CY15B108QSN-108BKXIT [INFINEON]

8Mb 3.0V Industrial 108MHz QSPI EXCELON™ F-RAM in 24-ball FBGA;
CY15B108QSN-108BKXIT
型号: CY15B108QSN-108BKXIT
厂家: Infineon    Infineon
描述:

8Mb 3.0V Industrial 108MHz QSPI EXCELON™ F-RAM in 24-ball FBGA

文件: 总109页 (文件大小:997K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY15B108QSN, CY15V108QSN  
8Mb EXCELON™ Ultra Ferroelectric RAM  
(F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Features  
• 8-Mbit ferroelectric random access memory (F-RAM) logically organized as 1024K 8  
- Virtually unlimited endurance of 100 trillion (1014) read/write cycles  
- 151-year data retention (see “Data retention and endurance” on page 94)  
- Infineon instant non-volatile write technology  
- Advanced high-reliability ferroelectric process  
• Single and multi I/O serial peripheral interface (SPI)  
- Serial bus interface SPI protocols  
- Supports SPI mode 0 (0, 0) and mode 3 (1, 1) for all SDR mode transfers  
- Supports SPI mode 0 (0, 0) for all DDR mode transfers  
- Extended I/O SPI protocols  
- Dual SPI (DPI) protocols  
- Quad SPI (QPI) protocols  
• SPI clock frequency  
- Up to 108-MHz frequency SPI single data rate (SDR)  
- Up to 46-MHz frequency SPI double data rate (DDR)  
• eXecute-In-Place (XIP) for memory read/write  
• Write protection, data security, and data integrity  
• Hardware protection using the write protect (WP) pin  
• Software block protection  
• Embedded error correction code (ECC) and cyclic redundancy check (CRC) for enhanced data integrity  
- ECC detects and corrects 2-bit error. If a 3-bit error occurs, it does not correct but reports through the ECC  
Status Register  
- CRC detects any accidental change to raw data  
• Extended electronic signatures  
- Device ID includes manufacturer ID and product ID  
- Unique ID  
- User programmable serial number  
• Dedicated 256-byte special sector F-RAM  
- Dedicated special sector write and read  
- Content can survive up to three standard reflow cycles  
• Low-power consumption at high speed  
- 12 mA (typ) active current for 108 MHz SPI SDR  
- 20 mA (typ) active current for 108 MHz QSPI SDR  
- 15.5 mA (typ) active current for 46 MHz QSPI DDR  
- 105 µA (typ) standby current  
- 0.9 µA (typ) deep power down mode current  
- 0.1 µA (typ) hibernate mode current  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
• Low-voltage operation  
- CY15V108QSN: VDD = 1.71 V to 1.89 V  
- CY15B108QSN: VDD = 1.8 V to 3.6 V  
• Operating temperature: –40 °C to +85 °C  
• Packages  
- 24-ball fine pitch ball grid array (FBGA)  
• Restriction of hazardous substances (RoHS) compliant  
Functional description  
The EXCELON™ Ultra CY15x108QSN is a high-performance, 8-Mbit non-volatile memory employing an advanced  
ferroelectric process. A ferroelectric random access memory or F-RAM is non-volatile and performs reads and  
writes similar to a RAM. It provides reliable data retention for 151 years while eliminating the complexities,  
overhead, and system-level reliability problems caused by serial flash and other non-volatile memories.  
Unlike serial flash, the CY15x108QSN performs write operations at bus speed. No write delays are incurred. Data  
is written to the memory array immediately after each byte is successfully transferred to the device. The next bus  
cycle can commence without the need for data polling. In addition, the product offers substantial write  
endurance compared to other non-volatile memories. The CY15x108QSN is capable of supporting 1014 read/write  
cycles, or 100 million times more write cycles than EEPROM. These capabilities make the CY15x108QSN ideal for  
non-volatile memory applications, requiring frequent or rapid writes. Examples range from data collection,  
where the number of write cycles may be critical, to demanding industrial controls where the long write time of  
serial flash can cause data loss.  
The CY15x108QSN combines a 8-Mbit F-RAM with the high-speed quad SPI (QPI) SDR and DDR interfaces which  
enhances the non-volatile write capability of F-RAM technology. The device incorporates a read-only device ID  
and unique ID features which allow the SPI bus master to determine the manufacturer, product density, product  
revision and unique ID for each part. The device is also offered with a unique serial number that is read-only and  
can be used to identify a board or a system.  
The device supports on-die ECC logic which can detect and correct 2-bit error in every 8-byte unit data. The device  
also extends capability to report 3-bit error in 8-byte unit data. The CY15x108QSN also supports the cyclic  
redundancy check (CRC) feature which can be used to check the data integrity of the stored data in the memory  
array.  
For a complete list of related resources, click here.  
Datasheet  
2 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Logic block diagram  
Logic block diagram  
VDD  
Power Control Block  
256-Byte  
Special Sector  
F-RAM  
SI (I/O0)  
SO (I/O1)  
Instruction Decoder  
SPI Control Logic  
Reset Logic  
F-RAM and  
Non-volatile Registers  
Access Control  
WP (I/O2)  
RESET (I/O3)  
CS  
1024K x 8  
F-RAM Array  
Write Protect  
Status Registers  
SCK  
Configuration  
Registers  
Device ID  
Unique ID  
Serial Number  
Registers  
Datasheet  
3 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Table of contents  
Table of contents  
Features ...........................................................................................................................................1  
Functional description.......................................................................................................................2  
Logic block diagram ..........................................................................................................................3  
Table of contents...............................................................................................................................4  
1 Pinouts ..........................................................................................................................................6  
2 Pin definitions ................................................................................................................................7  
3 Functional overview .......................................................................................................................8  
3.1 Memory architecture ..............................................................................................................................................8  
3.2 Serial peripheral interface (SPI) bus ......................................................................................................................8  
3.2.1 Single channel SPI ...............................................................................................................................................9  
3.2.2 Extended SPI ........................................................................................................................................................9  
3.2.3 Dual SPI (DPI) .......................................................................................................................................................9  
3.2.4 Quad SPI (QPI)....................................................................................................................................................10  
3.3 Terms used in SPI protocol ..................................................................................................................................10  
3.3.1 SPI master ..........................................................................................................................................................10  
3.3.2 SPI slave .............................................................................................................................................................10  
3.3.3 Chip Select (CS)..................................................................................................................................................10  
3.3.4 Serial Select (SCK)..............................................................................................................................................10  
3.3.5 Data transmission (SI/SO) .................................................................................................................................11  
3.3.6 Most significant bit.............................................................................................................................................11  
3.3.7 Serial opcode .....................................................................................................................................................11  
3.3.8 Invalid opcode....................................................................................................................................................12  
3.3.9 Instruction..........................................................................................................................................................12  
3.3.10 Mode byte.........................................................................................................................................................12  
3.3.11 Wait states or dummy cycles...........................................................................................................................12  
3.4 SPI modes..............................................................................................................................................................13  
3.4.1 SDR .....................................................................................................................................................................13  
3.4.2 DDR .....................................................................................................................................................................13  
3.5 Power-up to first access .......................................................................................................................................14  
4 CY15x108QSN registers .................................................................................................................15  
4.1 Status Registers ....................................................................................................................................................15  
4.1.1 Status Register 1 (SR1).......................................................................................................................................15  
4.1.2 Status Register 2 (SR2).......................................................................................................................................19  
4.2 Configuration registers.........................................................................................................................................20  
4.2.1 Configuration Register 1 (CR1) ..........................................................................................................................20  
4.2.2 Configuration Register 2 (CR2) ..........................................................................................................................24  
4.2.3 Configuration Register 4 (CR4) ..........................................................................................................................26  
4.2.4 Configuration Register 5 (CR5) ..........................................................................................................................28  
5 Functional description ..................................................................................................................30  
5.1 Command structure..............................................................................................................................................30  
5.1.1 Write Enable Control commands ......................................................................................................................32  
5.1.2 Register Access commands ...............................................................................................................................35  
5.1.3 Memory operation .............................................................................................................................................46  
5.1.4 Memory Write Operation commands................................................................................................................46  
5.1.5 Memory Read Operation commands................................................................................................................57  
5.1.6 Special Sector Memory commands ..................................................................................................................66  
5.1.7 Identification and Serial Number commands ..................................................................................................78  
5.1.8 Low power modes and resets ...........................................................................................................................83  
6 Electrical characteristics ...............................................................................................................91  
6.1 Maximum ratings ..................................................................................................................................................91  
6.2 Operating range ....................................................................................................................................................91  
Datasheet  
4 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Table of contents  
6.3 DC electrical characteristics.................................................................................................................................92  
6.4 Data retention and endurance.............................................................................................................................94  
6.5 Capacitance...........................................................................................................................................................94  
6.6 Thermal resistance ...............................................................................................................................................94  
6.7 AC test conditions .................................................................................................................................................95  
6.8 SDR AC switching characteristics.........................................................................................................................96  
6.9 DDR AC switching characteristics.........................................................................................................................99  
6.10 Write protect (WP) timing parameters.............................................................................................................101  
6.11 Reset (RESET) timing parameters ....................................................................................................................101  
6.12 Power cycle timing............................................................................................................................................102  
7 Ordering information .................................................................................................................. 104  
7.1 Ordering code definitions...................................................................................................................................104  
8 Package diagram ........................................................................................................................ 105  
9 Acronyms................................................................................................................................... 106  
10 Document conventions.............................................................................................................. 107  
10.1 Units of measure ...............................................................................................................................................107  
Revision history ............................................................................................................................ 108  
Datasheet  
5 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Pinouts  
1
Pinouts  
5
1
2
3
4
NC  
NC  
NC  
NC  
NC  
A
B
NC  
SCK  
VSS  
VDD  
IO2/  
WP  
NC  
NC  
CS  
NC  
NC  
NC  
C
D
IO1/  
SO  
IO0/  
SI  
IO3/  
RESET  
NC  
NC  
NC  
NC  
NC  
E
Figure 1  
24-ball BGA pinout  
Datasheet  
6 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Pin definitions  
2
Pin definitions  
Table 1  
Pin definitions  
I/O type  
Pin name  
Description  
ChipSelect.ThisactiveLOWinputactivatesthedevice.WhenHIGH,thedeviceenters  
low-power standby mode, ignores other inputs, and the output is tristated. When  
LOW, the device internally activates the SCK signal. A falling edge on CS must occur  
before a new opcode is issued.  
CS  
Input  
Serial Clock. All I/O activity is synchronized to the serial clock. Inputs are latched on  
the rising edge and outputs occur on the falling edge. Because the device is  
synchronous, the clock frequency can vary between 0 and 108 MHz and may be  
interrupted at any time.  
SCK  
Input  
Input  
Serial Input. All data is input to the device on this pin. The pin is sampled on the rising  
edge of SCK and is ignored at other times.  
SI / (I/O0)  
I/O0: When the part is either in dual mode or quad mode, the SI pin becomes  
Input/output input/output (I/O0) pin and acts as input during command and address cycles and  
output during the data output cycle.  
Serial Output. This is the data output pin. It is driven during a read and remains  
tristated at all other times including when RESET is LOW. Data transitions are driven  
on the falling edge of the serial clock.  
Output  
SO / (I/O1)  
I/O1: When the part is either in dual mode or quad mode, the SO pin becomes  
Input/output input/output (I/O1) pin and acts as input during command and address cycles and  
output during the data output cycle.  
Write Protect. This active LOW pin prevents write operation to the Status and  
Configuration registers when SRWD bit (SR1[7]) is set to ‘1. A complete explanation of  
Input  
write protection is provided in “Status Register 1 (SR1)” on page 15. This pin must  
be tied to V if not used.  
WP / (I/O2)  
DD  
I/O2: When the part is in quad mode, the WP pin becomes input/output (I/O2) pin and  
Input/output acts as input during command and address cycles and output during the data output  
cycle.  
Hardware Reset Pin. This active LOW pin resets the device. When RESET is LOW, the  
device will self-initialize and will return to either standby state or active state  
Input  
depending on CS HIGH or LOW status after the RESET input is released to HIGH. This  
pin must be tied to V if not used. RESET / (I/O3) behavior is described in Table 21.  
RESET / (I/O3)  
DD  
I/O3: When the part is in quad mode, the RESET pin becomes input/output (I/O3) pin  
Input/output and acts as input during command and address cycles and output during the data  
output cycle.  
V
Power supply Ground for the device. Must be connected to the system ground.  
Power supply Power supply input to the device.  
SS  
VDD  
Datasheet  
7 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional overview  
3
Functional overview  
The CY15x108QSN is a serial F-RAM memory. The memory array is logically organized as 1,048,576 × 8 bits and is  
accessed using an industry-standard serial peripheral interface (SPI) bus. The functional operation of the F-RAM  
is similar to single SPI EEPROM or single/dual/quad SPI flash. The key differences between the CY15x108QSN and  
a serial flash, with the same pinout, is the F-RAM’s superior write performance, high endurance, and lower power  
consumption.  
3.1  
Memory architecture  
When accessing the CY15x108QSN, the user addresses 1024K locations of eight data bits each. These eight data  
bits are shifted in or out serially either on single, dual, or quad I/Os. The addresses are accessed using the SPI  
protocol, which includes a chip select (to permit multiple devices on the bus), an opcode, and a three-byte  
(24-bit) address. However, since CY15x108QSN requires only 20 bits to address its entire 1024K byte locations,  
the upper four bits of the most significant address byte are ‘don’t care’ values. The 20-bit address uniquely  
identifies each data byte location in the 1024K memory array.  
The access time for the memory operation is essentially zero, beyond the time needed for the serial protocol.  
That is, the memory is read or written at the speed of the SPI bus. Unlike a serial flash or EEPROM, it is not  
necessary to poll the device for a ready condition before initiating a new command. This is explained in more  
detail in “Functional description” on page 30.  
3.2  
Serial peripheral interface (SPI) bus  
The SPI is a synchronous serial interface, which uses clock and data pins for memory access and supports  
multiple devices on the data bus. A device on the SPI bus is activated using the CS pin. The relationship between  
chip select, clock, and data is dictated by the SPI mode. This device supports SPI modes 0 and 3. In both of these  
modes, data is clocked into the F-RAM on the rising edge of SCK starting from the first rising edge after CS goes  
active. The SPI protocol is controlled by opcodes. The CS must go inactive after an operation is complete and  
before a new opcode can be issued.  
The CY15x108QSN is an SPI slave device and operates at speeds up to 108 MHz in single data rate (SDR) mode and  
at speeds up to 46 MHz in DDR mode. This high-speed serial bus provides high-performance serial  
communication to an SPI master. The CY15x108QSN supports four different SPI interface/protocol options:  
Single channel SPI, Extended SPI, Dual SPI, Quad SPI.  
Refer to Table 2 for I/O signaling details during opcode, address, and data phase in various SPI modes discussed  
above.  
Table 2  
SPI modes and signal details  
Single  
[1]  
Extended SPI  
Multi-channel SPI  
Interface  
channel SPI  
Dual data  
Quad data  
Dual I/O  
Quad I/O  
DPI  
QPI  
CS, SCK, I/O0,  
I/O1, I/O2,  
I/O3  
CS, SCK, I/O0,  
I/O1, I/O2,  
I/O3  
CS, SCK, I/O0,  
I/O1, I/O2,  
I/O3  
CS, SCK, SI,  
SO  
CS, SCK,  
CS, SCK, I/O0,  
I/O1  
CS, SCK, I/O0,  
I/O1  
Signals  
I/O0, I/O1  
I/O0, I/O1,  
I/O2, I/O3  
Opcode  
Address  
Data  
SI  
SI  
I/O0  
I/O0  
I/O0  
I/O0  
I/O0  
I/O0  
I/O0, I/O1  
I/O0, I/O1  
I/O0, I/O1  
I/O0, I/O1,  
I/O2, I/O3  
I/O0, I/O1,  
I/O2, I/O3  
I/O0, I/O1  
I/O0, I/O1  
I/O0, I/O1,  
I/O2, I/O3  
I/O0, I/O1,  
I/O2, I/O3  
I/O0, I/O1,  
I/O2, I/O3  
SI/SO  
I/O0, I/O1  
Note  
1. There is no user setting for the extended SPI modes. Device always starts with SPI mode and then changes to the  
respective extended SPI mode based on the opcode received.  
Datasheet  
8 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional overview  
3.2.1  
Single channel SPI  
The single channel SPI is a four-pin interface with chip select (CS), serial input (SI), serial output (SO), and serial  
clock (SCK) pins. After CS is activated, the first byte transferred from the bus master is the opcode. Following the  
opcode, any addresses and data are then transferred. The CS must go HIGH (inactive) after an operation is  
complete and before a new opcode can be issued. This mode uses SI and SO pins for input and output  
respectively. Opcode and address is transferred by the master on the SI line, while data is read by the master on  
SO.  
3.2.2  
Extended SPI  
The CY15x108QSN has the capability to reconfigure the standard SPI pins to work in dual or quad I/O modes  
called extended SPI modes. The extended SPI mode provides: Dual Data, Dual Input/Output (I/O), Quad Data, and  
Quad Input/Output (I/O) modes. The CS going HIGH after extended SPI command or device reset (either POR or  
hardware/software reset) brings the device back to the single channel SPI mode. Extended SPI mode has the  
following I/O configurations:  
• When the part is in dual output or dual I/O mode, the SI pin and SO pin become I/O0 pin and I/O1 pin respectively.  
• When the part is in quad output or quad I/O mode, the SI pin, SO pin, WP pin, and RESET pin become I/O0 pin,  
I/O1 pin, I/O2 pin, I/O3 pin respectively.  
• Dual or Quad Data commands and addresses are sent to the memory only on the SI signal. Data will be returned  
to the host as a sequence of bit pairs on I/O0 and I/O1 or four bit (nibble) groups on I/O0, I/O1, I/O2, and I/O3.  
• Dual or Quad Input/Output (I/O) commands are sent to the memory only on SI signal while an address is sent  
from the host as bit pairs on I/O0 and I/O1 or, four bit (nibble) groups on I/O0, I/O1, I/O2, and I/O3 respectively.  
Data is returned to the host similarly as bit pairs on I/O0 and I/O1 or, four bit (nibble) groups on I/O0, I/O1, I/O2,  
and I/O3.  
3.2.3  
Dual SPI (DPI)  
The CY15x108QSN DPI mode is enabled by writing ‘1’ at bit 4 of “Configuration Register 2 (CR2)” on page 24,  
CR2[4] = 1. Since “Configuration Register 2 (CR2)” on page 24 has both volatile and non-volatile space, user  
setting in the non-volatile register will survive power and hardware reset cycles. Therefore, once the dual SPI  
(DPI) mode is set in the non-volatile CR2, it always returns to the DPI mode until the host clears the DPI bit by  
writing ‘0’ in the non-volatile CR2[4]. The host can change the device interface to DPI mode by writing ‘1’ to the  
volatile register CR2[4]; but this volatile setting will not survive the power and hardware reset cycles, and the  
volatile CR2[4] setting will be overwritten with default settings stored at associated non-volatile location at  
power up or after the hardware reset cycle.  
When the part is in Dual SPI mode, the SI pin and SO pin become I/O0 pin and I/O1 pin respectively. Command,  
Address, and Data bits are sent to the memory from the host as bit pairs on I/O0 and I/O1. Data bits are returned  
to the host similarly as bit pairs on I/O0 and I/O1.  
Datasheet  
9 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional overview  
3.2.4  
Quad SPI (QPI)  
The CY15x108QSN multichannel QPI mode is enabled by writing ‘1’ at bit 6 of “Configuration Register 2 (CR2)”  
on page 24, CR2[6] = 1. Since “Configuration Register 2 (CR2)” on page 24 has both volatile and non-volatile  
space, user setting in the non-volatile register will survive power and hardware reset cycles. Therefore, once the  
Quad SPI (QPI) mode is set in the non-volatile CR2, it always returns to the QPI mode until the host clears the QPI  
bit by writing ‘0’ in the non-volatile CR2[6]. The host can change the device interface to QPI mode by writing ‘1’  
to the volatile register CR2[6]; but this volatile setting will not survive the power and hardware reset cycles, and  
the volatile CR2[6] setting will be overwritten with default settings stored at associated non-volatile location at  
power up or after the hardware reset cycle.  
When the part is in Quad SPI mode, the SI pin, SO pin, WP pin, and RESET pins become I/O0 pin, I/O1 pin, I/O2 pin,  
I/O3 pin respectively. Command, Address, and Data bits are sent to the memory from the host as four bit (nibble)  
groups on I/O0, I/O1, I/O2, and I/O3. Data bits are returned to the host similarly as four bit (nibble) groups on I/O0,  
I/O1, I/O2, and I/O3.  
The QPI mode also supports DDR through special opcodes where byte transfer occurs on both edges of the clock  
for address, mode, and data bytes. There is no DDR mode during the opcode phase; that is, opcodes are always  
transmitted in SDR mode. The device enters DDR mode after a specific command is transmitted in SDR mode,  
which then determines the address, mode, and data cycles in DDR. There is no setting for enabling the DDR mode.  
The Quad SPI DDR mode is only supported for memory write and read operations with special opcodes.  
3.3  
Terms used in SPI protocol  
The commonly used terms in the SPI protocol are as follows:  
3.3.1  
SPI master  
The SPI master device controls the operations on the SPI bus. An SPI bus may have only one master with one or  
more slave devices. All the slaves share the same SPI bus lines and the master may select any of the slave devices  
using the CS pin. All of the operations must be initiated by the master activating a slave device by pulling the CS  
pin of the slave LOW. The master also generates the SCK and all the data transmission on SI and SO lines are  
synchronized with this clock.  
3.3.2  
SPI slave  
The SPI slave device is activated by the master through the Chip Select line. A slave device gets the SCK as an  
input from the SPI master and all the communication is synchronized with this clock. An SPI slave never initiates  
a communication on the SPI bus and acts only on the instruction from the master.  
The CY15x108QSN operates as an SPI slave and may share the SPI bus with other SPI slave devices.  
3.3.3  
Chip Select (CS)  
To select any slave device, the master needs to pull down the corresponding CS pin. Any instruction can be issued  
to a slave device only while the CS pin is LOW. When the device is not selected, data through the SI pin is ignored  
and the serial output pin (SO) remains in a high-impedance state.  
Note A new instruction must begin with the falling edge of CS. Therefore, only one opcode can be issued for each  
active CS HIGH to LOW transition.  
3.3.4  
Serial Select (SCK)  
The serial clock is generated by the SPI master and the communication is synchronized with this clock after CS  
goes LOW.  
The CY15x108QSN enables SPI modes 0 and 3 for data communication. In both of these modes, the inputs are  
latched by the slave device on the rising edge of SCK and outputs are issued on the falling edge. Therefore, the  
first rising edge of SCK signifies the arrival of the first most significant bit (MSb) of an SPI instruction on the SI pin.  
Further, all data inputs and outputs are synchronized with SCK.  
Datasheet  
10 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional overview  
3.3.5  
Data transmission (SI/SO)  
The SPI data bus consists of two lines, SI and SO, for serial data communication. SI is also referred to as  
master-out-slave-in (MOSI) and SO is referred to as master-in-slave-out (MISO). The master issues instructions to  
the slave through the SI pin, while the slave responds through the SO pin. Multiple slave devices may share the  
SI and SO lines as described earlier.  
The CY15x108QSN has two separate pins for SI and SO, which can be connected with the master as shown in  
Figure 2. When in dual or quad I/O modes, these pins are configured as I/O pins. Figure 3 shows such a system  
interface with a QSPI port.  
SCK  
MOSI  
MISO  
(I/O0) (I/O1)  
SI SO  
(I/O0) (I/O1)  
SI SO  
SCK  
SCK  
SPI  
Hostcontroller  
or  
CY15X108QSN  
CY15X108QSN  
SPI Master  
WP RESET  
WP RESET  
CS (I/O2) (I/O3)  
CS (I/O2) (I/O3)  
CS1  
GPIO1  
CS2  
GPIO 2  
Optional connection;  
leave floating if not used  
Figure 2  
System configuration with SPI port  
SCK  
I/O0  
I/O1  
(I/O0) (I/O1)  
SI SO  
(I/O0) (I/O1)  
SI SO  
SCK  
SCK  
QSPI  
Hostcontroller  
CY15X108QSN  
CY15X108QSN  
or  
QSPI Master  
WP RESET  
WP RESET  
CS (I/O2) (I/O3)  
CS (I/O2) (I/O3)  
CS1  
CS2  
I/O2  
I/O3  
Figure 3  
System configuration with QSPI port  
3.3.6  
Most significant bit  
The SPI protocol requires that the first bit to be transmitted is the most significant bit (MSb). This is valid for both  
address and data transmission.  
The 8-Mbit serial F-RAM requires a 3-byte address for any read or write operation. Because the address is only 20  
bits, the five bits, which are fed in are ignored by the device. Although these five bits are ‘don’t care, Infineon  
recommends that these bits be set to 0s to enable seamless transition to higher memory densities.  
3.3.7  
Serial opcode  
After the slave device is selected with CS going LOW, the first byte received is treated as the opcode for the  
intended operation. CY15x108QSN uses the standard opcodes (refer to Table 32) for memory accesses.  
Datasheet  
11 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional overview  
3.3.8  
Invalid opcode  
If a reserved opcode is received, the opcode may internally trigger unintended operation and start driving the I/O  
pin(s) with a non-deterministic data output. Hence, all opcodes under the reserved category should be avoided  
to transmit over SI pin when CY15x108QSN chip select CS is LOW.  
3.3.9  
Instruction  
Instruction is the combination of the opcode, address, mode and/or dummy bytes/cycles used to access the  
memory and registers.  
3.3.10  
Mode byte  
The mode byte is applicable for all write and read commands that support eXecute-In-Place (XIP). The XIP is a  
method of executing the program (code) directly from an external memory rather than copying or shadowing the  
code into RAM. When the XIP is set for a write or read command, the device stays in XIP mode after the command  
cycle is terminated (CS toggles HIGH) so that the subsequent command cycle with CS LOW directly starts with the  
Address phase (opcode phase is skipped). When in XIP, the device executes the same operation as in previous  
cycle. To initiate a new operation while in XIP, for example to switch from memory write to memory read or vice  
versa, the device should first exit the XIP for the current command cycle and initiate the next command cycle with  
opcode phase. Opcodes with the mode phase only support the XIP. See Table 32 for the list of opcodes that  
require mode phase.  
Following the opcode and 3-byte address cycles, the mode byte 0xAX (X don’t care bits) or 0xA5 (depending on  
the opcode) transmitted during the mode phase keeps the device in XIP for the next command cycle. The XIP must  
be set during every command cycle to remain in XIP for the next command cycle. Any other value than 0xAX or  
0xA5 (!0xAX or !0xA5) transmitted during the mode phase will exit the XIP for the current operation. In this case,  
the next command cycle must always start with the opcode phase to start the same operation or a new operation.  
Depending upon the SPI mode and the interface type, the number of clocks to transmit the mode byte will vary  
from one clock (Quad, DDR) to eight clocks (SPI, SDR).  
3.3.11  
Wait states or dummy cycles  
The wait states, also called dummy cycles, are appended after the address bits and mode bits (if applicable). The  
number of wait state cycles are programmable through “Configuration Register 1 (CR1)” on page 20 and  
“Configuration Register 2 (CR2)” on page 24 for both memory and registers reads respectively. A valid data is  
driven on the output bus only after specific number of dummy cycles are elapsed following memory and register  
read commands that support wait state. A dummy cycle is a full clock cycle irrespective of the SPI modes and  
data rates (SDR or DDR). The status of I/Os are don’t care during dummy cycle.  
Datasheet  
12 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional overview  
3.4  
SPI modes  
CY15x108QSN may be driven by a microcontroller with its SPI peripheral running in either of the following two  
modes:  
• SPI mode 0 (CPOL = 0, CPHA = 0)  
• SPI mode 3 (CPOL = 1, CPHA = 1)  
The device detects the SPI mode from the status of the SCK pin when the device is selected by bringing the CS  
pin LOW. If the SCK pin is LOW when the device is selected, SPI Mode 0 is assumed and if the SCK pin is HIGH, it  
works in SPI mode 3. The two SPI modes are shown in Figure 4 and Figure 5. The status of the clock SCK when  
the bus master is not transferring data is:  
• SCK remains at 0 for Mode 0  
• SCK remains at 1 for Mode 3  
SPI mode 0 and SPI mode 3 are supported for all SDR mode commands. While, all DDR mode commands support  
only SPI mode 0.  
CS  
0
1
2
3
4
5
6
7
SCK  
SI  
7
6
5
4
3
2
1
0
Figure 4  
SPI mode 0  
CS  
0
1
2
3
4
5
6
7
SCK  
7
6
5
4
3
2
1
0
SI  
Figure 5  
SPI mode 3  
3.4.1  
SDR  
The input data bits (includes instruction, address, and data) are always latched in on the rising edge of SCK  
starting from the first rising edge after CS goes active. If the clock starts from a HIGH state (in mode 3), the first  
rising edge after the clock toggles is considered. The output data is available on the falling edge of SCK.  
3.4.2  
DDR  
The instruction bits are always latched on the rising edge of SCK starting from the first rising edge after CS goes  
active. If the clock starts from a HIGH state (in mode 3), the first rising edge after the clock toggles is considered.  
However, the address and input data that follow the instruction are latched on both the rising and falling edges  
of SCK. The first address bit is latched on the first rising edge of SCK following the falling edge at the end of the  
last instruction bit. The first bit of output data is driven on the falling edge of SCK at the end of the last access  
latency (dummy) cycle.  
Datasheet  
13 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional overview  
3.5  
Power-up to first access  
When the CY15x108QSN power supply (VDD) falls below VDD(low), the power-up cycle starts. CY15x108QSN waits  
for the VDD power supply to rise above the minimum VDD(min), after which the device stars its internal boot-up  
sequence. The boot-up sequence for CY15x108QSN includes internal power-on-reset (POR) followed by loading  
the internal device configuration and trim registers as well as setting the user accessible registers. All user  
accessible registers (Status and Configuration, Mode, ID, ECC, and CRC) are set to their default values after a  
successful boot-up cycle. Table 3 shows the status of each register of CY15x108QSN after a successful power-up  
(or POR) sequence.  
CY15x108QSN ignores all instructions until a time delay of tPU has elapsed after the moment VDD rises above  
VDD(min). No instruction should be sent to the device until the end of tPU. After the tPU, if CS is HIGH, the device  
enters Standby mode and draws standby current (ISB). The device enters deep power-down mode after tPU if the  
deep power-down mode upon POR (DPDPOR) in “Configuration Register 4 (CR4)” on page 26 is set to ‘1’  
(CR4 [2] = 1).  
The WIP bit of Status Register 1 (SR1[0]) cannot be used to poll the device readiness after the POR event because  
device is still not accessible for executing any command including RDSR1 until the tPU time is over. However, if  
the WIP status remains HIGH even after tPU time or device remains inaccessible, indicates device did not boot up  
correctly (boot error). Once the boot error occurs, the device enters the following default states:  
• The interface mode is set to Single SPI (SDR)  
• IO3R bit of CR2 (CR2[5]) is internally set ‘1’ to enable the hardware reset (RESET) on IO3  
• Register latency is set to three-clock cycle (max value)  
• Output impedance is set to 45   
• Only RDSR1 and RDAR commands are allowed (in SPI SDR mode only) to read the SR1. All other commands will  
remain disabled and will return undefined data if executed.  
• Reading the SR1 returns 0x61 as boot error signature  
CY15x108QSN will require power cycle or hardware reset to restart the boot-up again. The above default settings  
will be replaced with actual user configurations after a successful boot-up.  
Table 3  
CY15x108QSN registers status after POR  
Function  
Register type  
CY15x108QSN registers status after POR  
Default to corresponding non-volatile bits  
0x00  
Status Register 1 (SR1)  
Device status  
Status Register 2 (SR2)  
Configuration Register 1 (CR1)  
Configuration Register 2 (CR2)  
Configuration Register 4 (CR4)  
Configuration Register 5 (CR5)  
Identification Register  
Default to corresponding non-volatile bits  
Default to corresponding non-volatile bits  
Default to corresponding non-volatile bits  
Default to corresponding non-volatile bits  
Default to corresponding non-volatile bits (factory set)  
Default to corresponding non-volatile bits (factory set)  
[2]  
Device configuration  
Unique Identification Register  
Identification  
Default to corresponding non-volatile bits (factory set to  
0x0000000000000000)  
Serial Number Register  
ECC Status Register  
0x00  
Error correction  
ECC Count Register  
0x0000  
ECC Address Trap Register  
0x00000000  
0x00000000  
Cyclic redundancy check CRC Register  
Note  
2. Configuration Register 3 (CR3) is reserved for future use.  
Datasheet  
14 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
CY15x108QSN registers  
4
CY15x108QSN registers  
CY15x108QSN supports various status and configuration registers for device status update and configuration  
settings. CY15x108QSN registers and their access details are discussed in follow on sections.  
4.1  
Status Registers  
The CY15x108QSN supports two status registers - Status Register 1 (SR1) and Status Register 2 (SR2) to provide  
the write protect settings as well ready/CRC status of the device. The SR1 register has a volatile and an associated  
non-volatile register space in the F-RAM. The non-volatile register retains the device configuration during power  
down which is then copied to the respective volatile register during power up or after the hardware reset (JEDEC  
reset or RESET pin). The CY15x108QSN state machine uses only the volatile register settings to change the device  
configuration during normal access. Since the CY15x108QSN provides independent space for both volatile and  
non-volatile configuration registers, the host can program the volatile register only to make the configuration  
effective for the current power cycle. The non-volatile write changes the content of both volatile and non-volatile  
registers. Therefore, the new configurations become effective immediately for the current power cycle as well as  
subsequent power cycles or hardware reset cycles. The SR2 is a read only register.  
Read from status registers either uses dedicated status register read opcodes (RDSR1, RDSR2) or RDAR followed  
status register address. The status register read always returns the volatile register content. Individual status  
register details are provided in follow on sections.  
4.1.1  
Status Register 1 (SR1)  
The Status Register 1 (SR1), as shown in Table 4, contains both status and write protect control bits. The SR1 is  
accessible by WRSR and WRAR command for write and the RDSR1 or the RDAR command for read operations. The  
SR1 access details are provided in “Register Access commands” on page 35.  
WRAR non-volatile write address - 0x000000  
WRAR volatile write address - 0x070000  
RDAR read address - 0x000000 or 0x070000  
The default state shown after each bit in Table 4 is the factory programmed value.  
Table 4  
Status Register 1 (SR1)  
SR1[7]  
SRWD (0)  
SR1[6]  
SR1[5]  
SR1[4]  
SR1[3]  
SR1[2]  
SR1[1]  
SR1[0]  
RFU (0)  
TBPROT (0)  
BP2 (0)  
BP1 (0)  
BP0 (0)  
WEL (0)  
WIP (0)  
Datasheet  
15 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
CY15x108QSN registers  
Table 5  
Bit  
Status Register 1 (SR1) - Non-volatile  
Bit name  
Bit function  
Type Read/write  
Description  
1 = Locks state of Status and Configuration registers  
when WP is LOW  
0 = No register protection irrespective of the status of  
WP pin  
Status register write  
disable  
SR1[7]  
SRWD  
RFU  
NV  
R/W  
SR1[6]  
Reserved (0)  
Reserved for future use  
1 = Protection starts at memory array bottom  
0 = Protection starts at memory array top  
Top/bottom relative  
SR1[5] TBPROT  
NV  
R/W  
R/W  
protection  
SR1[4]  
SR1[3]  
SR1[2]  
BP2  
BP1  
BP0  
NV  
NV  
NV  
Block protect bit  
Protects the selected address range of memory array  
WEL indicates if the device is write enabled. This bit  
defaults to ‘0’ (disabled) on power-up.  
WEL = 1 --> write enabled  
SR1[1]  
WEL  
Write enable latch  
Work in progress  
V
V
R
R
WEL = 0 --> write disabled  
1 = Device Busy  
0 = Device Ready  
SR1[0]  
WIP  
NV - Non-volatile; V - Volatile  
Table 6  
Bit  
Status Register 1 (SR1) - Volatile  
Bit name  
Bit function  
Type Read/write  
Description  
1 = Locks state of Status and Configuration registers  
when WP is LOW  
0 = No register protection irrespective of the status of  
WP pin  
Status register write  
disable  
SR1[7]  
SRWD  
V
R/W  
SR1[6]  
SR1[5]  
RFU  
Reserved (0)  
Reserved for future use  
1 = Protection starts at memory array bottom  
0 = Protection starts at memory array top  
Top/bottom relative  
TBPROT  
V
R/W  
R/W  
protection  
SR1[4]  
SR1[3]  
SR1[2]  
BP2  
BP1  
BP0  
V
V
V
Block protect bit  
Protects the selected address range of memory array  
WEL indicates if the device is write enabled. This bit  
defaults to ‘0’ (disabled) on power-up.  
WEL = 1 --> write enabled  
SR1[1]  
WEL  
WIP  
Write enable latch  
Work in progress  
V
V
R
R
WEL = 0 --> write disabled  
1 = Device Busy  
0 = Device Ready  
SR1[0]  
V - Volatile  
Datasheet  
16 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
CY15x108QSN registers  
4.1.1.1  
Status register protect (SRWD) SR1 [7]  
This bit enables write protect for the Status and Configuration Registers when set to ‘1’ and the write protect (WP)  
pin is driven LOW. In this mode, any instruction that changes the status registers or configuration registers  
content is ignored, effectively locking the state of the device. If the SRWD is set to ‘0, irrespective of the WP status  
(LOW or HIGH), status and configuration registers write protection remains disabled. Refer to Table 9 for the  
memory and status register protection options.  
4.1.1.2  
Top or bottom protection (TBPROT) SR1 [5]  
This bit defines the operation of the block protection bits BP2, BP1, and BP0. This bit controls the starting point  
of the memory array (from top or bottom) memory that gets protected by the block protection bits.  
Table 7  
Start of protection from top (TBPROT = 0)  
Status register content  
Protected fraction of memory array  
Protected address range  
BP2  
0
BP1  
0
BP0  
0
None  
None  
th  
0
0
1
Upper 1/64 of memory array  
0x0FC000–0x0FFFFF  
0x0F8000–0x0FFFFF  
0x0F0000–0x0FFFFF  
0x0E0000–0x0FFFFF  
0x0C0000–0x0FFFFF  
0x080000–0x0FFFFF  
0x000000–0x0FFFFF  
nd  
0
1
0
Upper 1/32 of memory array  
th  
0
1
1
Upper 1/16 of memory array  
th  
1
0
0
Upper 1/8 of memory array  
th  
1
0
1
Upper 1/4 of memory array  
1
1
0
Upper half of memory array  
Full memory  
1
1
1
Table 8  
Start of protection from bottom (TBPROT = 1)  
Status register content  
Protected fraction of memory array  
Protected address range  
BP2  
0
BP1  
0
BP0  
0
None  
None  
th  
0
0
1
Lower 1/64 of memory array  
0x000000–0x003FFF  
0x000000–0x007FFF  
0x000000–0x00FFFF  
0x000000–0x01FFFF  
0x000000–0x03FFFF  
0x000000–0x07FFFF  
0x000000–0x0FFFFF  
nd  
0
1
0
Lower 1/32 of memory array  
th  
0
1
1
Lower 1/16 of memory array  
th  
1
0
0
Lower 1/8 of memory array  
th  
1
0
1
Lower 1/4 of memory array  
1
1
0
Lower half of memory array  
Full memory  
1
1
1
Datasheet  
17 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
CY15x108QSN registers  
4.1.1.3  
Block protection (BP2, BP1 and BP0) SR1 [4:2]  
These bits define the memory array to be write-protected against memory write commands. When one or more  
of the BP bits is set to ‘1, the respective memory address is protected from write. The block protect bits (BP2,  
BP1, and BP0) in combination with the TBPROT bit can be used to protect an address range of the memory array.  
The size of the range is determined by the value of the BP bits and the upper or lower starting point of the range  
which is selected by the TBPROT. Table 7 and Table 8 show CY15x108QSN protected address range for BP[2:0]  
bits setting.  
4.1.1.4  
Write enable latch (WEL) SR1 [1]  
The WEL bit must be set to 1 to enable write operations to memory array or registers, as shown in Table 9. This  
bit is set to ‘1’ only by executing the write enable (WREN) command. The WEL bit (SR1[1]) automatically clears to  
‘0’ on the rising edge of CS following opcodes including: WRDI (04h), WRSR (01h), SSWR (42h), WRAR (71h), and  
WRSN (C2h). The WEL bit (SR1[1]) does not clear to ‘0’ on the rising edge of CS following memory write opcodes.  
The WEL bit is volatile and returns to its default ‘0’ state after POR and all reset events.  
Table 9  
SRWD  
Write protection  
[3]  
WP  
X
WEL  
Protected blocks  
Unprotected blocks  
Protected  
Status and Configuration registers  
X
0
1
1
0
1
1
1
Protected  
Protected  
Protected  
Protected  
Protected  
Writable  
Protected  
Writable  
X
Writable  
0
Writable  
1
Writable  
4.1.1.5  
Work-in-progress (WIP) SR1 [0]  
This is a read-only bit and indicates device ready or busy status during normal operation. The CY15x108QSN sets  
this bit to ‘1’ while executing the CRC calculation. No other command (s) and event (s) set the WIP to ‘1’ in  
CY15xQSN. When WIP is ‘1, the CY15x108QSN can execute only read status registers using RDSR1/RDSR2 or Read  
Any Register (RDAR followed by status register address), CRC suspend (EPCS), and software reset (RSTEN  
followed by RST) commands. Other commands will be ignored while WIP is ‘1. The WIP bit cannot be used to poll  
the device ready status during power up or reset cycles. This bit is volatile and returns to its default state after  
POR and all reset events.  
Note  
3. All bits except read only and reserved bits.  
Datasheet  
18 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
CY15x108QSN registers  
4.1.2  
Status Register 2 (SR2)  
The Status Register 2 (SR2), as shown in Table 10, provides the device status on CRC operations. The SR2 is a  
read-only volatile register and is accessible by RDSR2 or the RDAR command for read operations. The SR1 access  
details are provided in “Register Access commands” on page 35.  
RDAR read address - 0x000001 or 0x070001  
The default state shown after each bit in Table 10 is the factory programmed value.  
Table 10  
SR2[7]  
Status Register 2 (SR2)  
SR2[6]  
SR2[5]  
SR2[4]  
SR2[3]  
SR2[2]  
SR2[1]  
SR2[0]  
RFU (0)  
RFU (0)  
RFU (0)  
CRCS (0)  
CRCA (0)  
RFU (0)  
RFU (0)  
RFU (0)  
Table 11  
Bit  
Status Register 2 (SR2) - volatile only  
Bit name  
RFU  
Bit function  
Type  
Read/write  
Description  
SR2[7]  
SR2[6]  
SR2[5]  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved for future use  
Reserved for future use  
Reserved for future use  
RFU  
RFU  
1 = In CRC suspend mode  
SR2[4]  
SR2[3]  
CRCS  
CRCA  
CRC suspend  
CRC abort  
V
V
R
R
0 = Not in CRC suspend mode  
1 = CRC command aborted  
0 = CRC command not aborted  
SR2[2]  
SR2[1]  
RFU  
RFU  
RFU  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved for future use  
Reserved for future use  
Reserved for future use  
SR2[0]  
V - Volatile  
4.1.2.1  
CRC suspend (CRCS) SR2 [4]  
The CRC suspend (CRCS) bit is used to determine whether the device is in CRC suspend mode. When the device  
CRC calculation is in progress, executing the CRC suspend command (EPCS) will set this bit to ‘1’ to indicate the  
CRC suspend status. The CRC resume (EPCR) command clears the CRCS bit to ‘0, indicates device exited the CRC  
suspend mode. This is a read only bit. This bit also gets cleared after resets (POR, hardware, and software).  
4.1.2.2  
CRC abort (CRCA) SR2 [3]  
This bit indicates whether the CRC calculation (CRCC) operation is aborted. The CRC calculation is aborted when  
end address and start address criteria (EA < SA + 3), which is ending address should be at least 32-bit aligned word  
higher than the starting address, does not meet. This bits gets clears when subsequent CRC calculation starts  
successfully. This bit also gets cleared after reset (POR, hardware, and software).  
Datasheet  
19 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
CY15x108QSN registers  
4.2  
Configuration registers  
The CY15x108QSN supports four user Configuration Registers - CR1, CR2, CR4, and CR5 to program various  
controls in the device. Each Configuration Register has a volatile and an associated non-volatile register space in  
the F-RAM. The non-volatile registers retain the device configuration during power down which are then copied  
to their respective volatile registers during power up or after the hardware reset (JEDEC reset or RESET pin). The  
CY15x108QSN state machine uses only the volatile register settings to change the device configuration during  
normal access. Since the CY15x108QSN provides independent space for both volatile and non-volatile  
Configuration Registers, the host can program volatile register only to make the configuration effective for the  
current power cycle. The non-volatile write changes the content of both volatile and non-volatile registers.  
Therefore, new configurations become effective immediately for the current power cycle as well as subsequent  
power cycles or hardware reset cycles.  
Read from Configuration Registers either using dedicated configuration register read opcodes (RDCR1, RDCR2,  
RDCR3, RDCR4) or RDAR always returns the volatile register content. Individual configuration register details are  
provided in follow on sections.  
4.2.1  
Configuration Register 1 (CR1)  
The Configuration Register 1 (CR1), as shown in Table 12, configures the latency (dummy) cycles for memory and  
special sector reads and enables the quad I/O during extended SPI access. The CR1 is accessible by the WRAR  
command for write and the RDCR1 or the RDAR command for read operations. The CR1 access details are  
provided in “Register Access commands” on page 35.  
WRAR non-volatile write address - 0x000002  
WRAR volatile write address - 0x070002  
RDAR read address - 0x000002 or 0x070002  
The default state shown after each bit in Table 12 is the factory programmed value.  
Table 12  
Configuration Register 1 (CR1)  
CR1[7]  
MLC3 (0)  
CR1[6]  
CR1[5]  
CR1[4]  
CR1[3]  
CR1[2]  
CR1[1]  
CR1[0]  
MLC2 (0)  
MLC1 (0)  
MLC0 (0)  
RFU (0)  
RFU (0)  
QUAD (0)  
RFU (0)  
Table 13  
Configuration Register 1 (CR1) - Non-volatile  
Bit  
Bit name  
MLC3  
Bit function  
Type  
NV  
Read/write  
Description  
CR1[7]  
CR1[6]  
CR1[5]  
Configures number of latency (dummy)  
cycles for the memory as well as special  
sector read opcodes.  
Example:  
NV  
MLC2  
Memory latency  
code  
MLC1  
NV  
R/W  
0000 - 0 cycle  
0110 - 6 cycles  
NV  
CR1[4]  
MLC0  
1111 - 15 cycles  
CR1[3]  
CR1[2]  
RFU  
RFU  
Reserved (0)  
Reserved (0)  
Reserved for future use  
Reserved for future use  
1 = Quad  
0 = Dual or Serial  
CR1[1]  
QUAD  
Quad  
NV  
R/W  
CR1[0]  
RFU  
Reserved (0)  
Reserved for future use  
NV - Non-volatile  
Datasheet  
20 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
CY15x108QSN registers  
Table 14  
Bit  
Configuration Register 1 (CR1) - Volatile  
Bit name  
MLC3  
Bit function  
Type  
Read/write  
Description  
CR1[7]  
CR1[6]  
CR1[5]  
V
V
V
Configures number of latency (dummy) cycles  
for the memory as well as special sector read  
MLC2  
opcodes.  
Memory  
MLC1  
R/W  
Example-  
latency code  
0000 - 0 cycle  
0110 - 6 cycles  
1111 - 15 cycles  
CR1[4]  
MLC0  
V
CR1[3]  
CR1[2]  
RFU  
RFU  
Reserved (0)  
Reserved (0)  
V
Reserved for future use  
Reserved for future use  
1 = Quad  
0 = Dual or Serial  
CR1[1]  
QUAD  
RFU  
Quad  
R/W  
CR1[0]  
Reserved (0)  
Reserved for future use  
V - Volatile  
4.2.1.1  
Memory latency code (MLC) CR1 [7:4]  
These four bits configure the latency (dummy) cycles for all variable latency memory read instructions. It enables  
the user to adjust the memory read latency during normal operation to optimize the latency for different  
instructions at different operating frequencies. Dummy cycles are full clock cycles on SCK irrespective of the SPI  
modes and data rates (SDR and DDR).  
Some read opcodes support dummy cycles following address cycles. These dummy cycles provide additional  
latency that is needed to complete the initial read access of the memory array before data can be returned to the  
host system. As the SPI clock (SCK) frequency increase, number of dummy cycles need to increase to meet the  
latency.  
Table 15 to Table 19 show the max SPI clock frequency versus clock latency for each opcodes that support  
dummy cycles. The host controller can determine to optimize the timing by setting individual latency cycle for  
each opcode or can set the worst case latency which meets the latency requirement of all opcodes for a desired  
operating frequency. The memory read latency set for a higher frequency also applies for all lower frequencies.  
Hence, when the host lowers the SPI clock (SCK) from higher frequency to a lower frequency, adjusting the clock  
latency becomes optional.  
The format (CMD, ADD, DATA) in Table 15 header represents the transmission of these bytes over number of I/Os  
in different SPI modes. For example: (2, 2, 2) represents all command (CMD), address (ADDR), and data (DATA)  
bytes are transmitted over two I/Os (I/O0 and I/O1) in DPI mode. Similarly, (1, 2, 2) represents CMD byte is  
transmitted over a single I/O (I/O0), while ADDR and DATA bytes are transmitted over two I/Os (I/O0, I/O1) in dual  
I/O mode. (1, 1, 4) represents CMD and ADDR bytes are transmitted over a single I/O (I/O0), while DATA bytes are  
transmitted over four I/Os (I/O0, I/O1, I/O2, I/O3) in Quad Data mode.  
Mode represents number of clock cycles required in various SPI interface modes to transmit the mode byte after  
address bits. Since mode bits are transmitted after the address cycles, clock cycles required to transmit mode  
bits are internally added to the latency calculation.  
Datasheet  
21 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
CY15x108QSN registers  
Table 15  
Latency (Dummy) cycles for memory read commands - With XIP mode (SDR)  
Dual data  
(SDR)  
Dual I/O  
(SDR)  
Quad data  
(SDR)  
Quad I/O  
(SDR)  
SPI (SDR)  
DPI (SDR)  
QPI (SDR)  
Latency  
(Dummy)  
cycles -  
FAST_READ,  
QIOR  
FAST_READ  
FAST_READ  
DOR  
DIOR  
QOR  
QIOR  
decimal  
(1, 1, 1, 1, 1)  
Mode = 8  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
(2, 2, 2, 2 , 2)  
Mode = 4  
(4, 4, 4, 4, 4)  
Mode = 2  
(1, 1, 1, 1, 2)  
Mode = 8  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
(1, 2, 2, 2, 2)  
Mode = 4  
(1, 1, 1, 1, 4)  
Mode = 8  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
(1, 4, 4, 4, 4)  
Mode = 2  
[4]  
[4]  
[4]  
[4]  
0
45 MHz  
10 MHz  
45 MHz  
10 MHz  
[4]  
[4]  
[4]  
[4]  
1
55 MHz  
20 MHz  
55 MHz  
20 MHz  
[4]  
[4]  
[4]  
[4]  
2
70 MHz  
35 MHz  
70 MHz  
35 MHz  
[4]  
[4]  
[4]  
[4]  
3
80 MHz  
45 MHz  
80 MHz  
45 MHz  
[4]  
[4]  
[4]  
[4]  
4
5
90 MHz  
55 MHz  
90 MHz  
55 MHz  
[4]  
[4]  
[4]  
[4]  
105 MHz  
70 MHz  
105 MHz  
70 MHz  
[4]  
[4]  
6
108 MHz  
108 MHz  
108 MHz  
108 MHz  
80 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
80 MHz  
[4]  
[4]  
7
90 MHz  
90 MHz  
[4]  
[4]  
8
105 MHz  
105 MHz  
9–15  
108 MHz  
108 MHz  
Table 16  
Latency (Dummy) cycles for memory read commands - With XIP mode (DDR)  
QPI (DDR)  
DDRFR, DDRQIOR  
(4, 4, 4, 4, 4)  
Mode = 1  
NA  
Quad I/O (DDR)  
DDRQIOR  
(1, 4, 4, 4, 4)  
Mode = 1  
NA  
Latency (Dummy)  
cycles - decimal  
0
1
NA  
NA  
[4]  
[4]  
2
3
10 MHz  
10 MHz  
[4]  
[4]  
15 MH  
15 MH  
[4]  
[4]  
4
25 MHz  
25 MHz  
[4]  
[4]  
5
33 MHz  
33 MHz  
[4]  
[4]  
6
40 MHz  
40 MHz  
[4]  
[4]  
7–15  
46 MHz  
46 MHz  
Note  
4. This parameter is guaranteed by characterization; not tested in production.  
Datasheet  
22 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
CY15x108QSN registers  
Table 17  
Latency (Dummy) cycles for memory read commands - Without XIP mode  
SPI (SDR)  
DPI (SDR)  
READ, ECCRD, SSRD  
(2, 2, 2, 2, 2)  
Mode = NA  
NA  
QPI (SDR)  
Latency (Dummy)  
cycles - decimal  
(1, 1, 1, 1, 1)  
Mode = NA  
(4, 4, 4, 4, 4)  
Mode = NA  
NA  
[5]  
0
35 MHz  
[5]  
1
45 MHz  
NA  
NA  
[5]  
[5]  
[5]  
2
55 MHz  
20 MHz  
10 MHz  
[5]  
[5]  
[5]  
3
70 MHz  
35 MHz  
20 MHz  
[5]  
[5]  
[5]  
4
80 MHz  
45 MHz  
35 MHz  
[5]  
[5]  
[5]  
5
90 MHz  
55 MHz  
45 MHz  
[5]  
[5]  
[5]  
6
7
105 MHz  
70 MHz  
55 MHz  
[5]  
[5]  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
80 MHz  
70 MHz  
[5]  
[5]  
8
90 MHz  
80 MHz  
[5]  
[5]  
9
105 MHz  
90 MHz  
[5]  
10  
11-15  
108 MHz  
108 MHz  
105 MHz  
108 MHz  
4.2.1.2  
Quad data width (QUAD) CR1 [1]  
When set to ‘1, this bit switches the data width of the device to four I/Os – quad mode, that is WP becomes I/O2  
and RESET / (I/O3) becomes I/O3. If the alternate function is enabled on I/O3 by setting IO3R bit in Configuration  
Register 2 (CR2[5]), RESET / (I/O3) works as I/O3 when CS is low and RESET input when CS is HIGH. The WP input  
is disabled and is internally set to ‘1. The QUAD bit must be set to ‘1’ when executing the extended SPI read  
commands: quad output read, and quad I/O Read, and DDR quad I/O Read. The impact of “QUAD” bit setting on  
various SPI interfaces are shown in Table 21.  
Note  
5. This parameter is guaranteed by characterization; not tested in production.  
Datasheet  
23 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
CY15x108QSN registers  
4.2.2  
Configuration Register 2 (CR2)  
The Configuration Register 2 (CR2), as shown in Table 18, controls the serial interface settings. The CR2 is  
accessible by the WRAR command for write and the RDCR2 or the RDAR command for read operations. The CR2  
access details are provided in “Register Access commands” on page 35.  
WRAR non-volatile write address - 0x000003  
WRAR volatile write address - 0x070003  
RDAR read address - 0x000003 or 0x070003  
The default state shown after each bit in Table 18 is the factory programmed value.  
Table 18  
CR2[7]  
Configuration Register 2 (CR2)  
CR2[6]  
CR2[5]  
CR2[4]  
CR2[3]  
CR2[2]  
CR2[1]  
CR2[0]  
RFU (0)  
QPI (0)  
IO3R (0)  
DPI (0)  
RFU (0)  
RFU (0)  
RFU (0)  
RFU (0)  
Table 19  
Bit  
Configuration Register 2 (CR2) - Non-volatile  
Bit name Bit function  
Type  
Read/write  
Description  
CR2[7]  
RFU  
Reserved (0)  
Reserved for future use  
1 = Enable QPI protocol  
Quad SPI  
CR2[6]  
CR2[5]  
CR2[4]  
QPI  
NV  
NV  
NV  
R/W  
R/W  
R/W  
enable  
0 = Enable SPI protocol, if DPI bit is set to ‘0’  
1 = I/O3 is used as RESET input when CS is HIGH  
0 = I/O3 has no alternate function  
IO3R  
DPI  
IO3 reset  
1 = Enable DPI protocol  
0 = Enable SPI protocol, if QPI bit is set to ‘0’  
Dual SPI  
enable  
CR2[3]  
CR2[2]  
CR2[1]  
CR2[0]  
RFU  
RFU  
RFU  
RFU  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
NV - Non-volatile  
Table 20  
Configuration Register 2 (CR2) - Volatile  
Bit  
Bit name Bit function  
Type  
Read/Write  
Description  
CR2[7]  
RFU  
Reserved (0)  
Reserved for future use  
1 = Enable QPI protocol  
Quad SPI  
enable  
CR2[6]  
CR2[5]  
CR2[4]  
QPI  
V
V
V
R/W  
R/W  
R/W  
0 = Enable SPI protocol, if DPI bit is set to ‘0’  
1 = I/O3 is used as RESET input when CS is HIGH  
0 = I/O3 has no alternate function  
IO3R  
DPI  
IO3 reset  
1 = Enable DPI protocol  
0 = Enable SPI protocol, if QPI bit is set to ‘0’  
Dual SPI  
enable  
CR2[3]  
CR2[2]  
CR2[1]  
CR2[0]  
RFU  
RFU  
RFU  
RFU  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
NV - Non-volatile  
Datasheet  
24 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
CY15x108QSN registers  
4.2.2.1  
Quad SPI (QPI) CR2 [6]  
This bit controls the instruction and data widths in quad SPI mode. In this mode, all transfers between the host  
system and memory are 4 bits wide on I/O0 to I/O3, including all instructions. The QUAD bit set ‘1’ in CR1 [1] is not  
necessary, hence ignored for the QPI mode. Refer to Table 22 for details.  
4.2.2.2  
IO3 reset (IO3R) CR2 [5]  
This bit controls the RESET / (I/O3) pin behavior. When this bit is set ‘1, enables the RESET input during normal  
operation. Table 21 shows the RESET / (I/O3) functionality based on the interface mode.  
4.2.2.3  
Dual (DPI) CR2 [4]  
This bit controls the instruction and data widths in dual SPI mode. In this mode, all transfers between the host  
system and memory are 2 bits wide on I/O0 to I/O1, including all instructions (see Table 22).  
Table 21  
RESET / (I/O3) pin function  
RESET / (I/O3) pin function  
IO3R (CR2[5]) = 0  
(IO3 reset disable)  
IO3R (CR2[5]) = 1  
(IO3 reset enable)  
[6]  
Interface mode  
Quad bit (CR1[1] )  
CS = 0  
CS = 1  
CS = 0  
CS = 1  
RESET  
RESET  
RESET  
RESET  
RESET  
SPI  
SPI  
DPI  
DPI  
QPI  
QUAD = 0  
QUAD = 1  
No function  
No function  
No function  
No function  
No function  
No function  
RESET  
[7]  
[7]  
I/O3  
I/O3  
QUAD = 0  
No function  
No function  
I/O3  
RESET  
No function  
I/O3  
QUAD = 1  
QUAD = x (Don’t care)  
Table 22  
QUAD  
SPI operation modes setting  
[8]  
DPI  
QPI  
Operational mode  
CR1[1]  
CR2[4]  
CR2[6]  
0
1
X
X
0
1
0
0
1
0
1
1
0
0
0
1
1
1
SPI, extended SPI (Dual)  
SPI, extended SPI (Dual/Quad)  
DPI  
QPI  
[9]  
SPI , extended SPI (Dual) – not a recommended configuration  
[9]  
SPI , extended SPI (Dual/Quad) - not a recommended configuration  
Notes  
6. All extended SPIs start in the SPI mode.  
7. No function in SPI and DPI modes. I/O3 in quad data or quad I/O mode.  
8. QUAD = 1 reconfigures I/O to QUAD mode and affects WP and RESET operations, refer to Table 21 for details.  
9. Register reads will always return what is written to them, even though not a recommended configuration.  
Datasheet  
25 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
CY15x108QSN registers  
4.2.3  
Configuration Register 4 (CR4)  
The Configuration Register 4 (CR4), as shown in Table 23, controls the output drive impedance and the  
deep-power-down (DPD) mode settings. The CR4 is accessible by the WRAR command for write and the RDCR4  
or the RDAR command for read operations. The CR4 access details are provided in “Register Access commands”  
on page 35.  
WRAR non-volatile write address - 0x000005  
WRAR volatile write address - 0x070005  
RDAR read address - 0x000005 or 0x070005  
The default state shown after each bit in Table 23 is the factory programmed value.  
Table 23  
CR4[7]  
OI (0)  
Configuration Register 4 (CR4)  
CR4[6]  
CR4[5]  
CR4[4]  
CR4[3]  
CR4[2]  
CR4[1]  
CR4[0]  
OI (0)  
OI (0)  
RFU (0)  
RFU (1)  
DPDPOR (0)  
RFU (0)  
RFU (0)  
Table 24  
Bit  
Configuration Register 4 (CR4) - Non-volatile  
Bit name  
Bit function  
Type  
NV  
Read/write  
R/W  
Description  
CR4[7]  
CR4[6]  
CR4[5]  
CR4[4]  
CR4[3]  
OI  
Output impedance  
NV  
R/W  
Output impedance selection  
Reserved for future use  
NV  
R/W  
RFU  
RFU  
Reserved (0)  
Reserved (1)  
[10]  
Reserved for future use  
1 = Deep power-down is entered upon  
completion of POR or hardware reset  
(including JEDEC reset) when CS is HIGH.  
0 = Standby mode is entered upon completion  
of power-up or POR or hardware reset  
(including JEDEC reset) when CS is HIGH.  
Deep power-down  
mode on POR  
CR4[2]  
DPDPOR  
NV  
R/W  
CR4[1]  
CR4[0]  
RFU  
RFU  
Reserved (0)  
Reserved (0)  
Reserved for future use  
Reserved for future use  
NV - Non-volatile  
Table 25  
Configuration Register 4 (CR4) - Volatile  
Bit  
CR4[7]  
CR4[6]  
CR4[5]  
CR4[4]  
CR4[3]  
Bit name  
Bit function  
Type  
Read/Write  
R/W  
Description  
V
OI  
Output impedance  
V
V
R/W  
Output impedance selection  
R/W  
RFU  
RFU  
Reserved (0)  
Reserved (1)  
Reserved for future use  
Reserved for future use  
1 = Deep Power-Down is entered upon  
completion of POR or Hardware reset  
(including JEDEC reset) when CS is HIGH.  
0 = Standby mode is entered upon completion  
of Power-up or POR or Hardware reset  
(including JEDEC reset) when CS is HIGH  
Deep power-down  
mode on POR  
CR4[2]  
DPDPOR  
V
R/W  
CR4[1]  
RFU  
RFU  
Reserved (0)  
Reserved (0)  
Reserved for future use  
Reserved for future use  
CR4[0]  
V - Volatile  
Note  
10. The SPI bus master must make sure bit CR4 [3] remains ‘1’ when writing to this configuration register. Writing a ‘0’ to  
this bit may impact device functionality.  
Datasheet  
26 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
CY15x108QSN registers  
4.2.3.1  
Output impedance (OI) CR4 [7:5]  
These three bits control the output impedance (drive strength) of the I/O pins. The output impedance  
configuration bits enable the user to adjust the drive strength for a better signal integrity on the printed circuit  
board.  
Table 26  
Impedance selection  
[11]  
Impedance selection  
Typical impedance ()  
Comments  
000  
001  
010  
011  
100  
101  
110  
111  
45  
120  
90  
45 is the factory default configuration.  
Other drive strength can be  
programmedbywriting into impedance  
selection bits in CR4[7:5].  
60  
45  
30  
20  
4.2.3.2  
Deep-power-down mode on POR (DPDPOR) CR4 [2]  
This bit controls whether the device enters the deep-power-down (DPD) or the standby mode after the  
completion of power-on-reset (POR), hardware reset (RESET pin or JEDEC reset), or exit the hibernate mode. The  
DPDPOR configuration bit enables the device to start in DPD mode, instead of standby mode when CS is HIGH. A  
CS pulse-width of tCSDPD, or hardware reset will exit the DPD mode after tEXTDPD time. The CS pulse-width can be  
generated by toggling CS alone while SCK and I/Os are don’t care. The DPDPOR bit status is ignored during the  
software reset and the device always enters standby after the software reset.  
Note  
11. Typical impedance measured at V /2.  
DD  
Datasheet  
27 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
CY15x108QSN registers  
4.2.4  
Configuration Register 5 (CR5)  
The Configuration Register 5 (CR5), as shown in Table 27, configures the read latency (dummy) cycles for register  
read. The CR5 is accessible by the WRAR command for write and the RDCR5 or the RDAR command for read  
operations. The CR5 access details are provided in “Register Access commands” on page 35.  
WRAR non-volatile write address - 0x000006  
WRAR volatile write address - 0x070006  
RDAR read address - 0x000006 or 0x070006  
The default state shown after each bit in Table 27 is the factory programmed value.  
Table 27  
CR5[7]  
Configuration Register 5 (CR5)  
CR5[6]  
CR5[5]  
CR5[4]  
CR5[3]  
CR5[2]  
CR5[1]  
CR5[0]  
RLC1 (0)  
RLC0 (0)  
RFU (0)  
RFU (0)  
RFU (0)  
RFU (0)  
RFU (0)  
RFU (0)  
Table 28  
Bit  
Configuration Register 5 (CR5) - Non-volatile  
Bit name  
Bit function  
Type  
Read/write  
Description  
CR5[7]  
RLC1  
R/W  
Selects number of register read latency cycles  
between 0 to 3 clock cycles for register  
accesses  
Register  
NV  
latency code  
CR5[6]  
RLC0  
R/W  
CR5[5]  
CR5[4]  
CR5[3]  
CR5[2]  
CR5[1]  
CR5[0]  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
NV - Non-volatile  
Table 29  
Configuration Register 5 (CR5) - volatile  
Bit  
CR5[7]  
CR5[6]  
CR5[5]  
CR5[4]  
CR5[3]  
CR5[2]  
CR5[1]  
CR5[0]  
V - Volatile  
Bit name  
Bit function  
Type  
Read/write  
R/W  
Description  
RLC1  
RLC0  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
Selects number of register read latency cycles  
between 0 to 3 clock cycles for register accesses  
Register  
V
latency code  
R/W  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Datasheet  
28 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
CY15x108QSN registers  
4.2.4.1  
Register latency code (RLC [1:0]) CR5 [7:6]  
These two bits control the read latency (dummy cycle) delay in all variable latency register read instructions. It  
enables users to adjust the read latency during normal operation to optimize the latency for different register  
read instructions at different operating frequencies. Table 30 shows latency cycles for register read command.  
Table 30  
Dummy cycles for register read commands  
SPI (SDR)  
DPI (SDR)  
QPI (SDR)  
Latency (dummy cycles)  
RDSR1, RDSR2, RDCR1, RDCR2, RDCR4, RDCR5, RDAR, RUID, RDID2, RDSN  
[12]  
[12]  
[12]  
0
50 MHz  
108 MHz  
50 MHz  
108 MHz  
50 MHz  
108 MHz  
1–3  
Note  
12. This parameter is guaranteed by characterization; not tested in production.  
Datasheet  
29 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5
Functional description  
The CY15x108QSN has an 8-bit instruction register. All instructions and their opcodes are listed in Table 32. All  
instructions, addresses, and data are transferred with a HIGH to LOW CS transition. Furthermore, the WP and  
RESET pins provide additional hardware controlled functions.  
5.1  
Command structure  
The CY15x108QSN command cycle consists of up to five different command phases - opcode, address, mode,  
dummy (latency), and data. The number of command phases per command cycle varies from one to five  
depending on the opcode sent in the opcode phase. The opcode, address, mode, and data phases are configu-  
rable in terms of number of lines 1, 2, or 4 needed to transmit them in SPI, DPI, or QPI interface, respectively.  
Table 31 shows the command phases for each command cycle in different SPI interfaces.  
Table 31  
Command transmission over I/Os in different SPI modes  
Command transmission on I/Os  
Command  
Extended SPI  
Multi-channel SPI  
Single  
phases  
channel SPI  
Dual data  
Quad data  
Dual I/O  
Quad I/O  
DPI  
QPI  
I/O0, I/O1,  
I/O2, I/O3  
Opcode  
Address  
Mode  
SI  
SI  
SI  
I/O0  
I/O0  
I/O0  
I/O0  
I/O0  
I/O0  
I/O0, I/O1  
I/O0, I/O1,  
I/O2, I/O3  
I/O0, I/O1,  
I/O2, I/O3  
I/O0  
I/O0  
I/O0, I/O1  
I/O0, I/O1  
I/O0, I/O1  
I/O0, I/O1  
I/O0, I/O1,  
I/O2, I/O3  
I/O0, I/O1,  
I/O2, I/O3  
Fixed number of dummy SPI clocks, independent of SPI interface.  
0 to 15 clocks for memory access (configurable via CR1[7:4])  
0 to 3 clocks for register access (configurable via CR5[7:6])  
Dummy  
(Latency)  
I/O0, I/O1,  
I/O2, I/O3  
I/O0, I/O1,  
I/O2, I/O3  
I/O0, I/O1,  
I/O2, I/O3  
Data  
SI/SO  
I/O0, I/O1  
I/O0, I/O1  
I/O0, I/O1  
There are 44 commands, called opcodes that can be issued by the bus master to the CY15xQSN as shown in  
Table 32. These opcodes control the functions performed by the memory.  
Datasheet  
30 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
Table 32  
Opcode commands  
Data  
Command  
SPI bus interface  
Latency  
XIP  
transfer  
Opcode  
(HEX)  
Dual Quad Dual Quad  
Register Memory Execute  
Command  
SPI  
DPI QPI SDR DDR  
data data I/O  
I/O  
latency  
latency -in-place  
Write enable control  
WREN  
WRDI  
06  
04  
Yes  
Yes  
NA  
NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
NA  
NA  
NA  
NA  
NA  
NA  
Register access  
WRSR  
01  
05  
07  
35  
3F  
45  
5E  
71  
65  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
NA  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
RDSR1  
RDSR2  
RDCR1  
RDCR2  
RDCR4  
RDCR5  
WRAR  
RDAR  
Yes  
Memory read  
READ  
03  
0B  
Yes  
Yes  
NA  
NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes NA  
NA  
NA  
Yes  
Yes  
NA  
FAST_  
READ  
Yes  
DOR  
DIOR  
3B  
BB  
6B  
EB  
0D  
ED  
NA Yes  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NA  
Yes NA  
Yes NA  
QOR  
NA  
Yes  
NA  
QIOR  
NA  
Yes  
NA Yes Yes NA  
Yes NA Yes  
DDRFR  
NA  
DDRQIOR  
Memory write  
WRITE  
NA  
Yes  
NA Yes NA Yes  
02  
Yes  
Yes  
NA  
NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes NA  
NA  
NA  
NA  
NA  
NA  
FAST_  
WRITE  
DA  
Yes  
DIW  
DIOW  
QIW  
A2  
A1  
32  
D2  
NA Yes  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Yes  
Yes  
Yes  
Yes  
Yes  
NA  
Yes NA  
Yes NA  
Yes NA  
NA  
Yes  
NA  
QIOW  
NA  
Yes  
NA  
NA  
DDR_FAST  
_WRITE  
DD  
NA  
NA  
Yes NA Yes  
NA  
NA  
Yes  
DDRWRITE  
DDRQIOW  
DE  
D1  
Yes NA Yes  
NA Yes  
NA  
NA  
NA  
NA  
NA  
NA  
Yes  
Yes  
Special sector memory access  
SSWR  
SSRD  
42  
4B  
Yes  
Yes  
NA  
NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
NA  
NA  
NA  
NA  
NA  
Yes  
ECC and CRC  
CLECC  
1B  
Yes  
NA  
Yes Yes Yes NA  
NA  
NA  
NA  
Datasheet  
31 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
Table 32  
Opcode commands (continued)  
SPI bus interface  
Data  
Command  
Latency  
XIP  
transfer  
Opcode  
(HEX)  
Dual Quad Dual Quad  
Register Memory Execute  
Command  
SPI  
DPI QPI SDR DDR  
data data I/O  
I/O  
latency  
NA  
latency -in-place  
ECCRD  
CRCC  
EPCS  
EPCR  
19  
5B  
75  
7A  
Yes  
Yes  
Yes  
Yes  
NA  
NA  
NA  
NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Identification and serial number  
RUID  
RDID  
4C  
9F  
C2  
C3  
Yes  
Yes  
Yes  
Yes  
NA  
NA  
NA  
NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes  
Yes  
Yes  
Yes  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
WRSN  
RDSN  
Power modes and reset  
DPD  
HBN  
B9  
BA  
66  
99  
Yes  
Yes  
Yes  
Yes  
NA  
NA  
NA  
NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
RSTEN  
RST  
5.1.1  
Write Enable Control commands  
These commands set or clear the write enable latch bit in the Status Register 1 (SR1[1]).  
Table 33 Write Enable Control commands  
Command Opcode (Hex)  
Command description  
WREN  
WRDI  
06  
04  
Write enable – sets the WEL bit of Status Register 1 to ‘1’  
Write disable – clears the WEL bit of Status Register 1 to ‘0’  
Table 34  
Write Enable Control command details  
SPI bus interface  
Data  
XIP  
Latency  
transfer  
Opcode Address  
Max. clock  
frequency  
(Hex)  
length  
Dual Quad Dual Quad  
Execute Dummy  
SPI  
DPI QPI SDR DDR  
data data  
I/O  
IO  
-in-place  
NA  
cycles  
NA  
06  
04  
0
0
Yes  
Yes  
NA  
NA  
Yes Yes Yes  
Yes Yes Yes  
NA  
NA  
108 MHz  
108 MHz  
NA  
NA  
Datasheet  
32 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.1.1  
Set Write Enable Latch (WREN, 06h)  
The WREN command sets the WEL bit of Status Register 1 (SR1[1]) to a ‘1. CY15x108QSN requires WEL bit set to  
a ‘1’ prior to issuing any write command. The CY15x108QSN commands requiring WEL set to ‘1’ prior to their  
execution are WRSR, WRAR, WRITE, FAST_WRITE, DIW, DIOW, QIW, QIOW, DDR_FAST_WRITE, DDRWRITE,  
DDRQIOW, SSWR, and WRSN.  
CS must be driven to the logic HIGH state after the eighth bit of the instruction byte has been latched in on SI.  
CY15x108QSN executes the WREN command and sets the WEL bit (SR1[1]) to ‘1’ after CS is driven HIGH after 8-bit  
WREN opcode is successfully latched in.  
CS  
SCK  
0
0
0
0
0
1
1
0
X
X
SI (IO0)  
hi-Z  
Opcode (06h)  
hi-Z  
SO (IO1)  
Figure 6  
WREN bus configuration in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
0
0
0
0
1
0
0
1
SI (IO0)  
hi-Z  
SO (IO1)  
Opcode (06h)  
Figure 7  
WREN bus configuration in DPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
0
0
0
0
0
1
1
0
SI (IO0)  
SO (IO1)  
hi-Z  
hi-Z  
hi-Z  
WP (IO2)  
RESET (IO3)  
Opc.  
(06h)  
Figure 8  
WREN bus configuration in QPI mode  
Datasheet  
33 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.1.2  
Reset Write Enable Latch (WRDI, 04h)  
The WRDI instruction clears the write enable latch (WEL) bit of the Status Register 1 (SR1[1]) to a ‘0. This disables  
Write Status Register (WRSR), Write Any Register (WRAR), Special Sector Write (SSWR), and other instructions that  
require WEL to be set to ‘1’ prior to the execution. The WRDI instruction can be used to protect the memory and  
the SPI registers against inadvertent writes. The WRDI command is ignored during an embedded operation while  
WIP bit = 1.  
CS must be driven to the logic HIGH state after the eighth bit of the instruction byte has been latched in on SI.  
CY15x108QSN executes the WRDI command and clears the WEL bit (SR1[1]) to ‘0’ after CS is driven HIGH after 8-bit  
WRDI opcode is successfully latched in.  
CS  
SCK  
0
0
0
0
0
1
0
0
X
X
SI (IO0)  
hi-Z  
Opcode (04h)  
hi-Z  
SO (IO1)  
Figure 9  
WRDI bus configuration in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
0
0
0
0
1
0
0
0
SI (IO0)  
hi-Z  
hi-Z  
SO (IO1)  
Opcode (04h)  
Figure 10  
WRDI bus configuration in DPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
0
0
0
0
0
0
1
0
SI (IO0)  
SO (IO1)  
hi-Z  
hi-Z  
hi-Z  
WP (IO2)  
RESET (IO3)  
Opc.  
(04h)  
Figure 11  
WRDI bus configuration in QPI mode  
Datasheet  
34 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.2  
Register Access commands  
CY15x108QSN provides various configuration and status registers. These registers are user-writable, which can  
be programmed to enable or disable certain configurations/features in the part as well as can be polled to know  
the device status. These registers are accessed by specific commands, called opcodes.  
The individual register bits can be one of multiple types: write/read, read only, or reserved for future use (RFU).  
The specific type of each bit is specified in their respective register section. Register bits can be either volatile or  
non-volatile in nature. All volatile (V) bits are set to their default values after power-on reset (POR), or any reset  
event (via hardware or software resets); while all non-volatile (NV) bits resume to user configured values after  
power-on reset (POR), or any reset event (via hardware or software resets).  
Table 35  
Register Access commands  
Opcode (Hex)  
Command  
Command description  
WRSR  
RDSR1  
RDSR2  
RDCR1  
RDCR2  
RDCR4  
RDCR5  
01  
05  
07  
35  
3F  
45  
5E  
Write Status Register 1  
Read Status Register 1  
Read Status Register 2  
Read Configuration Register 1  
Read Configuration Register 2  
Read Configuration Register 4  
Read Configuration Register 5  
Write Any Register - Including Status registers, Configurations registers, Serial Number  
registers  
WRAR  
RDAR  
71  
65  
Read Any Register - Including Status registers, Configurations registers, CRC registers,  
ECC registers, Serial Number registers, and ID registers  
Table 36  
Register Access command details  
SPI bus interface  
Data  
Register  
latency  
transfer  
Opcode Address  
Max. clock Register  
(Hex)  
length  
frequency  
latency  
Dual Quad Dual Quad  
Dummy  
cycle  
SPI  
DPI QPI SDR DDR  
data data I/O  
I/O  
01  
05  
07  
35  
3F  
45  
5E  
71  
65  
0
0
0
0
0
0
0
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
NA  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NA  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
NA  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NA  
3 bytes Yes  
3 bytes Yes  
Yes  
Yes  
Datasheet  
35 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.2.1  
Write Status Register (WRSR, 01h)  
The Write Status Register (WRSR) instruction allows new values to be programmed in Status Register 1 (SR1). This  
instruction writes to the non-volatile SR1, thus survives the power cycle. The WRSR command is ignored when  
the SRWD bit in SR1 (SR1[7]) is set ‘1’ and the WP pin is asserted LOW.  
Notes  
• The WRSR instruction executes only when WEL bit in SR1 is set to ‘1’; otherwise, the WRSR instruction will be  
ignored.  
• The WEL bit of the Status Register 1 (SR1[1]) is automatically cleared to ‘0’ after WRSR command is terminated  
(at the rising edge of CS).  
CS  
SCK  
hi-Z  
0
0
0
0
0
0
0
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
SI (IO0)  
hi-Z  
hi-Z  
SO (IO1)  
Opcode (01h)  
SR1  
Figure 12  
WRSR in SPI mode (WREN not shown)  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
0
0
0
0
0
0
1
0
D6 D4  
D2  
D0  
D1  
SI (IO0)  
hi-Z  
D7  
D5  
D3  
SO (IO1)  
Opcode (01h)  
SR1  
Figure 13  
WRSR in DPI mode (WREN not shown)  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
0
1
0
0
0
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
SI (IO0)  
hi-Z  
0
SO (IO1)  
hi-Z  
0
0
WP (IO2)  
hi-Z  
RESET (IO3)  
Opc.  
(01h)  
SR1  
Figure 14  
WRSR in QPI mode (WREN not shown)  
Datasheet  
36 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.2.2  
Read Status Register 1 (RDSR1, 05h)  
The RDSR1 command allows the bus master to verify the contents of the Status Register 1 (SR1). Reading SR1  
provides information about the current state of the write-protection features, WEL, and WIP status. Following the  
RDSR1 opcode, the CY15x108QSN will return one byte SR1 content.  
Notes  
• The RDSR1 returns the volatile content of SR1.  
• The dummy cycles shown are a configuration option through register latency code bits (RLC0, RLC1) in CR5.  
CS  
SCK  
hi-Z  
SI (IO0)  
X
0
0
0
0
0
1
0
1
DM7 DM6 DM5 DM4 DM3 DM2 DM1 DM0  
X
hi-Z  
hi-Z  
SO (IO1)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Opcode (05h)  
Dummy Cycles  
Status Register 1  
Figure 15  
Read SR1 (RDSR1) in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
SI (IO0)  
0
0
0
0
1
0
1
0
DM7 DM6  
DM7 DM6  
DM1 DM0 D6  
D4  
D5  
D2  
D3  
D0  
D1  
hi-Z  
SO (IO1)  
DM1 DM0 D7  
Status  
Register 1  
Opcode (05h)  
ummy Cycles  
D
Figure 16  
Read SR1 (RDSR1) in DPI mode  
CS  
SCK  
hi-Z  
hi-Z  
0
1
0
1
0
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM1 DM0 D4  
DM1 DM0 D5  
DM1 DM0 D6  
DM1 DM0 D7  
D0  
SI (IO0)  
hi-Z  
hi-Z  
0
D1  
SO (IO1)  
hi-Z  
hi-Z  
0
D2  
WP (IO2)  
hi-Z  
hi-Z  
0
D3  
RESET (IO3)  
Opc.  
(05h)  
Status  
Reg. 1  
Dummy Cycles  
Figure 17  
Read SR1 (RDSR1) in QPI mode  
Datasheet  
37 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.2.3  
Read Status Register 2 (RDSR2, 07h)  
The RDSR2 command allows the bus master to verify the contents of the Status Register 2 (SR2). This is a read  
only register and provides information about the CRC suspend and CRC abort status. The SR2 bits indicate the  
correct status (CRCS and CRCA) only when the WIP bit of SR1 is ‘0. Reading SR2 while WIP is ‘1’ will return an  
undetermined status.  
Notes  
• The RDSR2 returns the volatile content of SR2.  
• The dummy cycles shown are a configuration option through register latency code bits (RLC0, RLC1) in CR5.  
CS  
SCK  
hi-Z  
SI (IO0)  
X
0
0
0
0
0
1
1
1
DM7 DM6 DM5 DM4 DM3 DM2 DM1 DM0  
X
hi-Z  
hi-Z  
SO (IO1)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Opcode (07h)  
Dummy Cycles  
Status Register 2  
Figure 18  
Read SR2 (RDSR2) in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
0
1
1
1
0
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM1 DM0 D4  
DM1 DM0 D5  
DM1 DM0 D6  
DM1 DM0 D7  
D0  
D1  
D2  
D3  
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
0
0
SO (IO1)  
WP (IO2)  
0
RESET (IO3)  
Opc.  
(07h)  
Status  
Reg. 2  
Dummy Cycles  
Figure 19  
Read SR2 (RDSR2) in DPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
0
1
1
1
0
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM1 DM0 D4  
D0  
D1  
D2  
D3  
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
0
0
DM1 DM0 D5  
DM1 DM0 D6  
DM1 DM0 D7  
SO (IO1)  
WP (IO2)  
0
RESET (IO3)  
Opc.  
(07h)  
Status  
Reg. 2  
Dummy Cycles  
Figure 20  
Read SR2 (RDSR2) in QPI mode  
Datasheet  
38 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.2.4  
Read Configuration Register 1 (RDCR1, 35h)  
The RDCR1 command allows the bus master to verify the contents of the Configuration Register 1 (CR1). Reading  
CR1 provides information about the current state of the memory latency code and QUAD bit status. Following the  
RDCR1 opcode, the CY15x108QSN will return one byte content of CR1.  
Notes  
• The RDCR1 returns the volatile content of CR1.  
• The dummy cycles shown are a configuration option through register latency code bits (RLC0, RLC1) in CR5.  
CS  
SCK  
hi-Z  
SI (IO0)  
X
0
0
1
1
0
1
0
1
DM7 DM6 DM5 DM4 DM3 DM2 DM1 DM0  
X
hi-Z  
hi-Z  
SO (IO1)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Opcode (35h)  
Dummy Cycles  
Config Register 1  
Figure 21  
Read CR1 (RDCR1) in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
SI (IO0)  
0
0
1
1
1
0
1
0
DM7 DM6  
DM7 DM6  
DM1 DM0 D6  
DM1 DM0 D7  
D4  
D5  
D2  
D3  
D0  
hi-Z  
hi-Z  
SO (IO1)  
D1  
Config  
Register 1  
Opcode (35h)  
Dummy Cycles  
Figure 22  
Read CR1 (RDCR1) in DPI mode  
CS  
SCK  
hi-Z  
hi-Z  
1
1
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM1 DM0 D4  
DM1 DM0 D5  
DM1 DM0 D6  
DM1 DM0 D7  
D0  
D1  
D2  
D3  
SI (IO0)  
hi-Z  
hi-Z  
1
0
1
0
SO (IO1)  
hi-Z  
hi-Z  
hi-Z  
0
WP (IO2)  
hi-Z  
0
RESET (IO3)  
Opc.  
(35h)  
Config  
Reg. 1  
Dummy Cycles  
Figure 23  
Read CR1 (RDCR1) in QPI mode  
Datasheet  
39 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.2.5  
Read Configuration Register 2 (RDCR2, 3Fh)  
The RDCR2 command allows the bus master to verify the contents of the Configuration Register 2 (CR2). Reading  
CR2 provides information about the current SPI interface option (SPI vs DPI vs QPI) and RESET / (I/O3) status.  
Following the RDCR2 opcode, the CY15x108QSN will return one byte content of CR2.  
Notes  
• The RDCR2 returns the volatile content of CR2.  
• The dummy cycles shown are a configuration option through register latency code bits (RLC0, RLC1) in CR5.  
CS  
SCK  
hi-Z  
SI (IO0)  
X
0
0
1
1
1
1
1
1
DM7 DM6 DM5 DM4 DM3 DM2 DM1 DM0  
X
hi-Z  
hi-Z  
SO (IO1)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Opcode (3Fh)  
Dummy Cycles  
Config Register 2  
Figure 24  
Read CR2 (RDCR2) in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
SI (IO0)  
0
0
1
1
1
1
1
1
DM7 DM6  
DM7 DM6  
DM1 DM0 D6  
DM1 DM0 D7  
D4  
D5  
D2  
D3  
D0  
hi-Z  
hi-Z  
SO (IO1)  
D1  
Config  
Register 2  
Opcode (3Fh)  
Dummy Cycles  
Figure 25  
Read CR2 (RDCR2) in DPI mode  
CS  
SCK  
hi-Z  
hi-Z  
1
1
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM1 DM0 D4  
DM1 DM0 D5  
DM1 DM0 D6  
DM1 DM0 D7  
D0  
D1  
D2  
D3  
SI (IO0)  
hi-Z  
hi-Z  
1
1
1
1
SO (IO1)  
hi-Z  
hi-Z  
hi-Z  
0
WP (IO2)  
hi-Z  
0
RESET (IO3)  
Opc.  
(3Fh)  
Config  
Reg. 2  
Dummy Cycles  
Figure 26  
Read CR2 (RDCR2) in QPI mode  
Datasheet  
40 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.2.6  
Read Configuration Register 4 (RDCR4, 45h)  
The RDCR4 command allows the bus master to verify the contents of the Configuration Register 4 (CR4). Reading  
CR4 provides information about the output impedance setting and device power mode status after POR  
(deep-power-down vs standby). Following the RDCR4 opcode, the CY15x108QSN will return one byte content of  
CR4.  
Notes  
• The RDCR4 returns the volatile content of CR4.  
• The dummy cycles shown are a configuration option through register latency code bits (RLC0, RLC1) in CR5.  
CS  
SCK  
hi-Z  
SI (IO0)  
X
0
1
0
0
0
1
0
1
DM7 DM6 DM5 DM4 DM3 DM2 DM1 DM0  
X
hi-Z  
hi-Z  
SO (IO1)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Opcode (45h)  
Dummy Cycles  
Config Register 4  
Figure 27  
Read CR4 (RDCR4]) in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
SI (IO0)  
1
0
0
0
1
0
1
0
DM7 DM6  
DM7 DM6  
DM1 DM0 D6  
DM1 DM0 D7  
D4  
D5  
D2  
D0  
hi-Z  
SO (IO1)  
D3  
D1  
Config  
Register 4  
Opcode (45h)  
Dummy Cycles  
Figure 28  
Read CR4 (RDCR4) in DPI mode  
CS  
SCK  
hi-Z  
hi-Z  
0
1
0
1
0
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM1 DM0 D4  
DM1 DM0 D5  
DM1 DM0 D6  
DM1 DM0 D7  
D0  
SI (IO0)  
hi-Z  
hi-Z  
0
D1  
SO (IO1)  
hi-Z  
hi-Z  
1
D2  
WP (IO2)  
hi-Z  
hi-Z  
0
D3  
RESET (IO3)  
Opc.  
(45h)  
Config  
Reg. 4  
Dummy Cycles  
Figure 29  
Read CR4 (RDCR4) in QPI mode  
Datasheet  
41 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.2.7  
Read Configuration Register 5 (RDCR5, 5Eh)  
The RDCR5 command allows the bus master to verify the contents of the Configuration Register 5 (CR5). Reading  
CR5 provides information about the register read latency cycles (RLC0, RLC1) setting. Following the RDCR5  
opcode, the CY15x108QSN will return one byte content of CR5.  
Notes  
• The RDCR5 returns the volatile content of CR5.  
• The dummy cycles shown are a configuration option through register latency code bits (RLC0, RLC1) in CR5.  
CS  
SCK  
hi-Z  
SI (IO0)  
X
0
1
0
1
1
1
1
0
DM7 DM6 DM5 DM4 DM3 DM2 DM1 DM0  
X
hi-Z  
hi-Z  
SO(IO1)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Opcode (5Eh)  
Dummy Cycles  
Config Register 5  
Figure 30  
Read CR5 (RDCR5) in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
SI (IO0)  
1
0
1
0
1
1
0
1
DM7 DM6  
DM7 DM6  
DM1 DM0 D6  
DM1 DM0 D7  
D4  
D2  
D0  
hi-Z  
hi-Z  
SO (IO1)  
D5  
D3  
D1  
Config  
Register 5  
Opcode (5Eh)  
Dummy Cycles  
Figure 31  
Read CR5 (RDCR5) in DPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
1
0
1
1
1
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM1 DM0 D4  
DM1 DM0 D5  
DM1 DM0 D6  
DM1 DM0 D7  
D0  
SI (IO0)  
hi-Z  
0
D1  
D2  
D3  
SO (IO1)  
hi-Z  
1
WP (IO2)  
hi-Z  
0
RESET (IO3)  
Opc.  
(5Eh)  
Config  
Reg. 5  
Dummy Cycles  
Figure 32  
Read CR5 (RDCR5) in QPI mode  
Datasheet  
42 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.2.8  
Write Any Register (WRAR, 71h)  
The WRAR instruction allows writing into CY15xQSN registers, one register at a time, addressable by their 3-byte  
addressing. The WRAR opcode is followed by the three-byte address of the register, as shown in Table 38,  
followed by one byte register data to be written. The WREN command precedes the WRAR command to set the  
WEL bit ‘1’ prior to WRAR. The WEL bit is automatically cleared to ‘1’ after WRAR command is terminated (at the  
rising edge of CS). The WRAR command is ignored when the SRWD bit in SR1 (SR1[7]) is set to ‘1’ and the WP pin  
is driven LOW.  
Notes  
• The WRAR command supports only one byte write per WRAR command at the given register address. The WRAR  
command format is shown in Table 37.  
• The register address sent in 3-byte address field after the WRAR opcode determines whether new configuration  
will be programmed into the Volatile Status/Configuration Register only, or will be programmed into both  
volatile and Non-volatile Status/Configuration Register. Table 38 shows register addresses for both volatile and  
non-volatile registers.  
Table 37  
Registers with generic write instructions  
Instruction name  
WRAR  
Instruction description  
Opcode  
Address bytes  
Data bytes  
Write Any Register  
71h  
3
1
CS  
SCK  
OP7 OP6  
OP1 OP0 A23 A22  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
X
SI (IO0)  
hi-Z  
hi-Z  
SO (IO1)  
Opcode  
(71h)  
Address  
(3 Bytes)  
Data  
(1 Byte)  
Figure 33  
Write Any Register (WRAR) in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
OP6 OP4 OP2 OP0 A22 A20  
A2  
A0  
D6  
D4  
D2  
D3  
D0  
D1  
SI (IO0)  
hi-Z  
hi-Z  
OP7 OP5 OP3 OP1 A23 A21  
A3  
A1  
D7  
D5  
SO (IO1)  
Opcode  
(71h)  
Address  
(3 Bytes)  
Data  
(1 Byte)  
Figure 34  
Write Any Register (WRAR) in DPI mode  
Datasheet  
43 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
OP4 OP0 A20  
OP5 OP1 A21  
OP6 OP2 A22  
OP7 OP3 A23  
A0  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
A1  
A2  
A3  
SO (IO1)  
WP (IO2)  
RESET (IO3)  
Opc.  
(71h)  
Address  
(3 Bytes)  
Data  
(1 Byte)  
Figure 35  
Table 38  
Write Any Register (WRAR) in QPI mode  
Register address for generic register access  
Register  
[13]  
Register address  
[14]  
Function  
Register type  
WRAR RDAR  
[14]  
content  
Volatile  
Non-volatile  
Volatile and  
Non-volatile  
Status Register 1  
Yes  
0x070000  
0x000000  
Device status  
Yes  
Yes  
Status Register 2  
Volatile only  
NA  
0x070001 or 0x000001  
Configuration Register 1  
Configuration Register 2  
Configuration Register 4  
Configuration Register 5  
ECC Status Register  
0x070002  
0x070003  
0x070005  
0x070006  
0x000002  
0x000003  
0x000005  
0x000006  
Device  
configuration  
Volatile and  
Non-volatile  
Yes  
0x070089 or 0x000089  
0x07008A or 0x00008A  
0x07008B or 0x00008B  
0x07008E or 0x00008E  
0x07008F or 0x00008F  
0x070040 or 0x000040  
0x070041 or 0x000041  
0x070095 or 0x000095  
0x070096 or 0x000096  
0x070097 or 0x000097  
0x070098 or 0x000098  
ECC Count Register [7:0]  
ECC Count Register [15:8]  
Error correction ECC Address Trap Register [7:0]  
ECC Address Trap Register [15:8]  
ECC Address Trap Register [23:16]  
ECC Address Trap Register [31:24]  
CRC Register [7:0]  
Volatile only  
NA  
Yes  
Cyclic  
CRC Register [15:8]  
redundancy  
CRC Register [23:16]  
check  
CRC Register [31:24]  
Notes  
13. The volatile registers return to their default state after POR or hardware Reset. Refer to Table 59 for the volatile register  
status after any POR or Reset event.  
14. The RDAR command always returns content from the volatile register. Therefore, RDAR followed by either volatile  
register address or non-volatile register address will return identical values (from respective volatile register only). The  
volatile only register does not have associated non-volatile register.  
Datasheet  
44 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.2.9  
Read Any Register (RDAR, 65h)  
The RDAR instruction allows reading CY15x108QSN registers, one register at a time, addressable by their 3-byte  
addressing. The RDAR opcode is followed by the three-byte address of the register and dummy cycle (per register  
latency set in CR5), after which CY15x108QSN returns one byte register content on its output bus. The host should  
terminate the RDAR command by pulling CS HIGH after one register byte is received. Keeping CS LOW after the  
first data byte received will return undefined data byte(s). The RDAR instruction timing diagrams are shown in  
Figure 36 to Figure 38.  
Notes  
• Since the status and configuration register read always returns the register content from its volatile space, hence  
the 3-byte address following the WRAR opcode can be the register address of either volatile register or its  
associated non-volatile register. Table 38 shows register addresses for both volatile and non-volatile registers.  
• The dummy cycles shown are a configuration option through register latency code bits (RLC0, RLC1) in CR5.  
CS  
SCK  
OP7 OP6  
OP1 OP0 A23 A22  
A1  
A0 DM7 DM6  
DM1 DM0  
X
X
SI (IO0)  
hi-Z  
hi-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO (IO1)  
Address  
(3 Bytes)  
Opcode  
Dummy Cycles  
Read data  
Figure 36  
Read Any Register (RDAR) in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
OP6 OP4 OP2 OP0 A22 A20  
A2  
A3  
A0 DM7 DM6  
A1 DM7 DM6  
DM1 DM0 D6  
DM1 DM0 D7  
D4  
D5  
D2  
D3  
D0  
D1  
SI (IO0)  
hi-Z  
hi-Z  
OP7 OP5 OP3 OP1 A23 A21  
SO (IO1)  
Address  
(3 Bytes)  
Opcode  
Dummy Cycles  
Read data  
Figure 37  
Read Any Register (RDAR) in DPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
OP4 OP0 A20  
OP5 OP1 A21  
OP6 OP2 A22  
OP7 OP3 A23  
A0 DM7 DM6  
DM1 DM0 D4  
D0  
D1  
D2  
D3  
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
A1 DM7 DM6  
DM1 DM0 D5  
DM1 DM0 D6  
DM1 DM0 D7  
SO (IO1)  
A2 DM7 DM6  
A3 DM7 DM6  
WP (IO2)  
RESET (IO3)  
Address  
(3 Bytes)  
Read  
data  
Opc.  
DMY Cycles  
Figure 38  
Read Any Register (RDAR) in QPI mode  
Datasheet  
45 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.3  
Memory operation  
The SPI interface, which is capable of a high clock frequency, highlights the fast write capability of the F-RAM  
technology. Unlike serial flash, the CY15x108QSN can perform sequential writes at bus speed. No page register is  
needed and any number of sequential writes can be performed.  
5.1.4  
Memory Write Operation commands  
The memory write instruction is sent after the CS pin is pulled LOW. The write opcode is followed by a three-byte  
address and mode byte for XIP (as applicable). The CY15x108QSN has a 20-bit address space for 8-Mbit (1024K ×  
8) density. The most significant address byte contains A16, A17, A18, and A19 active bits while the remaining  
A[23:20] bits are considered ‘don’t care. Address bits A19 to A0 are transmitted in three bytes over the SPI bus,  
following the (XIP) mode byte, if supported. Immediately after the last address bit or the last mode bit (if XIP is  
supported) is transmitted, the data byte(s) ([D7:0]) is (are) transmitted through the input line(s). The memory  
write operations are allowed in SPI, extended SPI, DPI or QPI Modes in SDR and DDR bus interfaces and some of  
them support eXecute-In-Place (XIP). Table 39 shows the list of memory write commands supported in  
CY15x108QSN in various SPI bus interface and data transfer modes.  
Notes  
• When a burst write reaches a protected block address, it continues incrementing the address into the protected  
space but does not write any data to the protected memory. If the address rolls over and takes the burst write  
to unprotected space, it resumes writes. The same operation is true if a burst write is initiated within a  
write-protected block.  
• If the power is lost in the middle of the byte transfer during the write operation, only the last completed byte  
will be written.  
Table 39  
Memory Write commands  
Opcode (Hex)  
Command  
Command description  
Memory Write - write to F-RAM array  
DDR Write - memory write in QPI DDR mode  
WRITE  
DDRWRITE  
02  
DE  
DA  
DD  
FAST_WRITE  
DDR_FAST_WRITE  
Memory Fast Write - memory write with Execute-In-Place  
DDR Fast Write - memory fast write in DDR mode  
Dual Input Write - command, address and mode byte are sent on single SI line,  
data bytes are sent on dual input lines I/O1 (SO), I/O0 (SI)  
DIW  
A2  
A1  
DDR Dual I/O Write - command is sent on single SI line, address and mode byte  
and data bytes are sent on dual input lines I/O1 (SO), I/O0 (SI)  
DIOW  
Quad Input Write - command, address and mode bytes are sent on single SI  
line, data bytes are sent on quad input lines I/O3 (RESET), I/O2 (WP), I/O1 (SO),  
I/O0 (SI)  
QIW  
32  
Quad I/O Write - command is sent on single SI line, address and mode byte and  
QIOW  
D2  
D1  
data bytes are sent on quad input lines I/O3 (RESET), I/O2 (WP), I/O1 (SO), I/O0  
(SI)  
DDRQIOW  
DDR Quad I/O Write - quad I/O write in DDR mode  
Datasheet  
46 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
Table 40  
Memory Write command details  
Data  
Command  
SPI bus interface  
XIP  
transfer  
Max. Clock  
frequency  
Execute-  
in-place  
(Mode  
Opcode Address  
Dual Quad Dual Quad  
Command  
SPI  
DPI QPI SDR DDR  
(Hex)  
length  
data data I/O  
IO  
byte)  
WRITE  
02  
3 bytes Yes  
3 bytes  
NA  
NA  
Yes Yes Yes  
Yes NA  
NA  
NA  
NA  
108 MHz  
46 MHz  
DDRWRITE  
DE  
Yes  
FAST_WRIT  
E
DA  
DD  
3 bytes Yes  
3 bytes  
NA  
NA  
Yes Yes Yes  
NA  
Yes  
Yes  
108 MHz  
46 MHz  
DDR_FAST_  
WRITE  
Yes NA  
Yes  
Yes  
DIW  
DIOW  
A2  
A1  
32  
D2  
D1  
3 bytes NA Yes  
NA  
NA  
NA  
NA  
NA  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
46 MHz  
3 bytes  
3 bytes  
3 bytes  
3 bytes  
NA  
Yes  
NA  
Yes  
Yes  
Yes  
NA  
QIW  
NA  
Yes  
NA  
NA  
NA  
QIOW  
Yes  
Yes  
NA  
NA  
DDRQIOW  
5.1.4.1  
Write (WRITE, 02h)  
Write operations are performed when the WRITE opcode, along with write data, are transmitted on the SI pin for  
SPI mode, or I/O1 and I/O0 pins for DPI mode, or I/O3, I/O2, I/O1, and I/O0 pins for QPI mode. The burst writes can  
be used to write consecutive addresses without issuing a new WRITE instruction. If only one byte is to be written,  
the CS pin must be driven HIGH after the D0 (LSb of data) is transmitted. However, if more bytes are to be written,  
CS pin must be held LOW and the address is incremented automatically. The data bytes on the input pin(s) are  
written in successive addresses. When the internal address counter reaches to 0x0FFFFF, the address rolls over  
to 0x00000 and the device continues to write.  
Notes  
• The WRITE instruction will only execute if the WEL bit (SR1[1]) is set to ‘1.  
• The WEL bit (SR1[1]) does not clear to ‘0’ on completion of the WRITE operation. Therefore, any write command  
following the WRITE operation does not require preceding WREN command to set the WEL bit to ‘1.  
CS  
SCK  
0
0
0
0
0
0
1
0
A23 A22 A21 A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
SI (IO0)  
Data Byte 1  
hi-Z  
hi-Z  
SO (IO1)  
Address  
(3 Bytes)  
Opcode (02h)  
Write data  
CS  
SCK  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
SI (IO0)  
Data Byte 2  
Data Byte N  
hi-Z  
hi-Z  
SO (IO1)  
Write data  
Figure 39  
Memory write (WRITE) in SPI mode  
Datasheet  
47 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
0
0
0
0
0
0
0
1
A22 A20  
A23 A21  
A2  
A3  
A0  
A1  
D6  
D7  
D4  
D5  
D2  
D3  
D0  
D1  
D6  
D7  
D4  
D5  
D2  
D3  
D0  
D1  
D6  
D7  
D4  
D5  
D2  
D3  
D0  
D1  
SI (IO0)  
hi-Z  
SO (IO1)  
Data Byte 1  
Data Byte 2  
Data Byte N  
Address  
(3 Bytes)  
Opcode (02h)  
Write data  
Figure 40  
Memory write (WRITE) in DPI mode  
CS  
SCK  
hi-Z  
hi-Z  
0
0
0
0
0
1
0
0
A20  
A21  
A22  
A23  
A0  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D0  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
A1  
A2  
A3  
D5  
D6  
D7  
D1  
D2  
D3  
SO (IO1)  
WP (IO2)  
RESET (IO3)  
Data  
Byte 1  
Data  
Byte 2  
Data  
Byte N  
Opc.  
(02h)  
Address  
(3 Bytes)  
Write data  
Figure 41  
Memory write (WRITE) in QPI mode  
Datasheet  
48 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.4.2  
DDR Write (DDRWRITE, DEh)  
The DDRWRITE instruction improves bandwidth by transferring address and data bits on both edges of SCK. The  
address can start at any byte location of the memory array. The address is automatically incremented to the next  
higher address in sequential order after each byte of data is shifted out. The entire memory can therefore be  
written with one single write opcode and the start address provided. When the highest address 0x0FFFFF is  
reached, the address counter will wrap around and roll back to 0x000000, allowing the read sequence to be  
continued indefinitely. This opcode does not support SPI Mode 3.  
Notes  
• DDRWRITE instruction can only be executed by the device if the WEL bit is set to ‘1’ to enable write operations.  
• The WEL bit does not reset to ‘0’ on completion of the DDRWRITE operation.  
CS  
SCK  
A
2
0
A
1
6
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
A
4
A
0
D
4
D
0
D
4
D
0
1
0
1
1
0
1
1
1
SI(IO0)  
SO(IO1)  
A
2
1
A
1
7
A
5
A
1
D
5
D
1
D
5
D
1
A
2
2
A
1
8
A
6
A
2
D
6
D
2
D
6
D
2
WP(IO2)  
A
2
3
A
1
9
A
7
A
3
D
7
D
3
D
7
D
3
RESET(IO3)  
Opc.  
(DEh)  
Address  
( 3Bytes)  
Write Data  
(N Bytes)  
Figure 42  
DDR write (DDRWRITE) in QPI mode  
Datasheet  
49 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.4.3  
Fast Write (FAST_WRITE, DAh)  
The FAST_WRITE instruction is similar to WRITE instruction except for it allows for XIP operation set through  
mode byte. Mode bits allow a series of fast write instructions to eliminate the 8-bit opcode after the first  
instruction sends an Axh mode bit (“1010XXXX”) pattern. This feature, called eXecute-In-Place (XIP), reduces  
initial access times (improves performance). The mode bits control the length of the next fast write operation  
through the inclusion or exclusion of the first byte instruction opcode. If the mode bits are Axh, the device  
transitions to continuous fast write mode and the next address can be entered (after CS is raised HIGH and then  
asserted LOW) without requiring the DAh opcode thus eliminating 8-cycles from the instruction sequence.  
Otherwise, opcode is required once CS transitions from HIGH to LOW.  
Notes  
• Mode bits with !Axh (logical NOT of Axh byte) will exit the FAST_WRITE XIP mode.  
• FAST_WRITE instruction can only be executed by the device if the write enable latch (WEL) in the status register  
is set to ‘1’ to enable write operations.  
• The WEL bit does not reset to ‘0’ on completion of the FAST_WRITE operation.  
CS  
SCK  
hi-Z  
SI (IO0)  
1
1
1
0
A23 A22  
A1  
A0  
M7  
M6  
M1  
M0  
D7  
D6  
D0  
D7  
D0  
X
hi-Z  
hi-Z  
SO (IO1)  
Address  
(3 Bytes)  
Write Data  
(N Bytes)  
Opcode (DAh)  
Mode Byte  
Figure 43  
Fast write (FAST_WRITE) in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
1
1
1
0
0
1
0
1
A22 A20  
A23 A21  
A2  
A3  
A0  
A1  
M6  
M7  
M4  
M5  
M2  
M0  
M1  
D6  
D4  
D5  
D2  
D3  
D0  
D1  
D6  
D7  
D4  
D5  
D2  
D3  
D0  
SI (IO0)  
M3  
D7  
D1  
SO (IO1)  
Address  
(3 Bytes)  
Write Data  
(N Bytes)  
Opcode (DAh)  
Mode Byte  
Figure 44  
Fast write (FAST_WRITE) in DPI mode  
Datasheet  
50 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
1
0
1
1
0
1
0
1
A20  
A21  
A22  
A23  
A0  
A1  
A2  
A3  
M4  
M5  
M6  
M7  
M0  
M1  
M2  
M3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
SO (IO1)  
WP (IO2)  
RESET (IO3)  
Opc.  
(DAh)  
Address  
(3 Bytes)  
Mode  
Byte  
Write Data  
(N Bytes)  
Figure 45  
Fast write (FAST_WRITE) in QPI mode  
5.1.4.4  
DDR Fast Write (DDR_FAST_WRITE, DDh)  
The DDR_FAST_WRITE instruction is similar to the DDRWRITE instruction, except that it allows XIP operation.  
Mode bits allow a series of DDR_FAST_WRITE instructions to eliminate the 8-bit opcode after the first instruction  
sends an A5h mode bit (“10100101”) pattern. This feature, called eXecute-In-Place (XIP), significantly reduces  
initial access times (improves performance). The mode bits control the length of the next DDR_FAST_WRITE  
operation through the inclusion or exclusion of the first byte instruction opcode. If the mode bits are A5h, the  
device transitions to continuous DDR_FAST_WRITE Mode and the next address can be entered (after CS is raised  
HIGH and then asserted LOW) without requiring the DDh opcode, thus eliminating 8 cycles from the instruction  
sequence. Otherwise, opcode is required once CS transitions from HIGH to LOW. This opcode doesn’t support SPI  
Mode 3.  
Notes  
• Mode bits with !A5h (logical NOT of A5h byte) will exit the DDR_FAST_WRITE XIP mode.  
• DDR_FAST_WRITE instruction can only be executed by the device if the WEL bit is set to ‘1’ to enable write  
operations.  
The WEL bit does not reset to ‘0’ on completion of the DDR_FAST_WRITE operation.  
C S  
SC K  
A
2
0
A
1
6
hi-Z  
hi-Z  
hi-Z  
hi-Z  
A
4
A
0
M
4
M
0
D
4
D
0
D
4
D
0
hi-Z  
hi-Z  
hi-Z  
hi-Z  
1
0
1
1
1
0
1
1
SI (IO 0)  
SO (IO 1)  
A
2
1
A
1
7
A
5
A
1
M
5
M
1
D
5
D
1
D
5
D
1
A
2
2
A
1
8
A
6
A
2
M
6
M
2
D
6
D
2
D
6
D
2
W P (IO 2)  
A
2
3
A
1
9
A
7
A
3
M
7
M
3
D
7
D
3
D
7
D
3
R ESET (IO 3)  
Opc.  
(D D h)  
Address  
(3 Bytes )  
W rite D ata  
(N Bytes)  
M
Figure 46  
DDR fast write (DDR_FAST_WRITE) in QPI mode  
Datasheet  
51 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.4.5  
Dual Input Write (DIW, A2h)  
The DIW instruction can be used in dual data mode which is part of the Extended SPI Write instructions. In dual  
data mode, opcode, address and mode bytes are transmitted through SI pin, one bit per clock cycle. Immediately  
after the last address bit is transmitted, the pins are reconfigured as SO becoming I/O1, and SI becoming I/O0,  
and the data (D[7:0]) is transmitted into the I/O1, and I/O0 pins, 2 bits per clock cycle, starting with D7 on I/O1 and  
D6 on I/O0.  
Mode bits allow a series of DIW instructions to eliminate the 8-bit opcode after the first instruction sends an Axh  
mode bit (“1010XXXX”) pattern. This feature, called eXecute-In-Place (XIP), and reduces initial access times  
(improves performance). The mode bits control the length of the next DIW operation through the inclusion or  
exclusion of the first byte instruction opcode. If the mode bits are Axh, the device transitions to continuous DIW  
mode and the next address can be entered (after CS is raised HIGH and then asserted LOW) without requiring the  
A2h opcode thus eliminating 8-cycles from the instruction sequence. Otherwise, opcode is required once CS  
transitions from HIGH to LOW.  
Notes  
• Mode bits with !Axh (logical NOT of Axh byte) will exit the DIW XIP mode.  
• DIW instruction can only be executed by the device when the WEL bit is set to ‘1’ to enable write operations.  
• The WEL bit does not reset to ‘0’ on completion of the DIW operation.  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
1
0
1
0
A23 A22  
A1  
A0  
M7  
M6  
M1  
M0  
D6  
D7  
D4  
D5  
D0  
D1  
D6  
D7  
D4  
D5  
D2  
D3  
D0  
D1  
SI (IO0)  
hi-Z  
SO (IO1)  
Address  
(3 Bytes)  
Write Data  
(N Bytes)  
Opcode (A2h)  
Mode Byte  
Figure 47  
Dual input write (DIW)  
Datasheet  
52 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.4.6  
Dual I/O Write (DIOW, A1h)  
The DIOW instruction can be used in dual addr/data mode, which is part of Extended SPI Write instructions. In  
dual addr/data mode, the opcode is transmitted through the SI pin, one bit per clock cycle. Immediately after the  
last opcode bit is transmitted, the pins are reconfigured as SO becoming I/O1, and SI becoming I/O0, and the  
address along with the mode byte are transmitted into the part through I/O1 and I/O0 pins, 2 bits per clock cycle,  
starting with address A23 on I/O1, A22 on I/O0, until the three-byte address is input. After the last address bits are  
transmitted, the data (D[7:0]) is transmitted into the part through I/O1 and I/O0 two bits per clock cycle starting  
with D7 on I/O1 and D6 on I/O0.  
Mode bits allow a series of DIOW instructions to eliminate the 8-bit opcode after the first instruction sends an Axh  
mode bit (“1010XXXX”) pattern. This feature, called eXecute-In-Place (XIP), significantly reduces initial access  
times (improves performance). The mode bits control the length of the next DIOW operation through the  
inclusion or exclusion of the first byte instruction opcode. If the mode bits are Axh the device transitions to  
continuous DIOW mode and the next address can be entered (after CS is raised HIGH and then asserted LOW)  
without requiring the A1h opcode thus eliminating 8-cycles from the instruction sequence. Otherwise, opcode is  
required once CS transitions from HIGH to LOW.  
Notes  
• Mode bits with !Axh (logical NOT of Axh byte) will exit the DIOW XIP mode.  
• The DIOW instruction can only be executed by the device when the WEL bit set to ‘1’ to enable write operations.  
• The WEL bit does not reset to ‘0’ on completion of the DIOW operation.  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
1
0
0
1
A22 A20  
A23 A21  
A2  
A3  
A0  
A1  
M6  
M7  
M4  
M5  
M2  
M3  
M0  
M1  
D6  
D7  
D4  
D5  
D2  
D3  
D0  
D1  
D6  
D7  
D4  
D5  
D2  
D3  
D0  
D1  
SI (IO0)  
SO (IO1)  
Address  
(3 Bytes)  
Write Data  
(N Bytes)  
Opcode (A1h)  
Mode Byte  
Figure 48  
Dual I/O write (DIOW)  
Datasheet  
53 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.4.7  
Quad Input Write (QIW, 32h)  
The QIW instruction is used in Quad Data mode which is part of Extended SPI Write instructions. In Quad Data  
mode, opcode, address, and mode bytes are transmitted through the SI pin, one bit per clock cycle. Immediately  
after the last address bit is transmitted, the pins are reconfigured as RESET becoming I/O3, WP becoming I/O2,  
SO becoming I/O1, and SI becoming I/O0, and the data (D7–D0) is transmitted into the I/O3 I/O2, I/O1, and I/O0  
pins, 4 bits per clock cycle, starting with D7 on I/O3 and D6 on I/O2, D5 on I/O1, and D4 on I/O0.  
Mode bits allow a series of QIW instructions to eliminate the 8-bit opcode after the first instruction sends an Axh  
mode bit (“1010XXXX”) pattern. This feature, called eXecute-In-Place (XIP), significantly reduces initial access  
times (improves performance). The mode bits control the length of the next QIW operation through the inclusion  
or exclusion of the first byte instruction opcode. If the mode bits are Axh, the device transitions to continuous  
QIW mode and the next address can be entered (after CS is raised HIGH and then asserted LOW) without requiring  
the 32h opcode thus eliminating 8-cycles from the instruction sequence. Otherwise, opcode is required once CS  
transitions from HIGH to LOW.  
Notes  
• Mode bits with !Axh (logical NOT of Axh byte) will exit the QIW XIP mode.  
• The QIW instruction can only be executed by the device if the write enable latch (WEL) in the status register is  
set to ‘1’ to enable write operations.  
• The WEL bit does not reset to ‘0’ on completion of the QIW operation.  
CS  
SCK  
hi-Z  
X
0
0
1
0
A23 A22  
A1  
A0  
M7  
M6  
M1  
M0  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
SI (IO0)  
SO (IO1)  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
WP (IO2)  
RESET (IO3)  
Address  
(3 Bytes)  
Write Data  
(N Bytes)  
Opcode (32h)  
Mode Byte  
Figure 49  
Quad input write (QIW)  
Datasheet  
54 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.4.8  
Quad I/O Write (QIOW, D2h)  
The QIOW instruction can be used in quad addr/data mode which is part of Extended SPI Write instructions. In  
quad addr/data Mode, opcode is transmitted through SI pin, one bit per clock cycle. Immediately after the last  
opcode bit is transmitted, the pins are reconfigured as RESET becoming I/O3, WP becoming I/O2, SO becoming  
I/O1, and SI becoming I/O0, and the address is transmitted into the part through I/O3, I/O2, I/O1 and I/O0 pins,  
4 bits per clock cycle, starting with address A23 on I/O3, A22 in I/O2, A21 on I/O1 and A20 on I/O0, until the  
three-byte address is input. After the last address bits are transmitted, the data (D7–D0) is transmitted into the  
part through I/O3, I/O2, I/O1, and I/O0 four bits per clock cycle starting with D7 on I/O3, D6 on I/O2, D5 on I/O1  
and D4 on I/O0.  
Mode bits allow a series of QIOW instructions to eliminate the 8-bit opcode after the first instruction sends an Axh  
mode bit (“1010XXXX”) pattern. This feature, called eXecute-In-Place (XIP), significantly reduces initial access  
times (improves performance). The mode bits control the length of the next QIOW operation through the  
inclusion or exclusion of the first byte instruction opcode. If the mode bits are Axh the device transitions to  
continuous DIOW mode and the next address can be entered (after CS is raised HIGH and then asserted LOW)  
without requiring the D2h opcode thus eliminating 8-cycles from the instruction sequence. Otherwise, opcode is  
required once CS transitions from HIGH to LOW.  
Notes  
• Mode bits with !Axh (logical NOT of Axh byte) will exit the QIOW XIP mode.  
• The QIOW instruction can only be executed by the device if the write enable latch (WEL) in the status register is  
set to ‘1’ to enable write operations.  
• The WEL bit does not reset to ‘0’ on completion of the QIOW operation.  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
1
1
1
0
A20  
A21  
A22  
A23  
A0  
A1  
A2  
A3  
M4  
M5  
M6  
M7  
M0  
M1  
M2  
M3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
SI (IO0)  
SO (IO1)  
WP (IO2)  
RESET (IO3)  
Address  
(3 Bytes)  
Mode  
Byte  
Opcode (D2h)  
Write data  
Figure 50  
Quad I/O write (QIOW)  
Datasheet  
55 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.4.9  
DDR Quad I/O Write (DDRQIOW, D1h)  
Double data rate quad I/O write is similar to quad I/O except that the address and data are sent on every edge of  
the clock and the mode bit pattern in DDRQIOW is A5h (“10100101”). This opcode does not support SPI mode 3.  
Note Mode bits with !A5h (logical NOT of A5h byte) will exit the DDRQIOW XIP mode.  
CS  
SCK  
A
2
0
A
1
6
hi-Z  
X
A
4
A
0
M
4
M
0
D
4
D
0
D
4
D
0
hi-Z  
hi-Z  
hi-Z  
hi-Z  
1
1
0
1
SI (IO0)  
SO (IO1)  
A
2
1
A
1
7
hi-Z  
hi-Z  
hi-Z  
A
5
A
1
M
5
M
1
D
5
D
1
D
5
D
1
A
2
2
A
1
8
A
6
A
2
M
6
M
2
D
6
D
2
D
6
D
2
WP (IO2)  
A
2
3
A
1
9
A
7
A
3
M
7
M
3
D
7
D
3
D
7
D
3
RESET (IO3)  
Address  
(3 Bytes)  
Write Data  
(N Bytes)  
Opcode (D1h)  
M
Figure 51  
Quad I/O write (QIOW)  
Datasheet  
56 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.5  
Memory Read Operation commands  
The memory read instruction is sent after the CS pin is pulled LOW to select a device. The read opcode is followed  
by a three-byte address and mode byte for XIP (as applicable). The CY15x108QSN has a 20-bit address space for  
8-Mbit (1024K × 8) density. The most significant address byte contains A16, A17, A18, and A19 active bits while the  
remaining bits are considered ‘don’t care. Address bits A19 to A0 are transmitted as three bytes over the SPI bus  
followed by the mode byte and dummy cycles as applicable.  
The memory read supports SPI, Extended SPI, DPI, or QPI Modes in SDR and DDR bus interface and includes  
eXecute-In-Place (XIP) support. Table 41 shows the list of memory read commands supported in CY15x108QSN  
in various SPI bus interface and data transfer modes.  
Table 41  
Memory Read commands  
Opcode  
(Hex)  
Command  
Command description  
Memory read - Reads up to 50 MHz without memory latency cycle in SPI SDR mode and up to  
108 MHz with memory latency cycles in SPI, DPI, QPI SDR modes  
READ  
03  
FAST_READ  
DDRFR  
0B  
0D  
Memory fast read - Reads up to 108 MHz with memory latency cycles in SPI, DPI, QPI SDR modes  
DDR fast read - Fast read instruction in QPI DDR mode  
Dual output read - Command and address bytes are sent on single SI line and data on dual  
output lines I/O1 (SO), I/O0 (SI)  
DOR  
DIOR  
QOR  
3B  
BB  
6B  
Dual I/O read - Command sent on single SI line, address input and data output on dual output  
lines I/O1 (SO), I/O0 (SI)  
Quad output read - Command and address sent on single SI line, data on quad output lines I/O3  
(RESET), I/O2 (WP), I/O1 (SO), I/O0 (SI)  
Quad I/O read - Command sent on single SI line, address input and data output on quad output  
lines I/O3 (RESET), I/O2 (WP), I/O1 (SO), I/O0 (SI). This opcode executes in Extended SPI (Quad  
I/O) SDR and in QPI SDR mode  
QIOR  
EB  
ED  
Quad I/O read in SDR and DDR modes. This opcode executes in extended SPI (quad I/O) SDR and  
in QPI DDR mode.  
DDRQIOR  
Table 42  
Memory Read command details  
SPI bus interface  
Data trans-  
fer  
Memory  
latency  
XIP  
Opcode Address  
Max. clock  
frequency  
(Hex)  
length  
Dual Quad Dual Quad  
Execute- Dummy  
SPI  
DPI QPI SDR DDR  
data data I/O  
I/O  
in-place  
NA  
cycles  
Yes  
03  
0B  
0D  
3B  
BB  
6B  
EB  
ED  
3 bytes Yes  
3 bytes Yes  
3 bytes  
NA  
NA  
NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes NA Yes  
Yes NA  
108 MHz  
108 MHz  
46 MHz  
Yes  
Yes  
Yes  
Yes  
3 bytes  
3 bytes  
3 bytes  
3 bytes  
3 bytes  
NA Yes  
NA  
NA  
Yes  
Yes  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
46 MHz  
Yes  
NA  
Yes NA  
Yes NA  
Yes  
Yes  
NA  
Yes  
NA  
Yes  
Yes  
NA  
NA  
Yes  
Yes  
NA Yes Yes NA  
NA Yes NA Yes  
Yes  
Yes  
Yes  
Yes  
Datasheet  
57 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.5.1  
Memory Read (READ, 03h)  
The READ instruction reads out the memory contents at the given address. The address can start at any byte  
location of the 8-Mbit memory array determined by the three-byte address. The address is automatically  
incremented to the next higher address in sequential order after each byte of data is shifted out. The entire 8-Mbit  
memory can therefore be read out with one single read opcode and address provided. When the highest address  
0x0FFFFF is reached, the address counter will wrap around and roll back to 0x000000, allowing the read sequence  
to continue indefinitely. This command executes in SPI, DPI, or QPI modes.  
Note The dummy cycles are a configuration option through the memory latency code bits (MLC0 to MLC3) in CR1.  
CS  
SCK  
0
0
1
1
A23 A22  
A1  
A0 DM7 DM6  
DM1 DM0  
X
X
SI(IO0)  
hi-Z  
hi-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO(IO1)  
Address  
(3 Bytes)  
Opcode (03h)  
Dummy Cycles  
Read data  
Figure 52  
READ in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
0
0
0
0
0
0
1
1
A22 A20  
A23 A21  
A2  
A3  
A0 DM7 DM6  
DM1 DM0 D6  
DM1 DM0 D7  
D4  
D2  
D0  
D6  
D7  
D4  
D2  
D0  
SI (IO0)  
hi-Z  
hi-Z  
A1 DM7 DM6  
D5  
D3  
D1  
D5  
D3  
D1  
SO (IO1)  
Address  
3 Bytes  
Opcode (03h)  
Dummy Cycles  
Read data  
Figure 53  
READ in DPI mode  
CS  
SCK  
hi-Z  
hi-Z  
0
0
0
0
1
1
0
0
A20  
A21  
A22  
A23  
A0 DM7 DM6  
A1 DM7 DM6  
A2 DM7 DM6  
A3 DM7 DM6  
DM1 DM0 D4  
DM1 DM0 D5  
DM1 DM0 D6  
DM1 DM0 D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
SO (IO1)  
hi-Z  
WP (IO2)  
hi-Z  
RESET (IO3)  
Opc.  
(03h)  
Address  
3 Bytes  
DMY Cycles  
Read data  
Figure 54  
READ in QPI mode  
Datasheet  
58 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.5.2  
Fast Read (FAST_READ, 0Bh)  
The FAST_READ instruction reads out the memory contents at the given address. The address can start at any  
byte location of the 8-Mbit memory array determined by the three-byte address. The address is automatically  
incremented to the next higher address in sequential order after each byte of data is shifted out. The entire  
memory can therefore be read out with one single read opcode and address provided. When the highest address  
0x0FFFFF is reached, the address counter will wrap around and roll back to 0x000000, allowing the read sequence  
to continue indefinitely. This command executes in SPI, DPI or QPI modes.  
Mode bits allow a series of fast read instructions to eliminate the 8-bit opcode after the first instruction sends an  
Axh mode bit (“1010XXXX”) pattern. This feature, called eXecute-In-Place (XIP), significantly reduces initial access  
times (improves performance). The mode bits control the length of the next FAST_READ operation through the  
inclusion or exclusion of the first byte instruction opcode. If the mode bits are Axh, the device transitions to  
continuous FAST_READ Mode and the next address can be entered (after CS is raised HIGH and then asserted  
LOW) without requiring the 0Bh opcode thus eliminating 8-cycles from the instruction sequence. Otherwise,  
opcode is required once CS transitions from HIGH to LOW.  
Notes  
• Mode bits with !Axh (logical NOT of Axh byte) will exit the FAST_READ XIP mode.  
• The dummy cycles are a configuration option through the memory latency code bits (MLC0 to MLC3) in CR1.  
CS  
SCK  
0
0
1
1
A23 A22  
A1  
A0 M7 M6  
M1 M0 DM7 DM6  
DM1 DM0  
X
X
SI (IO0)  
hi-Z  
hi-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO (IO1)  
Address  
(3 Bytes)  
Opcode (0Bh)  
Mode Byte  
Dummy Cycles  
Read data  
Figure 55  
FAST_READ in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
0
0
0
0
0
1
1
1
A22 A20  
A23 A21  
A2 A0 M6 M4 M2 M0 DM7 DM6  
A3 A1 M7 M5 M3 M1 DM7 DM6  
DM1 DM0 D6 D4 D2 D0  
DM1 DM0 D7 D5 D3 D1  
D6 D4 D2 D0  
D7 D5 D3 D1  
SI (IO0)  
hi-Z  
SO (IO1)  
Address  
3 Bytes  
Opcode (0Bh)  
Mode Byte  
Dummy Cycles  
Read data  
Figure 56  
FAST_READ in DPI mode  
Datasheet  
59 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
0
0
0
0
1
1
0
1
A20  
A21  
A22  
A23  
A0  
A1  
A2  
A3  
M4  
M5  
M6  
M7  
M0 DM7 DM6  
M1 DM7 DM6  
M2 DM7 DM6  
M3 DM7 DM6  
DM1 DM0 D4  
DM1 DM0 D5  
DM1 DM0 D6  
DM1 DM0 D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
SO (IO1)  
WP (IO2)  
RESET (IO3)  
Opc.  
(0Bh)  
Address  
3 Bytes  
Mode  
Byte  
DMY Cycles  
Read data  
Figure 57  
FAST_READ in QPI mode  
5.1.5.3  
DDR Fast Read (DDRFR, 0Dh)  
The DDRFR instruction improves bandwidth by transferring address, dummy bits and data bits on every edge of  
the clock. The address can start at any byte location of the 8-Mbit memory array determined by the three-byte  
address. The address is automatically incremented to the next address in sequential order after each byte of data  
is shifted out. The entire memory can therefore be read out with one single read opcode and the start address  
provided. When the highest address 0x0FFFFF is reached, the address counter wraps around and rolls back to  
0x000000, allowing the read sequence to continue indefinitely. CS should remain LOW during the dummy  
cycle(s). This command executes in QPI mode.  
Mode bits allow a series of fast read DDR instructions to eliminate the 8-bit opcode after the first instruction sends  
an A5h mode bit (“10100101”) pattern. This feature, called eXecute-In-Place (XIP), significantly reduces initial  
access times (improves XIP performance). The mode bits control the length of the next DDRFR operation through  
the inclusion or exclusion of the first byte instruction opcode. If the mode bits are A5h, the device transitions to  
continuous DDR fast read mode and the next address can be entered (after CS is raised HIGH and then asserted  
LOW) without requiring the 0Dh opcode thus eliminating 8-cycles from the instruction sequence. Otherwise,  
opcode is required once CS transitions from HIGH to LOW. This opcode does not support SPI mode 3.  
Notes  
• Mode bits with !A5h (logical NOT of A5h byte) will exit the DDRFR XIP mode.  
• The dummy cycles are a configuration option through the memory latency code bits (MLC0 to MLC3) in CR1.  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
0
0
0
0
1
0
1
1
SI (IO0)  
SO (IO1)  
WP (IO2)  
RESET (IO3)  
Opc.  
(0Dh)  
Address  
(3 Bytes)  
Dummy  
Cycle  
M
Read Data (N Bytes)  
Figure 58  
DDRFR in QPI mode  
Datasheet  
60 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.5.4  
Dual Output Read (DOR, 3Bh)  
The DOR instruction is used in dual data mode which is the part of extended SPI read instructions. In dual data  
mode, opcode, address, and mode byte (Axh) and dummy cycles are transmitted through SI pin, one bit per clock  
cycle. At the falling edge of SCK of the last dummy cycle, the pins are reconfigured as SO becoming I/O1, and SI  
becoming I/O0. The data (D7–D0) from the specified address is shifted out on I/O1, and I/O0 pins two bits per clock  
cycle starting with D7 on I/O1, and D6 on I/O. The address can start at any byte location of the memory array. The  
address is automatically incremented to the next higher address in sequential order after each byte of data is  
shifted out. The entire memory can therefore be read out. When the highest address 0x0FFFFF is reached, the  
address counter will wrap around and roll back to 0x000000, allowing the read sequence to continue indefinitely.  
Mode bits allow a series of DOR instruction to eliminate the 8-bit opcode after the first instruction sends an Axh  
mode bit (“1010XXXX”) pattern. This feature, called eXecute-In-Place (XIP), significantly reduces initial access  
times (improves XIP performance). The mode bits control the length of the next DOR operation through the  
inclusion or exclusion of the first byte instruction opcode. If the mode bits are Axh, the device transitions to  
continuous DOR Mode and the next address can be entered (after CS is raised HIGH and then asserted LOW)  
without requiring the 3Bh opcode thus eliminating 8-cycles from the instruction sequence. Otherwise, opcode is  
required once CS transitions from HIGH to LOW.  
Notes  
• Mode bits with !Axh (logical NOT of Axh byte) will exit the DOR XIP mode.  
• The dummy cycles are a configuration option through the memory latency code bits (MLC0 to MLC3) in CR1.  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
0
0
1
1
A23 A22  
A1 A0 M7 M6  
M1 M0 DM7 DM6  
DM1 DM0 D6 D4 D2 D0  
D7 D5 D3 D1  
D6 D4 D2 D0  
D7 D5 D3 D1  
SI (IO0)  
hi-Z  
SO (IO1)  
Address  
(3 Bytes)  
Read Data  
(NBytes)  
Opcode (3Bh)  
Mode Byte  
Dummy Cycles  
Figure 59  
Double output read (DOR)  
5.1.5.5  
Dual I/O Read (DIOR, BBh)  
The DIOR instruction is used in dual addr/data mode which is part of extended SPI read instructions. In dual  
addr/data mode, opcode is transmitted through SI pin, one bit per clock cycle. After the last bit of the opcode,  
the pins are reconfigured as SO becoming I/O1, and SI becoming I/O0. The address is then transmitted into the  
part through I/O1 and I/O0 pins, 2 bits per clock cycle, starting with address A23 on I/O1 and A22 on I/O0, until  
the three-byte address is input. The data (D7–D0) at the specific address is shifted out on I/O1, and I/O0 pins two  
bits per clock cycle starting with D7 on I/O1, and D6 on I/O0. The address is automatically incremented to the next  
higher address in sequential order after each byte of data is shifted out. The entire memory can, therefore, be  
read out. When the highest address 0x0FFFFF is reached, the address counter will wrap around and roll back to  
0x000000, allowing the read sequence to continue indefinitely.  
Mode bits allow a series of DIOR instruction to eliminate the 8-bit opcode after the first instruction sends an Axh  
mode bit (“1010XXXX”) pattern. This feature, called eXecute-In-Place (XIP), significantly reduces initial access  
times (improves XIP performance). The mode bits control the length of the next DIOR operation through the  
inclusion or exclusion of the first byte instruction opcode. If the mode bits are Axh the device transitions to  
continuous DIOR Mode and the next address can be entered (after CS is raised HIGH and then asserted LOW)  
without requiring the BBh opcode thus eliminating 8-cycles from the instruction sequence. Otherwise, opcode is  
required once CS transitions from HIGH to LOW.  
Notes  
• Mode bits with !Axh (logical NOT of Axh byte) will exit the FAST_READ XIP mode.  
• The dummy cycles are a configuration option through the memory latency code bits (MLC0 to MLC3) in CR1.  
Datasheet  
61 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
1
0
1
1
A22 A20  
A23 A21  
A2  
A3  
A0  
A1  
M6  
M7  
M4  
M5  
M2  
M3  
M0 DM7 DM6  
M1 DM7 DM6  
DM1 DM0 D6  
DM1 DM0 D7  
D4  
D5  
D2  
D3  
D0  
D1  
D6  
D7  
D4  
D5  
D2  
D3  
D0  
D1  
SI(IO0)  
hi-Z  
SO(IO1)  
Address  
(3 Bytes)  
Read Data  
(N Bytes)  
Opcode (BBh)  
Mode Byte  
Dummy Cycles  
Figure 60  
Double I/O read (DIOR)  
5.1.5.6  
Quad Output Read (QOR, 6Bh)  
The QOR instruction is used in Quad Data mode which is the part of extended SPI read instructions. In Quad Data  
mode, opcode, address, mode byte (Axh) and dummy cycles are transmitted through SI pin, one bit per clock  
cycle. At the falling edge of SCK of the last mode cycle, the pins are reconfigured as RESET becoming I/O3, WP  
becoming I/O2, SO becoming I/O1, and SI becoming I/O0. The data (D7–D0) from the specified address is shifted  
out on I/O3, I/O2, I/O1, and I/O0 pins four bits per clock cycle starting with D7 on I/O3 and D6 on I/O2, D5 on I/O1,  
and D4 on I/O0. The address is automatically incremented to the next higher address in sequential order after  
each byte of data is shifted out. The entire memory can, therefore, be read out. When the highest address  
0x0FFFFF is reached, the address counter will wrap around and roll back to 0x000000, allowing the read sequence  
to continue indefinitely.  
Mode bits allow a series of DOR instruction to eliminate the 8-bit opcode after the first instruction sends an Axh  
mode bit (“1010XXXX”) pattern. This feature, called eXecute-In-Place (XIP), significantly reduces initial access  
times (improves XIP performance). The mode bits control the length of the next QOR operation through the  
inclusion or exclusion of the first byte instruction opcode. If the mode bits are Axh the device transitions to  
continuous QOR mode and the next address can be entered (after CS is raised HIGH and then asserted LOW)  
without requiring the 6Bh opcode thus eliminating 8-cycles from the instruction sequence. Otherwise, opcode is  
required once CS transitions from HIGH to LOW.  
Notes  
• The QUAD bit CR1[1] must be set to ‘1’ in the Configuration Register 1.  
• Mode bits with !Axh (logical NOT of Axh byte) will exit the DOR XIP mode.  
• The dummy cycles are a configuration option through the memory latency code bits (MLC0 to MLC3) in CR1.  
CS  
SCK  
hi-Z  
X
0
0
1
1
A23 A22  
A1  
A0  
M7  
M6  
M1  
M0 DM7 DM6  
DM1 DM0 D4  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
SI (IO0)  
SO (IO1)  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
D5  
D6  
D7  
hi-Z  
hi-Z  
WP (IO2)  
RESET (IO3)  
Address  
(3 Bytes)  
Read Data  
(N Bytes)  
Opcode (6Bh)  
Mode Byte  
Dummy Cycles  
Figure 61  
Quad output read (QOR)  
Datasheet  
62 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.5.7  
Quad I/O Read (QIOR, EBh) – In extended SPI mode  
The QIOR instruction is used in quad addr/data mode which is part of extended SPI read instructions. In quad  
addr/data mode, opcode is transmitted through SI pin, one bit per clock cycle. After the last bit of the opcode,  
the pins are reconfigured as RESET becoming I/O3, WP becoming I/O2, SO becoming I/O1, and SI becoming I/O0.  
The address is then transmitted into the part through I/O3, I/O2, I/O1, and I/O0 pins, 4 bits per clock cycle, starting  
with address A23 on I/O3, A22 on I/O2, A21 on I/O1 and A20 on I/O0, until the three-byte address is input. The data  
(D7–D0) at the specific address is shifted out on I/O3, I/O2, I/O1, and I/O0 pins four bits per clock cycle starting  
with D7 on I/O3 and D6 on I/O2, D5 on I/O1, and D4 on I/O0. The entire memory can therefore be read out. When  
the highest address 0x0FFFFF is reached, the address counter will wrap around and roll back to 0x000000,  
allowing the read sequence to continue indefinitely.  
Mode bits allow a series of QIOR instruction to eliminate the 8-bit opcode after the first instruction sends an Axh  
mode bit (“1010XXXX”) pattern. This feature, called eXecute-In-Place (XIP), significantly reduces initial access  
times (improves XIP performance). The mode bits control the length of the next QIOR operation through the  
inclusion or exclusion of the first byte instruction opcode. If the mode bits are Axh, the device transitions to  
continuous QIOR mode and the next address can be entered (after CS is raised HIGH and then asserted LOW)  
without requiring the EBh opcode thus eliminating 8-cycles from the instruction sequence. Otherwise, opcode is  
required once CS is raised HIGH and then asserted LOW.  
Notes  
• The QUAD bit CR1[1] must be set to ‘1’ in configuration register 1.  
• Mode bits with !Axh (logical NOT of Axh byte) will exit the QIOR XIP mode.  
• The dummy cycles are a configuration option through the memory latency code bits (MLC0 to MLC3) in CR1.  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
1
1
1
1
A20  
A21  
A22  
A23  
A0  
A1  
A2  
A3  
M4  
M5  
M6  
M7  
M0 DM7 DM6  
M1 DM7 DM6  
M2 DM7 DM6  
M3 DM7 DM6  
DM1 DM0 D4  
DM1 DM0 D5  
DM1 DM0 D6  
DM1 DM0 D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
SI (IO0)  
SO (IO1)  
WP (IO2)  
RESET (IO3)  
Address  
(3 Bytes)  
Mode  
Byte  
Read Data  
(N Bytes)  
Opcode (EBh)  
Dummy Cycles  
Figure 62  
Quad I/O read (QIOR) in extended SPI mode  
Datasheet  
63 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.5.8  
Quad I/O Read (QIOR, EBh) – In QPI mode  
The opcode for QIOR can be executed in the QSPI mode as well. As the device is in QSPI mode, the opcode,  
address, and mode bytes are transmitted over all four I/Os. The data (D7–D0) at the specific address is shifted out  
on I/O3, I/O2, I/O1, and I/O0 pins four bits per clock cycle starting with D7 on I/O3 and D6 on I/O2, D5 on I/O1, and  
D4 on I/O0.  
Notes  
• Mode bits with !Axh (logical NOT of Axh byte) will exit the QIOR mode.  
• The dummy cycles are a configuration option through the memory latency code bits (MLC0 to MLC3) in CR1.  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
1
1
1
1
1
1
1
1
A20  
A21  
A22  
A23  
A0  
A1  
A2  
A3  
M4  
M5  
M6  
M7  
M0 DM7 DM6  
M1 DM7 DM6  
M2 DM7 DM6  
M3 DM7 DM6  
DM1 DM0 D4  
DM1 DM0 D5  
DM1 DM0 D6  
DM1 DM0 D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
SI (IO0)  
SO (IO1)  
WP (IO2)  
RESET (IO3)  
Opc.  
(EBh)  
Address  
(3 Bytes)  
Mode  
Byte  
Read Data  
(N Bytes)  
Dummy Cycles  
Figure 63  
Quad I/O read (QIOR) in QPI mode  
5.1.5.9  
DDR Quad I/O Read (DDRQIOR EDh) – In extended SPI mode  
The DDRQIOR instruction improves bandwidth with four I/O signals SI (I/O0), SO (I/O1), WP (I/O2) and RESET  
(I/O3). It is similar to the quad I/O read instruction but transfers address, mode, dummy or data bits on every edge  
of the clock. The address can start at any byte location of the memory array. The address is automatically  
incremented to the next higher address’s in sequential order after each byte of data is shifted out. The entire  
memory can therefore be read out with one single read opcode and address provided. When the highest address  
0x0FFFFF is reached, the address counter will wrap around and roll back to 0x000000, allowing the read sequence  
to be continued indefinitely. CS should not be driven HIGH during dummy bits as this may make the bits  
indeterminate.  
Mode bits allow a series of QIOR DDR instructions to eliminate the 8-bit opcode after the first instruction sends  
an A5h mode bit pattern. This feature, called eXecute-In-Place (XIP), significantly reduces initial access times  
(improves XIP performance). The mode bits control the length of the next DDR QIOR operation through the  
inclusion or exclusion of the first byte instruction opcode. If the mode bits are Axh the device transitions to  
continuous QIOR DDR mode and the next address can be entered (after CS is raised HIGH and then asserted LOW)  
without requiring the EDh opcode thus eliminating 8-cycles from the instruction sequence. Otherwise, opcode is  
required once CS is raised HIGH and then asserted LOW. This opcode does not support SPI mode 3.  
Notes  
• The QUAD bit CR1[1] must be set to ‘1’ in configuration register 1.  
• Mode bits with !A5h (logical NOT of A5h byte) will exit the DDRQIOR XIP mode.  
• The dummy cycles are a configuration option through the memory latency code bits (MLC0 to MLC3) in CR1.  
Datasheet  
64 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
1
1
1
0
1
1
0
1
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
SO (IO1)  
WP (IO2)  
RESET (IO3)  
Opc.  
(EDh)  
Address  
3 Bytes  
Dummy  
Cycle  
M
Read Data (N Bytes)  
Figure 64  
Quad I/O read in DDR (DDRQIOR) – In extended SPI mode  
5.1.5.10  
DDR Quad I/O Read (DDRQIOR EDh) – In QPI mode  
The opcode for DDRQIOR can be executed in QSPI mode as well. For DDR quad in/out read (DDRQIOR) in QPI  
mode, the data is read over (I/O0, I/O1, I/O2, I/O3) in DDR and address and mode bits are also sent over (I/O0, I/O1,  
I/O2, I/O3) in DDR while the opcode is sent over (I/O0, I/O1, I/O2, I/O3) in SDR.  
Notes  
• Mode bits with !A5h (logical NOT of A5h byte) will exit the DDRQIOR XIP mode.  
• The dummy cycles are a configuration option through the memory latency code bits (MLC0 to MLC3) in CR1.  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
0
1
1
1
1
0
1
1
SI (IO0)  
SO (IO1)  
WP (IO2)  
RESET (IO3)  
Opc.  
(EDh)  
Address  
(3 Bytes)  
Dummy  
Cycle  
M
Read Data (N Bytes)  
Figure 65  
Quad I/O read in DDR (DDRQIOR) – In QPI mode  
Datasheet  
65 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.6  
Special Sector Memory commands  
The CY15x108QSN also provides an additional special sector memory region that is 256 bytes in length. This  
special sector region design for a higher thermal reliability for stored content. Data stored into this special sector  
can survive up to three standard reflow cycles. This special sector location can be used to store the PCB module  
details, serial number details, and so on. The special sector memory access commands support the SPI, DPI, and  
QPI modes of operation.  
Table 43  
Special Sector Memory Access commands  
Opcode  
Command  
Command description  
(Hex)  
42  
SSWR  
SSRD  
Special sector write - dedicated command to write 256 bytes special sector memory  
Special sector read - dedicated command to read 256 bytes from the special sector memory  
4B  
Table 44  
Special Sector Memory Access command details  
SPI bus interface  
Data  
Memory  
latency  
XIP  
transfer  
Opcode Address  
Max clock  
frequency  
(Hex)  
length  
Dual Quad Dual Quad  
Dummy Execute-  
SPI  
DPI QPI SDR DDR  
data data I/O  
I/O  
cycles  
NA  
in-place  
NA  
42  
4B  
3 bytes Yes  
3 bytes Yes  
NA  
NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
108 MHz  
108 MHz  
Yes  
NA  
CS  
SCK  
0
1
0
0
0
0
1
0
A23 A22 A21 
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
X
SI (IO0)  
hi-Z  
Opcode (42h)  
hi-Z  
SO (IO1)  
Address  
(3 Bytes)  
Write Data  
Figure 66  
Special sector write (SSWR) in SPI mode (WREN is not shown)  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
1
0
0
0
0
0
0
1
A22
A23
A2  
A3  
A0  
A1  
D6  
D7  
D4  
D5  
D2  
D3  
D0  
D1  
SI (IO0)  
hi-Z  
SO (IO1)  
Address  
(3 Bytes)  
Opcode (42h)  
Write Data  
Figure 67  
Special sector write (SSWR) in DPI mode (WREN is not shown)  
Datasheet  
66 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
0
0
1
0
0
1
0
0
A20  
A21  
A22  
A23  
A0  
A1  
A2  
A3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
SO (IO1)  
WP (IO2)  
RESET (IO3)  
Opc.  
(42h)  
Address  
(3 Bytes)  
Write  
Data  
Figure 68  
Special sector write (SSWR) in QPI mode (WREN is not shown)  
5.1.6.1  
Special Sector Read (SSRD, 4Bh)  
The SSRD instruction reads out the memory contents at the given address. The address can start at any byte  
location of the 256-byte special sector memory determined by the three-byte address. The address is  
automatically incremented to the next higher address in sequential order after each byte of data is shifted out.  
The entire 256-byte special sector can therefore be read out with one single special sector read opcode and  
address provided. Once the internal address counter auto increments to 0xFF and if the host continues clocking  
on SCK, the device will return undefined data byte(s).  
Notes  
• The three-byte address contains the lower 8-bit for sector address (A7–A0). While the remaining 16 most  
significant bits of the three-byte address should be set to ‘0.  
• The dummy cycles are a configuration option through the memory latency code bits (MLC0 to MLC3) in CR1.  
• The special sector F-RAM guarantees to retain user data up to three cycles of standard reflow soldering.  
CS  
SCK  
hi-Z  
0
0
1
1
A23 A22  
A1  
A0 DM7 DM6  
DM1 DM0  
X
X
SI (IO0)  
hi-Z  
hi-Z  
D7 D6 D5 D4 D3 D2 D1 D0  
SO (IO1)  
Opcode (4Bh)  
Address  
Dummy Cycles  
Read data  
Figure 69  
Special sector read (SSRD) in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
1
0
0
0
0
1
1
1
A22 A20  
A23 A21  
A2  
A3  
A0 DM7 DM6  
A1 DM7 DM6  
DM1 DM0 D6 D4 D2 D0  
DM1 DM0 D7 D5 D3 D1  
D6 D4 D2 D0  
D7 D5 D3 D1  
SI (IO0)  
hi-Z  
hi-Z  
SO (IO1)  
Opcode (4Bh)  
Address  
Dummy Cycles  
Read data  
Figure 70  
Special sector read (SSRD) in DPI mode  
Datasheet  
67 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
0
0
1
0
1
1
0
1
A20  
A21  
A22  
A23  
A0 DM7 DM6  
A1 DM7 DM6  
A2 DM7 DM6  
A3 DM7 DM6  
DM1 DM0 D4  
DM1 DM0 D5  
DM1 DM0 D6  
DM1 DM0 D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
SO (IO1)  
WP (IO2)  
RESET (IO3)  
Opc.  
(4Bh)  
Address  
DMY Cycles  
Read data  
Figure 71  
Special sector read (SSRD) in QPI mode  
5.1.6.2  
Error Correction Code (ECC) and Cyclic Redundancy Check commands  
5.1.6.2.1 Error Correction Code (ECC)  
The CY15x108QSN provides an in-built hardware error correction code (ECC) with 3-bit error detection and  
reporting on an 8-byte (64 bits) unit data. Since every F-RAM read follows a write cycle (refresh cycle), the 2-bit  
error detected is automatically corrected and written back to the F-RAM array during the refresh cycle. Hence,  
does not report 2-bit error detection because the subsequent ECC check on the same data unit will not reproduce  
the same 2-bit error.  
CY15x108QSN ECC is always enabled and observes the following behavior in run time:  
• Whenever there is a 3-bit error detected during F-RAM read, CY15x108QSN‘3BD’  
• The first three least significant bytes of ADDRTRAP register will hold the 3-byte unit data address of the very first  
2-bit error detected in an 8-byte unit data after POR, reset, or CLECC. Any subsequent occurrence of a 3-bit error  
will not overwrite the ADDRTRAP register with the most recent data unit address.  
• CY15x108QSN provides a 2-byte ECC detection count (ECCDC) register which increments by ‘1’ every time a 3-bit  
error is detected. The ECCDC register is cleared after POR, any reset event, or after CLECC command execution.  
• User can read either ADDRTRAP register for its non-zero value (with an exception to where the 3-bit error  
detected at address 0x00000) or read ‘3BD’ flag bit of ECCSR register, or read the non-zero value in the ECCDC  
register to determine the occurrence of a 3-bit error detection.  
• In addition, CY15x108QSN also supports the ECCRD (19h) command which returns the 3-bit error detection  
status in 8-byte unit data by setting the ‘3BD’ error flag to ‘1’ in the ECCSR at the unit address sent with the  
ECCRD command.  
ECC is not supported on the 256-byte special sector memory, status and configuration registers.  
Datasheet  
68 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.6.3  
ECC Status Register  
The status of ECC is presented in the ECC Status Register (ECCSR). The ECCSR details are shown in Table 46. The  
ECCSR content can be read only by using the RDAR commands as described in “Read Any Register (RDAR, 65h)”  
on page 45. The ECCRD command returns the ECCSR status for the unit data. The unit data is defined as the  
number of bytes over which the ECC is calculated. CY15x108QS has 8-bytes unit data.  
Table 45  
ECC Status Register  
ECCSR[7]  
ECCSR[6]  
ECCSR[5]  
RFU (0)  
ECCSR[4]  
ECCSR[3]  
ECCSR[2]  
ECCSR[1]  
ECCSR[0]  
RFU (0)  
RFU (0)  
3BD (0)  
RFU (0)  
RFU (0)  
RFU (0)  
RFU (0)  
Table 46  
ECC Status Register - Volatile only  
Bit  
Bit name Bit function  
Type  
Read/write  
Description  
ECCSR[7]  
ECCSR[6]  
ECCSR[5]  
RFU  
RFU  
RFU  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved for future use  
Reserved for future use  
Reserved for future use  
1 = 3-bit error detection occurred since last  
ECCSR clear command (CLECC)  
0 = 3-bit error detection has not occurred since  
last ECCSR clear command (CLECC)  
3-bit ECC  
3BD  
ECCSR[4]  
V
R
Detection  
ECCSR[3]  
ECCSR[2]  
ECCSR[1]  
ECCSR[0]  
V - Volatile  
RFU  
RFU  
RFU  
RFU  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved (0)  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
5.1.6.4  
3-Bit ECC Detection (3BD) ECCSR [4]  
This bit indicates that a 3-bit ECC detection has occurred on the read data since the last clear ECC Status Register.  
The CLECC instruction resets 3BD bit to ‘0.  
5.1.6.4.1 ECC Detection Counter (ECCDC)  
The ECC Detection Counter (ECCDC) register is a 2-byte volatile register, which stores the number of times 3-bit  
error detections have occurred during the memory read operations since the last POR, any reset event, or after  
CLECC command. The ECCDC register content can be read by using RDAR commands as described in “Read Any  
Register (RDAR, 65h)” on page 45.  
Notes  
• Once the ECCDC count reaches 0xFFFF, the ECCDC will stop incrementing.  
• The ECCDC loses its content when in deep power-down (DPD) mode and returns with 0x0000 upon DPD exit.  
Table 47  
Bits  
ECC Detection Counter Register (ECCDC)  
Name  
Function Type Read/write  
Default state  
Description  
ECC 3-bit  
error  
Total count of 3-bit ECC detections since the  
last POR or any reset event. CLECC command  
does not clear this register.  
15:0  
ECCDC  
V
R
0x0000  
detection  
count  
V - Volatile  
Datasheet  
69 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.6.5  
Address Trap Register (ADDTRAP)  
The Address Trap Register (ADDTRAP) is a 4-byte volatile register which stores the ECC unit data address where  
a 3-bit error detection has occurred during a read operation. The ADDTRAP register stores the address of very first  
ECC data unit in which 3-bit error detected since the last clear ECC instruction (CLECC), POR, or any reset event.  
The address of subsequent data unit with 3-bit error detected will not be captured into ADDTRAP. In this case,  
only ECCDC count will increment. The ADDTRAP register content can be read by using the RDAR command as  
described in “Read Any Register (RDAR, 65h)” on page 45.  
Note The ADDTRAP register loses its content when in deep power down (DPD) mode and returns with 0x00000000  
upon DPD exit.  
Table 48  
Address Trap Register  
Bits  
Name  
Function  
Type  
Read/write  
Default state  
Description  
Store address of unit data where 3-bit ECC  
detection occurred  
Stores ECC  
address  
31:0  
ADDTRAP  
V
R
0x00000000  
V - Volatile  
5.1.6.6  
ECC commands  
The CY15x108QSN ECC commands are described in the following section.  
Table 49  
ECC commands  
Command  
(Hex)  
Opcode  
Command description  
ECCRD  
CLECC  
19  
1B  
ECC status read - determines the ECC status of the addressed unit data  
Clear ECC register(s) - ECC Flags and Address Trap Registers  
Table 50  
ECC command details  
Data  
Memory  
latency  
SPI bus interface  
XIP  
transfer  
Opcode Address  
Max clock  
frequency  
(Hex)  
length  
Dual Quad Dual Quad  
Dummy Execute-  
SPI  
3 bytes Yes  
NA Yes  
DPI QPI SDR DDR  
data data I/O  
I/O  
cycles  
Yes  
in-place  
NA  
19  
1B  
NA  
NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
108 MHz  
108 MHz  
NA  
NA  
Datasheet  
70 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.6.7  
ECC Status Read (ECCRD, 19h)  
The ECCRD instruction is used to determine the 3-bit error detection status of the addressed unit data. To do so,  
CS is pulled LOW and the ECCRD instruction is followed by the ECC data unit address in which the three least  
significant bits (LSb) of address should be set to zero. Even if the least three significant bits of address are not set  
to zero, they will be ignored internally and the start address for the data unit is determined by the rest of the MS  
bits.  
The address bytes are followed by the number of dummy cycles selected by the read latency value for the  
memory read. The 8-bit ECC Status is shifted out on output lines. CS must be pulled high after 8-bit ECC status is  
read out.  
Notes  
• If CS remains LOW after 8-bit ECC status is read out, the subsequent ECC status data will be indeterminate. It is  
necessary to send the new ECCRD command with next unit address to read the ECC status of next data unit.  
• The dummy cycles are a configuration option through the memory latency code bits (MLC0 to MLC3) in CR1.  
Table 51  
Unit data ECC status byte details  
Bits  
Name  
Function  
Reserved  
Reserved  
Reserved  
Reserved  
Read/write  
Default state  
Description  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
7
6
5
4
RFU  
RFU  
RFU  
RFU  
0
0
0
0
1 = 3-bit error detected in ECC unit  
0 = No error  
3
EECC3D  
3-bit error in ECC unit  
R
0
2
1
0
RFU  
RFU  
RFU  
Reserved  
Reserved  
Reserved  
0
0
0
Reserved for future use  
Reserved for future use  
Reserved for future use  
CS  
SCK  
0
0
0
1
A23 A22  
A1  
A0 DM7 DM6  
DM1 DM0  
X
X
SI (IO0)  
hi-Z  
hi-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO (IO1)  
Address  
(3 Bytes)  
Opcode (19h)  
Dummy Cycles  
ECC Read Data  
Figure 72  
ECC read (ECCRD) in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
0
0
1
0
0
1
1
1
A22 A20  
A23 A21  
A2  
A3  
A0 DM7 DM6  
A1 DM7 DM6  
DM1 DM0 D6  
DM1 DM0 D7  
D4  
D5  
D2  
D3  
D0  
D1  
D6  
D7  
D4  
D5  
D2  
D3  
D0  
D1  
SI (IO0)  
hi-Z  
SO (IO1)  
Address  
(3 Bytes)  
Opcode (19h)  
Dummy Cycles  
ECC Read Data  
Figure 73  
ECC read (ECCRD) in DPI mode  
Datasheet  
71 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
1
0
0
0
1
0
0
1
A20  
A21  
A22  
A23  
A0 DM7 DM6  
A1 DM7 DM6  
A2 DM7 DM6  
A3 DM7 DM6  
DM1 DM0 D4  
DM1 DM0 D5  
DM1 DM0 D6  
DM1 DM0 D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
SO (IO1)  
WP (IO2)  
RESET (IO3)  
Opc.  
(19h)  
Address  
(3 Bytes)  
Dummy Cycles  
ECC Read Data  
Figure 74  
ECC read (ECCRD) in QPI mode  
5.1.6.8  
Clear ECC (CLECC, 1Bh)  
The CLECC instruction clears all ECC flags, ADDTRAP, and ECCDC registers. It is not necessary to set the WEL bit  
before a CLECC instruction is executed.  
CS  
SCK  
0
0
0
1
1
0
1
1
X
X
SI (IO0)  
hi-Z  
Opcode (1Bh)  
hi-Z  
SO (IO1)  
Figure 75  
Clear ECC (CLECC) in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
0
0
1
0
0
1
1
1
SI (IO0)  
hi-Z  
SO (IO1)  
Opcode (1Bh)  
Figure 76  
Clear ECC (CLECC) in DPI mode  
Datasheet  
72 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
0
0
0
0
0
1
1
0
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
SO (IO1)  
WP (IO2)  
RESET (IO3)  
Opc.  
(1Bh)  
Figure 77  
Clear ECC (CLECC) in QPI mode  
5.1.6.9  
Cyclic Redundancy Check (CRC)  
CY15x108QSN provides an in-built cyclic redundancy check (CRC) engine that computes the check sequence on  
the stored data in the memory array. CRC is not supported on 256-byte special sector memory, status and  
configurations registers.  
The CY15x108QSN supports CRC with the following opcodes.  
Table 52  
CRC Access commands  
Opcode  
(Hex)  
Command  
Command description  
CRCC  
EPCS  
5B  
75  
7A  
CRC calculation - performs a CRC calculation over a user defined address range  
CRC suspend - interrupts the CRCC operation and allow other accesses  
CRC resume - resumes suspended CRCC operation  
EPCR1  
Table 53  
CRC Access command description  
SPI bus interface  
Data  
Memory  
latency  
XIP  
transfer  
Opcode Address  
Max clock  
frequency  
(Hex)  
length  
Dual Quad Dual Quad  
Dummy Execute-  
SPI  
DPI QPI SDR DDR  
data data I/O  
I/O  
cycle  
NA  
in-place  
NA  
5B  
75  
7A  
NA  
NA  
NA  
Yes  
Yes  
Yes  
NA  
NA  
NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
108 MHz  
108 MHz  
108 MHz  
NA  
NA  
NA  
NA  
Datasheet  
73 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.6.10  
Data CRC Calculation (CRCC, 5Bh)  
The CRCC instruction sequence causes CY15x108QSN to perform a cyclic redundancy check calculation (CRCC)  
over a user-defined address range. A data CRC-enabled CY15x108QSN device calculates a fixed-length binary  
sequence, known as the CRC checksum, for each block of data and sends them both together to the host. When  
the host device receives the data block, it recalculates the CRC checksum. If the new CRC checksum does not  
match the original checksum sent with the data, then the block contains a data error and the host device may  
take corrective action such as requesting the data block to be sent again.  
The CRCC process calculates the check-value on the data contained at the starting address through the ending  
address.  
The CRC calculation instruction starts by entering the opcode followed by the starting address and ending  
address. CS must be driven HIGH after the ending address has been latched in. This will initiate the beginning of  
internal CRC process that calculates the check-value on the data contained at the starting address through the  
ending address. If CS is not driven HIGH after the last bit of address, the CRC calculation operation will not be  
executed. The CRCC command does not check the WEL status. However, if the WEL is set prior to the CRC  
command, the WEL gets cleared to after the CRC operation is complete.  
The ending address (EA) should be at least a 32-bit aligned word higher than the starting address (SA). If  
EA < SA + 3, the CRC calculation will abort and the device will return to the standby mode. The CRC abort (CRCA)  
bit (SR2[3] = 1) is set to indicate the aborted condition and the CRC register (CRCR) will hold indeterminate data.  
When the CRC calculation is in progress, CY15x108QSN sets the WIP bit of SR1 (SR1[0]) to ‘1. User can poll the WIP  
status to determine when the ongoing CRCC operation is complete and device is ready for access. The WIP bit will  
be ‘1’ when the CRC calculation is in progress and a ‘0’ when it has been completed. The CRC register (CRCR)  
stores the results of the CRC process that calculates the Check-value on the data contained at the starting address  
through the ending address. The details of the CRC register is described in Table 54. The CRC check-value bits  
0–31 can be read by reading the CRC register using Read Any Register (RDAR) command as described in “Read  
Any Register (RDAR, 65h)” on page 45.  
The CRC register bits are initialized with all 0s (0x00000000) every time CRC calculation is initiated. A POR or any  
reset event will also initialize the CRC register value to all 0s.  
The check-value calculation can be suspended with the CRC suspend command (EPCS, B0h) to read data from  
the memory array or registers. During the suspended state, the CRC suspend (CRCS) status bit in status register-2  
will be set (SR2[4] = 1). Once suspended, the host can read the status register, read data from the array and can  
resume the CRC calculation by using the CRC Resume command (EPCR, 30h). CY15x108QSN takes tCRCC to  
calculate the CRC checksum on data between the SA and EA (including data at SA and EA).  
The 32-bit CRC (CRC-32C) polynomial (0x1EDC6F41) is defined as follows:  
32X + 28X + 27X + 26X + 25X + 23X + 22X + 20X+ 19X + 18X + 14X + 13X + 11X + 10X + 9X + 8X + 6X + 1X  
Note 4-byte memory data are internally read as {data[7:0], data[15:8], data[23:16], data[31:24]} and are assigned  
to CRC[31:0] for the CRC calculation.  
Table 54  
Bits  
CRC register description  
Name  
Function  
Default state  
Description  
Volatile register to store the CRC checksum value resulted  
after the CRC calculation (CRCC command).  
31:0  
CRCR  
Check CRC value  
0x00000000  
Datasheet  
74 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
tCRCC  
CS  
SCK  
0
1
0
1
1
0
1
1
A23 A22 A21 
A3  
A2  
A1  
A0 A23 A22 A21 
A3  
A2  
A1  
A0  
X
X
SI (IO0)  
hi-Z  
Opcode (5Bh)  
hi-Z  
SO (IO1)  
Start Address  
(3 Bytes)  
End Address  
(3 Bytes)  
Figure 78  
CRC calculation (CRCC) in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
1
0
0
1
0
1
1
1
A22 A20 
A23 A21 
A0 A22
A1 A23
A2  
A3  
0
0
SI (IO0)  
hi-Z  
hi-Z  
SO (IO1)  
Start Addr  
(3 Bytes)  
End Addr  
(3 Bytes)  
Opcode (5Bh)  
Figure 79  
CRC calculation (CRCC) in DPI mode  
CS  
SCK  
hi-Z  
hi-Z  
1
0
1
0
1
1
0
1
A20
A21
A22
A23
A20
A21
A22
A23
A0  
A1  
A2  
A3  
0
0
SI (IO0)  
SO (IO1)  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
A2  
A3  
WP (IO2)  
RESET (IO3)  
Opc.  
(5Bh)  
Start Addr  
(3 Bytes)  
End Addr  
(3 Bytes)  
Figure 80  
CRC calculation (CRCC) in QPI mode  
Datasheet  
75 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.6.11  
CRC Suspend (EPCS, 75h)  
EPCS allows the system to interrupt the ongoing CRCC operation and allow other accesses while the current CRC  
operation is suspended. Commands which can execute while CRC is suspended are: READ, RDSR1, RDSR2,  
FAST_READ, DDRFR, ECCRD, CLECC, RDCR1, DOR, RDCR2, RDCR4, SSRD, RDCR5, RDAR, RSTEN, QOR, EPCR, RST,  
RDID, DIOR, RDSN, QIOR, DDRQIOR.  
The CRC suspend is valid only during a CRC calculation operation. The Status Register 2 (SR2) can be checked to  
determine if the CRCC operation has been suspended or completed. The CRC status bit shows if a CRCC operation  
is suspended or was completed at the time WIP status bit in Status Register 1 changes to ‘0. EPCS takes tCRCS  
time to process the CRC suspend operation and keeps the WIP bit status ‘1. In the case CRCC calculation  
completes before the EPCS command is fully processed, the CRCS bit in SR2 (SR2 [4]) will not set to ‘1, indicating  
EPCS did not execute.  
tCRCS  
CS  
SCK  
0
1
1
1
0
1
0
1
X
X
SI (IO0)  
hi-Z  
Opcode (75h)  
hi-Z  
SO (IO1)  
Figure 81  
CRC suspend (EPCS) in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
1
1
1
1
0
1
SI (IO0)  
hi-Z  
0
0
SO (IO1)  
Opcode (75h)  
Figure 82  
CRC suspend (EPCS) in DPI mode  
Datasheet  
76 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
1
1
1
0
1
0
1
0
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
SO (IO1)  
WP (IO2)  
RESET (IO3)  
Opc.  
(75h)  
Figure 83  
Suspend (EPCS) in QPI mode  
5.1.6.12  
CRC Resume (EPCR, 7Ah)  
EPCR resumes a suspended CRCC operation. After the CRC resume instruction is issued, the WIP bit is set to ‘1.  
The CRCC operation can be interrupted as often as necessary. The EPCR resumes a suspended CRCC operation  
only when CRCS bit of SR2 (SR2[4]) is set ‘1, otherwise EPCR command will be ignored. After the EPCR instruction  
is issued, the WIP bit is set to ‘1. The CRCC operation can be interrupted and resumed as often as necessary.  
EPCR takes tCRCR time to process the command and resumes the CRC calculation on the remaining data bytes,  
until the end address (EA) reaches.  
tCRCR  
CS  
SCK  
0
1
1
1
1
0
1
0
X
X
SI (IO0)  
hi-Z  
Opcode (7Ah)  
hi-Z  
SO (IO1)  
Figure 84  
CRC resume (EPCR) in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
1
1
1
0
1
0
1
SI (IO0)  
hi-Z  
hi-Z  
0
SO (IO1)  
Opcode (7Ah)  
Figure 85  
CRC resume (EPCR) in DPI mode  
Datasheet  
77 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
1
1
1
0
0
1
0
1
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
SO (IO1)  
WP (IO2)  
RESET (IO3)  
Opc.  
(7Ah)  
Figure 86  
CRC resume (EPCR) in QPI mode  
5.1.7  
Identification and Serial Number commands  
The CY15x108QSN device offers three different types of identification features that include device ID and  
unique ID which are 8-byte read only registers and 8-byte writable serial number registers. Details of each is  
described in the following section.  
5.1.7.1  
Read Device ID (RDID, 9Fh)  
The CY15x108QSN device can be interrogated for its manufacturer, product identification, and die revision. The  
RDID opcode 9Fh allows the user to read the 8-byte manufacturer ID and product ID, both of which are read-only  
bytes. The device ID field is described in the device ID field register table. The device ID of the corresponding part  
number is shown in the “Ordering information” on page 104.  
Notes  
• The dummy cycles shown are a configuration option through register latency code bits (RLC0, RLC1) in CR5.  
• RDID data preference - LSb shifts out first, MSb shifts out last. No wrap is allowed for the RDID command. After  
the 8th byte, if the host continues to clock the device will return undefined data byte/s.  
Table 55  
Device ID field  
Bits (number of  
bits)  
63–32 (32 bits)  
31–21 (11 bits) 20–8 (13 bits) 7–3 (5 bits) 2–0 (3 bits)  
00000110100  
00000000000000000000000000000000  
(reserved)  
Description  
(Manufacturer  
ID)  
Product ID  
Density ID  
Die Rev  
CS  
SCK  
SI(IO0)  
X
1
0
0
1
1
1
1
1
DM7 DM6  
DM1 DM0  
X
hi-Z  
hi-Z  
SO(IO1)  
ID7 ID6  
ID1 ID0 ID15 ID14  
ID9 ID8  
ID63 ID62  
ID57 ID56  
Byte0  
Byte1  
Byte7  
Opcode(9Fh)  
Dummy Byte  
ID data  
Figure 87  
Read device ID (RDID) in SPI mode  
Datasheet  
78 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
SI (IO0)  
0
1
1
0
1
1
1
1
DM7 DM6  
DM7 DM6  
DM1 DM0 ID6  
DM1 DM0 ID7  
ID0 Sn14
ID8  
ID9  
ID62 ID56  
hi-Z  
SO (IO1)  
ID1 ID15
ID63 ID57  
Byte 0  
Byte 1  
Byte 7  
Opcode (9Fh)  
Dummy Cycles  
ID data  
Figure 88  
Read device ID (RDID) in DPI mode  
CS  
SCK  
hi-Z  
hi-Z  
1
0
0
1
1
1
1
1
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM1 DM0 ID4 ID0 ID28 ID24 ID60 ID56  
DM1 DM0 ID5 ID1 ID29 ID25 ID61 ID57  
DM1 DM0 ID6 ID2 ID30 ID26 ID62 ID58  
DM1 DM0 ID7 ID3 ID31 ID27 ID63 ID59  
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
SO (IO1)  
WP (IO2)  
HOLD (IO3)  
Byte 0  
Byte 3  
ID data  
Byte 7  
Opc.  
(9Fh)  
DMY Cycles  
Figure 89  
Read device ID (RDID) in QPI mode  
Datasheet  
79 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.7.2  
Read Unique ID (RUID, 4Ch)  
The CY15x108QSN device can be interrogated for unique ID which is a factory programmed, 64-bit number unique  
to each device. The RUID opcode, 4Ch allows to read the 8-byte, read only unique ID.  
Notes  
• The dummy cycles shown are a configuration option through register latency code bits (RLC0, RLC1) in CR5.  
• RUID data preference - LSb shifts out first, MSb shifts out last. No wrap is allowed for the RDID command. After  
the 8th byte, if the host continues to clock, the device will return undefined data byte(s).  
• The unique ID registers guarantee to retain user data up to three cycles of standard reflow soldering.  
CS  
SCK  
SI (IO0)  
X
0
1
0
0
1
1
0
0
DM7 DM6  
DM1 DM0  
X
hi-Z  
hi-Z  
SO (IO1)  
ID7 ID6  
ID1 ID0 ID15 ID14  
ID9 ID8  
ID63 ID62  
ID57 ID56  
Byte0  
Byte 1  
Byte7  
Opcode (4Ch)  
Dummy Byte  
Unique ID  
Figure 90  
Read unique ID in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
SI (IO0)  
1
0
0
0
1
1
0
0
DM7 DM6  
DM1 DM0 ID6  
DM1 DM0 ID7  
ID0 Sn14
ID1 ID15
ID8  
ID62 ID56  
hi-Z  
SO (IO1)  
DM7 DM6  
ID9  
ID63 ID57  
Byte 0  
Byte 7  
Byte 7  
Opcode (4Ch)  
Dummy Cycles  
Unique ID  
Figure 91  
Read unique ID in DPI mode  
CS  
SCK  
hi-Z  
hi-Z  
0
0
1
0
0
0
1
1
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM1 DM0 ID4 ID0 ID28 ID24 ID60 ID56  
DM1 DM0 ID5 ID1 ID29 ID25 ID61 ID57  
DM1 DM0 ID6 ID2 ID30 ID26 ID62 ID58  
DM1 DM0 ID7 ID3 ID31 ID27 ID63 ID59  
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
SO (IO1)  
WP (IO2)  
HOLD (IO3)  
Byte 0  
Byte 7  
Opc.  
(4Ch)  
DMY Cycles  
Unique ID  
Figure 92  
Read unique ID in QPI mode  
Datasheet  
80 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.7.3  
Write Serial Number (WRSN, C2h)  
The serial number is an 8-byte programmable memory space provided to the user to uniquely identify a PC board  
or a system. A serial number typically consists of a two byte customer ID, followed by five bytes of unique serial  
number and one byte of CRC check. However, end application can define their own format for 8-byte serial  
number. All writes to the serial number register begin with a WREN opcode with CS being asserted and  
de-asserted. The next opcode is WRSN. The WRSN instruction can be used in burst mode to write all the 8 bytes  
of serial number. After the last byte of serial number is shifted in, CS must be driven HIGH to complete the WRSN  
operation.  
Notes  
• The WRSN instruction can only be executed by the device if the write enable latch (WEL) in the status register  
is set to ‘1’ to enable write operations. When the WRSN operation is completed, the write enable latch (WEL) is  
reset to a ‘0.  
• WRSN data preference - LSb shifts in first, MSb shifts in last.  
• The CRC checksum on the 7-byte ID is not calculated by the device. The system firmware must calculate the  
CRC checksum and append the checksum to the 7-byte user defined serial number before programming the  
entire 8-byte serial number into the serial number register. Factory default value for the 8-byte serial number  
is ‘0x0000000000000000.  
• The WEL bit is automatically cleared to ‘0’ after WRSN command is terminated (at the rising edge of CS).  
• Exactly 8 bytes must be entered, otherwise the serial number write (WRSN) will not execute.  
Table 56  
8-Byte serial number  
16-bit customer identifier  
SN[63:56] SN[55:48]  
40-bit unique number  
8-bit CRC  
SN[47:40]  
SN[39:32]  
SN[31:24]  
SN[23:16]  
SN[15:8]  
SN[7:0]  
CS  
SCK  
1
1
0
0
0
0
1
0
SN7 SN6 SN1 SN0 SN7 SN6 SN1 SN0  
SN7 SN6 SN1 SN0  
X
X
SI (IO0)  
Byte 0  
Byte 7  
hi-Z  
hi-Z  
SO (IO1)  
Opcode (C2h)  
SN write data  
Figure 93  
Write serial number in SPI mode (WREN not shown)  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
1
1
0
0
0
0
0
1
SN6
SN0 SN6 
SN1 SN7 
SN0  
SN1  
SN6
SN0  
SN1  
SI (IO0)  
hi-Z  
SN7
SN7
SO (IO1)  
Byte 0  
Byte 7  
Opcode (C2h)  
SN write data  
Figure 94  
Write serial number in DPI mode (WREN not shown)  
Datasheet  
81 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
0
0
1
0
0
SN4 SN0  
SN5 SN1  
SN6 SN2  
SN12 SN8  
SN13 SN9  
SN14 SN 10  
SN15 SN 11  
SN60 SN56  
SN61 SN57  
SN62 SN58  
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
0
SO (IO1)  
1
1
WP (IO2)  
SN7 SN3  
SN63 SN59  
RESET (IO3)  
Byte 0  
Byte 7  
Opc.  
(C2h)  
SN write data  
Figure 95  
Write serial number in QPI mode (WREN not shown)  
5.1.7.4  
Read Serial Number (RDSN, C3h)  
The CY15x108QSN device incorporates an 8-byte serial space provided to the user to uniquely identify the device.  
The serial number is read using the RDSN instruction. A serial number read may be performed in burst mode to  
read all the eight bytes at once. After the last byte of serial number is read, the host must stop clocking and drive  
the CS HIGH to terminate the RDSN command. An RDSN instruction can be issued by shifting the opcode for RDSN  
after CS goes LOW.  
Notes  
• The dummy cycles shown are a configuration option through register latency code bits (RLC0, RLC1) in CR5.  
• LSb shifts out first, MSb shifts out last. If the host continues clocking after 8th byte, the device may return  
undefined data byte/s.  
CS  
SCK  
SI (IO0)  
1
1
0
0
0
0
1
1
DM7 DM6  
DM1 DM0  
X
X
hi-Z  
hi-Z  
SO (IO1)  
SN7 SN6  
SN1 SN0 SN15 SN14  
SN9 SN8  
SN63 SN62  
SN57 SN56  
Byte 0  
Byte 1  
Byte 7  
Opcode (C3h)  
Dummy Byte  
SN read data  
Figure 96  
Read serial number (RDSN) in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
SI (IO0)  
1
1
0
0
0
0
1
1
DM7 DM6  
DM7 DM6  
DM1 DM0 SN 6 SN 0 SN14 SN 8  
DM1 DM0 SN 7 SN 1 SN15 SN 9  
SN62 SN56  
hi-Z  
hi-Z  
SO (IO1)  
SN63 SN57  
Byte 0  
Byte 7  
Byte 7  
Opcode (C3h)  
Dummy Cycles  
SN read data  
Figure 97  
Read serial number (RDSN) in DPI mode  
Datasheet  
82 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
0
0
1
1
1
1
0
0
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM7 DM6  
DM1 DM0 SN 4 SN 0 SN28 SN24 SN60 SN56  
DM1 DM0 SN 5 SN 1 SN29 SN25 SN61 SN57  
DM1 DM0 SN 6 SN 2 SN30 SN26 SN62 SN58  
DM1 DM0 SN 7 SN 3 SN31 SN27 SN63 SN59  
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
SO (IO1)  
WP (IO2)  
HOLD (IO3)  
Byte 0  
Byte 7  
Opc.  
(C3h)  
DMY Cycles  
SN read data  
Figure 98  
Read serial number (RDSN) in QPI mode  
5.1.8  
Low power modes and resets  
Table 57  
Command  
DPD  
Low Power Mode and Reset commands  
Opcode (Hex)  
Command description  
B9  
BA  
66  
99  
Deep power down - enters deep-power-down power mode  
Hibernate mode - enters hibernate power mode  
HBN  
RSTEN  
RST  
Reset enable - pre command to enable software reset  
Software reset - command to initiate software reset  
Table 58  
Low Power Mode and Reset command description  
SPI bus interface  
Data  
Latency  
(None)  
XIP  
transfer  
Opcode Address  
Max clock  
frequency  
(Hex)  
length  
Dual Quad Dual Quad  
Dummy Execute-  
SPI  
DPI QPI SDR DDR  
data data I/O  
I/O  
cycles  
NA  
in-place  
NA  
B9  
BA  
66  
99  
NA  
NA  
NA  
NA  
Yes  
Yes  
Yes  
Yes  
NA  
NA  
NA  
NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
Yes Yes Yes NA  
108 MHz  
108 MHz  
108 MHz  
108 MHz  
NA  
NA  
NA  
NA  
NA  
NA  
Datasheet  
83 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.8.1  
Deep Power-down Mode (DPD, B9h)  
The device enters deep power-down mode when the DPD opcode B9 is clocked in and a rising edge of CS is  
applied. When in deep power-down mode, the SCK and SI pins are ignored and SO goes to hi-Z, but the device  
continues to monitor the CS pin.  
A CS pulse-width of tCSDPD or hardware reset exits the DPD mode after tEXTDPD time. The CS pulse-width can be  
generated either by sending a dummy command cycle or toggling CS alone while SCK and I/Os are don’t care.  
The I/Os remain in hi-Z state during the wakeup from deep power-down. Refer to Figure 99 for DPD entry and  
Figure 102 for DPD exit timing.  
Notes  
• The timing details shown in Figure 99 are applicable as is in DPI and QPI modes.  
• CRC register (CRCR) and ECC registers (ECCDC and ADDRTRAP) will lose their content in the DPD mode and will  
return to their default values, 0x00.  
• The WEL bit (SR0[1]) status is not retained in the DPD mode. If the WEL status was before entering DPD, it will  
clear to after the DPD mode exits.  
Enters  
Deep-Power-Down Mode  
tENTDPD  
CS  
0
1
2
3
4
5
6
7
SCK  
SI  
1
0
1
1
1
0
0
1
hi-Z  
SO  
Opcode (B9h)  
Figure 99  
DPD entry in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
0
1
1
1
0
1
1
0
SI (IO0)  
hi-Z  
SO (IO1)  
Opcode (B9h)  
Figure 100  
Deep power-down mode operation in DPI mode  
Datasheet  
84 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
1
1
1
0
0
1
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
SO (IO1)  
0
WP (IO2)  
1
RESET (IO3)  
Opc.  
(B9h)  
Figure 101  
Deep power-down mode operation in QPI mode  
tEXTDPD  
tCSDPD  
CS  
0
1
2
SCK  
tSU  
X
I/Os  
Figure 102  
DPD exit in SPI mode  
Datasheet  
85 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
5.1.8.2  
Hibernate Mode (HBN, BAh)  
The device enters hibernate mode when the HBN opcode BAh is clocked in and a rising edge of CS is applied.  
When in hibernate mode, the SCK and SI pins are ignored and SO will be hi-Z, but the device continues to monitor  
the CS pin. On the next falling edge of CS, the device will return to normal operation within tEXTHIB time. The SO  
pin remains in a hi-Z state during the wakeup from hibernate period. The device does not necessarily respond to  
an opcode within the wakeup period. To exit the hibernate mode, the controller may send a “dummy” read, for  
example, and wait for the remaining tEXTHIB time.  
Notes  
• The timing details shown in the SPI mode timing diagram are applicable as is in the DPI and QPI modes.  
• Return from hibernate reloads all registers to their default POR values. Refer to Table 3 for details on registers  
default values after POR.  
Enters  
Hibernate Mode  
Recovers from  
Hibernate Mode  
tENTHIB  
tEXTHIB  
CS  
0
1
2
3
4
5
6
7
0
1
2
SCK  
tSU  
SI  
1
0
1
1
1
0
1
0
hi-Z  
SO  
Opcode (BAh)  
Figure 103  
Hibernate mode operation in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
0
1
1
0
1
0
1
SI (IO0)  
hi-Z  
hi-Z  
1
SO (IO1)  
Opcode (BAh)  
Figure 104  
Hibernate mode operation in DPI mode  
Datasheet  
86 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
1
1
0
1
0
1
SI (IO0)  
hi-Z  
hi-Z  
hi-Z  
SO (IO1)  
0
WP (IO2)  
1
RESET (IO3)  
Opc.  
(BAh)  
Figure 105  
Hibernate mode operation in QPI mode  
5.1.8.3  
Software Reset  
The software reset operation combines two instructions: reset-enable (RSTEN) instruction followed by a reset  
(RST) instruction. It resets the whole device and makes it ready to receive instructions only after tSRESET time.  
Notes  
• Any instruction other than RST following the RSTEN instruction will clear the reset enable condition and prevent  
a later RST instruction from being recognized.  
• During software reset, only RDSR1 and RDAR (to access RDSR1) commands are supported. Other commands  
will be ignored.  
• The timing details shown in the SPI mode timing diagram are applicable as is in the DPI and QPI modes.  
Software reset  
starts  
tSRESET  
tCS  
CS  
SCK  
hi-Z  
SI(IO0)  
0
1
1
0
0
1
1
0
1
0
0
1
1
0
0
1
X
X
X
X
hi-Z  
Opcod(e66h)  
hi-Z  
Opcod(e99h)  
SO(IO1)  
Figure 106  
Software reset timing in SPI mode  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
SI (IO0)  
1
0
0
1
1
0
0
1
0
1
0
0
1
1
0
hi-Z  
SO (IO1)  
1
Opcode (66h)  
Opcode (99h)  
Figure 107  
Software reset timing in DPI mode  
Datasheet  
87 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
CS  
SCK  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
hi-Z  
SI (IO0)  
SO (IO1)  
0
1
1
0
0
1
1
0
1
0
0
1
1
0
0
1
WP (IO2)  
RESET (IO3)  
Opc.  
(66h)  
Opc.  
(99h)  
Figure 108  
Software reset timing in QPI mode  
5.1.8.4  
Hardware Reset (RESET)  
The hardware reset input (RESET) is multiplexed on (RESET / (I/O3) and is an active LOW signal in CY15x108QSN  
device. Refer to Table 21 for hardware reset (RESET) pin configurations across various SPI interfaces. When  
RESET is pulled LOW, CY15x108QSN self initializes and brings its configuration back to the power up status. Refer  
to Table 59 for different registers configuration after RESET cycle. Once RESET is issued, CY15x108QSN takes  
tRPH/tHRESET time from RESET rising edge to complete the reset cycle. CY15x108QSN becomes inaccessible during  
tRPH time. Figure 109 and Figure 110 show the RESET timings in different reset mode.  
Notes  
• The RESET pin is multiplexed on I/O3 in the QPI mode. When using the hardware (RESET) in QPI mode, the CR2  
[5] bit must be set to ‘1’ to enable to use I/O3 as RESET input when CS is HIGH. Figure 109 shows the RESET /  
(I/O3) timing in QPI mode.  
• QUAD bit CR1 [1] in configuration register 1 must be set to ‘0’ to enable the hardware reset feature on the RESET  
pin.  
• In a shared bus configuration in QPI mode, if the RESET function is enabled, the device will reset every time  
(RESET / (I/O3)) toggles due to any ongoing communication between the master another QSPI slave on the same  
bus. Hence, it is recommended to disable RESET pin functionality in a shared bus configuration.  
CS  
tRS  
tRP  
tRPH/tHRESET  
RESET  
Figure 109  
RESET timing - SPI with QUAD set (CR1[1] = 1) or QPI enabled (CR2[6] = 1)  
Datasheet  
88 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
Don’t Care  
CS  
tRP  
tRP  
tRPH/tHRESET  
tRPH/tHRESET  
New  
Reset  
RESET  
Reset  
Figure 110  
RESET timing - SPI with QUAD clear (CR1[1] = 0) and QPI disabled (CR2[6] = 0)  
5.1.8.4.1 JEDEC SPI reset  
JEDEC SPI reset is a signaling protocol which initiates a hardware reset independent of the device’s operating I/O  
mode. It brings the device to its default mode as selected in the status and configuration registers. Table 59  
shows the device status after the default recovery is initiated.  
The default recovery steps are as follows:  
1. CS toggles active LOW to select the SPI slave.  
2. SCK remains stable either in a HIGH or in a LOW state.  
3. SI (I/O0) toggles HIGH to LOW, simultaneously with CS going LOW. Other I/Os (I/O1, I/O2, and I/O3) remain don’t  
care.  
4. CS is driven HIGH while I/O0 remain LOW.  
5. Repeat the above steps 1 to 4 each time alternating the state of SI (I/O0) at the falling edge of CS for a total of  
four times.  
6. Reset occurs after the 4th CS goes HIGH (inactive).  
Figure 111 illustrates the timing details.  
Start next valid access  
tCSH_R  
tCSL  
tHRESET  
CS  
SCK @ ‘1’ - Mode 3  
SCK @ ‘0’ - Mode 0  
SCK  
SI (IO0)  
SO (IO1)  
tHD_R  
tSU  
hi-Z  
Figure 111  
JEDEC SPI reset  
Datasheet  
89 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Functional description  
Table 59  
Status of registers after various types of reset  
Status  
Registers  
(SRx)  
Configuration  
Register  
ECC Count ADDR Trap  
Reset  
I/O  
ECC  
I/O  
CRC reg  
Reg  
Reg  
function  
requirements  
status  
modes  
(CRx)  
(ECCDC)  
(ADDTRAP)  
CS = 1  
Other inputs -  
ignored  
SR1 - Load  
default  
CR1, CR2, CR4,  
CR5  
Power-on  
reset  
Load -  
0x00  
Load -  
0x00  
No  
values  
Load - 0x00 Load - 0x00  
Load - 0x00 Load - 0x00  
Load default  
values  
change  
All outputs -  
tristated  
SR2 - 0x00  
CS = 1  
Other inputs -  
ignored  
SR1 - Load  
default  
CR1, CR2, CR4,  
CR5  
Hardware  
reset  
Load -  
0x00  
Load -  
0x00  
No  
values  
Load default  
values  
change  
All outputs -  
tristated  
SR2 - 0x00  
SR1 - No  
change  
except the  
WEL bit  
Software  
reset  
Instruction  
CR1, CR2, CR4,  
Load -  
0x00  
Load -  
0x00  
No  
which will  
clearto0if  
set ‘1.  
Load - 0x00 Load - 0x00  
Load - 0x00 Load - 0x00  
(RSTEN, RST)  
CR5 - No change  
change  
SR2 - 0x00  
CS and SI (IO0) =  
Toggle  
SR1 - Load  
default  
JEDEC  
reset  
CR1, CR2, CR4,  
CR5  
Other inputs -  
Ignored  
Load -  
0x00  
Load -  
0x00  
No  
values  
(default  
recovery)  
Load default  
values  
change  
All outputs -  
tristated  
SR2 - 0x00  
The SPI host can issue hardware RESET or JEDEC SPI reset if CY15x108QSN goes into an undefined state and stops  
responding to any SPI command. The CY15x108QSN enters into an internal test mode or any undefined mode  
either due to wrong opcode or any glitch on the SPI signals which can internally cause latching of a wrong opcode,  
or part didn’t boot up successfully (keep showing busy status WIP = 1 after tPU).  
Note ECC (ECCDC and ADDRTRAP) registers lose their content while in DPD and return to their default values 0x00  
for ECC registers. Return from hibernate reloads all registers to their default values at power up as shown in  
Table 3.  
Datasheet  
90 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Electrical characteristics  
6
Electrical characteristics  
6.1  
Maximum ratings  
Exceeding the maximum ratings may impair the useful life of the device. User guidelines are not tested.  
Storage temperature  
–65 °C to +125 °C  
Maximum accumulated storage time  
At 125 °C ambient temperature  
1000 h  
10 Years  
125 °C  
At 85°C ambient temperature  
Maximum junction temperature  
Supply voltage on V relative to V  
:
SS  
DD  
CY15V108QSN  
CY15B108QSN  
–0.5 V to +2.4 V  
–0.5 V to +4.1 V  
Input voltage  
V V + 0.5 V  
IN DD  
DC voltage applied to outputs in High-Z state  
–0.5 V to V + 0.5 V  
DD  
Transient voltage (< 20 ns) on any pin to ground potential  
–2.0 V to V + 2.0 V  
DD  
Package power dissipation capability (T = 25°C)  
1.0 W  
A
Surface mount lead soldering temperature (3 seconds)  
DC output current (1 output at a time, 1s duration)  
+260°C  
15 mA  
Electrostatic discharge voltage  
human body model (JEDEC Std JESD22-A114-B)  
2 kV  
Charged device model (JEDEC Std JESD22-C101-A)  
Latch-up current  
500 V  
>140 mA  
6.2  
Operating range  
Table 60  
Operating range  
Device  
Ambient temperature  
V
DD  
CY15V108QSN  
CY15B108QSN  
1.71 V to 1.89 V  
1.8 V to 3.6 V  
Industrial,  
–40 °C to +85 °C  
Datasheet  
91 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Electrical characteristics  
6.3  
DC electrical characteristics  
Table 61  
DC electrical characteristics  
Over the Operating range  
[15]  
Parameter  
Description  
Test conditions  
CY15V108QSN  
CY15B108QSN  
= 1.71 V to 1.89 V; SCK  
Min  
1.71  
1.8  
Max  
1.89  
3.6  
Unit  
V
Typ  
1.8  
V
Power supply  
DD  
3.0  
6
V
V
f
f
f
f
= 50 MHz  
= 108 MHz  
= 50 MHz  
= 108 MHz  
7.5  
mA  
DD  
SCK  
SCK  
SCK  
SCK  
toggling between V  
DD  
0.2 V and V , other  
SS  
inputs  
12  
7
14.5  
8.5  
16  
mA  
mA  
mA  
V
or V – 0.2 V.  
DD  
SS  
No output loads.  
V
supply current in  
DD  
I
DD1  
SPI SDR mode  
V
= 1.8 V to 3.6 V;  
DD  
SCK toggling between  
– 0.2 V and V , other  
V
DD  
SS  
inputs  
or V – 0.2 V.  
13  
V
SS  
DD  
No output loads.  
V
= 1.71 V to 1.89 V; SCK  
DD  
toggling between V  
DD  
0.2 V and V , other  
SS  
f
f
f
f
f
f
= 108 MHz  
= 108 MHz  
= 108 MHz  
= 108 MHz  
= 46 MHz  
= 46 MHz  
14.5  
16  
18  
19.5  
24.5  
27.5  
19  
mA  
mA  
mA  
mA  
mA  
mA  
SCK  
SCK  
SCK  
SCK  
SCK  
SCK  
inputs  
V
or V – 0.2 V.  
DD  
SS  
No output loads.  
VDD supply current in  
DPI SDR mode  
I
DD2  
V
= 1.8 V to 3.6 V;  
DD  
SCK toggling between  
– 0.2 V and V , other  
V
DD  
SS  
inputs  
or V – 0.2 V.  
V
SS  
DD  
No output loads.  
V
= 1.71 V to 1.89 V; SCK  
DD  
toggling between V  
DD  
0.2 V and V , other  
SS  
20  
inputs  
V
or V – 0.2 V.  
DD  
SS  
No output loads.  
V
supply current in  
DD  
QPI SDR mode  
V
= 1.8 V to 3.6 V;  
DD  
SCK toggling between  
– 0.2 V and V , other  
V
DD  
SS  
21.5  
15.5  
16.5  
inputs  
or V – 0.2 V.  
V
SS  
DD  
No output loads.  
I
DD3  
V
= 1.71 V to 1.89 V; SCK  
DD  
toggling between V  
DD  
0.2 V and V , other  
SS  
inputs  
V
or V – 0.2 V.  
DD  
SS  
No output loads.  
V
supply current in  
DD  
QPI DDR mode  
V
= 1.8 V to 3.6 V;  
DD  
SCK toggling between  
– 0.2 V and V , other  
V
DD  
SS  
21  
inputs  
or V – 0.2 V.  
V
SS  
DD  
No output loads.  
Note  
15. Typical values are at 25 °C, V = V (Typ). Not 100% tested.  
DD  
DD  
Datasheet  
92 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Electrical characteristics  
Table 61  
DC electrical characteristics (continued)  
Over the Operating range  
[15]  
Parameter  
Description  
Test conditions  
= 1.71 V to 1.89 V; CS T = 25 °C  
Min  
Max  
Unit  
Typ  
105  
V
µA  
DD  
A
= V . All other inputs V  
DD  
SS  
T = 85 °C  
295  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
A
or V  
.
DD  
I
I
I
V
standby current  
DD  
SB  
V
= 1.8 V to 3.6 V;  
T = 25 °C  
195  
DD  
A
CS = V . All other inputs  
DD  
T = 85 °C  
435  
A
V
or V .  
SS  
DD  
V
= 1.71 V to 1.89 V; CS T = 25 °C  
0.9  
DD  
A
= V . All other inputs V  
DD  
SS  
T = 85 °C  
17.2  
A
or V  
.
Deep power-down  
current  
DD  
DPD  
HBN  
V
= 1.8 V to 3.6 V;  
T = 25 °C  
1.0  
DD  
A
CS = V . All other inputs  
DD  
T = 85 °C  
18.5  
A
V
or V .  
SS  
DD  
V
= 1.71 V to 1.89 V; CS T = 25 °C  
0.1  
DD  
A
= V . All other inputs V  
DD  
SS  
T = °C  
0.9  
A
or V  
.
Hibernate mode  
current  
DD  
V
= 1.8 V to 3.6 V;  
T = 25 °C  
0.1  
DD  
A
CS = V . All other inputs  
DD  
T = °C  
1.6  
A
V
or V .  
SS  
DD  
Input leakage current  
on I/O pins  
–1  
–100  
–1  
1
1
1
µA  
µA  
µA  
Input leakage current  
on WP and RESET  
(when I/O2 and I/O3  
functions disabled)  
I
I
V
< V < V  
IN DD  
LI  
SS  
Output leakage  
current  
V
< V  
< V  
OUT DD  
LO  
SS  
V
V
V
V
V
V
Input HIGH voltage  
Input LOW voltage  
Output HIGH voltage  
Output HIGH voltage  
Output LOW voltage  
Output LOW voltage  
I
0.7 × V  
–0.3  
2.4  
V + 0.3  
DD  
V
V
V
V
V
V
IH  
DD  
0.3 × V  
IL  
DD  
= –1 mA, V = 2.7 V.  
OH1  
OH2  
OL1  
OL2  
OH  
OH  
OL  
OL  
DD  
I
I
I
= –100 µA  
V
– 0.2  
DD  
= 2 mA, V = 2.7 V  
0.4  
0.2  
DD  
= 150 µA  
Note  
15. Typical values are at 25 °C, V = V (Typ). Not 100% tested.  
DD  
DD  
Datasheet  
93 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Electrical characteristics  
6.4  
Data retention and endurance  
Table 62  
Data retention and endurance  
Parameter  
Description  
Test conditions  
Min  
10  
Max  
Unit  
Years  
Years  
Years  
Cycles  
T = 85 C  
A
T = 75 C  
38  
A
T
Data retention  
DR  
T = 65 C  
151  
A
14  
NV  
Endurance  
Over operating temperature  
10  
C
6.5  
Capacitance  
Table 63  
Parameter  
Capacitance  
[16]  
Description  
Test conditions  
T = 25 °C, f = 1 MHz, V = V (typ)  
Max  
Unit  
pF  
C
C
Output pin capacitance (SO)  
Input pin capacitance  
6
5
O
I
A
DD  
DD  
pF  
6.6  
Thermal resistance  
Table 64  
Parameter  
Thermal resistance  
[16]  
Description  
Test conditions  
24-ball FBGA Unit  
Thermal resistance  
46.4  
31.7  
°C/W  
°C/W  
Test conditions follow standard test methods  
and procedures for measuring thermal  
impedance, per EIA/JESD51.  
JA  
(junction to ambient)  
Thermal resistance  
(junction to case)  
JC  
Datasheet  
94 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Electrical characteristics  
6.7  
AC test conditions  
Table 65  
AC test conditions  
Value  
Parameter  
CY15V108QSN  
0 V to V  
CY15B108QSN  
0 V to V  
Input pulse levels (0 V to V  
)
DD  
DD  
DD  
Input rise and fall times (10% to 90%)  
Input timing reference voltages  
1.8 ns  
0.3 × V to 0.7 × V  
2.0 ns  
0.3 × V to 0.7 × V  
DD  
DD  
DD  
DD  
Output timing reference voltages (V )  
V
/2  
V /2  
DD  
T
DD  
Load capacitance (C )  
30 pF  
30 pF  
L
All I/Os in hi-Z state  
All I/Os in output state except hi-Z  
VT = VDD/2  
50 Ω  
Output  
Output  
30pF  
5pF  
Figure 112  
Figure 113  
AC test loads  
VDD  
Input levels  
0V  
0.7VDD  
0.3VDD  
Input timing  
reference levels  
AC timing input voltage reference levels  
Note  
16. This parameter is guaranteed by characterization; not tested in production.  
Datasheet  
95 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Electrical characteristics  
6.8  
SDR AC switching characteristics  
Table 66  
SDR AC switching characteristics  
[17]  
Parameters  
Description  
Min  
Max  
Unit  
Alt.  
Parameter  
Parameter  
f
t
SCK clock frequency  
Clock HIGH time  
Clock LOW time  
0
108  
MHz  
ns  
SCK  
t
0.45 × 1/f  
CH  
SCK  
t
0.45 × 1/f  
ns  
CL  
SCK  
t
Chip select (CS) setup time  
5
4
9
ns  
CSS  
CSU  
CSH  
t
t
Chip select (CS) hold time - SPI mode 0  
Chip select (CS) hold time - SPI mode 3  
Output disable time - CY15B108QSN  
Output disable time - CY15V108QSN  
ns  
CSH  
t
ns  
CSH1  
10  
11  
ns  
18 19  
[ ]  
,
t
t
HZCS  
OD  
ns  
Output data valid time with 15-pF load (Output driver  
set to 45 . Over the Operating range.)  
7
ns  
Clock low to output valid – 15-pF load (Output driver  
set to 45 .  
6.7  
ns  
For V = 2.7 V to 3.6 V; over the Operating range.)  
DD  
t
t
CO  
Clock low to output valid – 30-pF load (Output driver  
set to 45 .  
7
ns  
For V = 2.7 V to 3.6 V; over the Operating range.)  
DD  
Clock low to output valid – 30-pF load (Output driver  
set to default 30 . Over the Operating range.)  
1
7
ns  
ns  
Output hold time  
OH  
Chip deselect (CS HIGH) time before the command  
cycle in SPI mode; all accesses (memory array and  
registers)  
40  
105  
70  
ns  
ns  
ns  
ns  
ns  
Chip deselect (CS HIGH) time before the command  
cycle in DPI mode; all accesses except memory array  
access  
Chip deselect (CS HIGH) time before the command  
cycle in DPI mode (including dual mode in extended  
SPI); memory array access (non XIP mode)  
20  
[
]
t
t
D
CS  
Chip deselect (CS HIGH) time before the command  
cycle in DPI mode (including dual mode in extended  
SPI); memory array access (XIP mode)  
105  
145  
Chip deselect (CS HIGH) time before the command  
cycle in QPI mode; all accesses except memory array  
access  
Notes  
17. These parameters are tested per “AC test conditions” on page 95.  
18. t and t are specified with a load capacitance of 5 pF. Transition is measured when the outputs enter a high  
OD  
HZ  
impedance state.  
19. Characterized but not 100% tested in production.  
20. t is the minimum chip deselect (CS HIGH) time before the new command cycle starts in a specific SPI mode (SPI, DPI,  
CS  
or QPI). This parameter ensures that previous operation is successfully completed before the host starts a new  
command cycle. Refer to Figure 116.  
21. Guaranteed by design.  
Datasheet  
96 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Electrical characteristics  
Table 66  
SDR AC switching characteristics (continued)  
[17]  
Parameters  
Description  
Min  
Max  
Unit  
Alt.  
Parameter  
Parameter  
Chip deselect (CS HIGH) time before the command  
cycle in QPI mode (including quad mode in extended  
SPI); memory array access (non XIP mode)  
125  
145  
ns  
ns  
20  
]
[
t
t
CS  
D
Chip deselect (CS HIGH) time before the command  
cycle in QPI mode (including quad mode in extended  
SPI); memory array access (XIP mode)  
t
t
t
t
t
t
t
t
Data in setup time (with respect to SCK)  
Data in hold time (with respect to SCK)  
Clock Low to Output low-Z  
2
3
ns  
ns  
ns  
ms  
µs  
µs  
SD  
SU  
H
HD  
CLZ  
21  
[
]
0
CRC calculation time (100 µs + (0.8 µs/byte of data))  
CS high to CRC calculation suspends  
CS high to CRC calculation resumes  
0.10  
440  
100  
100  
CRCC  
CRCS  
CRCR  
Notes  
17. These parameters are tested per “AC test conditions” on page 95.  
18. t and t are specified with a load capacitance of 5 pF. Transition is measured when the outputs enter a high  
OD  
HZ  
impedance state.  
19. Characterized but not 100% tested in production.  
20. t is the minimum chip deselect (CS HIGH) time before the new command cycle starts in a specific SPI mode (SPI, DPI,  
CS  
or QPI). This parameter ensures that previous operation is successfully completed before the host starts a new  
command cycle. Refer to Figure 116.  
21. Guaranteed by design.  
tCS  
CS  
tCSS  
tCH  
tCL  
tCSH1  
tCSH  
Mode 3  
Mode 0  
SCK  
SI  
tSD  
tHD  
X
X
VALID DATA IN  
tCO  
tOH  
tHZCS  
tCLZ  
Hi-Z  
Hi-Z  
SO  
X
DATA OUT  
X
Figure 114  
SPI switching timing - single IO, SDR (Mode 0 and Mode 3)  
tCS  
CS  
tCSS  
tCH  
tCL  
tCSH1  
tCSH  
Mode 3  
Mode 0  
tCO  
SCK  
IO  
tCLZ  
tSD  
tHD  
tOH  
tHZCS  
Hi-Z  
X
VALID DATA IN  
X
X
DATA OUT  
X
Figure 115  
SPI switching timing - multiple I/O, SDR (Mode 0 and Mode 3)  
Datasheet  
97 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Electrical characteristics  
tCS  
CS  
SCK  
new command cycle  
previous command cycle  
I/Os  
Figure 116  
Chip deselect (CS HIGH) - tCS timing  
Datasheet  
98 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Electrical characteristics  
6.9  
DDR AC switching characteristics  
Table 67  
DDR AC switching characteristics  
Over the Operating range  
[22]  
Parameters  
Description  
SCK clock frequency  
Min  
Max  
Unit  
Alt.  
Parameter  
Parameter  
f
t
0
46  
MHz  
ns  
SCK  
t
t
t
t
Clock HIGH time  
0.45 × 1/f  
CH  
SCK  
Clock LOW time  
0.45 × 1/f  
ns  
CL  
SCK  
Chip select (CS) setup time  
Chip select (CS) hold time  
CY15B108QSN  
5
5
ns  
CSS  
CSH  
CSU  
t
ns  
CSH  
23 24  
]
10  
11  
ns  
[
,
t
t
HZCS  
OD  
CY15V108QSN  
ns  
Output data valid time with 15-pF load  
(Output driver set to 45 .  
1
7
ns  
ns  
Over the Operating range)  
Clock low to output valid – 15-pF load  
(Output driver set to 45 .  
1
6.7  
For V = 2.7 V to 3.6 V;  
DD  
over the Operating range)  
t
t
t
t
CO  
Clock low to output valid – 30-pF load  
(Output driver set to 45 .  
1
7
ns  
For V = 2.7 V to 3.6 V;  
DD  
over the Operating range)  
Clock low to output valid – 30-pF load  
(Output driver set to default 30 .  
Over the Operating range)  
1
1
7
ns  
ns  
ns  
Output hold time  
OH  
Chip deselect (CS HIGH) time before the  
command cycle in SPI mode; all accesses  
(memory array and registers)  
105  
Chip deselect (CS HIGH) time before the  
command cycle in QPI mode; all accesses  
except memory array access  
145  
125  
ns  
ns  
[25]  
Chip deselect (CS HIGH) time before the  
command cycle in QPI mode (including  
quad mode in extended SPI); memory  
array access (non XIP mode)  
t
t
CS  
D
Chip deselect (CS HIGH) time before the  
command cycle in QPI mode (including  
quad mode in extended SPI); memory  
array access (XIP mode)  
145  
4
ns  
ns  
Data in setup time (with respect to SCK)  
SD  
SU  
Notes  
22. These parameters are tested per “AC test conditions” on page 95.  
23. t and t are specified with a load capacitance of 5 pF. Transition is measured when the outputs enter a high  
OD  
HZ  
impedance state.  
24. Characterized but not 100% tested in production.  
25. t is the minimum chip deselect (CS HIGH) time before the new command cycle starts in a specific SPI mode (SPI or  
CS  
QPI). This parameter ensures that previous operation is successfully completed before the host starts a new command  
cycle. Refer to Figure 116.  
26. Guaranteed by design.  
Datasheet  
99 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Electrical characteristics  
Table 67  
DDR AC switching characteristics (continued)  
Over the Operating range  
[22]  
Parameters  
Description  
Min  
Max  
Unit  
Alt.  
Parameter  
Parameter  
t
t
t
Data in hold time (with respect to SCK)  
Clock low to output low-Z  
4
0
ns  
ns  
HD  
H
[26]  
CLZ  
Notes  
22. These parameters are tested per “AC test conditions” on page 95.  
23. t and t are specified with a load capacitance of 5 pF. Transition is measured when the outputs enter a high  
OD  
HZ  
impedance state.  
24. Characterized but not 100% tested in production.  
25. t is the minimum chip deselect (CS HIGH) time before the new command cycle starts in a specific SPI mode (SPI or  
CS  
QPI). This parameter ensures that previous operation is successfully completed before the host starts a new command  
cycle. Refer to Figure 116.  
26. Guaranteed by design.  
tCS  
CS  
tCSS  
tCH  
tCL  
tCSH  
SCK  
SI  
tSD tHD tSD tHD  
tSD tHD  
DATA IN  
X
DATA IN  
X
DATA1 IN  
tCO  
tCO  
tCLZ  
tHZCS  
tOH  
hi-Z  
hi-Z  
SO  
X
DATA OUT DATA OUT  
X
Figure 117  
SPI switching timing - single I/O, DDR  
tCS  
CS  
tCSS  
tCH  
tCL  
tCSH  
SCK  
tCO  
tCO  
tSD tHD  
tSD tHD  
DATA IN  
tSD tHD  
DATA IN  
tHZCS  
tOH  
hi-Z  
IO  
X
X
X
DATA OUT DATA OUT  
DATA1 IN  
X
Figure 118  
SPI switching timing - multiple I/O, DDR[27]  
Note  
27. The DDR mode input timing, capturing data input on both the clock edge, is applicable to address and data input cycles  
only. The DDR opcodes are always transmitted in SDR mode during the opcode cycle.  
Datasheet  
100 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Electrical characteristics  
6.10  
Write protect (WP) timing parameters  
Table 68  
Write protect (WP) timing parameters  
Over the Operating range  
[28]  
Parameters  
Description  
Min  
Max  
Unit  
Parameter  
Alt. Parameter  
t
t
WP setup time (with respect to CS)  
WP hold time (with respect to CS)  
20  
20  
ns  
ns  
WPS  
WPH  
SW  
HW  
t
t
tWPS  
tWPH  
CS  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
SCK  
SI  
0
0
0
0
0
0
0
1
D7 D6 D5 D4 D3 D2 D1 D0  
MSb LSb  
hi-Z  
SO  
Opcode (01h)  
Write Data  
Figure 119  
Write protect setup and hold timing  
6.11  
Reset (RESET) timing parameters  
Table 69  
Reset (RESET) timing parameters  
Over the Operating range  
[
]
28  
Parameters  
Description  
Hardware RESET setup time  
Min  
Max  
Unit  
Alt.  
Parameter  
Parameter  
t
t
t
t
t
t
t
50  
450  
200  
ns  
µs  
ns  
µs  
µs  
ns  
ns  
RS  
tRHSL, tRH  
Hardware RESET hold time  
Hardware RESET pulse width  
Hardware RESET time  
RPH  
t
RLRH  
RP  
450  
100  
HRESET  
SRESET  
CSL  
Software RESET time  
Chip select (CS) LOW time for JEDEC reset  
Chip select (CS) HIGH time for JEDEC reset  
500  
500  
CSH_R  
SI (I/O0) setup time (with respect to CS HIGH) for JEDEC  
reset  
t
5
5
ns  
ns  
SU  
SI (I/O0) hold time (with respect to CS HIGH) for JEDEC  
reset  
t
HD_R  
Note  
28. These parameters are tested per “AC test conditions” on page 95.  
Datasheet  
101 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Electrical characteristics  
6.12  
Power cycle timing  
Table 70  
Power cycle timing  
Over the Operating range  
[29]  
Parameter  
Description  
Min  
Max  
Unit  
Alt.  
Parameter  
Parameter  
t
t
t
Power-up V (min) to first access (CS LOW)  
450  
30  
µs  
PU  
DD  
30]  
30]  
[
V
V
power-up ramp rate  
µs/V  
µs/V  
DD  
DD  
VR  
[
power-down ramp rate  
20  
VF  
CS HIGH to enter deep power-down  
(CS HIGH to hibernate mode current)  
31]  
[
0.015  
3
µs  
µs  
µs  
t
t
t
t
DP  
ENTDPD  
[31]  
CS pulse width to wake up from deep power-down mode  
4 1/f  
CSDPD  
SCK  
Recovery time from deep power-down mode  
(CS LOW to ready for access)  
[32]  
13  
t
t
t
EXTDPD  
ENTHIB  
EXITHIB  
RDP  
HBN  
REC  
Time to enter hibernate  
(CS HIGH to hibernate mode current)  
3
µs  
µs  
t
t
Recovery time from hibernate mode  
(CS LOW to ready for access)  
[33]  
450  
V
t
(low)  
Low V where initialization must occur  
0.6  
130  
70  
V
DD  
DD  
V
V
(low) time when V (low) at 0.6 V  
µs  
µs  
DD  
DD  
DD  
PD  
(low) time when V (low) at V  
DD  
SS  
Notes  
29. These parameters are tested per “AC test conditions” on page 95.  
30. Slope measured at any point on the V waveform.  
DD  
31. Guaranteed by design. Refer to Figure 99 and Figure 102 for deep sleep mode timing.  
32. Guaranteed by design. Refer to Figure 103 for hibernate mode timing.  
33. This parameter is guaranteed by characterization; not tested in production.  
Datasheet  
102 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Electrical characteristics  
VDD  
VDD (max)  
VDD (min)  
Device Access  
tVR  
Allowed  
tPU  
Time  
VDD  
VDD (max)  
No Device Access  
Allowed  
VDD (min)  
Device Access  
Allowed  
tVF tVR  
tPU  
VDD (low)  
tPD  
Time  
Figure 120  
Power cycle timing  
Datasheet  
103 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Ordering information  
7
Ordering information  
Table 71  
Ordering information  
Ordering code  
Device ID  
Package diagram  
001-97209  
Package type  
24-ball FBGA  
24-ball FBGA  
Operating range  
Industrial  
CY15B108QSN-108BKXI  
CY15V108QSN-108BKXI  
0000000006825158  
0000000006805158  
001-97209  
Industrial  
All these parts are Pb-free. Contact your local Infineon sales representative for availability of these parts.  
7.1  
Ordering code definitions  
CY 15  
B
108 QS  
- 108 BK  
X
I
T
N
Options:  
Blank = Standard; T = Tape and reel  
Temperature range:  
I = Industrial (-40 °C to +85 °C)  
X = Pb-free  
Package type:  
BK = 24-ball FBGA  
Frequency:  
108 = 108 MHz  
N = No Inrush current control  
Interface:  
QS = Quad SPI F-RAM  
Density:  
108 = 8-Mbit  
Voltage:  
V = 1.71 V to 1.89 V (1.8 V typical)  
B = 1.8 V to 3.6 V (3.0 V typical)  
15 = F-RAM  
CY = CYPRESS™ (An Infineon company)  
Datasheet  
104 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Package diagram  
8
Package diagram  
TOP VIEW  
8.00 BSC  
BOTTOM VIEW  
4.00 BSC  
SIDE VIEW  
4.00 BSC  
6.00 BSC  
1.00 BSC  
Ø0.40 0.0ꢀ  
0.20 MIN  
PIN A1  
CORNER  
PIN A1  
CORNER  
1.20 MAX  
0.10  
C
NOTES:  
001-97209 *A  
1. REFERENCE JEDEC # MO-216  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
Figure 121  
24-pin FBGA (8 × 6 × 1.2 mm) package outline, 001-97209  
Datasheet  
105 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Acronyms  
9
Acronyms  
Table 72  
Acronyms used in this document  
Acronym  
Description  
CPHA  
CPOL  
CRC  
Clock phase  
Clock polarity  
Cyclic redundancy check  
Dual SPI  
DPI  
ECC  
Error correction code  
EEPROM  
EIA  
Electrically erasable programmable read-only memory  
Electronic Industries Alliance  
Ferroelectric random access memory  
Input/Output  
F-RAM  
I/O  
JEDEC  
JESD  
LSb  
Joint Electron Devices Engineering Council  
JEDEC standards  
Least significant bit  
MSb  
Most significant bit  
RoHS  
SPI  
Restriction of Hazardous Substances  
Serial peripheral interface  
SOIC  
Small outline integrated circuit  
Datasheet  
106 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Document conventions  
10  
Document conventions  
10.1  
Units of measure  
Table 73  
Symbol  
°C  
Units of measure  
Unit of measure  
degree Celsius  
hertz  
Hz  
kHz  
k  
kilohertz  
kilohm  
Mbit  
MHz  
µA  
megabit  
megahertz  
microampere  
microfarad  
microsecond  
milliampere  
millisecond  
nanosecond  
ohm  
µF  
µs  
mA  
ms  
ns  
%
percent  
pF  
picofarad  
volt  
V
W
watt  
Datasheet  
107 of 109  
002-30246 Rev. *D  
2022-05-25  
8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM)  
Serial (Quad SPI), 1024K × 8, 108MHz, industrial  
Revision history  
Revision history  
Document  
Date of release  
Description of changes  
version  
*D  
2022-05-25  
Publish to web.  
Datasheet  
108 of 109  
002-30246 Rev. *D  
2022-05-25  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
For further information on the product, technology,  
delivery terms and conditions and prices please  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
Edition 2022-05-25  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Do you have a question about this  
document?  
Go to www.infineon.com/support  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
002-30246 Rev. *D  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

CY15B128Q

128-Kbit (16K × 8) Automotive Serial (SPI) F-RAM
CYPRESS

CY15B128Q-SXA

128-Kbit (16K × 8) Automotive Serial (SPI) F-RAM
CYPRESS

CY15B128Q-SXAT

128-Kbit (16K × 8) Automotive Serial (SPI) F-RAM
CYPRESS

CY15B256J

256-Kbit (32K × 8) Automotive Serial (I2C) F-RAM
CYPRESS

CY15B256J-SXA

Memory Circuit, 32KX8, CMOS, PDSO8, SOIC-8
CYPRESS

CY15B256J-SXAT

256-Kbit (32K × 8) Automotive Serial (I2C) F-RAM
CYPRESS

CY15E004Q

4-Kbit (512 × 8) Serial (SPI) Automotive F-RAM
CYPRESS

CY15E004Q-SXE

4-Kbit (512 × 8) Serial (SPI) Automotive F-RAM
CYPRESS

CY15E004Q-SXET

4-Kbit (512 × 8) Serial (SPI) Automotive F-RAM
CYPRESS

CY15E016Q

16-Kbit (2K × 8) Serial (SPI) Automotive F-RAM
CYPRESS

CY15E016Q-SXE

16-Kbit (2K × 8) Serial (SPI) Automotive F-RAM
CYPRESS

CY15E016Q-SXET

16-Kbit (2K × 8) Serial (SPI) Automotive F-RAM
CYPRESS