CY14B104NA-ZSP25XI [INFINEON]

nvSRAM (non-volatile SRAM);
CY14B104NA-ZSP25XI
型号: CY14B104NA-ZSP25XI
厂家: Infineon    Infineon
描述:

nvSRAM (non-volatile SRAM)

静态存储器 光电二极管 内存集成电路
文件: 总28页 (文件大小:910K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY14B104LA  
CY14B104NA  
4-Mbit (512K × 8/256K × 16) nvSRAM  
4-Mbit (512K  
× 8/256K × 16) nvSRAM  
Packages  
Features  
44-/54-pin thin small outline package (TSOP) Type II  
48-ball fine-pitch ball grid array (FBGA)  
20 ns, 25 ns, and 45 ns access times  
Internally organized as 512K × 8 (CY14B104LA) or 256K × 16  
(CY14B104NA)  
Pb-free and restriction of hazardous substances (RoHS)  
compliant  
Hands off automatic STORE on power-down with only a small  
capacitor  
Functional Description  
The Cypress CY14B104LA/CY14B104NA is a fast static RAM  
(SRAM), with a non-volatile element in each memory cell. The  
memory is organized as 512K bytes of 8 bits each or 256K words  
of 16-bits each. The embedded non-volatile elements incor-  
porate QuantumTrap technology, producing the world’s most  
reliable non-volatile memory. The SRAM provides infinite read  
and write cycles, while independent non-volatile data resides in  
the highly reliable QuantumTrap cell. Data transfers from the  
SRAM to the non-volatile elements (the STORE operation) takes  
place automatically at power-down. On power-up, data is  
restored to the SRAM (the RECALL operation) from the  
non-volatile memory. Both the STORE and RECALL operations  
are also available under software control.  
STORE to QuantumTrap non-volatile elements initiated by  
software, device pin, or AutoStore on power-down  
RECALL to SRAM initiated by software or power-up  
Infinite read, write, and recall cycles  
1 million STORE cycles to QuantumTrap  
20 year data retention  
Single 3 V +20, –10operation  
Industrial temperature  
For a complete list of related documentation, click here.  
Logic Block Diagram [1, 2, 3]  
VCC  
VCAP  
Quatrum Trap  
2048 X 2048  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
POWER  
R
O
W
CONTROL  
STORE  
RECALL  
STORE/RECALL  
CONTROL  
D
E
C
O
D
E
R
HSB  
STATIC RAM  
ARRAY  
2048 X 2048  
A7  
A8  
A17  
SOFTWARE  
DETECT  
A14 - A2  
A18  
DQ0  
DQ1  
DQ2  
DQ3  
I
DQ4  
DQ5  
DQ6  
N
P
U
T
B
U
F
F
E
R
S
DQ7  
COLUMN I/O  
DQ8  
DQ9  
DQ10  
OE  
COLUMN DEC  
WE  
DQ11  
DQ12  
DQ13  
DQ14  
CE  
BLE  
A11  
A9 A10  
A12 A13 A14 A15 A16  
DQ15  
BHE  
Notes  
1. Address A –A for × 8 configuration and Address A –A for × 16 configuration.  
0
18  
0
17  
2. Data DQ –DQ for × 8 configuration and Data DQ –DQ for × 16 configuration.  
0
7
0
15  
3. BHE and BLE are applicable for × 16 configuration only.  
Cypress Semiconductor Corporation  
Document Number: 001-49918 Rev. *O  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 12, 2017  
CY14B104LA  
CY14B104NA  
Contents  
Pinouts ..............................................................................3  
Pin Definitions ..................................................................5  
Device Operation ..............................................................6  
SRAM Read ................................................................6  
SRAM Write .................................................................6  
AutoStore Operation ....................................................6  
Hardware STORE Operation .......................................6  
Hardware RECALL (Power-Up) ..................................7  
Software STORE .........................................................7  
Software RECALL .......................................................7  
Preventing AutoStore ..................................................8  
Data Protection ............................................................8  
Maximum Ratings .............................................................9  
Operating Range ...............................................................9  
DC Electrical Characteristics ..........................................9  
Data Retention and Endurance .....................................10  
Capacitance ....................................................................10  
Thermal Resistance ........................................................10  
AC Test Loads ................................................................11  
AC Test Conditions ........................................................11  
AC Switching Characteristics .......................................12  
Switching Waveforms ....................................................13  
AutoStore/Power-Up RECALL .......................................16  
Switching Waveforms  
– AutoStore/Power-up RECALL ....................................16  
Software Controlled STORE/RECALL Cycle ................17  
Switching Waveforms  
– Software Controlled STORE/RECALL Cycle .............17  
Hardware STORE Cycle .................................................18  
Switching Waveforms – Hardware STORE Cycle ........18  
Truth Table For SRAM Operations ................................19  
Ordering Information ......................................................20  
Ordering Code Definitions .........................................21  
Package Diagrams ..........................................................22  
Acronyms ........................................................................25  
Document Conventions .................................................25  
Units of Measure .......................................................25  
Document History Page .................................................26  
Sales, Solutions, and Legal Information ......................28  
Worldwide Sales and Design Support .......................28  
Products ....................................................................28  
PSoC® Solutions ......................................................28  
Cypress Developer Community .................................28  
Technical Support .....................................................28  
Document Number: 001-49918 Rev. *O  
Page 2 of 28  
CY14B104LA  
CY14B104NA  
Pinouts  
Figure 1. 48-ball FBGA pinouts  
48-ball FBGA  
(× 8)  
Top View  
(not to scale)  
48-ball FBGA  
(× 16)  
Top View  
(not to scale)  
1
2
4
3
5
6
1
2
OE  
NC  
NC  
4
3
5
6
A
A
A
2
NC  
OE  
BLE  
DQ8  
A
A
A
0
1
A
NC  
NC  
NC  
0
1
2
A
B
A
A
4
BHE  
DQ10  
CE DQ0  
DQ1 DQ2  
V
B
C
A
A
3
CE NC  
NC DQ4  
V
3
4
A
A
6
DQ9  
C
A
A
6
DQ0  
V
5
5
A
V
A17  
A
DQ3  
DQ4  
DQ5  
D
E
F
DQ11  
DQ12  
DQ13  
CC  
SS  
7
A17  
DQ5  
DQ6  
NC  
CC  
D
E
F
SS DQ1  
7
A
V
V
SS  
A
VCAP  
V
V
SS  
CC  
16  
VCAP  
CC DQ2  
16  
A
A
15  
DQ14  
DQ15  
DQ6  
A
A
15  
NC  
DQ3  
NC  
DQ7  
14  
14  
A
A
13  
G
H
A
A
HSB  
WE DQ7  
G
H
HSB  
WE NC  
[4]  
12  
13  
12  
[4]  
A
A
9
A
A
A
8
A
9
A
NC  
A18  
A
8
NC  
11  
10  
10  
11  
NC  
Figure 2. 44-pin TSOP II pinouts  
[6]  
(× 8)  
(× 16)  
A
A
1
NC  
NC  
1
2
1
2
HSB  
0
A
17  
44  
44  
43  
42  
41  
[5]  
NC  
NC  
43  
42  
41  
A
16  
[4]  
A
A
3
4
5
6
7
8
3
4
5
6
7
8
0
2
A
15  
A
1
A
3
A
18  
OE  
A
2
A
4
A
17  
BHE  
40  
39  
40  
39  
A
3
CE  
A
16  
BLE  
DQ  
DQ  
A
4
38  
37  
36  
35  
34  
38  
37  
36  
35  
34  
A
15  
0
1
2
3
15  
CE  
DQ  
OE  
DQ  
DQ  
DQ  
DQ  
14  
13  
DQ  
44-pin TSOP II  
9
10  
44-pin TSOP II  
DQ  
DQ  
V
9
10  
0
1
7
(× 16)  
(× 8)  
DQ  
V
DQ  
6
12  
11  
12  
13  
14  
11  
12  
13  
14  
CC  
V
CC  
V
SS  
SS  
Top View  
(not to scale)  
Top View  
(not to scale)  
V
V
V
SS  
33  
32  
31  
V
SS  
CC  
33  
32  
31  
CC  
DQ  
DQ  
DQ  
DQ  
DQ  
2
3
5
4
5
11  
DQ  
DQ  
DQ  
DQ  
V
DQ  
4
10  
WE  
A
5
15  
16  
17  
18  
15  
16  
17  
18  
30  
29  
28  
27  
26  
25  
24  
23  
6
7
30  
29  
28  
27  
26  
25  
24  
23  
DQ  
DQ  
CAP  
9
8
A
14  
A
6
A
WE  
13  
12  
V
CAP  
A
7
A
A
5
A
14  
A
A
6
19  
20  
21  
22  
8
A
19  
20  
21  
22  
A
11  
13  
A
9
A
A
7
10  
A
12  
NC  
NC  
A
NC  
NC  
8
A
11  
A
9
A
10  
Notes  
4. Address expansion for 8-Mbit. NC pin not connected to die.  
5. Address expansion for 16-Mbit. NC pin not connected to die.  
6. HSB pin is not available in 44-pin TSOP II (× 16) package.  
Document Number: 001-49918 Rev. *O  
Page 3 of 28  
CY14B104LA  
CY14B104NA  
Pinouts (continued)  
Figure 3. Pin Diagram – 54-pin TSOP II pinout  
NC  
54  
53  
52  
51  
50  
49  
HSB  
NC  
1
2
3
[7]  
[8]  
NC  
A
0
A
17  
A
1
A
16  
4
5
A
2
A
15  
A
3
OE  
6
48  
47  
46  
45  
A
4
BHE  
BLE  
DQ  
7
8
9
10  
11  
12  
13  
14  
CE  
DQ  
DQ  
0
1
15  
DQ  
DQ  
DQ  
V
14  
13  
12  
54-pin TSOP II  
DQ  
DQ  
44  
43  
42  
41  
40  
39  
2
3
(× 16)  
V
CC  
SS  
Top View  
V
SS  
V
CC  
(not to scale)  
DQ  
DQ  
4
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
11  
DQ  
DQ  
DQ  
5
10  
38  
37  
36  
35  
DQ  
DQ  
6
7
9
8
DQ  
V
WE  
A
5
CAP  
A
14  
34  
33  
32  
31  
30  
29  
28  
A
6
A
13  
A
A
7
A
8
12  
A
11  
A
A
9
10  
NC  
NC  
NC  
NC  
NC  
NC  
25  
26  
27  
Notes  
7. Address expansion for 16-Mbit. NC pin not connected to die.  
8. Address expansion for 8-Mbit. NC pin not connected to die.  
Document Number: 001-49918 Rev. *O  
Page 4 of 28  
CY14B104LA  
CY14B104NA  
Pin Definitions  
Pin Name  
A0–A18  
I/O Type  
Input  
Description  
Address inputs. Used to select one of the 524,288 bytes of the nvSRAM for × 8 Configuration.  
Address inputs. Used to Select one of the 262,144 words of the nvSRAM for × 16 Configuration.  
A0–A17  
DQ0–DQ7 Input/Output Bidirectional data I/O lines for × 8 configuration. Used as input or output lines depending on operation.  
DQ0–DQ15  
Bidirectional data I/O lines for × 16 configuration. Used as input or output lines depending on  
operation.  
WE  
Input  
Write Enable input, Active LOW. When selected LOW, data on the I/O pins is written to the specific  
address location.  
Input  
Input  
Chip Enable input, Active LOW. When LOW, selects the chip. When HIGH, deselects the chip.  
CE  
OE  
Output Enable, Active LOW. The active LOW OE input enables the data output buffers during read  
cycles. I/O pins are tristated on deasserting OE HIGH.  
Input  
Input  
Byte High Enable, Active LOW. Controls DQ15–DQ8.  
BHE  
Byte Low Enable, Active LOW. Controls DQ7–DQ0.  
BLE  
VSS  
Ground  
Ground for the device. Must be connected to the ground of the system.  
VCC  
Power supply Power supply inputs to the device.  
HSB[9]  
Input/Output Hardware STORE Busy (HSB). When LOW this output indicates that a Hardware STORE is in progress.  
When pulled LOW external to the chip it initiates a non-volatile STORE operation. After each Hardware  
and Software STORE operation, HSB is driven HIGH for a short time (tHHHD) with standard output high  
current, and then a weak internal pull-up resistor keeps this pin HIGH (external pull-up resistor connection  
optional).  
VCAP  
NC  
Power supply AutoStore Capacitor. Supplies power to the nvSRAM during power loss to store data from SRAM to  
non-volatile elements.  
No connect No Connect. This pin is not connected to the die.  
Note  
9. HSB pin is not available in 44-pin TSOP II (× 16) package.  
Document Number: 001-49918 Rev. *O  
Page 5 of 28  
CY14B104LA  
CY14B104NA  
automatically disconnects the VCAP pin from VCC. A STORE  
operation is initiated with power provided by the VCAP capacitor.  
Device Operation  
The CY14B104LA/CY14B104NA nvSRAM is made up of two  
functional components paired in the same physical cell. They are  
a SRAM memory cell and a non-volatile QuantumTrap cell. The  
SRAM memory cell operates as a standard fast static RAM. Data  
in the SRAM is transferred to the non-volatile cell (the STORE  
operation), or from the non-volatile cell to the SRAM (the  
RECALL operation). Using this unique architecture, all cells are  
stored and recalled in parallel. During the STORE and RECALL  
operations, SRAM read and write operations are inhibited. The  
CY14B104LA/CY14B104NA supports infinite reads and writes  
similar to a typical SRAM. In addition, it provides infinite RECALL  
operations from the non-volatile cells and up to 1 million STORE  
operations. Refer to the Truth Table For SRAM Operations on  
page 19 for a complete description of read and write modes.  
Note If the capacitor is not connected to VCAP pin, AutoStore  
must be disabled using the soft sequence specified in Preventing  
AutoStore on page 8. In case AutoStore is enabled without a  
capacitor on VCAP pin, the device attempts an AutoStore  
operation without sufficient charge to complete the Store. This  
corrupts the data stored in nvSRAM.  
Figure 4 shows the proper connection of the storage capacitor  
(VCAP) for automatic store operation. Refer to DC Electrical  
Characteristics on page 9 for the size of VCAP. The voltage on  
the VCAP pin is driven to VCC by a regulator on the chip. A pull-up  
should be placed on WE to hold it inactive during power-up. This  
pull-up is effective only if the WE signal is tristate during  
power-up. Many MPUs tristate their controls on power-up. This  
should be verified when using the pull-up. When the nvSRAM  
comes out of power-on-RECALL, the MPU must be active or the  
WE held inactive until the MPU comes out of reset.  
SRAM Read  
The CY14B104LA/CY14B104NA performs a read cycle when  
CE and OE are LOW and WE and HSB are HIGH. The address  
specified on pins A0–18 or A0–17 determines which of the 524,288  
data bytes or 262,144 words of 16 bits each are accessed. Byte  
enables (BHE, BLE) determine which bytes are enabled to the  
output, in the case of 16-bit words. When the read is initiated by  
an address transition, the outputs are valid after a delay of tAA  
(read cycle 1). If the read is initiated by CE or OE, the outputs  
are valid at tACE or at tDOE, whichever is later (read cycle 2). The  
data output repeatedly responds to address changes within the  
tAA access time without the need for transitions on any control  
input pins. This remains valid until another address change or  
until CE or OE is brought HIGH, or WE or HSB is brought LOW.  
To reduce unnecessary non-volatile stores, AutoStore and  
hardware STORE operations are ignored unless at least one  
write operation has taken place since the most recent STORE or  
RECALL cycle. Software initiated STORE cycles are performed  
regardless of whether a write operation has taken place. The  
HSB signal is monitored by the system to detect if an AutoStore  
cycle is in progress.  
Figure 4. AutoStore Mode  
VCC  
0.1 uF  
SRAM Write  
VCC  
A write cycle is performed when CE and WE are LOW and HSB  
is HIGH. The address inputs must be stable before entering the  
write cycle and must remain stable until CE or WE goes HIGH at  
the end of the cycle. The data on the common I/O pins DQ0–15  
are written into the memory if the data is valid (tSD time) before  
the end of a WE controlled write or before the end of an CE  
controlled write. The Byte Enable inputs (BHE, BLE) determine  
which bytes are written, in the case of 16-bit words. It is recom-  
mended that OE be kept HIGH during the entire write cycle to  
avoid data bus contention on common I/O lines. If OE is left LOW,  
internal circuitry turns off the output buffers tHZWE after WE goes  
LOW.  
WE  
VCAP  
VCAP  
VSS  
Hardware STORE Operation  
The CY14B104LA/CY14B104NA provides the HSB[10] pin to  
control and acknowledge the STORE operations. The HSB pin  
is used to request a hardware STORE cycle. When the HSB pin  
is driven LOW, the CY14B104LA/CY14B104NA conditionally  
initiates a STORE operation after tDELAY. An actual STORE cycle  
only begins if a write to the SRAM has taken place since the last  
STORE or RECALL cycle. The HSB pin also acts as an open  
drain driver (internal 100 kweak pull-up resistor) that is inter-  
nally driven LOW to indicate a busy condition when the STORE  
(initiated by any means) is in progress.  
AutoStore Operation  
The CY14B104LA/CY14B104NA stores data to the nvSRAM  
using one of the following three storage operations: Hardware  
STORE activated by the HSB; Software STORE activated by an  
address sequence; AutoStore on device power-down. The  
AutoStore operation is a unique feature of QuantumTrap  
technology  
and  
is  
enabled  
by  
default  
on  
the  
CY14B104LA/CY14B104NA.  
During a normal operation, the device draws current from VCC to  
charge a capacitor connected to the VCAP pin. This stored  
charge is used by the chip to perform a single STORE operation.  
If the voltage on the VCC pin drops below VSWITCH, the part  
Note After each Hardware and Software STORE operation HSB  
is driven HIGH for a short time (tHHHD) with standard output high  
current and then remains HIGH by internal 100 kpull-up  
resistor.  
Note  
10. HSB pin is not available in 44-pin TSOP II (× 16) package.  
Document Number: 001-49918 Rev. *O  
Page 6 of 28  
CY14B104LA  
CY14B104NA  
SRAM write operations that are in progress when HSB is driven  
LOW by any means are given time (tDELAY) to complete before  
the STORE operation is initiated. However, any SRAM write  
cycles requested after HSB goes LOW are inhibited until HSB  
returns HIGH. In case the write latch is not set, HSB is not driven  
LOW by the CY14B104LA/CY14B104NA. But any SRAM read  
and write cycles are inhibited until HSB is returned HIGH by MPU  
or other external source.  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x8FC0 Initiate STORE cycle  
The software sequence may be clocked with CE controlled reads  
or OE controlled reads, with WE kept HIGH for all the six READ  
sequences. After the sixth address in the sequence is entered,  
the STORE cycle commences and the chip is disabled. HSB is  
driven LOW. After the tSTORE cycle time is fulfilled, the SRAM is  
activated again for the read and write operation.  
During any STORE operation, regardless of how it is initiated,  
the CY14B104LA/CY14B104NA continues to drive the HSB pin  
LOW, releasing it only when the STORE is complete. Upon  
completion of the STORE operation, the nvSRAM memory  
access is inhibited for tLZHSB time after HSB pin returns HIGH.  
Leave the HSB unconnected if it is not used.  
Software RECALL  
Hardware RECALL (Power-Up)  
Data is transferred from the non-volatile memory to the SRAM  
by a software address sequence. A software RECALL cycle is  
initiated with a sequence of read operations in a manner similar  
to the software STORE initiation. To initiate the RECALL cycle,  
perform the following sequence of CE or OE controlled read  
operations must be performed.  
During power-up or after any low power condition  
(VCC< VSWITCH), an internal RECALL request is latched. When  
VCC again exceeds the VSWITCH on power up, a RECALL cycle  
is automatically initiated and takes tHRECALL to complete. During  
this time, the HSB pin is driven LOW by the HSB driver and all  
reads and writes to nvSRAM are inhibited.  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x4C63 Initiate RECALL cycle  
Software STORE  
Data is transferred from the SRAM to the non-volatile memory  
by  
a
software  
address  
sequence.  
The  
CY14B104LA/CY14B104NA software STORE cycle is initiated  
by executing sequential CE or OE controlled read cycles from six  
specific address locations in exact order. During the STORE  
cycle an erase of the previous non-volatile data is first performed,  
followed by a program of the non-volatile elements. After a  
STORE cycle is initiated, further input and output are disabled  
until the cycle is completed.  
Internally, RECALL is a two step procedure. First, the SRAM data  
is cleared; then, the non-volatile information is transferred into  
the SRAM cells. After the tRECALL cycle time, the SRAM is again  
ready for read and write operations. The RECALL operation  
does not alter the data in the non-volatile elements.  
Because a sequence of reads from specific addresses is used  
for STORE initiation, it is important that no other read or write  
accesses intervene in the sequence, or the sequence is aborted  
and no STORE or RECALL takes place.  
To initiate the software STORE cycle, the following read  
sequence must be performed.  
Table 1. Mode Selection  
[12]  
A15–A0  
Mode  
I/O  
Power  
Standby  
Active  
CE  
WE  
OE  
BHE, BLE[11]  
H
X
X
X
X
X
X
Not selected  
Read SRAM  
Write SRAM  
Output high Z  
Output data  
Input data  
L
L
L
H
L
L
X
L
L
L
X
Active  
Active[13]  
H
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8B45  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore  
Output data  
Output data  
Output data  
Output data  
Output data  
Output data  
Disable  
Notes  
11. BHE and BLE are applicable for × 16 configuration only.  
12. While there are 19 address lines on the CY14B104LA (18 address lines on the CY14B104NA), only 13 address lines (A –A ) are used to control software modes.  
14  
2
The remaining address lines are don’t care.  
13. The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a non-volatile cycle.  
Document Number: 001-49918 Rev. *O  
Page 7 of 28  
CY14B104LA  
CY14B104NA  
Table 1. Mode Selection (continued)  
[12]  
BHE, BLE[11]  
A15–A0  
Mode  
I/O  
Power  
CE  
WE  
OE  
L
H
L
X
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4B46  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore  
Output data  
Output data  
Output data  
Output data  
Output data  
Output data  
Active[14]  
Enable  
[14]  
L
L
H
H
L
L
X
X
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Non-volatile  
STORE  
Output data  
Output data  
Output data  
Output data  
Output data  
Output high Z  
Active ICC2  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Non-volatile  
RECALL  
Output data  
Output data  
Output data  
Output data  
Output data  
Output high Z  
Active[14]  
AutoStore enable sequence, the following sequence of CE or OE  
controlled read operations must be performed:  
Preventing AutoStore  
The AutoStore function is disabled by initiating an AutoStore  
disable sequence. A sequence of read operations is performed  
in a manner similar to the software STORE initiation. To initiate  
the AutoStore disable sequence, the following sequence of CE  
or OE controlled read operations must be performed:  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x4B46 AutoStore Enable  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x8B45 AutoStore Disable  
If the AutoStore function is disabled or re-enabled, a manual  
STORE operation (hardware or software) must be issued to save  
the AutoStore state through subsequent power-down cycles.  
The part comes from the factory with AutoStore enabled and  
0x00 written in all cells.  
The AutoStore is re-enabled by initiating an AutoStore enable  
sequence. A sequence of read operations is performed in a  
manner similar to the software RECALL initiation. To initiate the  
Data Protection  
The CY14B104LA/CY14B104NA protects data from corruption  
during low voltage conditions by inhibiting all externally initiated  
STORE and write operations. The low voltage condition is  
detected  
when  
VCC  
<
VSWITCH  
.
If  
the  
CY14B104LA/CY14B104NA is in a write mode (both CE and WE  
are LOW) at power-up, after a RECALL or STORE, the write is  
inhibited until the SRAM is enabled after tLZHSB (HSB to output  
active). This protects against inadvertent writes during power-up  
or brown out conditions.  
Note  
14. The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a non-volatile cycle.  
Document Number: 001-49918 Rev. *O  
Page 8 of 28  
CY14B104LA  
CY14B104NA  
Transient voltage (< 20 ns)  
on any pin to ground potential ............ –2.0 V to VCC + 2.0 V  
Maximum Ratings  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Package power  
dissipation capability (TA = 25 °C) ............................... 1.0 W  
Storage temperature ................................ –65 C to +150 C  
Maximum accumulated storage time  
Surface mount Pb  
soldering temperature (3 Seconds) ......................... +260 C  
DC output current (1 output at a time, 1s duration) .... 15 mA  
At 150 C ambient temperature ...................... 1000 h  
At 85 C ambient temperature ..................... 20 Years  
Maximum junction temperature ................................. 150 C  
Supply voltage on VCC relative to VSS ...........–0.5 V to 4.1 V  
Static discharge voltage  
(per MIL-STD-883, Method 3015) ..........................> 2001 V  
Latch-up current ....................................................> 200 mA  
Voltage applied to outputs  
in high Z state .....................................0.5 V to VCC + 0.5 V  
Operating Range  
Range  
Industrial  
Ambient Temperature  
VCC  
Input voltage ........................................–0.5 V to Vcc + 0.5 V  
–40 C to +85 C  
2.7 V to 3.6 V  
DC Electrical Characteristics  
Over the Operating Range  
Parameter  
VCC  
Description  
Power supply  
Test Conditions  
Min  
2.7  
Typ [15]  
Max  
Unit  
3.0  
3.6  
V
ICC1  
Average VCC current  
tRC = 20 ns  
RC = 25 ns  
RC = 45 ns  
70  
70  
52  
mA  
mA  
mA  
t
t
Values obtained without output loads  
(IOUT = 0 mA)  
ICC2  
ICC3  
Average VCC current during  
STORE  
All inputs don’t care, VCC = Max  
Average current for duration tSTORE  
10  
mA  
mA  
Average VCC current at  
tRC= 200 ns, VCC(Typ), 25 °C  
All inputs cycling at CMOS levels.  
Values obtained without output loads  
(IOUT = 0 mA).  
35  
ICC4  
ISB  
Average VCAP current during  
AutoStore cycle  
All inputs don’t care. Average current for  
duration tSTORE  
5
5
mA  
mA  
VCC standby current  
CE > (VCC – 0.2 V).  
VIN < 0.2 V or > (VCC – 0.2 V).  
Standby current level after non-volatile  
cycle is complete.  
Inputs are static. f = 0 MHz.  
[16]  
IIX  
Input leakage current (except  
HSB)  
VCC = Max, VSS < VIN < VCC  
–1  
+1  
A  
Input leakage current (for HSB) VCC = Max, VSS < VIN < VCC  
–100  
–1  
+1  
+1  
A  
A  
IOZ  
Off-state output leakage current VCC = Max, VSS < VOUT < VCC  
CE or OE > VIH or  
,
BHE/BLE > VIH or WE < VIL  
VIH  
VIL  
Input HIGH voltage  
Input LOW voltage  
2.0  
Vss – 0.5  
2.4  
VCC + 0.5  
V
V
V
V
0.8  
VOH  
VOL  
Output HIGH voltage  
Output LOW voltage  
IOUT = –2 mA  
IOUT = 4 mA  
0.4  
Notes  
15. Typical values are at 25 °C, V = V  
. Not 100% tested.  
CC  
CC(Typ)  
16. The HSB pin has I  
= –2 µA for V of 2.4 V when both active HIGH and LOW drivers are disabled. When they are enabled standard V and V are valid. This  
OUT  
O
H
O
H
O
L
parameter is characterized but not tested.  
Document Number: 001-49918 Rev. *O  
Page 9 of 28  
CY14B104LA  
CY14B104NA  
DC Electrical Characteristics (continued)  
Over the Operating Range  
Parameter  
Description  
Storage capacitor  
Test Conditions  
Min  
61  
Typ [15]  
Max  
180  
VCC  
Unit  
F  
V
[17]  
VCAP  
Between VCAP pin and VSS  
68  
[18, 19]  
VVCAP  
Maximum voltage driven on VCAP VCC = Max  
pin by the device  
Data Retention and Endurance  
Over the Operating Range  
Parameter  
Description  
Min  
Unit  
Years  
K
DATAR  
NVC  
Data retention  
20  
Non-volatile STORE operations  
1,000  
Capacitance  
Parameter[19]  
Description  
Test Conditions  
Max  
Unit  
CIN  
Input capacitance (except BHE, TA = 25 C, f = 1 MHz, VCC = VCC(Typ)  
BLE and HSB)  
7
pF  
Input capacitance (for BHE, BLE  
and HSB)  
8
pF  
COUT  
Output capacitance (except HSB)  
Output capacitance (for HSB)  
7
8
pF  
pF  
Thermal Resistance  
Parameter[19]  
Description  
Test Conditions  
48-pin FBGA 44-pin TSOP II 54-pin TSOP II Unit  
JA  
Thermal resistance  
(junction to ambient)  
Test conditions follow  
standard test methods  
and procedures for  
46.09  
43.3  
42.03  
C/W  
JC  
Thermal resistance  
(junction to case)  
7.84  
5.56  
6.08  
C/W  
measuring  
thermal  
in  
impedance,  
accordance  
EIA/JESD51.  
with  
Notes  
17. Min V  
value guarantees that there is a sufficient charge available to complete a successful AutoStore operation. Max V  
value guarantees that the capacitor on  
CAP  
CAP  
V
is charged to a minimum voltage during a Power-Up RECALL cycle so that an immediate power-down cycle can complete a successful AutoStore. Therefore it  
CAP  
is always recommended to use a capacitor within the specified min and max limits. Refer application note AN43593 for more details on V  
options.  
CAP  
18. Maximum voltage on V  
pin (V  
) is provided for guidance when choosing the V  
capacitor. The voltage rating of the V capacitor across the operating  
CAP  
VCAP  
CAP  
CAP  
temperature range should be higher than the V  
voltage.  
VCAP  
19. These parameters are guaranteed by design and are not tested.  
Document Number: 001-49918 Rev. *O  
Page 10 of 28  
CY14B104LA  
CY14B104NA  
AC Test Loads  
Figure 5. AC Test Loads  
577  
for tristate specs  
577   
3.0 V  
OUTPUT  
3.0 V  
R1  
R1  
OUTPUT  
R2  
789   
R2  
789   
5 pF  
30 pF  
AC Test Conditions  
Input pulse levels ..................................................0 V to 3 V  
Input rise and fall times (10%–90%) ........................... < 3 ns  
Input and output timing reference levels ...................... 1.5 V  
Document Number: 001-49918 Rev. *O  
Page 11 of 28  
CY14B104LA  
CY14B104NA  
AC Switching Characteristics  
Over the Operating Range  
Parameters [20]  
20 ns  
25 ns  
45 ns  
Unit  
Description  
Cypress  
Alt Parameter  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
SRAM Read Cycle  
tACE  
tACS  
tRC  
tAA  
tOE  
tOH  
tLZ  
tHZ  
tOLZ  
tOHZ  
tPA  
tPS  
Chip enable access time  
20  
20  
25  
25  
45  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[21]  
tRC  
Read cycle time  
[22]  
tAA  
Address access time  
20  
10  
25  
12  
45  
20  
tDOE  
Output enable to data valid  
Output hold after address change  
Chip enable to output active  
Chip disable to output inactive  
Output enable to output active  
Output disable to output inactive  
Chip enable to power active  
Chip disable to power standby  
Byte enable to data valid  
[22]  
tOHA  
3
3
3
[23, 24]  
tLZCE  
tHZCE  
tLZOE  
3
3
3
[23, 24]  
[23, 24]  
[23, 24]  
8
10  
15  
0
0
0
tHZOE  
8
10  
15  
[23]  
tPU  
0
0
0
[23]  
tPD  
20  
10  
25  
12  
45  
20  
tDBE  
[23]  
tLZBE  
Byte enable to output active  
Byte disable to output inactive  
0
0
0
[23]  
tHZBE  
8
10  
15  
SRAM Write Cycle  
tWC  
tPWE  
tSCE  
tSD  
tWC  
tWP  
tCW  
tDW  
tDH  
tAW  
tAS  
tWR  
tWZ  
tOW  
Write cycle time  
20  
15  
15  
8
8
25  
20  
20  
10  
0
45  
30  
30  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write pulse width  
Chip enable to end of write  
Data setup to end of write  
Data hold after end of write  
Address setup to end of write  
Address setup to start of write  
Address hold after end of write  
Write enable to output disable  
Output active after end of write  
Byte enable to end of write  
tHD  
0
tAW  
15  
0
20  
0
30  
0
tSA  
tHA  
0
0
0
[23, 24, 25]  
tHZWE  
10  
15  
[23, 24]  
tLZWE  
tBW  
3
3
3
15  
20  
30  
Notes  
20. Test conditions assume signal transition time of 3 ns or less, timing reference levels of V /2, input pulse levels of 0 to V  
, and output loading of the specified  
CC  
CC(typ)  
I
/I and load capacitance shown in Figure 5 on page 11.  
OL OH  
21. WE must be HIGH during SRAM read cycles.  
22. Device is continuously selected with CE, OE and BHE / BLE LOW.  
23. These parameters are guaranteed by design but not tested.  
24. Measured ±200 mV from steady state output voltage.  
25. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.  
Document Number: 001-49918 Rev. *O  
Page 12 of 28  
CY14B104LA  
CY14B104NA  
Switching Waveforms  
Figure 6. SRAM Read Cycle No. 1 (Address Controlled) [26, 27, 28]  
tRC  
Address  
Address Valid  
tAA  
Output Data Valid  
Previous Data Valid  
tOHA  
Data Output  
Figure 7. SRAM Read Cycle No. 2 (CE and OE Controlled) [26, 28, 29]  
Address  
CE  
Address Valid  
tRC  
tHZCE  
tACE  
tAA  
tLZCE  
tHZOE  
tDOE  
OE  
tHZBE  
tLZOE  
tDBE  
BHE, BLE  
tLZBE  
High Impedance  
Data Output  
Output Data Valid  
tPU  
tPD  
Active  
ICC  
Standby  
Notes  
26. WE must be HIGH during SRAM read cycles.  
27. Device is continuously selected with CE, OE and BHE/BLE LOW.  
28. HSB must remain HIGH during read and write cycles.  
29. BHE and BLE are applicable for × 16 configuration only.  
Document Number: 001-49918 Rev. *O  
Page 13 of 28  
CY14B104LA  
CY14B104NA  
Switching Waveforms (continued)  
Figure 8. SRAM Write Cycle No. 1 (WE Controlled) [30, 31, 32, 33]  
tWC  
Address  
Address Valid  
tSCE  
tHA  
CE  
tBW  
BHE, BLE  
tAW  
tPWE  
WE  
Data Input  
Data Output  
tSA  
tHD  
tSD  
Input Data Valid  
tLZWE  
tHZWE  
High Impedance  
Previous Data  
Notes  
30. BHE and BLE are applicable for × 16 configuration only.  
31. HSB must remain HIGH during read and write cycles.  
32. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.  
33. CE or WE must be >V during address transitions.  
IH  
Document Number: 001-49918 Rev. *O  
Page 14 of 28  
CY14B104LA  
CY14B104NA  
Switching Waveforms (continued)  
Figure 9. SRAM Write Cycle No. 2 (CE Controlled) [34, 35, 36, 37]  
tWC  
Address Valid  
tSCE  
Address  
tSA  
tHA  
CE  
tBW  
tPWE  
tSD  
BHE, BLE  
WE  
tHD  
Input Data Valid  
High Impedance  
Data Input  
Data Output  
Figure 10. SRAM Write Cycle No. 3 (BHE and BLE Controlled) [34, 35, 36, 37]  
tWC  
Address  
CE  
Address Valid  
tSCE  
tSA  
tHA  
tBW  
BHE, BLE  
WE  
tAW  
tPWE  
tSD  
tHD  
Data Input  
Input Data Valid  
High Impedance  
Data Output  
Notes  
34. BHE and BLE are applicable for × 16 configuration only.  
35. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.  
36. HSB must remain HIGH during read and write cycles.  
37. CE or WE must be >V during address transitions.  
IH  
Document Number: 001-49918 Rev. *O  
Page 15 of 28  
CY14B104LA  
CY14B104NA  
AutoStore/Power-Up RECALL  
Over the Operating Range  
20 ns  
25 ns  
45 ns  
Unit  
Parameter  
Description  
Min  
Max  
20  
8
Min  
Max  
20  
8
Min  
Max  
[38]  
tHRECALL  
Power-Up RECALL duration  
STORE cycle duration  
20  
8
ms  
ms  
ns  
[39]  
tSTORE  
[40]  
tDELAY  
Time allowed to complete SRAM  
write cycle  
20  
25  
25  
VSWITCH  
Low voltage trigger level  
VCC rise time  
150  
2.65  
150  
2.65  
150  
2.65  
V
s  
V
[41]  
tVCCRISE  
[41]  
VHDIS  
HSB output disable voltage  
HSB to output active time  
HSB high active time  
1.9  
5
1.9  
5
1.9  
5
[41]  
tLZHSB  
s  
ns  
[41]  
tHHHD  
500  
500  
500  
Switching Waveforms – AutoStore/Power-up RECALL  
Figure 11. AutoStore or Power-Up RECALL [42]  
VCC  
VSWITCH  
VHDIS  
39  
39  
tVCCRISE  
tSTORE  
tSTORE  
43  
Note  
Note  
tHHHD  
tHHHD  
43  
Note  
Note  
HSB OUT  
AutoStore  
tDELAY  
tLZHSB  
tLZHSB  
tDELAY  
POWER-  
UP  
RECALL  
tHRECALL  
tHRECALL  
Read & Write  
Inhibited  
(RWI)  
Read & Write  
Read & Write  
POWER-UP  
RECALL  
BROWN  
OUT  
AutoStore  
POWER  
DOWN  
AutoStore  
POWER-UP  
RECALL  
Notes  
38. t  
starts from the time V rises above V .  
SWITCH  
HRECALL  
CC  
39. If an SRAM write has not taken place since the last non-volatile cycle, no AutoStore or Hardware STORE takes place.  
40. On a Hardware STORE and AutoStore initiation, SRAM write operation continues to be enabled for time t  
41. These parameters are guaranteed by design but not tested.  
.
DELAY  
42. Read and write cycles are ignored during STORE, RECALL, and while V is below V  
.
CC  
SWITCH  
43. During power-up and power-down, HSB glitches when HSB pin is pulled up through an external resistor.  
Document Number: 001-49918 Rev. *O  
Page 16 of 28  
CY14B104LA  
CY14B104NA  
Software Controlled STORE/RECALL Cycle  
Over the Operating Range  
20 ns  
25 ns  
45 ns  
Unit  
Parameter [44, 45]  
Description  
Min  
20  
0
Max  
Min  
25  
0
Max  
Min  
Max  
tRC  
STORE/RECALL initiation cycle time  
Address setup time  
45  
0
ns  
ns  
ns  
ns  
s  
tSA  
tCW  
Clock pulse width  
15  
0
20  
0
30  
0
tHA  
Address hold time  
tRECALL  
RECALL duration  
200  
200  
200  
Switching Waveforms – Software Controlled STORE/RECALL Cycle  
Figure 12. CE and OE Controlled Software STORE/RECALL Cycle [45]  
tRC  
tRC  
Address  
CE  
Address #1  
tCW  
Address #6  
tCW  
tSA  
tHA  
tHA  
tHA  
tSA  
tHA  
OE  
tHHHD  
tHZCE  
HSB (STORE only)  
DQ (DATA)  
46  
Note  
tDELAY  
tLZCE  
tLZHSB  
High Impedance  
tSTORE/tRECALL  
RWI  
Figure 13. AutoStore Enable/Disable Cycle[45]  
tRC  
Address #1  
tCW  
tRC  
Address  
Address #6  
tCW  
tSA  
CE  
tSA  
tHA  
tHA  
tHA  
tHA  
OE  
tSS  
tHZCE  
46  
Note  
tLZCE  
tDELAY  
DQ (DATA)  
RWI  
Notes  
44. The software sequence is clocked with CE controlled or OE controlled reads.  
45. The six consecutive addresses must be read in the order listed in Table 1 on page 7. WE must be HIGH during all six consecutive cycles.  
46. DQ output data at the sixth read may be invalid since the output is disabled at t  
time.  
DELAY  
Document Number: 001-49918 Rev. *O  
Page 17 of 28  
CY14B104LA  
CY14B104NA  
Hardware STORE Cycle  
Over the Operating Range  
20 ns  
25 ns  
45 ns  
Unit  
Parameter  
Description  
Min  
Max  
20  
Min  
Max  
25  
Min  
Max  
25  
tDHSB  
tPHSB  
HSB to output active time when write latch not set  
Hardware STORE pulse width  
ns  
ns  
s  
15  
15  
15  
[47, 48]  
tSS  
Soft sequence processing time  
100  
100  
100  
Switching Waveforms – Hardware STORE Cycle  
Figure 14. Hardware STORE Cycle [49]  
Write latch set  
tPHSB  
HSB (IN)  
tSTORE  
tHHHD  
tDELAY  
HSB (OUT)  
DQ (Data Out)  
RWI  
tLZHSB  
Write latch not set  
tPHSB  
HSB pin is driven high to VCC only by Internal  
100 kOhm resistor,  
HSB (IN)  
HSB driver is disabled  
SRAM is disabled as long as HSB (IN) is driven low.  
tDELAY  
tDHSB  
tDHSB  
HSB (OUT)  
RWI  
Figure 15. Soft Sequence Processing [47, 48]  
tSS  
tSS  
Soft Sequence  
Command  
Soft Sequence  
Command  
Address  
Address #1  
tSA  
Address #6  
tCW  
Address #1  
Address #6  
tCW  
CE  
VCC  
Notes  
47. This is the amount of time it takes to take action on a soft sequence command. V power must remain HIGH to effectively register command.  
CC  
48. Commands such as STORE and RECALL lock out I/O until operation is complete which further increases this time. See the specific command.  
49. If an SRAM write has not taken place since the last non-volatile cycle, no AutoStore or Hardware STORE takes place.  
Document Number: 001-49918 Rev. *O  
Page 18 of 28  
CY14B104LA  
CY14B104NA  
Truth Table For SRAM Operations  
HSB should remain HIGH for SRAM Operations.  
Table 2. Truth Table for × 8 Configuration  
CE  
H
L
WE  
X
OE  
X
Inputs/Outputs[50]  
Mode  
Deselect/Power-down  
Read  
Power  
High Z  
Standby  
H
L
Data out (DQ0–DQ7);  
High Z  
Active  
Active  
Active  
L
H
H
Output disabled  
Write  
L
L
X
Data in (DQ0–DQ7);  
Table 3. Truth Table for × 16 Configuration  
CE  
H
L
WE  
X
OE  
X
BHE[51] BLE[51]  
Inputs/Outputs[50]  
High Z  
Mode  
Power  
X
H
L
X
H
L
Deselect/Power-down  
Output disabled  
Read  
Standby  
Active  
Active  
Active  
X
X
High Z  
L
H
L
Data out (DQ0–DQ15)  
L
H
L
H
L
Data out (DQ0–DQ7);  
DQ8–DQ15 in High Z  
Read  
L
H
L
L
H
Data out (DQ8–DQ15);  
DQ0–DQ7 in High Z  
Read  
Active  
L
L
L
L
L
H
H
H
L
H
H
H
X
X
L
H
L
L
L
H
L
L
High Z  
High Z  
High Z  
Output disabled  
Output disabled  
Output disabled  
Write  
Active  
Active  
Active  
Active  
Active  
L
Data in (DQ0–DQ15)  
L
H
Data in (DQ0–DQ7);  
DQ8–DQ15 in High Z  
Write  
L
L
X
L
H
Data in (DQ8–DQ15);  
DQ0–DQ7 in High Z  
Write  
Active  
Notes  
50. Data DQ –DQ for × 8 configuration and Data DQ –DQ for × 16 configuration.  
0
7
0
15  
51. BHE and BLE are applicable for × 16 configuration only.  
Document Number: 001-49918 Rev. *O  
Page 19 of 28  
CY14B104LA  
CY14B104NA  
Ordering Information  
Speed  
Package  
Diagram  
Operating  
Range  
Ordering Code  
(ns)  
Package Type  
20  
CY14B104LA-ZS20XIT  
CY14B104LA-ZS20XI  
CY14B104NA-ZS20XIT  
CY14B104NA-ZS20XI  
CY14B104NA-BA20XIT  
CY14B104NA-BA20XI  
CY14B104LA-ZS25XIT  
CY14B104LA-ZS25XI  
CY14B104LA-BA25XIT  
CY14B104LA-BA25XI  
CY14B104NA-ZS25XIT  
CY14B104NA-ZS25XI  
CY14B104NA-BA25XIT  
CY14B104NA-BA25XI  
CY14B104NA-BA25I  
51-85087 44-pin TSOP II  
51-85087 44-pin TSOP II  
51-85087 44-pin TSOP II  
51-85087 44-pin TSOP II  
51-85128 48-ball FBGA  
51-85128 48-ball FBGA  
51-85087 44-pin TSOP II  
51-85087 44-pin TSOP II  
51-85128 48-ball FBGA  
51-85128 48-ball FBGA  
51-85087 44-pin TSOP II  
51-85087 44-pin TSOP II  
51-85128 48-ball FBGA  
51-85128 48-ball FBGA  
51-85128 48-ball FBGA  
51-85128 48-ball FBGA  
51-85160 54-pin TSOP II  
51-85160 54-pin TSOP II  
51-85087 44-pin TSOP II  
51-85087 44-pin TSOP II  
51-85128 48-ball FBGA  
51-85128 48-ball FBGA  
51-85087 44-pin TSOP II  
51-85087 44-pin TSOP II  
51-85128 48-ball FBGA  
51-85128 48-ball FBGA  
51-85160 54-pin TSOP II  
51-85160 54-pin TSOP II  
Industrial  
25  
CY14B104NA-BA25IT  
CY14B104NA-ZSP25XIT  
CY14B104NA-ZSP25XI  
CY14B104LA-ZS45XIT  
CY14B104LA-ZS45XI  
CY14B104LA-BA45XIT  
CY14B104LA-BA45XI  
CY14B104NA-ZS45XIT  
CY14B104NA-ZS45XI  
CY14B104NA-BA45XIT  
CY14B104NA-BA45XI  
CY14B104NA-ZSP45XIT  
CY14B104NA-ZSP45XI  
45  
Document Number: 001-49918 Rev. *O  
Page 20 of 28  
CY14B104LA  
CY14B104NA  
Ordering Code Definitions  
CY 14 B 104 L A - ZS 20 X I T  
Option:  
T - Tape & Reel  
Blank - Std.  
Temperature:  
I - Industrial (–40 C to 85 C)  
X - Pb-free  
Blank - Sn Pb  
Speed:  
20 - 20 ns  
25 - 25 ns  
45 - 45 ns  
Package:  
BA – 48-ball FBGA  
ZS – 44-pin TSOP II  
ZSP – 54-pin TSOP II  
Die Revision:  
Blank - No Rev  
A - 1st Rev  
Data Bus:  
L - × 8  
N - × 16  
Density:  
104 - 4 Mb  
Voltage:  
B - 3.0 V  
14 -  
nvSRAM  
Cypress  
Document Number: 001-49918 Rev. *O  
Page 21 of 28  
CY14B104LA  
CY14B104NA  
Package Diagrams  
Figure 16. 44-pin TSOP II Package Outline, 51-85087  
51-85087 *E  
Document Number: 001-49918 Rev. *O  
Page 22 of 28  
CY14B104LA  
CY14B104NA  
Package Diagrams (continued)  
Figure 17. 48-ball FBGA (6 × 10 × 1.2 mm) Package Outline, 51-85128  
51-85128 *G  
Document Number: 001-49918 Rev. *O  
Page 23 of 28  
CY14B104LA  
CY14B104NA  
Package Diagrams (continued)  
Figure 18. 54-pin TSOP II (22.4 × 11.84 × 1.0 mm) Package Outline, 51-85160  
51-85160 *E  
Document Number: 001-49918 Rev. *O  
Page 24 of 28  
CY14B104LA  
CY14B104NA  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
byte high enable  
Symbol  
°C  
Unit of Measure  
BHE  
BLE  
byte low enable  
chip enable  
degree Celsius  
hertz  
Hz  
kHz  
k  
MHz  
A  
F  
s  
CE  
kilohertz  
kilohm  
CMOS  
complementary metal oxide semiconductor  
Electronic Industries Alliance  
fine-pitch ball grid array  
EIA  
megahertz  
microampere  
microfarad  
microsecond  
milliampere  
millisecond  
nanosecond  
ohm  
FBGA  
hardware store busy  
HSB  
I/O  
input/output  
nvSRAM  
non-volatile static random access memory  
output enable  
mA  
ms  
ns  
OE  
RoHS  
restriction of hazardous substances  
read and write inhibited  
RWI  
SRAM  
TSOP  
WE  
static random access memory  
thin small outline package  
write enable  
%
percent  
pF  
sec  
V
picofarad  
second  
volt  
W
watt  
Document Number: 001-49918 Rev. *O  
Page 25 of 28  
CY14B104LA  
CY14B104NA  
Document History Page  
Document Title: CY14B104LA/CY14B104NA, 4-Mbit (512K × 8/256K × 16) nvSRAM  
Document Number: 001-49918  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN  
Description of Change  
**  
2606696  
GVCH /  
PYRS  
11/13/08  
New data sheet.  
*A  
*B  
2672700  
2710274  
GVCH /  
PYRS  
03/12/09  
Added Best Practices.  
Updated AC Switching Characteristics (Added Note 23 and referred the same  
note in tLZCE, tHZCE, tLZOE, and tHZOE parameters).  
Updated Ordering Information (Updated part numbers).  
GVCH /  
AESA  
05/22/09  
Changed status from Preliminary to Final.  
Updated Device Operation (Updated AutoStore Operation (Updated  
description (Added Note))).  
Updated DC Electrical Characteristics (Updated test condition for ISB  
parameter, updated Note 15).  
Updated AutoStore/Power-Up RECALL (Added Note 41 and referred the same  
note in tVCCRISE, tLZHSB and tHHHD parameters, updated description of VHDIS  
parameter).  
Updated Switching Waveforms – Software Controlled STORE/RECALL Cycle  
(Updated Figure 12).  
*C  
*D  
2738586  
2758397  
GVCH  
07/15/09  
09/01/09  
Updated Device Operation (Updated Hardware STORE Operation (Updated  
description), updated Software STORE (Updated description)).  
Updated AutoStore/Power-Up RECALL (Updated description of tDELAY  
parameter, updated Note 40).  
Updated Switching Waveforms – Software Controlled STORE/RECALL Cycle  
(Added Note 46 and referred the same note in Figure 12 and Figure 13).  
GVCH /  
AESA  
Updated Features (Removed commercial temperature related information).  
Updated Operating Range (Removed commercial temperature related  
information).  
Updated DC Electrical Characteristics (Removed commercial temperature  
related information).  
Updated Ordering Information (Updated part numbers).  
*E  
*F  
2773362  
2826364  
GVCH  
10/06/09  
12/11/09  
Updated Ordering Information (Added 20 ns parts in a 48-ball FBGA package).  
GVCH /  
PYRS  
Updated Features (Changed STORE cycles to QuantumTrap from 200K to  
1 Million).  
*G  
2923475  
GVCH /  
AESA  
04/27/2010 Updated Pin Definitions (Added more clarity on HSB pin operation).  
Updated Device Operation (Updated Hardware STORE Operation (added  
more clarity on HSB pin operation), updated Table 1 (added more clarity on  
BHE/BLE pin operation)).  
Updated Switching Waveforms – AutoStore/Power-up RECALL (HSB pin  
operation in Figure 11 and updated Note 43).  
Updated Package Diagrams  
Updated Sales, Solutions, and Legal Information.  
*H  
3132368  
GVCH  
01/10/2011 Updated Pinouts (Removed the reference of Note 5 in Figure 1).  
Updated Capacitance (Included input capacitance for BHE, BLE and HSB pin,  
output capacitance for HSB pin).  
Updated Switching Waveforms – AutoStore/Power-up RECALL (Fixed typo  
error in Figure 11).  
Added Acronyms and Units of Measure.  
Document Number: 001-49918 Rev. *O  
Page 26 of 28  
CY14B104LA  
CY14B104NA  
Document History Page (continued)  
Document Title: CY14B104LA/CY14B104NA, 4-Mbit (512K × 8/256K × 16) nvSRAM  
Document Number: 001-49918  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN  
Description of Change  
*I  
3305495  
GVCH  
07/07/2011 Updated DC Electrical Characteristics (Added Note 17 and referred the same  
note in VCAP parameter).  
Updated AC Switching Characteristics (Added Note 20 and referred the same  
note in Parameters).  
Updated Thermal Resistance (Values of JA for all packages).  
Updated Package Diagrams.  
*J  
*K  
*L  
3389991  
3514367  
3643590  
3724900  
GVCH  
GVCH  
GVCH  
GVCH  
09/30/2011 Updated Package Diagrams.  
Completing Sunset Review.  
02/01/2012 Removed Best Practices.  
Updated Ordering Information (Updated part numbers).  
06/13/2012 Updated DC Electrical Characteristics (Added VVCAP parameter and its details,  
added Note 18 and referred the same note in VVCAP parameter).  
*M  
09/03/2012 Updated Maximum Ratings (Changed “Ambient temperature with power  
applied” to “Maximum junction temperature”).  
Updated Package Diagrams (spec 51-85087 (Changed revision from *D to *E),  
spec 51-85160 (Changed revision from *C to *D)).  
Completing Sunset Review.  
*N  
*O  
4563189  
5735377  
GVCH  
GVCH  
11/06/2014 Updated Functional Description:  
Added “For a complete list of related documentation, click here.” at the end.  
Updated Package Diagrams:  
spec 51-85160 – Changed revision from *D to *E.  
05/12/2017 Updated Package Diagrams:  
spec 51-85128 – Changed revision from *F to *G.  
Updated to new template.  
Document Number: 001-49918 Rev. *O  
Page 27 of 28  
CY14B104LA  
CY14B104NA  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | WICED IOT Forums | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2008–2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 001-49918 Rev. *O  
Revised May 12, 2017  
Page 28 of 28  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY