
45 ns  
Unit  
Description  
Cypress  
Alt Parameter  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
SRAM Read Cycle  
tACE  
tACS  
tRC  
Chip enable access time  
Read cycle time  
20  
20  
25  
25  
45  
45  
ns  
ns  
[25]  
tRC  
[26]  
tAA  
tOE  
tOH  
tLZ  
Address access time  
3
3
0
0
20  
10  
3
3
0
0
25  
12  
3
3
0
0
45  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAA  
Output enable to data valid  
Output hold after address change  
Chip enable to output active  
Chip disable to output inactive  
Output enable to output active  
Output disable to output inactive  
Chip enable to power active  
Chip disable to power standby  
tDOE  
[26]  
tOHA  
[27, 28]  
tLZCE  
tHZCE  
tLZOE  
[27, 28]  
[27, 28]  
[27, 28]  
tHZ  
tOLZ  
tOHZ  
tPA  
8
10  
15  
8
10  
15  
tHZOE  
[27]  
tPU  
[27]  
tPS  
20  
25  
45  
20  
tPD  
[27]  
tDBE[  
Byte enable to data valid  
Byte enable to output active  
Byte disable to output inactive  
0
10  
8
0
12  
10  
0
ns  
ns  
ns  
[27]  
[27]  
tLZBE  
tHZBE  
15  
SRAM Write Cycle  
tWC  
tPWE  
tSCE  
tSD  
tHD  
tAW  
tSA  
tWC  
tWP  
tCW  
tDW  
tDH  
tAW  
tAS  
Write cycle time  
Write pulse width  
20  
15  
15  
8
0
15  
0
8
25  
20  
20  
10  
0
20  
0
0
10  
45  
30  
30  
15  
0
30  
0
0
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip enable to end of write  
Data setup to end of write  
Data hold after end of write  
Address setup to end of write  
Address setup to start of write  
Address hold after end of write  
Write enable to output disable  
tHA  
tWR  
tWZ  
0
[27, 28, 29]  
tHZWE  
[27, 28]  
tOW  
Output active after end of write  
Byte enable to end of write  
3
3
3
ns  
ns  
tLZWE  
tBW  
15  
20  
30  
Switching Waveforms  
Figure 6. SRAM Read Cycle #1 (Address Controlled) [25, 26, 30]  
tRC  
Address  
Address Valid  
tAA  
Output Data Valid  
Previous Data Valid  
tOHA  
Data Output  
Notes  
24. Test conditions assume signal transition time of 3 ns or less, timing reference levels of V /2, input pulse levels of 0 to V  
, and output loading of the specified  
CC(typ)  
CC  
I
/I and load capacitance shown in Figure 5 on page 11.  
OL OH  
25. WE must be HIGH during SRAM read cycles.  
26. Device is continuously selected with CE, OE, and BHE/BLE LOW.  
27. These parameters are guaranteed by design and are not tested.  
28. Measured ±200 mV from steady state output voltage.  
29. If WE is low when CE goes low, the outputs remain in the high impedance state.  
30. HSB must remain HIGH during Read and Write cycles.  
Document Number: 001-42879 Rev. *S  
Page 12 of 30  
CY14B101LA  
CY14B101NA  
Switching Waveforms (continued)  
Figure 7. SRAM Read Cycle #2 (CE and OE Controlled) [31, 32, 33]  
Address  
CE  
Address Valid  
tRC  
tHZCE  
tACE  
tAA  
tLZCE  
tHZOE  
tDOE  
OE  
tHZBE  
tLZOE  
tDBE  
BHE, BLE  
tLZBE  
High Impedance  
Standby  
Data Output  
Output Data Valid  
tPU  
tPD  
Active  
ICC  
Figure 8. SRAM Write Cycle #1 (WE Controlled) [31, 33, 34, 35]  
tWC  
Address  
Address Valid  
tSCE  
tHA  
CE  
tBW  
BHE, BLE  
tAW  
tPWE  
WE  
Data Input  
Data Output  
tSA  
tHD  
tSD  
Input Data Valid  
tLZWE  
tHZWE  
High Impedance  
Previous Data  
Notes  
31. BHE and BLE are applicable for × 16 configuration only.  
32. WE must be HIGH during SRAM read cycles.  
33. HSB must remain HIGH during Read and Write cycles.  
34. CE or WE must be > V during address transitions.  
IH  
35. If WE is low when CE goes low, the outputs remain in the high impedance state.  
Document Number: 001-42879 Rev. *S  
Page 13 of 30  
CY14B101LA  
CY14B101NA  
Switching Waveforms (continued)  
Figure 9. SRAM Write Cycle #2 (CE Controlled) [36, 37, 38, 39]  
tWC  
Address Valid  
tSCE  
Address  
tSA  
tHA  
CE  
tBW  
tPWE  
tSD  
BHE, BLE  
WE  
tHD  
Input Data Valid  
High Impedance  
Data Input  
Data Output  
Figure 10. SRAM Write Cycle #3 (BHE and BLE Controlled) [36, 37, 38, 39]  
tWC  
Address  
CE  
Address Valid  
tSCE  
tSA  
tHA  
tBW  
BHE, BLE  
WE  
tAW  
tPWE  
tSD  
tHD  
Data Input  
Input Data Valid  
High Impedance  
Data Output  
Notes  
36. BHE and BLE are applicable for × 16 configuration only.  
37. If WE is low when CE goes low, the outputs remain in the high-impedance state.  
38. HSB must remain HIGH during Read and Write cycles.  
39. CE or WE must be > V during address transitions.  
IH  
Document Number: 001-42879 Rev. *S  
Page 14 of 30  
CY14B101LA  
CY14B101NA  
AutoStore/Power-Up RECALL  
Over the Operating Range  
20 ns  
25 ns  
45 ns  
Unit  
Parameter  
Description  
Min  
Max  
Min  
Max  
Min  
Max  
[40]  
Power-Up RECALL duration  
STORE cycle duration  
20  
20  
20  
8
ms  
ms  
ns  
tHRECALL  
[41]  
8
8
tSTORE  
[42]  
Time allowed to complete SRAM  
write cycle  
20  
25  
25  
tDELAY  
Low voltage trigger level  
VCC rise time  
150  
2.65  
150  
2.65  
150  
2.65  
V
µs  
V
VSWITCH  
[43]  
tVCCRISE  
[43]  
HSB output disable voltage  
1.9  
1.9  
1.9  
VHDIS  
[43]  
tLZHSB  
HSB to output active time  
HSB High active time  
5
5
5
µs  
ns  
[43]  
tHHHD  
500  
500  
500  
Switching Waveforms  
Figure 11. AutoStore or Power-Up RECALL [44]  
VCC  
VSWITCH  
VHDIS  
41  
41  
tVCCRISE  
tSTORE  
tSTORE  
Note  
Note  
tHHHD  
tHHHD  
45  
45  
Note  
Note  
HSB OUT  
AutoStore  
tDELAY  
tLZHSB  
tLZHSB  
tDELAY  
POWER-  
UP  
RECALL  
tHRECALL  
tHRECALL  
Read & Write  
Inhibited  
(RWI)  
Read & Write  
Read & Write  
POWER-UP  
RECALL  
BROWN  
OUT  
AutoStore  
POWER  
DOWN  
AutoStore  
POWER-UP  
RECALL  
Notes  
40. t  
starts from the time V rises higher than V .  
SWITCH  
HRECALL  
CC  
41. If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware STORE takes place.  
42. On a Hardware STORE and AutoStore initiation, SRAM write operation continues to be enabled for time t  
43. These parameters are guaranteed by design and are not tested.  
.
DELAY  
44. Read and Write cycles are ignored during STORE, RECALL, and while V is lower than V  
.
CC  
SWITCH  
45. During power-up and power-down, HSB glitches when HSB pin is pulled up through an external resistor.  
Document Number: 001-42879 Rev. *S  
Page 15 of 30  
CY14B101LA  
CY14B101NA  
Software Controlled STORE/RECALL Cycle  
Over the Operating Range  
20 ns  
25 ns  
45 ns  
Unit  
Parameter[46, 47]  
Description  
Min  
Max  
Min  
Max  
Min  
Max  
tRC  
STORE/RECALL initiation cycle time  
Address setup time  
20  
25  
45  
0
ns  
ns  
ns  
ns  
µs  
tSA  
0
15  
0
0
20  
0
tCW  
Clock pulse width  
30  
0
tHA  
Address hold time  
tRECALL  
RECALL duration  
200  
200  
200  
Switching Waveforms  
Figure 12. CE and OE Controlled Software STORE/RECALL Cycle [47]  
tRC  
tRC  
Address  
CE  
Address #1  
tCW  
Address #6  
tCW  
tSA  
tHA  
tHA  
tHA  
tSA  
tHA  
OE  
tHHHD  
tHZCE  
HSB (STORE only)  
DQ (DATA)  
48  
Note  
tDELAY  
tLZCE  
tLZHSB  
High Impedance  
tSTORE/tRECALL  
RWI  
Figure 13. AutoStore Enable/Disable Cycle [47]  
tRC  
tRC  
Address  
Address #1  
tCW  
Address #6  
tCW  
tSA  
CE  
tSA  
tHA  
tHA  
tHA  
tHA  
OE  
tSS  
tHZCE  
48  
Note  
tLZCE  
tDELAY  
DQ (DATA)  
RWI  
Notes  
46. The software sequence is clocked with CE controlled or OE controlled reads.  
47. The six consecutive addresses must be read in the order listed in Table 1 on page 7. WE must be HIGH during all six consecutive cycles.  
48. DQ output data at the sixth read may be invalid because the output is disabled at t  
time.  
DELAY  
Document Number: 001-42879 Rev. *S  
Page 16 of 30  
CY14B101LA  
CY14B101NA  
Hardware STORE Cycle  
Over the Operating Range  
20 ns  
25 ns  
45 ns  
Unit  
Parameter  
Description  
Min  
Max  
20  
Min  
Max  
25  
Min  
Max  
25  
tDHSB  
tPHSB  
HSB to output active time when write latch not set  
Hardware STORE pulse width  
15  
ns  
ns  
μs  
15  
15  
[49, 50]  
tSS  
Soft sequence processing time  
100  
100  
100  
Switching Waveforms  
Figure 14. Hardware STORE Cycle [51]  
Write latch set  
tPHSB  
HSB (IN)  
tSTORE  
tHHHD  
tDELAY  
HSB (OUT)  
DQ (Data Out)  
RWI  
tLZHSB  
Write latch not set  
tPHSB  
HSB pin is driven high to VCC only by Internal  
100 kOhm resistor,  
HSB (IN)  
HSB driver is disabled  
SRAM is disabled as long as HSB (IN) is driven low.  
tDELAY  
tDHSB  
tDHSB  
HSB (OUT)  
RWI  
Figure 15. Soft Sequence Processing [49, 50]  
tSS  
tSS  
Soft Sequence  
Command  
Soft Sequence  
Command  
Address  
Address #1  
tSA  
Address #6  
tCW  
Address #1  
Address #6  
tCW  
CE  
VCC  
Notes  
49. This is the amount of time it takes to take action on a soft sequence command. V power must remain HIGH to effectively register command.  
CC  
50. Commands such as STORE and RECALL lock out I/O until operation is complete which further increases this time. See the specific command.  
51. If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware STORE takes place.  
Document Number: 001-42879 Rev. *S  
Page 17 of 30  
CY14B101LA  
CY14B101NA  
Truth Table For SRAM Operations  
HSB must remain HIGH for SRAM operations  
Table 2. Truth Table for × 8 Configuration  
CE  
H
L
WE  
X
OE  
X
Inputs/Outputs[52]  
Mode  
Deselect/Power-down  
Read  
Power  
High Z  
Standby  
H
L
Data Out (DQ0–DQ7);  
High Z  
Active  
Active  
Active  
L
H
H
Output disabled  
Write  
L
L
X
Data in (DQ0–DQ7);  
Table 3. Truth Table for × 16 Configuration  
CE  
H
L
WE  
X
OE  
X
BHE[53] BLE[53]  
Inputs/Outputs[52]  
High Z  
Mode  
Power  
X
H
L
X
H
L
Deselect/Power-down  
Output disabled  
Read  
Standby  
Active  
Active  
Active  
X
X
High Z  
L
H
L
Data Out (DQ0–DQ15)  
L
H
L
H
L
Data Out (DQ0–DQ7);  
DQ8–DQ15 in High Z  
Read  
L
H
L
L
H
Data Out (DQ8–DQ15);  
DQ0–DQ7 in High Z  
Read  
Active  
L
L
L
L
L
H
H
H
L
H
H
H
X
X
L
H
L
L
L
H
L
L
High Z  
High Z  
High Z  
Output disabled  
Output disabled  
Output disabled  
Write  
Active  
Active  
Active  
Active  
Active  
L
Data In (DQ0–DQ15)  
L
H
Data In (DQ0–DQ7);  
DQ8–DQ15 in High Z  
Write  
L
L
X
L
H
Data In (DQ8–DQ15);  
DQ0–DQ7 in High Z  
Write  
Active  
Notes  
52. Data DQ –DQ for × 8 configuration and Data DQ –DQ for × 16 configuration.  
0
7
0
15  
53. BHE and BLE are applicable for × 16 configuration only.  
Document Number: 001-42879 Rev. *S  
Page 18 of 30  
CY14B101LA  
CY14B101NA  
Ordering Information  
Speed  
Ordering Code  
Package Diagram  
Package Type  
44-pin TSOP II  
Operating Range  
(ns)  
20  
CY14B101LA-ZS20XIT  
CY14B101LA-ZS20XI  
CY14B101LA-SZ25XIT  
CY14B101LA-SZ25XI  
CY14B101LA-ZS25XIT  
CY14B101LA-ZS25XI  
CY14B101LA-SP25XIT  
CY14B101LA-SP25XI  
CY14B101LA-BA25XIT  
CY14B101LA-BA25XI  
CY14B101NA-ZS25XIT  
CY14B101NA-ZS25XI  
CY14B101LA-SZ45XIT  
CY14B101LA-SZ45XI  
CY14B101LA-ZS45XIT  
CY14B101LA-ZS45XI  
CY14B101LA-SP45XIT  
CY14B101LA-SP45XI  
CY14B101LA-BA45XIT  
CY14B101LA-BA45XI  
CY14B101NA-ZS45XIT  
CY14B101NA-ZS45XI  
51-85087  
51-85087  
51-85127  
51-85127  
51-85087  
51-85087  
51-85061  
51-85061  
51-85128  
51-85128  
51-85087  
51-85087  
51-85127  
51-85127  
51-85087  
51-85087  
51-85061  
51-85061  
51-85128  
51-85128  
51-85087  
51-85087  
Industrial  
44-pin TSOP II  
32-pin SOIC  
25  
Industrial  
32-pin SOIC  
44-pin TSOP II  
44-pin TSOP II  
48-pin SSOP  
48-pin SSOP  
48-ball FBGA  
48-ball FBGA  
44-pin TSOP II  
44-pin TSOP II  
32-pin SOIC  
45  
Industrial  
32-pin SOIC  
44-pin TSOP II  
44-pin TSOP II  
48-pin SSOP  
48-pin SSOP  
48-ball FBGA  
48-ball FBGA  
44-pin TSOP II  
44-pin TSOP II  
All the above parts are Pb-free.  
Document Number: 001-42879 Rev. *S  
Page 19 of 30  
CY14B101LA  
CY14B101NA  
Ordering Code Definitions  
CY 14 B 101 L A - ZS 20 X I T  
Option:  
T - Tape and Reel  
Blank - Std.  
Temperature:  
I - Industrial (–40 to 85 °C)  
Speed:  
20 - 20 ns  
Pb-free  
Package:  
25 - 25 ns  
45 - 45 ns  
SZ- 32 SOIC  
ZS- 44 TSOP II  
SP- 48 SSOP  
BA- 48 FBGA  
ZSP - 54 TSOP II  
Die revision:  
Blank - No Rev  
A - First Rev  
Data Bus:  
L - × 8  
N - × 16  
Density:  
101 - 1 Mb  
Voltage:  
B - 3.0 V  
14 - nvSRAM  
Cypress  
Document Number: 001-42879 Rev. *S  
Page 20 of 30  
CY14B101LA  
CY14B101NA  
Package Diagrams  
Figure 16. 32-pin SOIC (300 Mil) Package Outline, 51-85127  
51-85127 *D  
Document Number: 001-42879 Rev. *S  
Page 21 of 30  
CY14B101LA  
CY14B101NA  
Package Diagrams (continued)  
Figure 17. 44-pin TSOP II Package Outline, 51-85087  
51-85087 *E  
Document Number: 001-42879 Rev. *S  
Page 22 of 30  
CY14B101LA  
CY14B101NA  
Package Diagrams (continued)  
Figure 18. 48-pin SSOP (300 Mils) Package Outline, 51-85061  
51-85061 *F  
Document Number: 001-42879 Rev. *S  
Page 23 of 30  
CY14B101LA  
CY14B101NA  
Package Diagrams (continued)  
Figure 19. 48-ball FBGA (6 × 10 × 1.2 mm) Package Outline, 51-85128  
51-85128 *I  
Document Number: 001-42879 Rev. *S  
Page 24 of 30  
CY14B101LA  
CY14B101NA  
Package Diagrams (continued)  
Figure 20. 54-pin TSOP II (22.4 × 11.84 × 1.0 mm) Package Outline, 51-85160  
51-85160 *E  
Document Number: 001-42879 Rev. *S  
Page 25 of 30  
CY14B101LA  
CY14B101NA  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
byte high enable  
BHE  
BLE  
Symbol  
°C  
Unit of Measure  
byte low enable  
chip enable  
degree Celsius  
hertz  
CE  
Hz  
kHz  
kΩ  
MHz  
μA  
μF  
μs  
CMOS  
complementary metal oxide semiconductor  
electronic industries alliance  
fine-pitch ball grid array  
kilohertz  
kilohm  
EIA  
FBGA  
megahertz  
microampere  
microfarad  
microsecond  
milliampere  
millisecond  
nanosecond  
ohm  
hardware store busy  
HSB  
I/O  
input/output  
nvSRAM  
non-volatile static random access memory  
output enable  
OE  
mA  
ms  
ns  
RoHS  
restriction of hazardous substances  
read and write inhibited  
RWI  
SOIC  
SRAM  
SSOP  
TSOP  
WE  
small outline integrated circuit  
static random access memory  
shrink small outline package  
thin small outline package  
write enable  
Ω
%
percent  
pF  
V
picofarad  
volt  
W
watt  
Document Number: 001-42879 Rev. *S  
Page 26 of 30  
CY14B101LA  
CY14B101NA  
Document History Page  
Document Title: CY14B101LA/CY14B101NA, 1-Mbit (128 K × 8/64 K × 16) nvSRAM  
Document Number: 001-42879  
Submission  
Rev.  
ECN No.  
Description of Change  
Date  
**  
2050747  
2607447  
01/31/08  
11/14/08  
New data sheet.  
*A  
Removed 15 ns access speed  
Updated “Features”  
Updated Logic block diagram  
Added footnote 1 2, 3 and 7  
Pin definition: Updated WE, HSB and NC pin description  
Page 4: Updated SRAM READ, SRAM WRITE, AutoStore operation description  
Updated Figure 4  
Page 4: Updated Hardware store operation and Hardware RECALL (Powerup) description  
Page 4: Updated Software store and software recall description  
Footnote 1 and 11 referenced for Mode selection Table  
Added footnote 11  
Updated footnote 9 and 10  
Page 6: updated Data protection description  
Maximum Ratings:Added Max. Accumulated storage time  
Changed Output short circuit current parameter name to DC output current  
Changed ICC2 from 6 mA to 10 mA  
Changed ICC3 from 15 mA to 35 mA  
Changed ICC4 from 6 mA to 5 mA  
Changed ISB from 3 mA to 5 mA  
Added IIX for HSB  
Updated ICC1, CC3, SB and IOZ Test conditions  
I
I
Changed VCAP voltage min value from 68 µF to 61 µF  
Added VCAP voltage max value to 180 µF  
Updated footnote 12 and 13  
Added footnote 14  
Added Data retention and Endurance Table  
Added thermal resistance value to 48-pin FBGA and 44-pin TSOP II packages  
Updated Input Rise and Fall time in AC test Conditions  
Referenced footnote 17 to tOHA parameter  
Updated All switching waveforms  
Updated footnote 17  
Added footnote 20  
Added Figure 10 (SRAM WRITE CYCLE:BHE and BLE controlled)  
Changed tSTORE max value from 12.5 ms to 8 ms  
Updated tDELAY value  
Added VHDIS, tHHHD and tLZHSB parameters  
Updated footnote 24  
Added footnote 26 and 27  
Software controlled STORE/RECALL Table: Changed tAS to tSA  
Changed tGHAX to tHA  
Changed tHA value from 1 ns to 0 ns  
Added Figure 13  
Added tDHSB parameter  
Changed tHLHX to tPHSB  
Updated tSS from 70 µs to 100 µs  
Added truth table for SRAM operations  
Updated ordering information and part numbering nomenclature  
*B  
2654484  
02/05/09  
Changed status from Advance information to Preliminary.  
Referenced Note 15 to parameters tLZCE, tHZCE, tLZOE, HZOE, LZWE  
t
t
and tHZWE  
Updated Figure 12  
Document Number: 001-42879 Rev. *S  
Page 27 of 30  
CY14B101LA  
CY14B101NA  
Document History Page (continued)  
Document Title: CY14B101LA/CY14B101NA, 1-Mbit (128 K × 8/64 K × 16) nvSRAM  
Document Number: 001-42879  
Submission  
Rev.  
ECN No.  
Description of Change  
Date  
*C  
2733909  
07/09/09  
Removed 48-ball FBGA package and added 54-pin TSOP II Package  
Corrected typo error in pin diagram of 48-pin SSOP  
Page 4; Added note to AutoStore Operation description  
Page 4; Updated Hardware STORE (HSB) Operation description  
Page 5; Updated Software STORE Operation description  
Added best practices  
Updated VHDIS parameter description  
Updated tDELAY parameter description  
Updated footnote 24 and added footnote 29  
*D  
2757348  
08/28/09  
Changed status from Preliminary to Final.  
Removed commercial temperature related specs  
Updated thermal resistance values for all the packages  
*E  
*F  
2793420  
2839453  
10/27/09  
01/06/10  
Updated 48-pin SSOP package diagram  
Changed STORE cycles to QuantumTrap from 200 K to 1 Million  
Added Contents  
*G  
*H  
2894534  
2922854  
03/17/10  
04/26/10  
Removed inactive parts from Ordering Information table.  
Updated links in Sales, Solutions, and Legal Information.  
Updated Package Diagrams.  
Pin Definitions: Added more clarity on HSB pin operation  
Hardware STORE Operation: Added more clarity on HSB pin operation  
Table 1: Added more clarity on BHE/BLE pin operation  
Updated HSB pin operation in Figure 11  
Updated footnote 45  
Updated package diagram 51-85087  
*I  
2958648  
3074645  
06/22/10  
10/29/10  
Added 48-Ball FBGA package related information  
Updated package diagram 51-85128  
Updated template and added Acronym table  
*J  
48 FBGA package: 16 Mb address expansion is not supported  
Removed inactive parts from Ordering Information table.  
CY14B101NA-ZS20XIT, CY14B101NA-ZS20XI  
Added Document Conventions table  
*K  
*L  
3134300  
3313245  
01/11/2011 Updated style format  
Updated input capacitance for BHE and BLE pin  
Updated input and output capacitance for HSB pin  
Fixed typo in Figure 11  
07/14/2011 Updated DC Electrical Characteristics (Added Note 21 and referred the same note in VCAP  
parameter).  
Updated Thermal Resistance (ΘJA and ΘJC values for 48-ball FBGA package).  
Updated AC Switching Characteristics (Added Note 24 and referred the same note in  
Parameters).  
Updated Package Diagrams.  
*M  
*N  
*O  
3457594  
3542240  
3659138  
12/07/2011 Updated Package Diagrams.  
03/06/2012 Footnote 48 made visible. Modified Figure 13.  
08/14/2012 Updated Maximum Ratings (Changed “Ambient temperature with power applied” to  
“Maximum junction temperature”).  
Updated DC Electrical Characteristics (Added VVCAP parameter and its details, added Note  
22 and referred the same note in VVCAP parameter, also referred Note 23 in VVCAP param-  
eter).  
Updated Package Diagrams (spec 51-85160 (Changed revision from *C to *D)).  
*P  
3769328  
10/08/2012 Updated Ordering Information (Added CY14B101LA-BA25XI and CY14B101LA-BA25XIT).  
Updated Package Diagrams (spec 51-85087 (Changed revision from *D to *E), spec  
51-85061 (Changed revision from *E to *F)).  
Document Number: 001-42879 Rev. *S  
Page 28 of 30  
CY14B101LA  
CY14B101NA  
Document History Page (continued)  
Document Title: CY14B101LA/CY14B101NA, 1-Mbit (128 K × 8/64 K × 16) nvSRAM  
Document Number: 001-42879  
Submission  
Rev.  
ECN No.  
Description of Change  
Date  
*Q  
4567905  
11/12/2014 Added related documentation hyperlink in page 1.  
Updated Package Diagrams spec 51-85160 (Changed revision from *D to *E),  
05/09/2015 Updated Package Diagrams.  
*R  
*S  
5716066  
6867685  
Updated Cypress Logo and Copyright.  
04/24/2020 Updated spec 51-85128 *G to *I in Package Diagrams.  
Document Number: 001-42879 Rev. *S  
Page 29 of 30  
CY14B101LA  
CY14B101NA  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Code Examples | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2008-2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”). This document, including any software or  
firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves  
all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If  
the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal,  
non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software  
solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through  
resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified)  
to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing  
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such  
as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING  
CYPRESS PRODUCTS, WILLBE FREE FROM CORRUPTION,ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, “Security  
Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In  
addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted  
by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or  
circuit described in this document.Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility  
of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. “High-Risk Device” means any  
device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices.  
“Critical Component” means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect  
its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product  
as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from and against all claims,  
costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical  
Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published  
data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a  
Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 001-42879 Rev. *S  
Revised April 24, 2020  
Page 30 of 30  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY