CY14B108N-ZSP25XIT [INFINEON]

nvSRAM (non-volatile SRAM);
CY14B108N-ZSP25XIT
型号: CY14B108N-ZSP25XIT
厂家: Infineon    Infineon
描述:

nvSRAM (non-volatile SRAM)

静态存储器
文件: 总27页 (文件大小:883K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY14B108L  
CY14B108N  
8-Mbit (1024 K × 8/512 K × 16) nvSRAM  
8-Mbit (1024  
K × 8/512 K × 16) nvSRAM  
Packages  
Features  
44-/54-pin thin small outline package (TSOP) Type II  
48-ball fine-pitch ball grid array (FBGA)  
20 ns, 25 ns, and 45 ns access times  
Internally organized as 1024 K × 8 (CY14B108L) or 512 K ×16  
(CY14B108N)  
Pb-free and restriction of hazardous substances (RoHS)  
compliant  
Hands off automatic STORE on power-down with only a small  
capacitor  
Functional Description  
The Cypress CY14B108L/CY14B108N is a fast static RAM  
(SRAM), with a nonvolatile element in each memory cell. The  
memory is organized as 1024 Kbytes of 8 bits each or 512 K  
words of 16 bits each. The embedded nonvolatile elements  
incorporate QuantumTrap technology, producing the world’s  
most reliable nonvolatile memory. The SRAM provides infinite  
read and write cycles, while independent nonvolatile data  
resides in the highly reliable QuantumTrap cell. Data transfers  
from the SRAM to the nonvolatile elements (the STORE  
operation) takes place automatically at power-down. On  
power-up, data is restored to the SRAM (the RECALL operation)  
from the nonvolatile memory. Both the STORE and RECALL  
operations are also available under software control.  
STORE to QuantumTrap nonvolatile elements initiated by  
software, device pin, or AutoStore on power-down  
RECALL to SRAM initiated by software or power-up  
Infinite Read, Write, and RECALL cycles  
1 million STORE cycles to QuantumTrap  
20 year data retention  
Single 3 V +20, –10operation  
Industrial temperature  
For a complete list of related documentation, click here.  
Logic Block Diagram [1, 2, 3]  
VCAP  
VCC  
Quatrum Trap  
2048 X 2048 X 2  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
POWER  
R
O
W
CONTROL  
STORE  
RECALL  
STORE/RECALL  
CONTROL  
D
E
C
O
D
E
R
HSB  
STATIC RAM  
ARRAY  
2048 X 2048 X 2  
A7  
A8  
A17  
SOFTWARE  
DETECT  
A14 - A2  
A18  
A19  
DQ0  
DQ1  
DQ2  
DQ3  
I
DQ4  
DQ5  
DQ6  
N
P
U
T
B
U
F
F
E
R
S
DQ7  
COLUMN I/O  
DQ8  
DQ9  
DQ10  
OE  
COLUMN DEC  
WE  
DQ11  
DQ12  
DQ13  
DQ14  
CE  
BLE  
A9 A10 A11 A12 A13 A14 A15 A16  
DQ15  
BHE  
Errata: AutoStore Disable feature does not work in the device. For more information, see Errata on page 24. Details include errata trigger conditions, scope of impact,  
available workarounds, and silicon revision applicability.  
Notes  
1. Address A –A for × 8 configuration and Address A –A for × 16 configuration.  
0
19  
0
18  
2. Data DQ –DQ for × 8 configuration and Data DQ –DQ for × 16 configuration.  
0
7
0
15  
3. BHE and BLE are applicable for × 16 configuration only.  
Cypress Semiconductor Corporation  
Document Number: 001-45523 Rev. *P  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 21, 2017  
CY14B108L  
CY14B108N  
Contents  
Pinouts ..............................................................................3  
Pin Definitions ..................................................................4  
Device Operation ..............................................................5  
SRAM Read ................................................................5  
SRAM Write .................................................................5  
AutoStore Operation ....................................................5  
Hardware STORE Operation .......................................5  
Hardware RECALL (Power-Up) ..................................6  
Software STORE .........................................................6  
Software RECALL .......................................................6  
Preventing AutoStore ..................................................8  
Data Protection ............................................................8  
Maximum Ratings .............................................................9  
Operating Range ...............................................................9  
DC Electrical Characteristics ..........................................9  
Data Retention and Endurance .....................................10  
Capacitance ....................................................................10  
Thermal Resistance ........................................................10  
AC Test Loads ................................................................11  
AC Test Conditions ........................................................11  
AC Switching Characteristics .......................................12  
Switching Waveforms ....................................................12  
AutoStore/Power-Up RECALL .......................................15  
Switching Waveforms ....................................................15  
Software Controlled STORE/RECALL Cycle ................16  
Switching Waveforms ....................................................16  
Hardware STORE Cycle .................................................17  
Switching Waveforms ....................................................17  
Truth Table For SRAM Operations ................................18  
Ordering Information ......................................................19  
Ordering Code Definitions .........................................19  
Package Diagrams ..........................................................20  
Acronyms ........................................................................23  
Document Conventions .................................................23  
Units of Measure .......................................................23  
Errata ...............................................................................24  
Part Numbers Affected ..............................................24  
8Mb (1024 K × 8, 512 K × 16) nvSRAM  
Qualification Status ...........................................................24  
8Mb (1024 K × 8, 512 K × 16) nvSRAM  
Errata Summary ...............................................................24  
Document History Page .................................................25  
Sales, Solutions, and Legal Information ......................27  
Worldwide Sales and Design Support .......................27  
Products ....................................................................27  
PSoC® Solutions ......................................................27  
Cypress Developer Community .................................27  
Technical Support .....................................................27  
Document Number: 001-45523 Rev. *P  
Page 2 of 27  
CY14B108L  
CY14B108N  
Pinouts  
Figure 1. Pin Diagram – 48-ball FBGA  
(×  
8)  
(× 16)  
Top View  
Top View  
(not to scale)  
(not to scale)  
1
2
4
3
5
6
1
2
OE  
NC  
NC  
4
3
5
6
A
A
A
2
NC  
OE  
BLE  
DQ8  
A
A
A
0
1
A
B
C
NC  
NC  
NC  
0
1
2
A
B
C
A
A
BHE  
DQ10  
CE DQ0  
DQ1 DQ2  
V
A
A
4
4
3
CE NC  
NC DQ4  
V
3
A
A
6
DQ9  
A
A
6
DQ0  
5
5
A
7
V
A17  
A
DQ3  
DQ4  
DQ5  
CC  
D
E
F
V
SS  
DQ11  
DQ12  
DQ13  
A17  
DQ5  
DQ6  
NC  
DQ1  
DQ2  
NC  
CC  
D
E
F
SS  
7
A
V
V
SS  
A
VCAP  
V
V
SS  
CC  
16  
VCAP  
CC  
16  
A
A
15  
DQ14  
DQ15  
A18  
A
A
DQ6  
DQ3  
NC  
DQ7  
14  
14  
15  
A
A
13  
G
H
A
A
HSB  
WE DQ7  
A
G
H
HSB  
WE NC  
12  
13  
12  
A
A
9
A
A
8
A
9
A
11  
A18  
A
8
A19  
10  
NC  
11  
10  
Figure 2. Pin Diagram – 44/54-pin TSOP II  
44-pin TSOP II  
(× 8)  
54-pin TSOP II  
(× 16)  
NC  
1
54  
HSB  
[4]  
NC  
NC  
1
2
44  
HSB  
NC  
NC  
A
0
53  
52  
51  
50  
49  
A
A
2
3
[4]  
18  
43  
42  
41  
17  
A
A
1
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
16  
A
0
4
19  
A
2
A
15  
OE  
BHE  
A
1
5
A
18  
A
3
6
A
2
A
17  
40  
39  
48  
47  
46  
45  
A
4
7
A
3
A
16  
CE  
BLE  
DQ  
8
A
4
38  
37  
36  
35  
34  
A
15  
DQ  
DQ  
0
1
9
15  
CE  
DQ  
DQ  
DQ  
V
10  
11  
12  
13  
14  
OE  
DQ  
14  
13  
12  
DQ  
DQ  
44  
43  
42  
41  
40  
39  
DQ  
2
3
0
1
7
DQ  
DQ  
6
V
CC  
SS  
Top View  
V
CC  
V
V
SS  
SS  
V
CC  
(not to scale)  
Top View  
(not to scale)  
V
V
DQ  
33  
32  
31  
SS  
CC  
DQ  
DQ  
DQ  
4
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
11  
10  
DQ  
DQ  
DQ  
DQ  
2
3
5
5
38  
37  
36  
35  
DQ  
DQ  
DQ  
6
9
8
4
DQ  
7
WE  
A
5
15  
16  
17  
18  
30  
29  
28  
27  
26  
25  
24  
23  
V
A
CAP  
WE  
A
5
V
CAP  
14  
A
14  
A
6
A
34  
33  
32  
31  
30  
29  
28  
13  
12  
A
6
A
13  
A
7
A
A
A
7
A
8
12  
A
A
11  
19  
20  
21  
22  
8
A
11  
A
A
9
A
9
10  
NC  
NC  
NC  
A
10  
NC  
NC  
NC  
25  
26  
27  
NC  
NC  
NC  
NC  
Note  
4. Address expansion for 16-Mbit. NC pin not connected to die.  
Document Number: 001-45523 Rev. *P  
Page 3 of 27  
CY14B108L  
CY14B108N  
Pin Definitions  
Pin Name  
A0–A19  
I/O Type  
Input  
Description  
Address inputs. Used to select one of the 1,048,576 bytes of the nvSRAM for × 8 configuration.  
Address inputs. Used to select one of the 524,288 words of the nvSRAM for × 16 configuration.  
A0–A18  
DQ0–DQ7 Input/Output Bidirectional data I/O lines for × 8 configuration. Used as input or output lines depending on operation.  
DQ0–DQ15  
WE  
Bidirectional data I/O lines for × 16 configuration. Used as input or output lines depending on operation.  
Input  
Write Enable input, Active LOW. When selected LOW, data on the I/O pins is written to the specific  
address location.  
Input  
Input  
Chip Enable input, Active LOW. When LOW, selects the chip. When HIGH, deselects the chip.  
CE  
OE  
Output Enable, Active LOW. The active LOW OE input enables the data output buffers during read  
cycles. I/O pins are tristated on deasserting OE HIGH.  
Input  
Input  
Byte High Enable, Active LOW. Controls DQ15–DQ8.  
BHE  
Byte Low Enable, Active LOW. Controls DQ7–DQ0.  
BLE  
VSS  
Ground  
Ground for the device. Must be connected to the ground of the system.  
VCC  
Power supply Power supply inputs to the device.  
Input/Output Hardware STORE Busy (HSB). When LOW this output indicates that a Hardware STORE is in progress.  
When pulled LOW external to the chip it initiates a nonvolatile STORE operation. After each Hardware  
and Software STORE operation, HSB is driven HIGH for a short time (tHHHD) with standard output high  
current and then a weak internal pull-up resistor keeps this pin HIGH (external pull-up resistor  
connection optional).  
HSB  
VCAP  
NC  
Power supply AutoStore capacitor. Supplies power to the nvSRAM during power loss to store data from SRAM to  
nonvolatile elements.  
No connect No connect. This pin is not connected to the die.  
Document Number: 001-45523 Rev. *P  
Page 4 of 27  
CY14B108L  
CY14B108N  
AutoStore on page 8. In case AutoStore is enabled without a  
capacitor on VCAP pin, the device attempts an AutoStore  
operation without sufficient charge to complete the Store. This  
corrupts the data stored in nvSRAM.  
Device Operation  
The CY14B108L/CY14B108N nvSRAM is made up of two  
functional components paired in the same physical cell. They are  
a SRAM memory cell and a nonvolatile QuantumTrap cell. The  
SRAM memory cell operates as a standard fast static RAM. Data  
in the SRAM is transferred to the nonvolatile cell (the STORE  
operation), or from the nonvolatile cell to the SRAM (the RECALL  
operation). Using this unique architecture, all cells are stored and  
recalled in parallel. During the STORE and RECALL operations,  
SRAM read and write operations are inhibited. The  
CY14B108L/CY14B108N supports infinite reads and writes  
similar to a typical SRAM. In addition, it provides infinite RECALL  
operations from the nonvolatile cells and up to 1 million STORE  
operations. See Truth Table For SRAM Operations on page 18  
for a complete description of read and write modes.  
Figure 3 shows the proper connection of the storage capacitor  
(VCAP) for automatic STORE operation. Refer to DC Electrical  
Characteristics on page 9 for the size of VCAP. The voltage on  
the VCAP pin is driven to VCC by a regulator on the chip. A pull-up  
should be placed on WE to hold it inactive during power-up. This  
pull-up is effective only if the WE signal is tristate during  
power-up. Many MPUs tristate their controls on power-up. This  
should be verified when using the pull-up. When the nvSRAM  
comes out of power-on-RECALL, the MPU must be active or the  
WE held inactive until the MPU comes out of reset.  
To reduce unnecessary nonvolatile STOREs, AutoStore and  
Hardware STORE operations are ignored unless at least one  
write operation has taken place since the most recent STORE or  
RECALL cycle. Software initiated STORE cycles are performed  
regardless of whether a write operation has taken place. The  
HSB signal is monitored by the system to detect if an AutoStore  
cycle is in progress.  
SRAM Read  
The CY14B108L/CY14B108N performs a read cycle when CE  
and OE are LOW and WE and HSB are HIGH. The address  
specified on pins A0–19 or A0–18 determines which of the  
1,048,576 data bytes or 524,288 words of 16 bits each are  
accessed. Byte enables (BHE, BLE) determine which bytes are  
enabled to the output, in the case of 16-bit words. When the read  
is initiated by an address transition, the outputs are valid after a  
delay of tAA (read cycle 1). If the read is initiated by CE or OE,  
the outputs are valid at tACE or at tDOE, whichever is later (read  
cycle 2). The data output repeatedly responds to address  
changes within the tAA access time without the need for  
transitions on any control input pins. This remains valid until  
another address change or until CE or OE is brought HIGH, or  
WE or HSB is brought LOW.  
Figure 3. AutoStore Mode  
VCC  
0.1 uF  
VCC  
SRAM Write  
WE  
VCAP  
A write cycle is performed when CE and WE are LOW and HSB  
is HIGH. The address inputs must be stable before entering the  
write cycle and must remain stable until CE or WE goes HIGH at  
the end of the cycle. The data on the common I/O pins DQ0–15  
are written into the memory if the data is valid tSD before the end  
of a WE controlled write or before the end of an CE controlled  
write. The Byte Enable inputs (BHE, BLE) determine which bytes  
are written, in the case of 16-bit words. Keep OE HIGH during  
the entire write cycle to avoid data bus contention on common  
I/O lines. If OE is left LOW, internal circuitry turns off the output  
buffers tHZWE after WE goes LOW.  
VCAP  
VSS  
Hardware STORE Operation  
The CY14B108L/CY14B108N provides the HSB pin to control  
and acknowledge the STORE operations. Use the HSB pin to  
request a Hardware STORE cycle. When the HSB pin is driven  
LOW, the CY14B108L/CY14B108N conditionally initiates a  
STORE operation after tDELAY. An actual STORE cycle only  
begins if a write to the SRAM has taken place since the last  
STORE or RECALL cycle. The HSB pin also acts as an open  
drain driver (internal 100 kweak pull-up resistor) that is inter-  
nally driven LOW to indicate a busy condition when the STORE  
(initiated by any means) is in progress.  
AutoStore Operation  
The CY14B108L/CY14B108N stores data to the nvSRAM using  
one of the following three storage operations: Hardware STORE  
activated by the HSB; Software STORE activated by an address  
sequence; AutoStore on device power-down. The AutoStore  
operation is a unique feature of QuantumTrap technology and is  
enabled by default on the CY14B108L/CY14B108N.  
During a normal operation, the device draws current from VCC to  
charge a capacitor connected to the VCAP pin. This stored  
charge is used by the chip to perform a single STORE operation.  
If the voltage on the VCC pin drops below VSWITCH, the part  
automatically disconnects the VCAP pin from VCC. A STORE  
operation is initiated with power provided by the VCAP capacitor.  
Note After each Hardware and Software STORE operation HSB  
is driven HIGH for a short time (tHHHD) with standard output high  
current and then remains HIGH by internal 100 kpull-up  
resistor.  
Note If the capacitor is not connected to VCAP pin, AutoStore  
must be disabled using the soft sequence specified in Preventing  
Document Number: 001-45523 Rev. *P  
Page 5 of 27  
CY14B108L  
CY14B108N  
SRAM write operations that are in progress when HSB is driven  
LOW by any means are given time (tDELAY) to complete before  
the STORE operation is initiated. However, any SRAM write  
cycles requested after HSB goes LOW are inhibited until HSB  
returns HIGH. In case the write latch is not set, HSB is not driven  
LOW by the CY14B108L/CY14B108N. But any SRAM read and  
write cycles are inhibited until HSB is returned HIGH by MPU or  
other external source.  
To initiate the Software STORE cycle, the following read  
sequence must be performed.  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x8FC0 Initiate STORE cycle  
During any STORE operation, regardless of how it is initiated,  
the CY14B108L/CY14B108N continues to drive the HSB pin  
LOW, releasing it only when the STORE is complete. Upon  
completion of the STORE operation, the nvSRAM memory  
access is inhibited for tLZHSB time after HSB pin returns HIGH.  
Leave the HSB unconnected if it is not used.  
The software sequence may be clocked with CE controlled reads  
or OE controlled reads, with WE kept HIGH for all the six READ  
sequences. After the sixth address in the sequence is entered,  
the STORE cycle commences and the chip is disabled. HSB is  
driven LOW. After the tSTORE cycle time is fulfilled, the SRAM is  
activated again for the read and write operation.  
Hardware RECALL (Power-Up)  
During power-up or after any low power condition  
(VCC< VSWITCH), an internal RECALL request is latched. When  
VCC again exceeds the VSWITCH on power-up, a RECALL cycle  
is automatically initiated and takes tHRECALL to complete. During  
this time, the HSB pin is driven LOW by the HSB driver and all  
reads and writes to nvSRAM are inhibited.  
Software RECALL  
Data is transferred from the nonvolatile memory to the SRAM by  
a software address sequence. A software RECALL cycle is  
initiated with a sequence of read operations in a manner similar  
to the software STORE initiation. To initiate the RECALL cycle,  
the following sequence of CE or OE controlled read operations  
must be performed.  
Software STORE  
Data is transferred from the SRAM to the nonvolatile memory by  
a software address sequence. The CY14B108L/CY14B108N  
Software STORE cycle is initiated by executing sequential CE or  
OE controlled read cycles from six specific address locations in  
exact order. During the STORE cycle an erase of the previous  
nonvolatile data is first performed, followed by a program of the  
nonvolatile elements. After a STORE cycle is initiated, further  
input and output are disabled until the cycle is completed.  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x4C63 Initiate RECALL cycle  
Internally, RECALL is a two-step procedure. First, the SRAM  
data is cleared; then, the nonvolatile information is transferred  
into the SRAM cells. After the tRECALL cycle time, the SRAM is  
again ready for read and write operations. The RECALL  
operation does not alter the data in the nonvolatile elements.  
Because a sequence of READs from specific addresses is used  
for STORE initiation, it is important that no other read or write  
accesses intervene in the sequence, or the sequence is aborted  
and no STORE or RECALL takes place.  
Document Number: 001-45523 Rev. *P  
Page 6 of 27  
CY14B108L  
CY14B108N  
Table 1. Mode Selection  
[6]  
A15–A0  
Mode  
Not Selected Output High Z  
I/O  
Power  
CE  
WE  
OE  
BHE, BLE[5]  
H
X
X
X
X
X
X
Standby  
Active  
L
L
L
H
L
L
X
L
L
L
Read SRAM  
Write SRAM  
Output data  
Input data  
Active  
Active[7]  
H
X
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8B45  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore  
Output data  
Output data  
Output data  
Output data  
Output data  
Output data  
Disable  
L
L
L
H
H
H
L
L
L
X
X
X
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4B46  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore  
Output data  
Output data  
Output data  
Output data  
Output data  
Output data  
Active[7]  
Active ICC2  
Active[7]  
Enable  
[7]  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile  
STORE  
Output data  
Output data  
Output data  
Output data  
Output data  
Output High Z  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile  
RECALL  
Output data  
Output data  
Output data  
Output data  
Output data  
Output High Z  
Errata: AutoStore Disable feature does not work in the device. For more information, see Errata on page 24.  
Notes  
5. BHE and BLE are applicable for × 16 configuration only.  
6. While there are 20 address lines on the CY14B108L (19 address lines on the CY14B108N), only the 13 address lines (A –A ) are used to control software modes.  
14  
2
Rest of the address lines are don’t care.  
7. The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a nonvolatile cycle.  
Document Number: 001-45523 Rev. *P  
Page 7 of 27  
CY14B108L  
CY14B108N  
AutoStore enable sequence, the following sequence of CE or OE  
controlled read operations must be performed:  
Preventing AutoStore  
The AutoStore function is disabled by initiating an AutoStore  
disable sequence. A sequence of read operations is performed  
in a manner similar to the Software STORE initiation. To initiate  
the AutoStore disable sequence, the following sequence of CE  
or OE controlled read operations must be performed:  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x4B46 AutoStore Enable  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x8B45 AutoStore Disable  
If the AutoStore function is disabled or re-enabled, a manual  
STORE operation (Hardware or Software) must be issued to  
save the AutoStore state through subsequent power-down  
cycles. The part comes from the factory with AutoStore enabled  
and 0x00 written in all cells.  
Note Errata: AutoStore Disable feature does not work in the  
device. For more information, see Errata on page 24.  
Data Protection  
The AutoStore is re-enabled by initiating an AutoStore enable  
sequence. A sequence of read operations is performed in a  
manner similar to the Software RECALL initiation. To initiate the  
The CY14B108L/CY14B108N protects data from corruption  
during low voltage conditions by inhibiting all externally initiated  
STORE and write operations. The low voltage condition is  
detected when VCC < VSWITCH. If the CY14B108L/CY14B108N  
is in a write mode (both CE and WE are LOW) at power-up, after  
a RECALL or STORE, the write is inhibited until the SRAM is  
enabled after tLZHSB (HSB to output active). This protects against  
inadvertent writes during power-up or brown out conditions.  
Document Number: 001-45523 Rev. *P  
Page 8 of 27  
CY14B108L  
CY14B108N  
Transient voltage (< 20 ns) on  
any pin to ground potential ................. –2.0 V to VCC + 2.0 V  
Maximum Ratings  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Package power dissipation  
capability (TA = 25 °C) ................................................. 1.0 W  
Storage temperature ................................ –65 C to +150 C  
Maximum accumulated storage time  
Surface mount Pb soldering  
temperature (3 Seconds) ......................................... +260 C  
DC output current (1 output at a time, 1s duration) .... 15 mA  
At 150 C ambient temperature ...................... 1000 h  
At 85 C ambient temperature ..................... 20 Years  
Maximum junction temperature .................................. 150 C  
Supply voltage on VCC relative to VSS ...........–0.5 V to 4.1 V  
Static discharge voltage  
(per MIL-STD-883, Method 3015) ..........................> 2001 V  
Latch up current .................................................... > 200 mA  
Operating Range  
Voltage applied to outputs  
in High Z state ....................................0.5 V to VCC + 0.5 V  
Range  
Industrial  
Ambient Temperature  
VCC  
Input voltage ........................................–0.5 V to Vcc + 0.5 V  
–40 C to +85 C  
2.7 V to 3.6 V  
DC Electrical Characteristics  
Over the Operating Range  
Parameter  
Description  
Test Conditions  
tRC = 20 ns  
Min  
2.7  
Typ [8]  
3.0  
Max  
Unit  
VCC  
Power supply  
3.6  
V
ICC1  
Average VCC current  
75  
75  
57  
mA  
mA  
mA  
t
RC = 25 ns  
RC = 45 ns  
t
Values obtained without output loads  
(IOUT = 0 mA)  
ICC2  
ICC3  
Average VCC current during  
STORE  
All inputs don’t care, VCC = Max  
Average current for duration tSTORE  
20  
mA  
mA  
Average VCC current at  
All inputs cycling at CMOS levels.  
Values obtained without output loads  
(IOUT = 0 mA).  
40  
tRC= 200 ns, VCC(Typ), 25 °C  
ICC4  
ISB  
Average VCAP current during  
AutoStore cycle  
All inputs don’t care. Average current  
for duration tSTORE  
10  
10  
mA  
mA  
VCC standby current  
CE > (VCC – 0.2 V).  
VIN < 0.2 V or > (VCC – 0.2 V).  
Standby current level after  
nonvolatile cycle is complete.  
Inputs are static. f = 0 MHz.  
[9]  
IIX  
Input leakage current (except  
HSB)  
VCC = Max, VSS < VIN < VCC  
–2  
+2  
A  
Input leakage current (for HSB) VCC = Max, VSS < VIN < VCC  
–200  
–2  
+2  
+2  
A  
A  
IOZ  
Off-state output leakage current VCC = Max, VSS < VOUT < VCC  
,
CE or OE > VIH or  
BHE/BLE > VIH or WE < VIL  
VIH  
VIL  
Input HIGH voltage  
Input LOW voltage  
2.0  
Vss – 0.5  
2.4  
VCC + 0.5  
V
V
V
V
0.8  
VOH  
VOL  
Output HIGH voltage  
Output LOW voltage  
IOUT = –2 mA  
IOUT = 4 mA  
0.4  
Notes  
8. Typical values are at 25 °C, V = V  
. Not 100% tested.  
CC  
CC(Typ)  
9. The HSB pin has I  
= –2 µA for V of 2.4 V when both active HIGH and LOW drivers are disabled. When they are enabled standard V and V are valid. This  
OUT  
O
H
O
H
O
L
parameter is characterized but not tested.  
Document Number: 001-45523 Rev. *P  
Page 9 of 27  
CY14B108L  
CY14B108N  
DC Electrical Characteristics (continued)  
Over the Operating Range  
Parameter  
Description  
Test Conditions  
Min  
122  
Typ [8]  
150  
Max  
360  
VCC  
Unit  
F  
V
[10]  
VCAP  
Storage capacitor  
Between VCAP pin and VSS  
[11, 12]  
VVCAP  
Maximum voltage driven on VCAP VCC = Max  
pin by the device  
Data Retention and Endurance  
Over the Operating Range  
Parameter  
Description  
Min  
Unit  
Years  
K
DATAR  
NVC  
Data retention  
20  
Nonvolatile STORE operations  
1,000  
Capacitance  
Parameter [12]  
Description  
Test Conditions  
TA = 25 C, f = 1 MHz, VCC = VCC(Typ)  
Max  
14  
Unit  
pF  
CIN  
Input capacitance  
Output capacitance  
COUT  
14  
pF  
Thermal Resistance  
Parameter [12]  
Description  
Test Conditions  
48-ball FBGA 44-pin TSOP II 54-pin TSOP II Unit  
JA  
Thermal resistance  
(Junction to ambient)  
Test  
conditions  
follow  
42.2  
45.3  
44.22  
C/W  
standard test methods and  
procedures for measuring  
JC  
Thermal resistance  
(Junction to case)  
6.3  
5.2  
8.26  
C/W  
thermal  
impedance,  
in  
with  
accordance  
EIA/JESD51.  
Notes  
10. Min V  
value guarantees that there is a sufficient charge available to complete a successful AutoStore operation. Max V  
value guarantees that the capacitor on  
CAP  
CAP  
V
is charged to a minimum voltage during a Power-Up RECALL cycle so that an immediate power-down cycle can complete a successful AutoStore. Therefore it  
CAP  
is always recommended to use a capacitor within the specified min and max limits. Refer application note AN43593 for more details on V  
options.  
CAP  
11. Maximum voltage on V  
pin (V  
) is provided for guidance when choosing the V  
capacitor. The voltage rating of the V  
capacitor across the operating  
CAP  
VCAP  
CAP  
CAP  
temperature range should be higher than the V  
voltage.  
VCAP  
12. These parameters are guaranteed by design and are not tested.  
Document Number: 001-45523 Rev. *P  
Page 10 of 27  
CY14B108L  
CY14B108N  
AC Test Loads  
Figure 4. AC Test Loads  
577  
for tristate specs  
577   
3.0 V  
3.0 V  
R1  
R1  
OUTPUT  
OUTPUT  
R2  
789   
R2  
789   
5 pF  
30 pF  
AC Test Conditions  
Input pulse levels ..................................................0 V to 3 V  
Input rise and fall times (10%–90%) ........................... < 3 ns  
Input and output timing reference levels ...................... 1.5 V  
Document Number: 001-45523 Rev. *P  
Page 11 of 27  
CY14B108L  
CY14B108N  
AC Switching Characteristics  
Over the Operating Range  
Parameters [13]  
20 ns  
25 ns  
45 ns  
Unit  
Description  
Cypress  
Alt Parameter  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
SRAM Read Cycle  
tACE  
tACS  
tRC  
tAA  
tOE  
tOH  
tLZ  
tHZ  
tOLZ  
tOHZ  
tPA  
tPS  
Chip enable access time  
20  
20  
25  
25  
45  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[14]  
tRC  
Read cycle time  
[15]  
tAA  
Address access time  
20  
10  
25  
12  
45  
20  
tDOE  
tOHA  
tLZCE  
tHZCE  
tLZOE  
Output enable to data valid  
Output hold after address change  
Chip enable to output active  
Chip disable to output inactive  
Output enable to output active  
Output disable to output inactive  
Chip enable to power active  
Chip disable to power standby  
Byte enable to data valid  
[15]  
3
3
3
[16, 17]  
3
3
3
[16, 17]  
[16, 17]  
[16, 17]  
8
10  
15  
0
0
0
tHZOE  
8
10  
15  
[16]  
tPU  
tPD  
0
0
0
[16]  
20  
10  
25  
12  
45  
20  
tDBE  
tLZBE  
tHZBE  
[16]  
Byte enable to output active  
Byte disable to output inactive  
0
0
0
[16]  
8
10  
15  
SRAM Write Cycle  
tWC  
tPWE  
tSCE  
tSD  
tHD  
tAW  
tSA  
tHA  
tHZWE  
tLZWE  
tBW  
tWC  
tWP  
tCW  
tDW  
tDH  
tAW  
tAS  
tWR  
tWZ  
tOW  
Write cycle time  
20  
15  
15  
8
8
25  
20  
20  
10  
0
45  
30  
30  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write pulse width  
Chip enable to end of write  
Data setup to end of write  
Data hold after end of write  
Address setup to end of write  
Address setup to start of write  
Address hold after end of write  
Write enable to output disable  
Output active after end of write  
Byte enable to end of write  
0
15  
0
20  
0
30  
0
0
0
0
[16, 17, 18]  
10  
15  
[16, 17]  
3
3
3
15  
20  
30  
Switching Waveforms  
Figure 5. SRAM Read Cycle #1 (Address Controlled) [14, 15, 19]  
tRC  
Address  
Address Valid  
tAA  
Output Data Valid  
Previous Data Valid  
tOHA  
Data Output  
Notes  
13. Test conditions assume signal transition time of 3 ns or less, timing reference levels of V /2, input pulse levels of 0 to V  
, and output loading of the specified  
CC  
CC(typ)  
I
/I and load capacitance shown in Figure 4 on page 11.  
OL OH  
14. WE must be HIGH during SRAM read cycles.  
15. Device is continuously selected with CE, OE and BHE / BLE LOW.  
16. These parameters are guaranteed by design but not tested.  
17. Measured ±200 mV from steady state output voltage.  
18. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.  
19. HSB must remain HIGH during READ and WRITE cycles.  
Document Number: 001-45523 Rev. *P  
Page 12 of 27  
CY14B108L  
CY14B108N  
Switching Waveforms (continued)  
Figure 6. SRAM Read Cycle #2 (CE and OE Controlled) [20, 21, 22]  
Address  
CE  
Address Valid  
tRC  
tHZCE  
tACE  
tAA  
tLZCE  
tHZOE  
tDOE  
OE  
tHZBE  
tLZOE  
tDBE  
BHE, BLE  
tLZBE  
High Impedance  
Standby  
Data Output  
Output Data Valid  
tPU  
tPD  
Active  
ICC  
Figure 7. SRAM Write Cycle #1 (WE Controlled) [20, 22, 23, 24]  
tWC  
Address  
Address Valid  
tSCE  
tHA  
CE  
tBW  
BHE, BLE  
tAW  
tPWE  
WE  
Data Input  
Data Output  
tSA  
tHD  
tSD  
Input Data Valid  
tLZWE  
tHZWE  
High Impedance  
Previous Data  
Notes  
20. BHE and BLE are applicable for × 16 configuration only.  
21. WE must be HIGH during SRAM read cycles.  
22. HSB must remain HIGH during READ and WRITE cycles.  
23. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.  
24. CE or WE must be >V during address transitions.  
IH  
Document Number: 001-45523 Rev. *P  
Page 13 of 27  
CY14B108L  
CY14B108N  
Switching Waveforms (continued)  
Figure 8. SRAM Write Cycle #2 (CE Controlled) [25, 26, 27, 28]  
tWC  
Address Valid  
tSCE  
Address  
tSA  
tHA  
CE  
tBW  
tPWE  
tSD  
BHE, BLE  
WE  
tHD  
Input Data Valid  
High Impedance  
Data Input  
Data Output  
Figure 9. SRAM Write Cycle #3 (BHE and BLE Controlled) [25, 26, 27, 28]  
tWC  
Address  
CE  
Address Valid  
tSCE  
tSA  
tHA  
tBW  
BHE, BLE  
WE  
tAW  
tPWE  
tSD  
tHD  
Data Input  
Input Data Valid  
High Impedance  
Data Output  
Notes  
25. BHE and BLE are applicable for × 16 configuration only.  
26. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.  
27. HSB must remain HIGH during READ and WRITE cycles.  
28. CE or WE must be >V during address transitions.  
IH  
Document Number: 001-45523 Rev. *P  
Page 14 of 27  
CY14B108L  
CY14B108N  
AutoStore/Power-Up RECALL  
Over the Operating Range  
20 ns  
25 ns  
45 ns  
Parameter  
Description  
Unit  
Min  
Max  
20  
8
Min  
Max  
20  
8
Min  
Max  
20  
8
[29]  
tHRECALL  
Power-Up RECALL duration  
STORE cycle duration  
ms  
ms  
ns  
[30]  
tSTORE  
[31]  
tDELAY  
Time allowed to complete SRAM  
write cycle  
20  
25  
25  
VSWITCH  
Low voltage trigger level  
VCC rise time  
150  
2.65  
150  
2.65  
150  
2.65  
V
s  
V
[32]  
tVCCRISE  
[32]  
VHDIS  
HSB output disable voltage  
HSB to output active time  
HSB high active time  
1.9  
5
1.9  
5
1.9  
5
[32]  
tLZHSB  
s  
ns  
[32]  
tHHHD  
500  
500  
500  
Switching Waveforms  
Figure 10. AutoStore or Power-Up RECALL [33]  
VCC  
VSWITCH  
VHDIS  
30  
30  
tVCCRISE  
tSTORE  
tSTORE  
Note  
Note  
tHHHD  
tHHHD  
34  
Note  
34  
Note  
HSB OUT  
AutoStore  
tDELAY  
tLZHSB  
tLZHSB  
tDELAY  
POWER-  
UP  
RECALL  
tHRECALL  
tHRECALL  
Read & Write  
Inhibited  
(RWI)  
Read & Write  
Read & Write  
POWER-UP  
RECALL  
BROWN  
OUT  
AutoStore  
POWER  
DOWN  
AutoStore  
POWER-UP  
RECALL  
Notes  
29. t  
starts from the time V rises above V .  
SWITCH  
HRECALL  
CC  
30. If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware STORE takes place.  
31. On a Hardware STORE and AutoStore initiation, SRAM write operation continues to be enabled for time t  
32. These parameters are guaranteed by design but not tested.  
.
DELAY  
33. Read and Write cycles are ignored during STORE, RECALL, and while V is below V  
.
CC  
SWITCH  
34. During power-up and power-down, HSB glitches when HSB pin is pulled up through an external resistor.  
Document Number: 001-45523 Rev. *P  
Page 15 of 27  
CY14B108L  
CY14B108N  
Software Controlled STORE/RECALL Cycle  
Over the Operating Range  
20 ns  
25 ns  
45 ns  
Unit  
Parameter [35, 36]  
Description  
Min  
20  
0
Max  
Min  
25  
0
Max  
Min  
Max  
tRC  
tSA  
tCW  
tHA  
STORE/RECALL initiation cycle time  
Address setup time  
45  
0
ns  
ns  
ns  
ns  
s  
Clock pulse width  
15  
0
20  
0
30  
0
Address hold time  
tRECALL  
RECALL duration  
200  
200  
200  
Switching Waveforms  
Figure 11. CE and OE Controlled Software STORE/RECALL Cycle [36]  
tRC  
tRC  
Address  
CE  
Address #1  
tCW  
Address #6  
tCW  
tSA  
tHA  
tHA  
tHA  
tSA  
tHA  
OE  
tHHHD  
tHZCE  
HSB (STORE only)  
DQ (DATA)  
37  
Note  
tDELAY  
tLZCE  
tLZHSB  
High Impedance  
tSTORE/tRECALL  
RWI  
Figure 12. Autostore Enable/Disable Cycle [36]  
tRC  
tRC  
Address  
Address #1  
tCW  
Address #6  
tCW  
tSA  
CE  
tSA  
tHA  
tHA  
tHA  
tHA  
OE  
tSS  
tHZCE  
37  
tLZCE  
tDELAY  
Note  
DQ (DATA)  
RWI  
Notes  
35. The software sequence is clocked with CE controlled or OE controlled reads.  
36. The six consecutive addresses must be read in the order listed in Table 1 on page 7. WE must be HIGH during all six consecutive cycles.  
37. DQ output data at the sixth read may be invalid since the output is disabled at t  
time.  
DELAY  
Document Number: 001-45523 Rev. *P  
Page 16 of 27  
CY14B108L  
CY14B108N  
Hardware STORE Cycle  
Over the Operating Range  
20 ns  
25 ns  
45 ns  
Parameter  
tDHSB  
tPHSB  
Description  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
HSB to output active time when  
write latch not set  
20  
25  
25  
ns  
Hardware STORE pulse width  
Soft sequence processing time  
15  
15  
15  
ns  
[38, 39]  
tSS  
100  
100  
100  
s  
Switching Waveforms  
Figure 13. Hardware STORE Cycle [40]  
Write latch set  
tPHSB  
HSB (IN)  
tSTORE  
tHHHD  
tDELAY  
HSB (OUT)  
DQ (Data Out)  
RWI  
tLZHSB  
Write latch not set  
tPHSB  
HSB pin is driven high to VCC only by Internal  
100 kOhm resistor,  
HSB (IN)  
HSB driver is disabled  
SRAM is disabled as long as HSB (IN) is driven low.  
tDELAY  
tDHSB  
tDHSB  
HSB (OUT)  
RWI  
Figure 14. Soft Sequence Processing [38, 39]  
tSS  
tSS  
Soft Sequence  
Command  
Soft Sequence  
Command  
Address  
Address #1  
tSA  
Address #6  
tCW  
Address #1  
Address #6  
tCW  
CE  
VCC  
Notes  
38. This is the amount of time it takes to take action on a soft sequence command. Vcc power must remain HIGH to effectively register command.  
39. Commands such as STORE and RECALL lock out I/O until operation is complete which further increases this time. See the specific command.  
40. If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware STORE takes place.  
Document Number: 001-45523 Rev. *P  
Page 17 of 27  
CY14B108L  
CY14B108N  
Truth Table For SRAM Operations  
HSB should remain HIGH for SRAM Operations.  
Table 2. Truth Table for × 8 Configuration  
CE  
H
L
WE  
X
OE  
X
Inputs/Outputs[41]  
Mode  
Deselect/Power-down  
Read  
Power  
High Z  
Standby  
H
L
Data out (DQ0–DQ7);  
High Z  
Active  
Active  
Active  
L
H
H
Output disabled  
Write  
L
L
X
Data in (DQ0–DQ7);  
Table 3. Truth Table for × 16 Configuration  
CE  
H
L
WE  
X
OE  
X
BHE[42] BLE[42]  
Inputs/Outputs[41]  
High Z  
Mode  
Power  
X
H
L
X
H
L
Deselect/Power-down  
Output disabled  
Read  
Standby  
Active  
Active  
Active  
X
X
High Z  
L
H
L
Data out (DQ0–DQ15)  
L
H
L
H
L
Data out (DQ0–DQ7);  
DQ8–DQ15 in High Z  
Read  
L
H
L
L
H
Data out (DQ8–DQ15);  
DQ0–DQ7 in High Z  
Read  
Active  
L
L
L
L
L
H
H
H
L
H
H
H
X
X
L
H
L
L
L
H
L
L
High Z  
High Z  
High Z  
Output disabled  
Output disabled  
Output disabled  
Write  
Active  
Active  
Active  
Active  
Active  
L
Data in (DQ0–DQ15)  
L
H
Data in (DQ0–DQ7);  
DQ8–DQ15 in High Z  
Write  
L
L
X
L
H
Data in (DQ8–DQ15);  
DQ0–DQ7 in High Z  
Write  
Active  
Notes  
41. Data DQ –DQ for × 8 configuration and Data DQ –DQ for × 16 configuration.  
0
7
0
15  
42. BHE and BLE are applicable for × 16 configuration only.  
Document Number: 001-45523 Rev. *P  
Page 18 of 27  
CY14B108L  
CY14B108N  
Ordering Information  
Speed  
Ordering Code  
Package Diagram  
Package Type  
44-pin TSOP II  
Operating Range  
(ns)  
20  
CY14B108L-ZS20XIT  
CY14B108L-ZS20XI  
CY14B108L-ZS25XIT  
CY14B108L-ZS25XI  
CY14B108L-BA25XIT  
CY14B108L-BA25XI  
CY14B108N-BA25XIT  
CY14B108N-BA25XI  
CY14B108N-ZSP25XIT  
CY14B108N-ZSP25XI  
CY14B108L-ZS45XIT  
CY14B108L-ZS45XI  
CY14B108L-BA45XIT  
CY14B108L-BA45XI  
CY14B108N-BA45XIT  
CY14B108N-BA45XI  
CY14B108N-ZSP45XIT  
CY14B108N-ZSP45XI  
51-85087  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85128  
51-85160  
51-85160  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85128  
51-85160  
51-85160  
Industrial  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
54-pin TSOP II  
54-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
54-pin TSOP II  
54-pin TSOP II  
25  
45  
All the above parts are Pb-free.  
Ordering Code Definitions  
CY 14 B 108 L - ZS 20 X I T  
Option:  
T - Tape & Reel  
Blank - Std.  
Temperature:  
I - Industrial (–40 to 85 °C)  
Speed:  
20 - 20 ns  
Pb-Free  
25 - 25 ns  
45 - 45 ns  
Package:  
ZS - 44-pin TSOP II  
BA - 48-ball FBGA  
ZSP - 54-pin TSOP II  
Data Bus:  
L - × 8  
N - × 16  
Density:  
108 - 8 Mb  
Voltage:  
B - 3.0 V  
14 - NVSRAM  
Cypress  
Document Number: 001-45523 Rev. *P  
Page 19 of 27  
CY14B108L  
CY14B108N  
Package Diagrams  
Figure 15. 44-pin TSOP II Package Outline, 51-85087  
51-85087 *E  
Document Number: 001-45523 Rev. *P  
Page 20 of 27  
CY14B108L  
CY14B108N  
Package Diagrams (continued)  
Figure 16. 48-ball FBGA (6 × 10 × 1.2 mm) Package Outline, 51-85128  
51-85128 *G  
Document Number: 001-45523 Rev. *P  
Page 21 of 27  
CY14B108L  
CY14B108N  
Package Diagrams (continued)  
Figure 17. 54-pin TSOP II (22.4 × 11.84 × 1.0 mm) Package Outline, 51-85160  
51-85160 *E  
Document Number: 001-45523 Rev. *P  
Page 22 of 27  
CY14B108L  
CY14B108N  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
CMOS  
complementary metal oxide semiconductor  
byte high enable  
Symbol  
°C  
Unit of Measure  
BHE  
BLE  
degree Celsius  
kilohm  
byte low enable  
k  
kHz  
MHz  
A  
F  
s  
mA  
ms  
ns  
chip enable  
CE  
kilohertz  
EIA  
electronic industries alliance  
fine-pitch ball grid array  
hardware store busy  
megahertz  
microampere  
microfarad  
microsecond  
milliampere  
millisecond  
nanosecond  
ohm  
FBGA  
HSB  
I/O  
input/output  
nvSRAM  
non-volatile static random access memory  
output enable  
OE  
RoHS  
restriction of hazardous substances  
read and write inhibited  
static random access memory  
thin small outline package  
write enable  
RWI  
SRAM  
TSOP  
WE  
%
percent  
pF  
s
picofarad  
second  
V
volt  
W
watt  
Document Number: 001-45523 Rev. *P  
Page 23 of 27  
CY14B108L  
CY14B108N  
Errata  
This section describes the errata for the 8 Mb (2048 K × 8 and 1024 K × 16) nvSRAM product families. Details include errata trigger  
conditions, scope of impact, available workarounds, and silicon revision applicability.  
Contact your local Cypress Sales Representative if you have questions. You can also send your related queries directly to  
nvSRAM@cypress.com.  
Part Numbers Affected  
Part Number  
CY14B108L  
CY14B108N  
Device Characteristics  
1024 K × 8, Asynchronous Interface nvSRAM in 44 TSOP-II and 48 FBGA package options  
512 K × 16, Asynchronous Interface nvSRAM in 54 TSOP-II and 48 FBGA package options  
8Mb (1024 K × 8, 512 K × 16) nvSRAM Qualification Status  
Production parts.  
8Mb (1024 K × 8, 512 K × 16) nvSRAM Errata Summary  
The following table defines the errata applicability to available CY14B108L, CY14B108N devices.  
Items  
Part Number  
Silicon Revision  
Fix Status  
1. AutoStore Disable feature does not work correctly  
CY14B108L  
CY14B108N  
Rev 0  
None.  
This issue is applicable  
toall8MbnvSRAMparts  
in production  
1. AutoStore Disable feature does not work correctly  
Problem Definition  
The AutoStore Disable soft sequence disables the AutoStore feature in nvSRAMs. The AutoStore Disable feature is used in  
applications where data written in the SRAM is not required to be saved automatically on power loss. The 8Mb nvSRAM executes  
the nonvolatile Store automatically in half the memory (4Mb) even after the AutoStore feature is disabled. The reason is as follows:  
The 8Mb nvSRAM uses two dice stack of 4Mb with HSB pin of each die are tied together. Each nvSRAM die in the stacked-die  
monitors the VCC power independently. When the device VCC fails, the die which detects the VCC dropping below VSWITCH first,  
internally triggers the power down interrupt and drives its HSB output low. Since the HSB is a bidirectional pin, the low HSB output  
driven by one die is detected as HSB input by the other die. Therefore, low on the HSB input of other die internally triggers hardware  
Store and executes unintended nonvolatile Store even though AutoStore was disabled by AutoStore Disable soft sequence.  
Parameters Affected  
None.  
Trigger Condition(S)  
Device VCC power down with nvSRAM AutoStore disable.  
Scope of Impact  
It can corrupt the data in half of the memory by overwriting the existing data in its nonvolatile memory with unintended data.  
Workaround  
None. AutoStore disable feature should not be used in 8Mb nvSRAMs.  
Fix Status  
This issue is applicable to all 8Mb nvSRAM parts in production and will continue serving with errata. There is no plan to fix this  
issue in the existing parts in production.  
Document Number: 001-45523 Rev. *P  
Page 24 of 27  
CY14B108L  
CY14B108N  
Document History Page  
Document Title: CY14B108L/CY14B108N, 8-Mbit (1024 K × 8/512 K × 16) nvSRAM  
Document Number: 001-45523  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
2428826  
GVCH  
See ECN  
06/23/08  
New Data Sheet  
*A  
2520023 GVCH / PYRS  
Updated ICC1 for tRC=20ns, 25ns and 45ns access speed for both industrial  
and Commercial temperature Grade  
UpdatedThermal resistance values for 48-FBGA,44-TSOP II and 54-TSOP  
II packages  
Changed tCW value from 16ns to 15ns  
*B  
2676670 GVCH / PYRS 03/20/2009 Added maximum accumulated storage time for 150C and 85C Tempera-  
ture  
Added best practices  
Changed ICC2 from 12mA to 20mA  
Changed ICC3 from 38mA to 40mA  
Changed ICC4 from 12mA to 10mA  
Changed ISB from 6mA to 10mA  
Changed VCAP from 164uF to 360uF  
Changed Input Rise and Fall Times from 5ns to 3ns  
Updated ICC1, ICC3, ISBand IOZ Test conditions  
Changed tDELAY to 20ns, 25ns, 25ns for 15ns, 20ns, 45ns part respectively  
Changed tSTORE from 15ms to 8ms  
Added VHDIS, tHHHD and tLZHSB parameters  
Software controlled STORE/RECALL cycle table: Changed tAS to tSA  
Changed tGHAX to tHA  
Added tDHSB parameter  
Changed tHLHX to tPHSB  
Updated tSS from 70us to 100us  
Added Truth table for SRAM operations  
Updated ordering information  
*C  
*D  
2712462 GVCH / PYRS 05/29/2009 Moved data sheet status from Preliminary to Final  
Updated AutoStore operation  
Updated ISB test condition  
Updated footnote 7  
Referenced footnote 9 to VCCRISE, tHHHD and tLZHSB parameters  
Updated VHDIS parameter description  
2746310  
GVCH  
07/29/2009 Page 4: Updated Hardware STORE (HSB) operation description  
page 5: Updated Software STORE description  
Updated tDELAY parameter description  
Updated footnote 18 and added footnote 23  
Referenced footnote 23 to Figure 11 and Figure 12  
*E  
*F  
2759948  
2828257  
GVCH  
GVCH  
09/04/2009 Removed commercial temperature related specs  
12/15/2009 Changed STORE cycles to QuantumTrap from 200K to 1 Million  
Added Contents on page 2  
*G  
2894560  
GVCH  
03/18/2010 Removed part numbers CY14B108N-ZSP20XIT and  
CY14B108N-ZSP20XI from ordering information table.  
Updated Package diagrams 51-85160 and 51-85087.  
Updated Sales, Solution, and Legal Information Section.  
Updated copyright section.  
Updated table of contents.  
*H  
2923475 GVCH / AESA 04/27/2010 Table 1: Added more clarity on HSB pin operation  
Hardware STORE Operation: Added more clarity on HSB pin operation  
Table 1: Added more clarity on BHE/BLE pin operation  
Updated HSB pin operation in Figure 10  
Updated footnote 34  
Document Number: 001-45523 Rev. *P  
Page 25 of 27  
CY14B108L  
CY14B108N  
Document History Page (continued)  
Document Title: CY14B108L/CY14B108N, 8-Mbit (1024 K × 8/512 K × 16) nvSRAM  
Document Number: 001-45523  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
*I  
3143765  
GVCH  
01/17/2011 48-ball FBGA package: 16 Mb address expansion is not supported  
Updated thermal resistance values for all packages  
Added Acronyms table and Document Conventions table  
*J  
3311413  
GVCH  
07/13/2011 Updated DCElectricalCharacteristics(AddedNote9andreferredthesame  
note in VCAP parameter).  
Updated AC Switching Characteristics (Added Note 13 and referred the  
same note in Parameters).  
Updated Package Diagrams.  
*K  
*L  
3580269  
3658005  
GVCH  
GVCH  
04/12/2012 Updated Package Diagrams.  
08/10/2012 Updated Maximum Ratings (Changed “Ambient temperature with power  
applied” to “Maximum junction temperature”).  
Updated DC Electrical Characteristics (Added VVCAP parameter and its  
details, added Note 11 and referred the same note in VVCAP parameter, also  
referred Note 12 in VVCAP parameter).  
Updated Package Diagrams (spec 51-85160 (Changed revision from *C to  
*D)).  
*M  
4500772  
ZSK  
09/12/2014 Updated Package Diagrams:  
spec 51-85087 – Changed revision from *D to *E.  
spec 51-85160 – Changed revision from *D to *E.  
Added Errata.  
Updated to new template.  
*N  
*O  
4563189  
4714292  
ZSK  
11/12/2014 Added related documentation hyperlink in page 1  
GVCH  
04/08/2015 No technical updates.  
Completing Sunset Review.  
*P  
5705809  
AESATMP7  
04/21/2017 Updated Cypress Logo and Copyright.  
Document Number: 001-45523 Rev. *P  
Page 26 of 27  
CY14B108L  
CY14B108N  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | WICED IoT Forums | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
All other trademarks or registered trademarks referenced herein are the property of their respective owners.  
© Cypress Semiconductor Corporation, 2008-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 001-45523 Rev. *P  
Revised April 21, 2017  
Page 27 of 27  

相关型号:

CY14B108N-ZSP45XC

8 Mbit (1024K x 8/512K x 16) nvSRAM
CYPRESS

CY14B108N-ZSP45XCT

8 Mbit (1024K x 8/512K x 16) nvSRAM
CYPRESS

CY14B108N-ZSP45XI

8 Mbit (1024K x 8/512K x 16) nvSRAM
CYPRESS

CY14B108N-ZSP45XI

nvSRAM (non-volatile SRAM)
INFINEON

CY14B108N-ZSP45XIT

8 Mbit (1024K x 8/512K x 16) nvSRAM
CYPRESS

CY14B108N-ZSP45XIT

nvSRAM (non-volatile SRAM)
INFINEON

CY14B116K

16-Mbit (2048 K × 8/1024 K × 16) nvSRAM with Real Time Clock
CYPRESS

CY14B116K-ZS25XI

16-Mbit (2048 K × 8/1024 K × 16) nvSRAM with Real Time Clock
CYPRESS

CY14B116K-ZS25XI

nvSRAM (non-volatile SRAM)
INFINEON

CY14B116K-ZS25XIT

16-Mbit (2048 K × 8/1024 K × 16) nvSRAM with Real Time Clock
CYPRESS

CY14B116K-ZS25XIT

nvSRAM (non-volatile SRAM)
INFINEON

CY14B116K-ZS45XI

16-Mbit (2048 K × 8/1024 K × 16) nvSRAM with Real Time Clock
CYPRESS