CY22150FZXI [INFINEON]

6-Output Programmable Clock Generator;
CY22150FZXI
型号: CY22150FZXI
厂家: Infineon    Infineon
描述:

6-Output Programmable Clock Generator

时钟 光电二极管 外围集成电路 晶体
文件: 总24页 (文件大小:569K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
CY22150  
One-PLL General-Purpose  
Flash-Programmable  
and I2C Programmable Clock Generator  
One-PLL General-Purpose Flash-Programmable and I2  
C Programmable Clock Generator  
control. Parts can be reprogrammed up to 100 times, reducing  
inventory of custom parts and providing an easy method for  
upgrading existing designs.  
Features  
Integrated phase-locked loop (PLL)  
Commercial and industrial operation  
Flash programmable  
The CY22150 can be programmed at the package level.  
In-house programming of samples and prototype quantities is  
available using the CY3672 Development Kit. Production  
quantities are available through Cypress’s value added  
distribution partners or by using third party programmers from  
BP Microsystems™, HiLo Systems™, and others.  
Field programmable  
Two-wire I2C interface  
Low skew, low jitter, high accuracy outputs  
3.3 V operation with 2.5 V output option  
16-pin TSSOP  
The CY22150 provides an industry standard interface for  
volatile, system level customization of unique frequencies and  
options. Serial programming and reprogramming allows quick  
design changes and product enhancements, eliminates  
inventory of old design parts, and simplifies manufacturing.  
Benefits  
High performance suited for commercial, industrial,  
networking, telecom, and other general purpose applications.  
Internal PLL to generate six outputs up to 200 MHz. Able to  
generate custom frequencies from an external crystal or  
a driven source.  
Application compatibility in standard and low power systems.  
Industry standard packaging saves on board space.  
Performance guaranteed for applications that require an  
extended temperature range.  
Functional Description  
Nonvolatile reprogrammable technology allows easy  
customization, quick turnaround on design changes and  
product performance enhancements, and better inventory  
For a complete list of related documentation, click here.  
Selection Guide  
Part Number  
Outputs  
Input Frequency Range  
8 MHz to 30 MHz (external crystal) 80 kHz to 200 MHz (3.3 V)  
1 MHz to 133 MHz (driven clock) 80 kHz to 166.6 MHz (2.5 V)  
Output Frequency Range  
Specifications  
CY22150KFZXC  
6
Field programmable  
Serially programmable  
Commercial temperature  
CY22150KFZXI  
6
8 MHz to 30 MHz (external crystal) 80 kHz to 166.6 MHz (3.3 V)  
Field programmable  
Serially programmable  
Industrial temperature  
1 MHz to 133 MHz (driven clock)  
80 kHz to 150 MHz (2.5 V)  
Logic Block Diagram  
LCLK1  
LCLK2  
LCLK3  
LCKL4  
Divider  
Bank 1  
Crosspoint  
Switch  
Matrix  
XIN  
XOUT  
Q
OSC.  
VCO  
P
Divider  
Bank 2  
PLL  
CLK5  
CLK6  
SDA  
SCL  
I2C  
I2C  
Interface  
Control  
VDD VSS AVDD AVSS VDDL VSSL  
Cypress Semiconductor Corporation  
Document Number: 38-07104 Rev. *R  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised June 20, 2018  
CY22150  
Contents  
Pin Configuration .............................................................3  
Pin Definitions ..................................................................3  
Functional Overview ........................................................4  
Frequency Calculation and Register Definitions .........4  
Default Startup Condition for the CY22150 .................5  
Frequency Calculations and Register Definitions  
using the I2C Interface .......................................................5  
I2C Interface Timing ....................................................9  
Serial Bus specifications ...............................................11  
Applications ....................................................................12  
Controlling Jitter ........................................................12  
Test Circuit ......................................................................12  
Absolute Maximum Conditions .....................................13  
Recommended Operating Conditions ..........................13  
DC Electrical Characteristics ........................................14  
Device Characteristics ...................................................14  
AC Electrical Characteristics ........................................15  
Ordering Information ......................................................17  
Possible Configurations .............................................17  
Ordering Code Definitions .........................................17  
Package Diagram ............................................................18  
Acronyms ........................................................................19  
Document Conventions .................................................19  
Units of Measure .......................................................19  
Document History Page .................................................20  
Sales, Solutions, and Legal Information ......................23  
Worldwide Sales and Design Support .......................23  
Products ....................................................................23  
PSoC® Solutions ......................................................23  
Cypress Developer Community .................................23  
Technical Support .....................................................23  
Document Number: 38-07104 Rev. *R  
Page 2 of 23  
CY22150  
Pin Configuration  
Figure 1. 16-pin TSSOP pinout  
1
2
3
4
5
6
XIN  
VDD  
XOUT  
16  
15  
14  
13  
12  
CLK6  
CLK5  
VSS  
AVDD  
SDA  
AVSS  
VSSL  
LCLK4  
VDDL  
11  
10  
LCLK1  
LCLK2  
7
8
SCL  
9
LCLK3  
Pin Definitions  
Pin Name Pin Number  
Description  
XIN  
1
Reference Input. Driven by a crystal (8 MHz to 30 MHz) or external clock (1 MHz to 133 MHz).  
Programmable input load capacitors allow for maximum flexibility in selecting a crystal, regardless of  
manufacturer, process, performance, or quality  
VDD  
AVDD  
SDA  
2
3
3.3 V Voltage Supply  
3.3 V Analog Voltage Supply  
I2C Serial Data Input/Output  
4
AVSS  
VSSL  
LCLK1  
LCLK2  
LCLK3  
SCL  
5
Analog Ground  
6
LCLK Ground  
7
Configurable Clock Output 1 at VDDL level (3.3 V or 2.5 V)  
Configurable Clock Output 2 at VDDL level (3.3 V or 2.5 V)  
Configurable Clock Output 3 at VDDL level (3.3 V or 2.5 V)  
I2C Serial Clock Input  
8
9
10  
11  
12  
13  
14  
15  
16  
VDDL  
LCLK4  
VSS  
LCLK Voltage Supply (2.5 V or 3.3 V)  
Configurable Clock Output 4 at VDDL level (3.3 V or 2.5 V)  
Ground  
CLK5  
CLK6  
XOUT [1]  
Configurable Clock Output 5 (3.3 V)  
Configurable Clock Output 6 (3.3 V)  
Reference Output  
Note  
1. Float XOUT if XIN is driven by an external clock source.  
Document Number: 38-07104 Rev. *R  
Page 3 of 23  
CY22150  
The basic PLL block diagram is shown in Figure 2. Each of the  
six clock outputs on the CY22150 has a total of seven output  
options available to it. There are six post divider options  
available: /2 (two of these), /3, /4, /DIV1N and /DIV2N. DIV1N  
and DIV2N are independently calculated and are applied to  
individual output groups. The post divider options can be applied  
to the calculated VCO frequency ((REF*P)/Q) or to the REF  
directly.  
Functional Overview  
Frequency Calculation and Register Definitions  
The CY22150 is an extremely flexible clock generator with four  
basic variables that are used to determine the final output  
frequency. They are the input reference frequency (REF), the  
internally calculated P and Q dividers, and the post divider, which  
can be a fixed or calculated value. There are three formulas to  
determine the final output frequency of a CY22150 based  
design:  
In addition to the six post divider output options, the seventh  
option bypasses the PLL and passes the REF directly to the  
crosspoint switch matrix.  
CLK = ((REF * P)/Q)/Post Divider  
CLK = REF/Post Divider  
CLK = REF.  
Figure 2. Basic Block Diagram of CY22150 PLL  
DIV1N [OCH]  
CLKSRC  
Crosspoint  
DIV1SRC [OCH]  
Switch Matrix  
1
0
[44H]  
[44H]  
Qtotal  
LCLK1  
/DIV1N  
REF  
VCO  
PFD  
(Q+2)  
LCLK2  
LCLK3  
/2  
/3  
[42H]  
[44H,45H]  
[45H]  
Ptotal  
(2(PB+4)+PO)  
LCLK4  
Divider Bank 1  
Divider Bank 2  
[40H], [41H], [42H]  
1
/4  
[45H]  
CLK5  
CLK6  
0
/2  
[45H,46H]  
/DIV2N  
DIV2SRC [47H]  
DIV2N [47H]  
CLKOE [09H]  
Document Number: 38-07104 Rev. *R  
Page 4 of 23  
CY22150  
Default Startup Condition for the CY22150  
Frequency Calculations and Register Definitions  
using the I C Interface  
2
The default (programmed) condition of the device is generally set  
by the distributor who programs the device using a customer  
specific JEDEC file produced by CyClocksRT. Parts shipped  
from the factory are blank and unprogrammed. In this condition,  
all bits are set as default settings, all outputs are three-stated,  
and the crystal oscillator circuit is active.  
The CY22150 provides an industry standard serial interface for  
volatile, in-system programming of unique frequencies and  
options. Serial programming and re-programming allows for  
quick design changes and product enhancements, eliminates  
inventory of old design parts, and simplifies manufacturing.  
The I2C Interface provides volatile programming. This means  
when the target system is powered down, the CY22150 reverts  
to its pre-I2C state, as defined above (programmed or  
unprogrammed). When the system is powered back up again,  
the I2C registers must be reconfigured again.  
While you can develop your own subroutine to program any or  
all of the individual registers described in the following pages, it  
may be easier to use CyClocksRT to produce the required  
register setting file.  
The serial interface address of the CY22150 is 69H. If there is a  
conflict with any other devices in your system, then this can also  
be changed using CyClocksRT.  
All programmable registers in the CY22150 are addressed with  
eight bits and contain eight bits of data. The CY22150 is a slave  
device with an address of 1101001 (69H).  
Table 1 lists the I2C registers and their definitions. Specific  
register definitions and their allowable values are listed below.  
Table 1. Summary Table – CY22150 Programmable Registers  
Register  
09H  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CLKOE control  
0
0
CLK6  
CLK5  
LCLK4  
LCLK3  
LCLK2  
LCLK1  
OCH  
DIV1SRC mux and  
DIV1N divider  
DIV1SRC DIV1N(6) DIV1N(5) DIV1N(4) DIV1N(3) DIV1N(2) DIV1N(1) DIV1N(0)  
XDRV(1) XDRV(0)  
CapLoad CapLoad CapLoad CapLoad CapLoad CapLoad CapLoad CapLoad  
12H  
13H  
Input crystal oscillator  
drive control  
0
0
1
0
0
0
Input load capacitor  
control  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
40H  
41H  
42H  
44H  
Charge pump and PB  
counter  
1
1
0
Pump(2) Pump(1) Pump(0)  
PB(9)  
PB(1)  
Q(1)  
PB(8)  
PB(0)  
Q(0)  
PB(7)  
PO  
PB(6)  
Q(6)  
PB(5)  
Q(5)  
PB(4)  
Q(4)  
PB(3)  
Q(3)  
PB(2)  
Q(2)  
PO counter, Q counter  
Crosspoint switch  
matrix control  
CLKSRC2 CLKSRC1 CLKSRC0 CLKSRC2 CLKSRC1 CLKSRC0 CLKSRC2 CLKSRC1  
for LCLK1 for LCLK1 for LCLK1 for LCLK2 for LCLK2 for LCLK2 for LCLK3 for LCLK3  
45H  
46H  
47H  
CLKSRC0 CLKSRC2 CLKSRC1 CLKSRC0 CLKSRC2 CLKSRC1 CLKSRC0 CLKSRC2  
for LCLK3 for LCLK4 for LCLK4 for LCLK4 for CLK5 for CLK5 for CLK5 for CLK6  
CLKSRC1 CLKSRC0  
for CLK6 for CLK6  
1
1
1
1
1
1
DIV2SRC mux and  
DIV2N divider  
DIV2SRC DIV2N(6) DIV2N(5) DIV2N(4) DIV2N(3) DIV2N(2) DIV2N(1) DIV2N(0)  
Reference Frequency  
parameters controlling the gain are the crystal frequency, the  
internal crystal parasitic resistance (ESR, available from the  
manufacturer), and the CapLoad setting during crystal startup.  
The REF can be a crystal or a driven frequency. For crystals, the  
frequency range must be between 8 MHz and 30 MHz. For a  
driven frequency, the frequency range must be between 1 MHz  
and 133 MHz.  
Bits 3 and 4 of register 12H control the input crystal oscillator gain  
setting. Bit 4 is the MSB of the setting, and bit 3 is the LSB. The  
setting is programmed according to Table 2 on page 6. All other  
bits in the register are reserved and should be programmed as  
shown in Table 3 on page 6.  
Using a Crystal as the Reference Input:  
The input crystal oscillator of the CY22150 is an important  
feature because of the flexibility it allows the user in selecting a  
crystal as a REF source. The input oscillator has programmable  
gain, allowing maximum compatibility with a reference crystal,  
regardless of manufacturer, process, performance, and quality.  
Using an External Clock as the Reference Input:  
The CY22150 also accepts an external clock as reference, with  
speeds up to 133 MHz. With an external clock, the XDRV  
(register 12H) bits must be set according to Table 4 on page 6.  
Programmable Crystal Input Oscillator Gain Settings:  
The Input crystal oscillator gain (XDRV) is controlled by two bits  
in register 12H and are set according to Table 2 on page 6. The  
Document Number: 38-07104 Rev. *R  
Page 5 of 23  
CY22150  
Table 2. Programmable Crystal Input Oscillator Gain Settings  
Cap Register Settings  
00H–80H  
80H–C0H  
C0H–FFH  
18 pF to 30 pF  
30 60   
01 10  
Effective Load Capacitance  
(CapLoad)  
6 pF to 12 pF  
12 pF to 18 pF  
Crystal ESR  
8 to 15 MHz  
15 to 20 MHz  
20 to 25 MHz  
25 to 30 MHz  
30   
60   
01  
30   
01  
60   
10  
Crystal Input  
Frequency  
00  
01  
01  
10  
10  
01  
10  
10  
10  
10  
11  
10  
10  
11  
10  
11  
10  
10  
N/A  
Table 3. Crystal Oscillator Gain Bit Locations and Values  
Address  
D7  
D6  
D5  
D4  
XDRV(1)  
D3  
XDRV(0)  
D2  
D1  
D0  
12H  
0
0
1
0
0
0
Table 4. Programmable External Reference Input Oscillator Drive Settings  
Reference Frequency  
Drive Setting  
1 to 25 MHz  
00  
25 to 50 MHz  
01  
50 to 90 MHz  
10  
90 to 133 MHz  
11  
Input Load Capacitors:  
In CyclocksRT, only the crystal capacitance (CL) is specified.  
CCHIP is set to 6 pF and CBRD defaults to 2 pF. If your board  
capacitance is higher or lower than 2 pF, the formula given earlier  
is used to calculate a new CapLoad value and programmed into  
register 13H.  
Input load capacitors allow the user to set the load capacitance  
of the CY22150 to match the input load capacitance from a  
crystal. The value of the input load capacitors is determined by  
8 bits in a programmable register [13H]. Total load capacitance  
is determined by the formula:  
In CyClocksRT, enter the crystal capacitance (CL). The value of  
CapLoad is determined automatically and programmed into the  
CY22150. Through the SDA and SCL pins, the value can be  
adjusted up or down if your board capacitance is greater or less  
than 2 pF. For an external clock source, CapLoad defaults to 0.  
See Table 5 for CapLoad bit locations and values.  
CapLoad = (CL– CBRD – CCHIP)/0.09375 pF  
where:  
CL = specified load capacitance of your crystal.  
CBRD = the total board capacitance, due to external capacitors  
and board trace capacitance. In CyClocksRT, this value  
defaults to 2 pF.  
The input load capacitors are placed on the CY22150 die to  
reduce external component cost. These capacitors are true  
parallel-plate capacitors, designed to reduce the frequency shift  
that occurs when nonlinear load capacitance is affected by load,  
bias, supply, and temperature changes.  
CCHIP = 6 pF.  
0.09375 pF = the step resolution available due to the 8-bit  
register.  
Table 5. Input Load Capacitor Register Bit Settings  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
13H  
CapLoad(7) CapLoad(6) CapLoad(5) CapLoad(4) CapLoad(3) CapLoad(2) CapLoad(1) CapLoad(0)  
Document Number: 38-07104 Rev. *R  
Page 6 of 23  
CY22150  
PLL Frequency, Q Counter [42H(6..0)]  
Qtotal = Q + 2  
The first counter is known as the Q counter. The Q counter  
divides REF by its calculated value. Q is a 7 bit divider with a  
maximum value of 127 and minimum value of 0. The primary  
value of Q is determined by 7 bits in register 42H (6..0), but 2 is  
added to this register value to achieve the total Q, or Qtotal. Qtotal  
is defined by the formula:  
The minimum value of Qtotal is 2. The maximum value of Qtotal is  
129. Register 42H is defined in the table.  
Stable operation of the CY22150 cannot be guaranteed if  
REF/Qtotal falls below 250 kHz. Qtotal bit locations and values are  
defined in Table 6.  
Table 6. P Counter and Q Counter Register Definition  
Address  
40H  
D7  
1
D6  
1
D5  
0
D4  
Pump(2)  
PB(4)  
Q(4)  
D3  
Pump(1)  
PB(3)  
Q(3)  
D2  
Pump(0)  
PB(2)  
Q(2)  
D1  
D0  
PB(9)  
PB(1)  
Q(1)  
PB(8)  
PB(0)  
Q(0)  
41H  
PB(7)  
PO  
PB(6)  
Q(6)  
PB(5)  
Q(5)  
42H  
PLL Frequency, P Counter [40H(1..0)], [41H(7..0)], [42H(7)  
PLL Post Divider Options [0CH(7..0)], [47H(7..0)]  
The next counter definition is the P (product) counter. The P  
counter is multiplied with the (REF/Qtotal) value to achieve the  
VCO frequency. The product counter, defined as Ptotal, is made  
up of two internal variables, PB and PO. The formula for  
calculating Ptotal is:  
The output of the VCO is routed through two independent  
muxes, then to two divider banks to determine the final clock  
output frequency. The mux determines if the clock signal feeding  
into the divider banks is the calculated VCO frequency or REF.  
There are two select muxes (DIV1SRC and DIV2SRC) and two  
divider banks (Divider Bank 1 and Divider Bank 2) used to  
determine this clock signal. The clock signal passing through  
DIV1SRC and DIV2SRC is referred to as DIV1CLK and  
DIV2CLK, respectively.  
Ptotal = (2(PB + 4) + PO)  
PB is a 10-bit variable, defined by registers 40H(1:0) and  
41H(7:0). The 2 LSBs of register 40H are the two MSBs of  
variable PB. Bits 4..2 of register 40H are used to determine the  
charge pump settings. The 3 MSBs of register 40H are preset  
and reserved and cannot be changed. PO is a single bit variable,  
The divider banks have four unique divider options available: /2,  
/3, /4, and /DIVxN. DIVxN is a variable that can be independently  
programmed (DIV1N and DIV2N) for each of the two divider  
banks. The minimum value of DIVxN is 4. The maximum value  
of DIVxN is 127. A value of DIVxN below 4 is not guaranteed to  
work properly.  
defined in register 42H(7). This allows for odd numbers in Ptotal  
.
The remaining seven bits of 42H are used to define the Q  
counter, as shown in Table 6.  
The minimum value of Ptotal is 8. The maximum value of Ptotal is  
2055. To achieve the minimum value of Ptotal, PB and PO should  
both be programmed to 0. To achieve the maximum value of  
Ptotal, PB should be programmed to 1023, and PO should be  
programmed to 1.  
DIV1SRC is a single bit variable, controlled by register 0CH. The  
remaining seven bits of register 0CH determine the value of post  
divider DIV1N.  
DIV2SRC is a single bit variable, controlled by register 47H. The  
remaining seven bits of register 47H determine the value of post  
divider DIV2N.  
Stable operation of the CY22150 cannot be guaranteed if the  
value of (Ptotal*(REF/Qtotal)) is above 400 MHz or below  
100 MHz.  
Register 0CH and 47H are defined in Table 7.  
Table 7. PLL Post Divider Options  
Address  
0CH  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DIV1SRC  
DIV2SRC  
DIV1N(6)  
DIV2N(6)  
DIV1N(5)  
DIV2N(5)  
DIV1N(4)  
DIV2N(4)  
DIV1N(3)  
DIV2N(3)  
DIV1N(2)  
DIV2N(2)  
DIV1N(1)  
DIV2N(1)  
DIV1N(0)  
DIV2N(0)  
47H  
Document Number: 38-07104 Rev. *R  
Page 7 of 23  
CY22150  
Charge Pump Settings [40H(2..0)]  
Counter[40H(1..0)], [41H(7..0)], [42H(7)]”). Table 8 summarizes  
the proper charge pump settings, based on Ptotal.  
The correct pump setting is important for PLL stability. Charge  
pump settings are controlled by bits (4..2) of register 40H, and  
are dependent on internal variable PB (see “PLL Frequency, P  
See Table 9 for register 40H bit locations and values.  
Table 8. Charge Pump Settings  
Charge Pump Setting – Pump(2..0)  
Calculated Ptotal  
000  
001  
16–44  
45–479  
480–639  
010  
011  
640–799  
100  
800–1023  
101, 110, 111  
Do not use – device will be unstable  
Table 9. Register 40H Change Pump Bit Settings  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
40H  
1
1
0
Pump(2)  
Pump(1)  
Pump(0)  
PB(9)  
PB(8)  
Although using the above table guarantees stability, it is recommended to use the Print Preview function in CyClocksRT to determine  
the correct charge pump settings for optimal jitter performance.  
PLL stability cannot be guaranteed for values below 16 and above 1023. If values above 1023 are needed, use CyClocksRT to  
determine the best charge pump setting.  
Clock Output Settings: CLKSRC – Clock Output Crosspoint  
Switch Matrix [44H(7..0)], [45H(7..0)], [46H(7..6)]  
When DIV1N is divisible by four, then CLKSRC(0,1,0) is  
guaranteed to be rising edge phase-aligned with  
CLKSRC(0,0,1). When DIV1N is six, then CLKSRC(0,1,1) is  
guaranteed to be rising edge phase-aligned with  
CLKSRC(0,0,1).  
Every clock output can be defined to come from one of seven  
unique frequency sources. The CLKSRC(2..0) crosspoint switch  
matrix defines which source is attached to each individual clock  
output. CLKSRC(2..0) is set in Registers 44H, 45H, and 46H.  
The remainder of register 46H(5:0) must be written with the  
values stated in the register table when writing register values  
46H(7:6).  
When DIV2N is divisible by four, then CLKSRC(1,0,1) is  
guaranteed to be rising edge phase-aligned with  
CLKSRC(1,0,0). When DIV2N is divisible by eight, then  
CLKSRC(1,1,0) is guaranteed to be rising edge phase-aligned  
with CLKSRC(1,0,0).  
Table 10. Clock Output Setting  
CLKSRC2 CLKSRC1 CLKSRC0  
Definition and Notes  
0
0
0
0
0
1
Reference input.  
DIV1CLK/DIV1N. DIV1N is defined by register [OCH]. Allowable values for DIV1N are 4  
to 127. If Divider Bank 1 is not being used, set DIV1N to 8.  
0
0
1
1
1
0
0
1
0
DIV1CLK/2. Fixed /2 divider option. If this option is used, DIV1N must be divisible by 4.  
DIV1CLK/3. Fixed /3 divider option. If this option is used, set DIV1N to 6.  
DIV2CLK/DIV2N. DIV2N is defined by Register [47H]. Allowable values for DIV2N are 4  
to 127. If Divider Bank 2 is not being used, set DIV2N to 8.  
1
1
1
0
1
1
1
0
1
DIV2CLK/2. Fixed /2 divider option. If this option is used, DIV2N must be divisible by 4.  
DIV2CLK/4. Fixed /4 divider option. If this option is used, DIV2N must be divisible by 8.  
Reserved – do not use.  
Document Number: 38-07104 Rev. *R  
Page 8 of 23  
CY22150  
CLKOE – Clock Output Enable Control [09H(5..0)]  
The output swing of LCLK1 through LCLK4 is set by VDDL. The  
output swing of CLK5 and CLK6 is set by VDD  
.
Each clock output has its own output enable, controlled by  
register 09H(5..0). To enable an output, set the corresponding  
CLKOE bit to 1. CLKOE settings are in Table 11.  
Table 11. CLKOE Bit Setting  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
09H  
0
0
CLK6  
CLK5  
LCLK4  
LCLK3  
LCLK2  
LCLK1  
Test, Reserved, and Blank Registers  
[0DH to 11H]  
[14H to 3FH]  
[43H]  
– Reserved  
– Reserved  
– Reserved  
– Reserved.  
Writing to any of the following registers causes the part to exhibit  
abnormal behavior, as follows.  
[48H to FFH]  
[00H to 08H]  
[0AH to 0BH]  
– Reserved  
– Reserved  
Table 12. Clock Output Register Setting  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
44H  
CLKSRC2  
for LCLK1  
CLKSRC1  
for LCLK1  
CLKSRC0  
for LCLK1  
CLKSRC2  
for LCLK2  
CLKSRC1  
for LCLK2  
CLKSRC0  
for LCLK2  
CLKSRC2  
for LCLK3  
CLKSRC1  
for LCLK3  
45H  
46H  
CLKSRC0  
for LCLK3  
CLKSRC2  
for LCLK4  
CLKSRC1  
for LCLK4  
CLKSRC0  
for LCLK4  
CLKSRC2  
for CLK5  
CLKSRC1  
for CLK5  
CLKSRC0  
for CLK5  
CLKSRC2  
for CLK6  
CLKSRC1  
for CLK6  
CLKSRC0  
for CLK6  
1
1
1
1
1
1
2
Start Bit; seven-bit Device Address (DA); R/W Bit; Slave Clock  
Acknowledge (ACK); eight-bit Memory Address (MA); ACK;  
eight-bit data; ACK; eight-bit data in MA + 1 if desired; ACK;  
eight-bit data in MA+2; ACK; and so on until STOP bit.The basic  
serial format is illustrated in Figure 3.  
I C Interface Timing  
The CY22150 uses a two-wire I2C-interface that operates up to  
400 kbits/second in Read or Write mode. The basic Write serial  
format is as follows.  
Figure 3. Data Frame Architecture  
1-bit  
Slave  
1-bit  
1-bit  
1-bit  
1-bit  
1-bit  
1-bit  
Slave  
ACK ACK  
1-bit  
1-bit  
Slave  
ACK  
Slave  
ACK  
Slave  
ACK  
Slave  
ACK  
Slave  
ACK  
Slave  
ACK  
SDA Write  
Multiple  
Contiguous  
Registers  
R/W = 0  
7-bit  
8-bit  
8-bit  
8-bit  
8-bit  
8-bit  
8-bit  
Device Register Register Register  
Register  
Register  
Data  
Register  
Data  
Address Address Data  
(XXH) (XXH)  
Data  
(XXH+1) (XXH+2)  
Data  
(FFH)  
(00H)  
Stop Signal  
Start Signal  
1-bit  
Slave  
1-bit  
Master  
R/W = 1 ACK  
1-bit  
Master Master Master  
ACK ACK ACK  
1-bit  
1-bit  
1-bit  
1-bit  
1-bit  
1-bit  
Slave  
Master  
NACK  
SDA Read  
Multiple  
Contiguous  
Registers  
ACK ACK  
8-bit  
R/W = 0  
7-bit  
8-bit  
Register  
8-bit  
8-bit  
8-bit  
Device Register 7-Bit  
Register  
Data  
(FFH)  
Register  
Data  
Register  
Data  
Address Address Device Data  
(XXH) Address  
(XXH)  
(XXH+1)  
(00H)  
Stop Signal  
Start Signal  
Document Number: 38-07104 Rev. *R  
Page 9 of 23  
CY22150  
Data Valid  
Data is valid when the Clock is HIGH, and may only be  
transitioned when the clock is LOW, as illustrated in Figure 4.  
Figure 4. Data Valid and Data Transition Periods  
Transition to next bit  
Data valid  
SDA  
SCL  
tDH tSU  
CLKHIGH  
VIH  
VIL  
CLKLOW  
Data Frame  
bit, followed by register address (eight bits) and register data  
(eight bits).  
Every new data frame is indicated by a start and stop sequence,  
as illustrated in Figure 5 on page 10.  
Stop Sequence – Stop frame is indicated by SDA going HIGH  
when SCL is HIGH. A Stop frame frees the bus for writing to  
another part on the same bus or writing to another random  
register address.  
Start Sequence – Start frame is indicated by SDA going LOW  
when SCL is HIGH. Every time a Start signal is given, the next  
eight-bit data must be the device address (seven bits) and a R/W  
Figure 5. Start and Stop Frame  
SDA  
SCL  
Transition  
to next bit  
START  
STOP  
Figure 6. Definition for Timing on the Serial BUS  
SDA  
SCL  
tf  
tLOW  
tr  
tSU;DAT  
tf  
tHD;STA  
tr  
tBUF  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tHIGH  
P
S
S
Sr  
Document Number: 38-07104 Rev. *R  
Page 10 of 23  
CY22150  
Acknowledge Pulse  
on page 11. (N = the number of eight-bit segments transmitted.)  
During Read mode, the ACK pulse after the data packet is sent  
is generated by the master.  
During Write mode, the CY22150 responds with an ACK pulse  
after every eight bits. This is accomplished by pulling the SDA  
line LOW during the N*9th clock cycle, as illustrated in Figure 7  
Figure 7. Frame Format (Device Address, R/W, Register Address, Register Data)  
SDA  
+
+
+
START  
D7 D6 D1  
D0  
DA6 DA5DA0 R/W ACK  
RA7 RA6RA1 RA0 ACK  
ACK  
STOP  
+
+
+
SCL  
Serial Bus specifications  
Parameter  
Description  
Min  
Max  
Unit  
kHz  
s  
s  
s  
s  
ns  
fSCL  
Frequency of SCL  
400  
tHD:STA  
tLOW  
tHIGH  
tSU:STA  
tDH  
Hold time START condition  
Low period of the SCK clock  
High period of the SCK clock  
0.6  
1.3  
0.6  
0.6  
100  
100  
100  
Setup time for a repeated START condition  
Data hold (SCL LOW to data transition)  
Data hold time  
tHD:DAT  
tSU:DAT  
tR  
ns  
Data setup time  
ns  
Rise time  
300  
300  
ns  
tF  
Fall time  
ns  
tSU:STO  
tBUF  
Setup time for STOP condition  
Bus-free time between STOP and START conditions  
0.6  
1.3  
s  
s  
Document Number: 38-07104 Rev. *R  
Page 11 of 23  
CY22150  
Reducing the total number of active outputs also reduce jitter in  
a linear fashion. However, it is better to use two outputs to drive  
two loads than one output to drive two loads.  
Applications  
Controlling Jitter  
The rate and magnitude that the PLL corrects the VCO frequency  
is directly related to jitter performance. If the rate is too slow, then  
long term jitter and phase noise is poor. Therefore, to improve  
long term jitter and phase noise, reducing Q to a minimum is  
advisable. This technique increases the speed of the Phase  
Frequency Detector which in turn drive the input voltage of the  
VCO. In a similar manner increasing P till the VCO is near its  
maximum rated speed also decreases long term jitter and phase  
noise. For example: Input Reference of 12 MHz; desired output  
frequency of 33.3 MHz. The following solution is possible: Set  
Q = 3, P = 25, Post Div = 3. However, the best jitter results is  
Q = 2, P = 50, Post Div = 9.  
Jitter is defined in many ways including: phase noise, long term  
jitter, cycle to cycle jitter, period jitter, absolute jitter, and  
deterministic. These jitter terms are usually given in terms of rms,  
peak to peak, or in the case of phase noise dBC/Hz with respect  
to the fundamental frequency.  
Power supply noise and clock output loading are two major  
system sources of clock jitter. Power supply noise is mitigated by  
proper power supply decoupling (0.1 F ceramic cap 0.25”) of  
the clock and ensuring a low impedance ground to the chip.  
Reducing capacitive clock output loading to a minimum lowers  
current spikes on the clock edges and thus reduces jitter.  
For more information, contact your local Cypress field  
applications engineer.  
Test Circuit  
Figure 8. Test Circuit  
VDD  
CLK out  
0.1 mF  
0.1 mF  
C
OUTPUTS  
LOAD  
AVDD  
VDDL  
0.1 F  
GND  
Document Number: 38-07104 Rev. *R  
Page 12 of 23  
CY22150  
Absolute Maximum Conditions  
Parameter  
Description  
Min  
–0.5  
–0.5  
–65  
Max  
7.0  
Unit  
V
VDD  
VDDL  
TS  
Supply Voltage  
I/O Supply Voltage  
Storage Temperature [2]  
Junction Temperature  
7.0  
V
125  
125  
450  
380  
°C  
°C  
mW  
mW  
V
TJ  
Package Power Dissipation – Commercial Temperature  
Package Power Dissipation – Industrial Temperature  
Digital Inputs  
AVSS – 0.3 AVDD + 0.3  
VSS – 0.3 VDD + 0.3  
VSS – 0.3 VDDL +0.3  
Digital Outputs Referred to VDD  
V
Digital Outputs Referred to VDDL  
V
ESD  
Static Discharge Voltage per MIL-STD-833, Method 3015  
2000  
V
Recommended Operating Conditions  
Parameter  
VDD  
VDDLHI  
Description  
Min  
3.135  
3.135  
2.375  
0
Typ  
3.3  
3.3  
2.5  
Max  
3.465  
3.465  
2.625  
70  
Unit  
V
Operating Voltage  
[3]  
[3]  
Operating Voltage  
V
VDDLLO  
TAC  
Operating Voltage  
V
Ambient Commercial Temp  
Ambient Industrial Temp  
Max. Load Capacitance, VDD/VDDL = 3.3 V  
Max. Load Capacitance, VDDL = 2.5 V  
Driven REF  
°C  
TAI  
–40  
85  
°C  
CLOAD  
CLOAD  
fREFD  
fREFC  
tPU  
15  
pF  
pF  
MHz  
MHz  
ms  
15  
1
133  
30  
Crystal REF  
8
Power up time for all VDDs to reach minimum specified voltage (power  
ramps must be monotonic)  
0.05  
500  
Notes  
2. Rated for 10 years.  
3. is only specified and characterized at 3.3 V ± 5% and 2.5 V ± 5%. V  
V
may be powered at any value between 3.465 V and 2.375 V.  
DDL  
DDL  
Document Number: 38-07104 Rev. *R  
Page 13 of 23  
CY22150  
DC Electrical Characteristics  
Parameter [4]  
Description  
Conditions  
VOH = VDD – 0.5 V,  
DD/VDDL = 3.3 V (sink)  
Min  
Typ  
Max  
Unit  
IOH3.3  
Output High Current  
12  
24  
mA  
V
IOL3.3  
IOH2.5  
Output Low Current  
Output High Current  
VOL = 0.5 V,  
VDD/VDDL = 3.3 V (source)  
12  
8
24  
16  
mA  
mA  
VOH = VDDL – 0.5 V,  
VDDL = 2.5 V (source)  
IOL2.5  
VIH  
Output Low Current  
Input High Voltage  
Input Low Voltage  
Input Capacitance  
Input Leakage Current  
VOL = 0.5, VDDL = 2.5 V (sink)  
CMOS levels, 70% of VDD  
CMOS levels, 30% of VDD  
SCL and SDA Pins  
8
0.7  
16  
mA  
VDD  
VDD  
pF  
VIL  
0.3  
7
CIN  
IIZ  
SCL and SDA Pins  
5
A  
VHYS  
Hysteresis of Schmitt triggered SCL and SDA Pins  
inputs  
0.05  
VDD  
[5, 6]  
IVDD  
Supply Current  
Supply Current  
Supply Current  
AVDD/VDD Current  
45  
25  
17  
mA  
mA  
mA  
[5, 6]  
IVDDL3.3  
VDDL Current (VDDL = 3.465 V)  
VDDL Current (VDDL = 2.625 V)  
[5, 6]  
IVDDL2.5  
Device Characteristics  
Parameter  
Description  
Value  
115  
Unit  
°C/W  
JA  
Theta JA  
Complexity  
Transistor Count  
74,600  
Transistors  
Notes  
4. Not 100% tested.  
5.  
I
currents specified for two CLK outputs running at 125 MHz, two LCLK outputs running at 80 MHz, and two LCLK outputs running at 66.6 MHz.  
VDD  
6. Use CyClocksRT to calculate actual I  
and I  
for specific output frequency configurations.  
VDDL  
VDD  
Document Number: 38-07104 Rev. *R  
Page 14 of 23  
CY22150  
AC Electrical Characteristics  
Parameter [7]  
Description  
Conditions  
Min  
Typ  
Max  
200  
Unit  
MHz  
MHz  
MHz  
MHz  
%
t1  
Output Frequency,  
Commercial Temperature  
Clock output limit, 3.3 V  
Clock output limit, 2.5 V  
Clock output limit, 3.3 V  
Clock output limit, 2.5 V  
0.08 (80 kHz)  
0.08 (80 kHz)  
0.08 (80 kHz)  
0.08 (80 kHz)  
45  
166.6  
166.6  
150  
Output Frequency,  
Industrial Temperature  
t2LO  
t2HI  
t3LO  
t4LO  
t3HI  
t4HI  
t5[8]  
Output Duty Cycle  
Output Duty Cycle  
Duty cycle is defined in  
Figure 9 on page 16; t1/t2,  
fOUT < 166 MHz, 50% of VDD  
50  
55  
Duty cycle is defined in  
Figure 9; t1/t2,  
fOUT > 166 MHz, 50% of VDD  
40  
0.6  
0.6  
0.8  
0.8  
50  
1.2  
1.2  
1.4  
1.4  
60  
%
Rising Edge Slew Rate  
(VDDL = 2.5 V)  
Output clock rise time, 20% to  
80% of VDDL. Defined in  
Figure 10  
V/ns  
V/ns  
V/ns  
V/ns  
ps  
Falling Edge Slew Rate  
(VDDL = 2.5 V)  
Output dlock fall time, 80% to  
20% of VDDL. Defined in  
Figure 10  
Rising Edge Slew Rate  
(VDDL = 3.3 V)  
Outputdlockrisetime, 20%to  
80% of VDD/VDDL. Defined in  
Figure 10  
Falling Edge Slew Rate  
(VDDL = 3.3 V)  
Output dlock fall time, 80% to  
20% of VDD/VDDL. Defined in  
Figure 10  
Skew  
Output-output skew between  
related outputs  
250  
t6[9]  
t10  
Clock Jitter  
Peak-to-peak period jitter  
250  
3
ps  
PLL Lock Time  
0.30  
ms  
Notes  
7. Not 100% tested, guaranteed by design.  
8. Skew value guaranteed when outputs are generated from the same divider bank. See Logic Block Diagram on page 1 for more information.  
9. Jitter measurements vary. Actual jitter is dependent on XIN jitter and edge rate, number of active outputs, output frequencies, V  
, (2.5 V or 3.3 V jitter).  
DDL  
Document Number: 38-07104 Rev. *R  
Page 15 of 23  
CY22150  
Figure 9. Duty Cycle Definition; DC = t2/t1  
t3  
t4  
80%  
20%  
CLK  
Figure 10. Rise and Fall Time Definitions  
t1  
t2  
50%  
50%  
CLK  
Figure 11. Peak-to-Peak Jitter  
t6  
Document Number: 38-07104 Rev. *R  
Page 16 of 23  
CY22150  
Ordering Information  
Ordering Code  
Pb-free  
Package Type  
Operating Range  
Operating Voltage  
CY22150KFZXC  
CY22150KFZXCT  
CY22150FZXC  
CY22150FZXCT  
CY22150FZXI  
CY22150FZXIT  
Programmer  
16-pin TSSOP  
Commercial (0 °C to 70 °C)  
Commercial (0 °C to 70 °C)  
Commercial (0 °C to 70 °C)  
Commercial (0 °C to 70 °C)  
Industrial (–40 °C to 85 °C)  
Industrial (–40 °C to 85 °C)  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
16-pin TSSOP – Tape and Reel  
16-pin TSSOP  
16-pin TSSOP – Tape and Reel  
16-pin TSSOP  
16-pin TSSOP – Tape and Reel  
CY3672-USB  
Programmer with USB interface  
CY3695  
CY22150 Adapter Socket for  
CY3672-USB  
Some product offerings are factory programmed customer specific devices with customized part numbers. The Possible  
Configurations table shows the available device types, but not complete part numbers. Contact your local Cypress FAE or Sales  
Representative for more information.  
Possible Configurations  
Ordering Code  
CY22150ZXC-xxx[10]  
CY22150ZXC-xxxT[10]  
CY22150ZXI-xxx[10]  
CY22150ZXI-xxxT[10]  
Package Type  
16-pin TSSOP  
Operating Range  
Operating Voltage  
Commercial (0 °C to 70 °C)  
Commercial (0 °C to 70 °C)  
Industrial (–40 °C to 85 °C)  
Industrial (–40 °C to 85 °C)  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
16-pin TSSOP – Tape and Reel  
16-pin TSSOP  
16-pin TSSOP – Tape and Reel  
Ordering Code Definitions  
CY 22150  
X
F
Z
X
X
- xxx  
X
X = blank or T  
blank = Tube; T = Tape and Reel  
Custom Configuration Code (For Factory Programmed Device only)  
Temperature Range: X = C or I  
C = Commercial; I = Industrial  
X = Pb-free  
Package: Z = 16-pin TSSOP  
Programming: X = F or blank  
F = Field Programmable; blank = Factory Programmed  
Fab identifier: X = K or blank  
K = Foundry Manufacturing  
Device part number  
Company ID: CY = Cypress  
Notes  
10. The CY22150ZC-xxx and CY22150ZI-xxx are factory programmed configurations. Factory programming is available for high volume design opportunities of  
100 Ku/year or more in production. For more details, contact your local Cypress FAE or Cypress Sales Representative.  
Document Number: 38-07104 Rev. *R  
Page 17 of 23  
CY22150  
Package Diagram  
Figure 12. 16-pin TSSOP (4.40 mm Body) Package Outline, 51-85091  
51-85091 *E  
Document Number: 38-07104 Rev. *R  
Page 18 of 23  
CY22150  
Acronyms  
Table 13. Acronyms Used in this Document  
Acronym  
ACK  
Description  
Acronym  
LSB  
Description  
Acknowledge  
Least Significant Bit  
Memory Address  
Most Significant Bit  
BSC  
Basic Spacing between Centers  
Clock Output Enable  
MA  
CLKOE  
CMOS  
DA  
MSB  
PFD  
Complementary Metal Oxide Semiconductor  
Device Address  
Phase Frequency Detector  
Phase Locked Loop  
PLL  
ESD  
Electrostatic Discharge  
SCL  
Serial interface Clock  
ESR  
Equivalent Series Resistance  
Field Applications Engineer  
Input / Output  
SDA  
Serial interface Data  
FAE  
TSSOP  
USB  
Thin Shrunk Small Outline Package  
Universal Serial Bus  
I/O  
I2C  
Inter Integrated Circuit  
VCO  
Voltage-Controlled Oscillator  
JEDEC  
Joint Electron Device Engineering Council  
Document Conventions  
Units of Measure  
Table 14. Units of Measure  
Symbol  
°C  
Unit of Measure  
Symbol  
µVrms  
µW  
mA  
mm  
ms  
Unit of Measure  
microvolts root-mean-square  
microwatt  
degree Celsius  
decibel  
dB  
dBc/Hz  
fC  
decibels relative to the carrier per Hertz  
femtocoulomb  
femtofarad  
milliampere  
millimeter  
fF  
millisecond  
Hz  
hertz  
mV  
nA  
millivolt  
KB  
Kbit  
kHz  
k  
1024 bytes  
1024 bits  
nanoampere  
ns  
nanosecond  
kilohertz  
nV  
nano volt  
kilohm  
ohm  
MHz  
M  
µA  
megahertz  
pA  
picoampere  
megaohm  
pF  
picofarad  
microampere  
microfarad  
pp  
peak-to-peak  
µF  
ppm  
ps  
parts per million  
picosecond  
µH  
microhenry  
microsecond  
microvolt  
µs  
sps  
samples per second  
sigma: one standard deviation  
µV  
Document Number: 38-07104 Rev. *R  
Page 19 of 23  
CY22150  
Document History Page  
Document Title: CY22150, One-PLL General-Purpose Flash-Programmable and I2C Programmable Clock Generator  
Document Number: 38-07104  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
107498  
110043  
CKN  
CKN  
08/08/2001 New data sheet.  
*A  
02/06/2002 Changed status from Preliminary to Final.  
Added Package Diagram.  
*B  
113514  
CKN  
05/01/2002 Updated Functional Overview:  
Updated I2C Interface Timing:  
Updated Acknowledge Pulse:  
Updated Figure 7 (Removed overline in “Register Address, Register Data” in  
caption).  
Updated Serial Bus specifications:  
Changed unit of CLKHIGH parameter from ns to s.  
Updated DC Electrical Characteristics:  
Updated details in “Description” column (Added (sink) at the end for IOH3.3 and  
IOL2.5 parameters, added (source) at the end for IOL3.3 and IOH2.5 parameters).  
*C  
*D  
121868  
125453  
RBI  
12/14/2002 Updated Absolute Maximum Conditions:  
Added tPU parameter and its details.  
CKN  
05/19/2003 Updated Functional Overview:  
Updated Frequency Calculations and Register Definitions using the I2C  
Interface:  
Updated Table 1:  
Replaced 0 with 1 corresponding to D5 of 12H register.  
Updated Reference Frequency:  
Updated description (Reworded and reformatted Programmable Crystal Input  
Oscillator Gain Settings text).  
Updated Table 3:  
Replaced 0 with 1 corresponding to D5 of 12H register.  
*E  
*F  
242808  
252352  
RGL  
RGL  
07/15/2004 Minor Change: Fixed the broken line in the block diagram  
08/11/2004 Updated Functional Overview:  
Updated Frequency Calculations and Register Definitions using the I2C  
Interface:  
Updated Reference Frequency:  
Updated Table 2.  
Updated Package Diagram:  
spec 51-85091 – Changed revision from ** to *A.  
*G  
*H  
296084  
RGL  
12/06/2004 Updated Ordering Information:  
Updated part numbers (Added Pb-free devices).  
2440846  
AESA  
04/25/2008 Updated Ordering Information:  
Added Note “Not recommended for new designs.”  
Updated part numbers (Added part numbers CY22150KFC, CY22150KFCT,  
CY22150KFI, CY22150KFZXC, CY22150KFZXCT, CY22150KFZXI,  
CY22150KFZXIT, CY22150KZXI-xxxT, and CY22150KZI-xxxT).  
Replaced Lead Free with Pb-free.  
Updated to new template.  
*I  
2649578  
KVM /  
PYRS  
01/29/2009 Updated Ordering Information:  
Removed reference of Note “Not recommended for new designs” for the  
following parts: CY22150KFC, CY22150KFCT, CY22150KFI.  
Updated part numbers (Added CY22150KZI-xxx and removed  
CY22150ZC-xxx, CY22150ZC-xxxT and CY22150ZI-xxx).  
Replaced CY3672 with CY3672-USB, and moved to the bottom of the table.  
Document Number: 38-07104 Rev. *R  
Page 20 of 23  
CY22150  
Document History Page (continued)  
Document Title: CY22150, One-PLL General-Purpose Flash-Programmable and I2C Programmable Clock Generator  
Document Number: 38-07104  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
*J  
2900690  
KVM  
03/29/2010 Changed title from “One-PLL General-Purpose Flash-Programmable and  
2-Wire Serially Programmable Clock Generator” to “One-PLL  
General-Purpose Flash-Programmable and I2C Programmable Clock  
Generator”.  
Updated Features:  
Replaced “Serial Programming Interface (SPI)” with “I2C Interface”.  
Updated Selection Guide.  
Updated Logic Block Diagram:  
Replaced “Serial Programming Interface (SPI)” with “I2C Interface”.  
Updated Ordering Information:  
Updated part numbers (Removed inactive parts).  
Added Possible Configurations.  
Updated Package Diagram:  
spec 51-85091 – Changed revision from *A to *B.  
*K  
3210225  
CXQ  
03/30/2011 Updated Functional Overview:  
Updated I2C Interface Timing:  
Updated Acknowledge Pulse:  
Updated Figure 7.  
Updated Serial Bus specifications:  
Changed minimum value of tDH parameter from 0 ns to 100 ns.  
Updated Ordering Information:  
No change in part numbers.  
Added Ordering Code Definitions.  
Updated Package Diagram:  
spec 51-85091 – Changed revision from *B to *C.  
Added Acronyms and Units of Measure.  
Completing Sunset Review.  
*L  
3402048  
3846671  
AJU  
10/11/2011 Updated Ordering Information:  
Updated part numbers.  
Updated Package Diagram:  
spec 51-85091 – Changed revision from *C to *D.  
*M  
PURU  
12/19/2012 Updated Ordering Information:  
Updated Possible Configurations:  
Updated part numbers (Removed all Non-K Devices and added K Devices).  
*N  
*O  
4379249  
4575273  
AJU  
AJU  
05/14/2014 Updated to new template.  
Completing Sunset Review.  
11/20/2014 Updated Functional Description:  
Added “For a complete list of related documentation, click here.” at the end.  
Updated Package Diagram:  
spec 51-85091 – Changed revision from *D to *E.  
*P  
5240950  
TAVA  
05/04/2016 Updated Functional Overview:  
Updated I2C Interface Timing:  
Updated Figure 3.  
Updated Data Frame:  
Added Figure 6.  
Updated Serial Bus specifications:  
Updated entire table.  
Updated Ordering Information:  
Updated Possible Configurations:  
Updated part numbers (Updated details in “Ordering Code” column).  
Updated to new template.  
Completing Sunset Review.  
Document Number: 38-07104 Rev. *R  
Page 21 of 23  
CY22150  
Document History Page (continued)  
Document Title: CY22150, One-PLL General-Purpose Flash-Programmable and I2C Programmable Clock Generator  
Document Number: 38-07104  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
*Q  
5747984 TAVA / PSR 05/25/2017 Replaced “SDAT” with “SDA” in all instances across the document.  
Replaced “SCLK” with “SCL” in all instances across the document.  
Updated Pin Definitions:  
Replaced “Input” with “Input/Output” in description column corresponding to  
“SDA” pin.  
Updated Functional Overview:  
Updated Default Startup Condition for the CY22150:  
Updated description.  
Updated Ordering Information:  
Updated part numbers.  
Updated to new template.  
*R  
6213085  
XHT  
06/20/2018 Updated to new template.  
Completing Sunset Review.  
Document Number: 38-07104 Rev. *R  
Page 22 of 23  
CY22150  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Projects | Video | Blogs | Training | Components  
Technical Support  
Internet of Things  
Memory  
cypress.com/support  
cypress.com/memory  
cypress.com/mcu  
Microcontrollers  
PSoC  
cypress.com/psoc  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2001–2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,  
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing  
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach,  
such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product  
to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any  
liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming  
code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this  
information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons  
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances  
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device  
or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you  
shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from  
and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 38-07104 Rev. *R  
Revised June 20, 2018  
Page 23 of 23  
BP Microsystems is a trademark of BP Microsystems. HiLo Systems is a trademark of Hi-Lo Systems, Inc. CyClocks is a trademark of Cypress Semiconductor Corporation.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY