CY7C68013A-56PVXCT [INFINEON]

USB 2.0 Peripheral controller with 16K RAM, 24 GPIOs, 56-pin SSOP for non-battery powered applications;
CY7C68013A-56PVXCT
型号: CY7C68013A-56PVXCT
厂家: Infineon    Infineon
描述:

USB 2.0 Peripheral controller with 16K RAM, 24 GPIOs, 56-pin SSOP for non-battery powered applications

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟 数据传输 微控制器 光电二极管 外围集成电路
文件: 总75页 (文件大小:962K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
EZ-USB FX2LP USB Microcontroller  
High-Speed USB Peripheral Controller  
EZ-USB FX2LP USB Microcontroller High-Speed USB Peripheral Controller  
3.3-V operation with 5-V tolerant inputs  
Features  
Vectored USB interrupts and GPIF/FIFO interrupts  
Separate data buffers for the setup and data portions of a  
USB 2.0 USB IF Hi-Speed certified (TID # 40460272)  
Single-chip integrated USB 2.0 transceiver, smart SIE, and  
enhanced 8051 microprocessor  
CONTROL transfer  
Integrated I2C controller; runs at 100 or 400 kHz[1]  
Fit-, form-, and function-compatible with the FX2  
Pin-compatible0  
Four integrated FIFOs  
Object-code-compatible  
Functionally compatible (FX2LP is a superset)  
Integrated glue logic and FIFOs lower system cost  
Automatic conversion to and from 16-bit buses  
Master or slave operation  
Uses external clock or asynchronous strobes  
Easy interface to ASIC and DSP ICs  
Ultra-low power: ICC no more than 85 mA in any mode  
Ideal for bus- and battery-powered applications  
Software: 8051 code runs from:  
Available in commercial and industrial temperature grades (all  
packages except VFBGA)  
Internal RAM, which is downloaded through USB  
Internal RAM, which is loaded from EEPROM  
External memory device (128-pin package)  
Features (CY7C68013A/14A only)  
16 KB of on-chip code/data RAM  
CY7C68014A: Ideal for battery-powered applications  
Suspend current: 100 A (typ)  
Four programmable BULK, INTERRUPT, and  
ISOCHRONOUS endpoints  
Buffering options: Double, triple, and quad  
CY7C68013A: Ideal for nonbattery-powered applications  
Suspend current: 300 A (typ)  
Additional programmable (BULK/INTERRUPT) 64-byte  
endpoint  
Available in five Pb-free packages with up to 40 GPIOs  
128-pinTQFP(40GPIOs), 100-pinTQFP(40GPIOs), 56-pin  
QFN (24 GPIOs), 56-pin SSOP (24 GPIOs), and 56-pin  
VFBGA (24 GPIOs)  
8-bit or 16-bit external data interface  
Smart media standard ECC generation  
Features (CY7C68015A/16A only)  
GPIF™ (general programmable interface)  
CY7C68016A: Ideal for battery-powered applications  
Suspend current: 100 A (typ)  
Enables direct connection to most parallel interfaces  
Programmable waveform descriptors and configuration  
registers to define waveforms  
Supports multiple ready (RDY) inputs and control (CTL)  
outputs  
CY7C68015A: Ideal for nonbattery-powered applications  
Suspend current: 300 A (typ)  
Available in Pb-free 56-pin QFN package (26 GPIOs)  
Integrated, industry-standard, enhanced 8051  
48-MHz, 24-MHz, or 12-MHz CPU operation  
Four clocks per instruction cycle  
Two USARTs  
Two more GPIOs than CY7C68013A/14A enabling additional  
features in the same footprint  
Functional Description  
Three counter/timers  
Expanded interrupt system  
Two data pointers  
For a complete list of related resources, click here.  
Notes  
2
2
1. The actual I C clock frequency will be different. The measured I C clock frequency when set for 100 kHz and 400 kHz is around 85 kHz and 300 kHz respectively.  
2. For information on silicon errata, see “Errata” on page 68. Details include trigger conditions, devices affected, and proposed workaround.  
Cypress Semiconductor Corporation  
Document Number: 38-08032 Rev. AD  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 30, 2021  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
More Information  
Cypress provides a wealth of data at www.cypress.com to help you to select the right device for your design, and to help you to quickly  
and effectively integrate the device into your design. For a comprehensive list of resources, see the application note AN65209 - Getting  
Started with FX2LP.  
Overview: USB Portfolio, USB Roadmap  
EZ-USB FX2LP Development Kit  
The CY3684 EZ-USB FX2LP Development Kit is a complete  
development resource for FX2LP.  
USB 2.0 Product Selectors: FX2LP, AT2LP, NX2LP-Flex, SX2  
Application notes: Cypress offers a large number of USB appli-  
cation notes covering a broad range of topics, from basic to  
advanced level. Recommended application notes for getting  
started with FX2LP are:  
The CY3689 EZ-USB FX2LP Discovery Kit is a newly designed  
kit that helps beginners and experienced users to implement  
different applications using FX2LP  
The development kit contains collateral materials for the  
firmware, hardware, and software aspects of a design using  
FX2LP.  
AN65209 - Getting Started with FX2LP  
AN15456 - Guide to Successful EZ-USB® FX2LP™ and  
EZ-USB FX1™ Hardware Design and Debug  
AN50963 - EZ-USB® FX1™/FX2LP™ Boot Options  
AN66806 - EZ-USB® FX2LP™ GPIF Design Guide  
AN61345 - Implementing an FX2LP™- FPGA Interface  
AN57322 - Interfacing SRAM with FX2LP over GPIF  
GPIF™ Designer  
FX2LP™ General Programmable Interface (GPIF) provides an  
independent hardware unit, which creates the data and control  
signals required by an external interface. FX2LP GPIF Designer  
allows users to create and modify GPIF waveform descriptors for  
EZ-USB FX2/ FX2LP family of chips using a graphical user  
interface. Extensive discussion of general GPIF discussion and  
programming using GPIF Designer is included in FX2LP  
Technical Reference Manual and GPIF Designer User Guide,  
distributed with GPIF Designer. AN66806 - Getting Started with  
EZ-USB® FX2LPGPIF can be a good starting point.  
AN4053 - Streaming Data through Isochronous/Bulk End-  
points on EZ-USB® FX2 and EZUSB FX2LP  
AN63787 - EZ-USB® FX2LP™ GPIF and Slave FIFO Con-  
figuration Examples using 8-bit Asynchronous Interface  
For complete list of Application notes, click here.  
Code Examples:  
USB Hi-Speed  
Technical Reference Manual (TRM):  
EZ-USB FX2LP Technical Reference Manual  
Reference Designs:  
CY4661 - External USB Hard Disk Drives (HDD) with  
Fingerprint Authentication Security  
FX2LP DMB-T/H TV Dongle reference design  
Models: IBIS  
Document Number: 38-08032 Rev. AD  
Page 2 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Logic Block Diagram  
High-performance micro  
using standard tools  
24 MHz  
Ext. XTAL  
with lower-power options  
FX2LP  
I2C  
/0.5  
/1.0  
/2.0  
8051 Core  
x20  
Master  
VCC  
12/24/48 MHz,  
four clocks/cycle  
PLL  
Abundant I/O  
including two USARTs  
Additional I/Os (24)  
1.5k  
connected for  
full speed  
General  
ADDR (9)  
programmable I/F  
to ASIC/DSP or bus  
standards such as  
D+  
D–  
GPIF  
USB  
2.0  
XCVR  
CY  
Smart  
USB  
16 KB  
RAM  
RDY (6)  
CTL (6)  
ATAPI, EPP, etc.  
ECC  
1.1/2.0  
Engine  
Integrated  
full speed and  
high speed  
XCVR  
Up to 96 MBytes/s  
burst rate  
4 kB  
FIFO  
8/16  
Enhanced USB core  
Simplifies 8051 code  
“Soft Configuration”  
Easy firmware changes  
FIFO and endpoint memory  
(master or slave operation)  
Cypress’s EZ-USB® FX2LP(CY7C68013A/14A) is  
a
With EZ-USB FX2LP, the Cypress Smart SIE handles most of  
the USB 1.1 and 2.0 protocol in hardware, freeing the embedded  
microcontroller for application-specific functions and decreasing  
the development time to ensure USB compatibility.  
low-power version of the EZ-USB FX2(CY7C68013), which is  
a highly integrated, low-power USB 2.0 microcontroller. By  
integrating the USB 2.0 transceiver, serial interface engine (SIE),  
enhanced 8051 microcontroller, and a programmable peripheral  
interface in a single chip, Cypress has created a cost-effective  
solution that provides superior time-to-market advantages with  
low power to enable bus-powered applications.  
The general programmable interface (GPIF) and Master/Slave  
Endpoint FIFO (8-bit or 16-bit data bus) provide an easy and  
glueless interface to popular interfaces such as ATA, UTOPIA,  
EPP, PCMCIA, and most DSP/processors.  
The ingenious architecture of FX2LP results in data transfer  
rates of over 53 Mbytes per second (the maximum allowable  
USB 2.0 bandwidth), while still using a low-cost 8051  
microcontroller in a package as small as a 56 VFBGA (5 mm ×  
5 mm). Because it incorporates the USB 2.0 transceiver, the  
FX2LP is more economical, providing a smaller-footprint solution  
than a USB 2.0 SIE or external transceiver implementations.  
The FX2LP draws less current than the FX2 (CY7C68013), has  
double the on-chip code/data RAM, and is fit, form, and function  
compatible with the 56-, 100-, and 128-pin FX2.  
Five packages are defined for the family: 56-ball VFBGA, 56-pin  
SSOP, 56-pin QFN, 100-pin TQFP, and 128-pin TQFP.  
Document Number: 38-08032 Rev. AD  
Page 3 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Contents  
Applications ......................................................................5  
Functional Overview ........................................................5  
USB Signaling Speed ..................................................5  
8051 Microprocessor ...................................................5  
I2C Bus ........................................................................5  
Buses ..........................................................................5  
USB Boot Methods ......................................................6  
ReNumeration .............................................................6  
Bus-Powered Applications ..........................................6  
Interrupt System ..........................................................6  
Reset and Wakeup ......................................................9  
Program/Data RAM ...................................................10  
Register Addresses ...................................................12  
Endpoint RAM ...........................................................13  
External FIFO Interface .............................................15  
GPIF ..........................................................................15  
ECC Generation ........................................................16  
USB Uploads and Downloads ...................................16  
Autopointer Access ...................................................16  
I2C Controller .............................................................16  
Compatible with Previous Generation  
Data Memory Read ..................................................................44  
Data Memory Write  
..................................................................45  
PORTC Strobe Feature Timings ...............................46  
GPIF Synchronous Signals .......................................47  
Slave FIFO Synchronous Read .................................48  
Slave FIFO Asynchronous Read ...............................49  
Slave FIFO Synchronous Write .................................50  
Slave FIFO Asynchronous Write ...............................51  
Slave FIFO Synchronous Packet End Strobe ...........52  
Slave FIFO Asynchronous Packet End Strobe .........54  
Slave FIFO Output Enable ........................................54  
Slave FIFO Address to Flags/Data ............................54  
Slave FIFO Synchronous Address ............................55  
Slave FIFO Asynchronous Address ..........................55  
Sequence Diagram ....................................................56  
Ordering Information ......................................................60  
Ordering Code Definitions .........................................60  
Package Diagrams ..........................................................61  
PCB Layout Recommendations ....................................65  
Quad Flat Package No Leads (QFN) Package  
Design Notes ...................................................................66  
Acronyms ........................................................................67  
Document Conventions .................................................67  
Units of Measure .......................................................67  
Errata ...............................................................................68  
Part Numbers Affected ..............................................68  
CY7C68013A/14A/15A/16A Qualification Status ......68  
CY7C68013A/14A/15A/16A Errata Summary ...........68  
Document History Page .................................................69  
Sales, Solutions, and Legal Information ......................74  
Worldwide Sales and Design Support .......................74  
Products ....................................................................74  
PSoC® Solutions .......................................................74  
Cypress Developer Community .................................74  
Technical Support .....................................................74  
EZ-USB FX2 ..............................................................17  
CY7C68013A/14A and CY7C68015A/16A  
Differences ................................................................17  
Pin Assignments ............................................................18  
CY7C68013A/15A Pin Descriptions ..........................25  
Register Summary ..........................................................34  
Absolute Maximum Ratings ..........................................41  
Operating Conditions .....................................................41  
Thermal Characteristics .................................................41  
DC Electrical Characteristics ........................................42  
USB Transceiver .......................................................42  
AC Electrical Characteristics ........................................43  
USB Transceiver .......................................................43  
Program Memory Read .............................................43  
Document Number: 38-08032 Rev. AD  
Page 4 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Applications  
Figure 1. Crystal Configuration  
Portable video recorder  
MPEG/TV conversion  
DSL modems  
24 MHz  
C1  
C2  
12 pF  
12 pF  
ATA interface  
Memory card readers  
Legacy conversion devices  
Cameras  
20 × PLL  
12-pF capacitor values assume a trace capacitance  
of 3 pF per side on a four-layer FR4 PCA  
Scanners  
The CLKOUT pin, which can be three-stated and inverted using  
internal control bits, outputs the 50% duty cycle 8051 clock, at  
the selected 8051 clock frequency: 48 MHz, 24 MHz, or 12 MHz.  
Wireless LAN  
MP3 players  
Networking  
USARTs  
The “Reference Designs” section of the Cypress web site  
provides additional tools for typical USB 2.0 applications. Each  
reference design comes complete with firmware source and  
object code, schematics, and documentation. Visit  
www.cypress.com for more information.  
FX2LP contains two standard 8051 USARTs, addressed through  
Special Function Register (SFR) bits. The USART interface pins  
are available on separate I/O pins, and are not multiplexed with  
port pins.  
UART0 and UART1 can operate using an internal clock at  
230 KBaud with no more than 1% baud rate error. 230 KBaud  
operation is achieved by an internally derived clock source that  
generates overflow pulses at the appropriate time. The internal  
clock adjusts for the 8051 clock rate (48 MHz, 24 MHz, and  
12 MHz) such that it always presents the correct frequency for  
Functional Overview  
USB Signaling Speed  
FX2LP operates at two of the three rates defined in the USB  
Specification Revision 2.0, dated April 27, 2000:  
the 230-KBaud operation[3]  
.
Full speed, with a signaling bit rate of 12 Mbps  
High speed, with a signaling bit rate of 480 Mbps  
Special Function Registers  
Certain 8051 SFR addresses are populated to provide fast  
access to critical FX2LP functions. These SFR additions are  
shown in Table 1 on page 6. Bold type indicates nonstandard,  
enhanced 8051 registers. The two SFR rows that end with “0”  
and “8” contain bit-addressable registers. The four I/O ports A to  
D use the SFR addresses used in the standard 8051 for ports 0  
to 3, which are not implemented in FX2LP. Because of the faster  
and more efficient SFR addressing, the FX2LP I/O ports are not  
addressable in external RAM space (using the MOVX  
instruction).  
FX2LP does not support the Low Speed signaling mode of  
1.5 Mbps.  
8051 Microprocessor  
The 8051 microprocessor embedded in the FX2LP family has  
256 bytes of register RAM, an expanded interrupt system, three  
timer/counters, and two USARTs.  
8051 Clock Frequency  
2
FX2LP has an on-chip oscillator circuit that uses an external  
24-MHz (±100 ppm) crystal with the following characteristics:  
I C Bus  
FX2LP supports the I2C bus as a master only at 100/400 kHz[4]  
.
SCL and SDA pins have open-drain outputs and hysteresis  
inputs. These signals must be pulled up to 3.3 V, even if no I2C  
device is connected.  
Parallel resonant  
Fundamental mode  
500-W drive level  
Buses  
12-pF (5% tolerance) load capacitors  
All packages, 8-bit or 16-bit “FIFO” bidirectional data bus,  
multiplexed on I/O ports B and D. 128-pin package: adds 16-bit  
output-only 8051 address bus, 8-bit bidirectional data bus.  
An on-chip PLL multiplies the 24-MHz oscillator up to 480 MHz,  
as required by the transceiver/PHY; internal counters divide it  
down for use as the 8051 clock. The default 8051 clock  
frequency is 12 MHz. The clock frequency of the 8051 can be  
changed by the 8051 through the CPUCS register, dynamically.  
Notes  
3. 115-KBaud operation is also possible by programming the 8051 SMOD0 or SMOD1 bits to a “1” for UART0, UART1, or both respectively.  
2
2
4. The actual I C clock frequency will be different.The measured I C clock frequency when set for 100 kHz and 400 kHz is around 85 kHz and 300 kHz respectively.  
Document Number: 38-08032 Rev. AD  
Page 5 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Table 1. Special Function Registers  
x
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
8x  
IOA  
9x  
Ax  
Bx  
IOD  
Cx  
Dx  
Ex  
ACC  
Fx  
B
IOB  
IOC  
SCON1  
PSW  
SP  
EXIF  
INT2CLR  
IOE  
SBUF1  
DPL0  
DPH0  
DPL1  
DPH1  
DPS  
PCON  
TCON  
TMOD  
TL0  
MPAGE  
INT4CLR  
OEA  
OEB  
OEC  
OED  
OEE  
T2CON  
SCON0  
SBUF0  
AUTOPTRH1  
AUTOPTRL1  
reserved  
AUTOPTRH2  
AUTOPTRL2  
reserved  
IE  
IP  
EICON  
EIE  
EIP  
EP2468STAT  
EP24FIFOFLGS  
EP68FIFOFLGS  
EP01STAT  
GPIFTRIG  
RCAP2L  
RCAP2H  
TL2  
TL1  
TH0  
TH1  
GPIFSGLDATH  
GPIFSGLDATLX  
GPIFSGLDATLNOX  
TH2  
CKCON  
AUTOPTRSET-UP  
Two control bits in the USBCS (USB Control and Status) register  
control the ReNumeration process: DISCON and RENUM. To  
simulate a USB disconnect, the firmware sets DISCON to 1. To  
reconnect, the firmware clears DISCON to 0.  
USB Boot Methods  
During the power-up sequence, internal logic checks the I2C port  
for the connection of an EEPROM whose first byte is either 0xC0  
or 0xC2. If found, it uses the VID/PID/DID values in the EEPROM  
in place of the internally stored values (0xC0), or it boot-loads the  
EEPROM contents into internal RAM (0xC2). If no EEPROM is  
detected, FX2LP enumerates using internally stored descriptors.  
The default ID values for FX2LP are VID/PID/DID (0x04B4,  
Before reconnecting, the firmware sets or clears the RENUM bit  
to indicate whether the firmware or the Default USB Device  
handles device requests over endpoint zero: if RENUM = 0, the  
Default USB Device handles device requests; if RENUM = 1, the  
firmware services the requests.  
0x8613, 0xAxxx where xxx = Chip revision)[5]  
.
Bus-Powered Applications  
Table 2. Default ID Values for FX2LP  
Default VID/PID/DID  
The FX2LP fully supports bus-powered designs by enumerating  
with less than 100 mA as required by the USB 2.0 specification.  
Vendor ID  
Product ID  
0x04B4 Cypress Semiconductor  
0x8613 EZ-USB FX2LP  
Depends on chip revision  
Interrupt System  
INT2 Interrupt Request and Enable Registers  
Device release 0xAnnn (nnn = chip revision where first  
FX2LP implements an autovector feature for INT2 and INT4.  
There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO/GPIF)  
vectors. See EZ-USB Technical Reference Manual (TRM) for  
more details.  
silicon = 001)  
ReNumeration  
Because the FX2LP’s configuration is soft, one chip can take on  
the identities of multiple distinct USB devices.  
USB Interrupt Autovectors  
The main USB interrupt is shared by 27 interrupt sources. To  
save the code and processing time that is required to identify the  
individual USB interrupt source, the FX2LP provides a second  
level of interrupt vectoring, called Autovectoring. When a USB  
interrupt is asserted, the FX2LP pushes the program counter to  
its stack, and then jumps to the address 0x0043 where it expects  
to find a “jump” instruction to the USB interrupt service routine.  
When first plugged into USB, the FX2LP enumerates  
automatically and downloads firmware and USB descriptor  
tables over the USB cable. Next, the FX2LP enumerates again,  
this time as a device defined by the downloaded information.  
This patented two step process called ReNumerationhappens  
instantly when the device is plugged in, without a hint that the  
initial download step has occurred.  
Note  
2
5. The I C bus SCL and SDA pins must be pulled up, even if an EEPROM is not connected. Otherwise this detection method does not work properly.  
Document Number: 38-08032 Rev. AD  
Page 6 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
The FX2LP jump instruction is encoded as follows:  
Table 3. INT2 USB Interrupts  
USB INTERRUPT TABLE FOR INT2  
Source  
Priority  
1
INT2VEC Value  
Notes  
00  
04  
08  
0C  
10  
14  
18  
1C  
20  
24  
28  
2C  
30  
34  
38  
3C  
40  
44  
48  
4C  
50  
54  
58  
5C  
60  
64  
68  
6C  
70  
74  
78  
7C  
SUDAV  
Setup data available  
2
SOF  
Start of frame (or microframe)  
Setup token received  
3
SUTOK  
4
SUSPEND  
USB RESET  
HISPEED  
EP0ACK  
USB suspend request  
5
Bus reset  
6
Entered high speed operation  
FX2LP ACK’d the CONTROL Handshake  
reserved  
7
8
9
EP0-IN  
EP0-OUT  
EP1-IN  
EP1-OUT  
EP2  
EP0-IN ready to be loaded with data  
EP0-OUT has USB data  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
EP1-IN ready to be loaded with data  
EP1-OUT has USB data  
IN: buffer available. OUT: buffer has data  
IN: buffer available. OUT: buffer has data  
IN: buffer available. OUT: buffer has data  
IN: buffer available. OUT: buffer has data  
IN-Bulk-NAK (any IN endpoint)  
reserved  
EP4  
EP6  
EP8  
IBN  
EP0PING  
EP1PING  
EP2PING  
EP4PING  
EP6PING  
EP8PING  
ERRLIMIT  
EP0 OUT was pinged and it NAK’d  
EP1 OUT was pinged and it NAK’d  
EP2 OUT was pinged and it NAK’d  
EP4 OUT was pinged and it NAK’d  
EP6 OUT was pinged and it NAK’d  
EP8 OUT was pinged and it NAK’d  
Bus errors exceeded the programmed limit  
Reserved  
Reserved  
EP2ISOERR  
EP4ISOERR  
EP6ISOERR  
EP8ISOERR  
ISO EP2 OUT PID sequence error  
ISO EP4 OUT PID sequence error  
ISO EP6 OUT PID sequence error  
ISO EP8 OUT PID sequence error  
If Autovectoring is enabled (AV2EN = 1 in the INTSET-UP register), the FX2LP substitutes its INT2VEC byte. Therefore, if the high  
byte (“page”) of a jump table address is preloaded at the location 0x0044, the automatically inserted INT2VEC byte at 0x0045 directs  
the jump to the correct address out of the 27 addresses within the page.  
Document Number: 38-08032 Rev. AD  
Page 7 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
FIFO/GPIF Interrupt (INT4)  
Just as the USB Interrupt is shared among 27 individual USB interrupt sources, the FIFO/GPIF interrupt is shared among 14 individual  
FIFO/GPIF sources. The FIFO/GPIF Interrupt, similar to the USB Interrupt, can employ autovectoring.  
Table 4 shows the priority and INT4VEC values for the 14 FIFO/GPIF interrupt sources.  
Table 4. Individual FIFO/GPIF Interrupt Sources  
Priority  
INT4VEC Value  
Source  
EP2PF  
EP4PF  
EP6PF  
EP8PF  
EP2EF  
EP4EF  
EP6EF  
EP8EF  
EP2FF  
EP4FF  
EP6FF  
EP8FF  
GPIFDONE  
GPIFWF  
Notes  
1
2
80  
84  
88  
8C  
90  
94  
98  
9C  
A0  
A4  
A8  
AC  
B0  
B4  
Endpoint 2 programmable flag  
Endpoint 4 programmable flag  
Endpoint 6 programmable flag  
Endpoint 8 programmable flag  
Endpoint 2 empty flag [6]  
Endpoint 4 empty flag  
Endpoint 6 empty flag  
Endpoint 8 empty flag  
Endpoint 2 full flag  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Endpoint 4 full flag  
Endpoint 6 full flag  
Endpoint 8 full flag  
GPIF operation complete  
GPIF waveform  
If Autovectoring is enabled (AV4EN = 1 in the INTSET-UP  
register), the FX 2LP substitutes its INT4VEC byte. Therefore, if  
the high byte (“page”) of a jump-table address is preloaded at  
location 0x0054, the automatically inserted INT4VEC byte at  
0x0055 directs the jump to the correct address out of the 14  
addresses within the page. When the ISR occurs, the FX2LP  
pushes the program counter to its stack then jumps to address  
0x0053, where it expects to find a “jump” instruction to the  
interrupt service routine (ISR).  
Note  
6. Errata: In Slave FIFO Asynchronous Word Wide mode, if a single word data is transferred from the USB host to EP2, configured as OUT Endpoint (EP) in the first  
transaction, then the Empty flag behaves incorrectly. This does not happen if the data size is more than one word in the first transaction. For more information, see  
the Errata on page 68.  
Document Number: 38-08032 Rev. AD  
Page 8 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Figure 2 shows a power-on reset condition and a reset applied  
during operation. A power-on reset is defined as the time reset  
that is asserted while power is being applied to the circuit. A  
powered reset is when the FX2LP is powered on and operating  
and the RESET# pin is asserted.  
Reset and Wakeup  
Reset Pin  
The input pin, RESET#, resets the FX2LP when asserted. This  
pin has hysteresis and is active LOW. When a crystal is used with  
the CY7C680xxA, the reset period must enable stabilization of  
the crystal and the PLL. This reset period must be approximately  
5 ms after VCC reaches 3.0 V. If the crystal input pin is driven by  
a clock signal, the internal PLL stabilizes in 200 s after VCC has  
Cypress provides an application note which describes and  
recommends power-on reset implementation. For more  
information about reset implementation for the FX2 family of  
products, visit http://www.cypress.com.  
reached 3.0 V[7]  
.
Figure 2. Reset Timing Plots  
RESET#  
RESET#  
VIL  
VIL  
3.3V  
3.0V  
3.3V  
VCC  
VCC  
0V  
0V  
TRESET  
TRESET  
Power on Reset  
Powered Reset  
Wakeup Pins  
Table 5. Reset Timing Values  
The 8051 puts itself and the rest of the chip into a power-down  
mode by setting PCON.0 = 1. This stops the oscillator and PLL.  
When WAKEUP is asserted by external logic, the oscillator  
restarts after the PLL stabilizes, and the 8051 receives a wakeup  
interrupt. This applies irrespective of whether FX2LP is  
connected to the USB.  
Condition  
TRESET  
Power-on reset with crystal  
5 ms  
Power-on reset with external  
clock  
200 s + clock stability time  
200 s  
The FX2LP exits the power-down (USB suspend) state by using  
one of the following methods:  
Powered reset  
USB bus activity (if D+/D– lines are left floating, noise on these  
lines may indicate activity to the FX2LP and initiate a wakeup)  
External logic asserts the WAKEUP pin  
External logic asserts the PA3/WU2 pin  
The second wakeup pin, WU2, can also be configured as a  
general-purpose I/O pin. This enables a simple external R-C  
network to be used as a periodic wakeup source. WAKEUP is by  
default active LOW.  
Document Number: 38-08032 Rev. AD  
Page 9 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
suppressed for memory spaces that exist inside the chip. This  
enables the user to connect a 64 KB memory without requiring  
address decodes to keep clear of internal memory spaces.  
Program/Data RAM  
Size  
The FX2LP has 16 KB of internal program/data RAM, where  
PSEN#/RD# signals are internally ORed to enable the 8051 to  
access it as both program and data memory. No USB control  
registers appears in this space.  
Only the internal 16 KB and scratch pad 0.5 KB RAM spaces  
have the following access:  
USB download  
USB upload  
Two memory maps are shown in the following diagrams:  
Figure 3 shows the Internal Code Memory, EA = 0.  
Setup data pointer  
I2C interface boot load  
Figure 4 on page 11 shows the External Code Memory, EA = 1.  
Internal Code Memory, EA = 0  
External Code Memory, EA = 1  
This mode implements the internal 16 KB block of RAM (starting  
at 0) as combined code and data memory. When external RAM  
or ROM is added, the external read and write strobes are  
The bottom 16 KB of program memory is external and therefore  
the bottom 16 KB of internal RAM is accessible only as a data  
memory.  
Figure 3. Internal Code Memory, EA = 0  
Inside FX2LP  
Outside FX2LP  
FFFF  
7.5 KB  
USB regs and  
4K FIFO buffers  
(OK to populate  
data memory  
here—RD#/WR#  
strobes are not  
active)  
(RD#,WR#)  
E200  
E1FF  
0.5 KB RAM  
Data (RD#,WR#)*  
E000  
48 KB  
External  
Code  
Memory  
(PSEN#)  
40 KB  
External  
Data  
Memory  
(RD#,WR#)  
3FFF  
(Ok to populate  
data memory  
here—RD#/WR#  
strobes are not  
active)  
(OK to populate  
program  
memory here—  
PSEN# strobe  
is not active)  
16 KB RAM  
Code and Data  
(PSEN#,RD#,WR#)*  
0000  
Data  
Code  
*SUDPTR, USB upload/download, I2C interface boot access  
Note  
7. If the external clock is powered at the same time as the CY7C680xxA and has a stabilization wait period, it must be added to the 200 s.  
Document Number: 38-08032 Rev. AD  
Page 10 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Figure 4. External Code Memory, EA = 1  
Inside FX2LP Outside FX2LP  
FFFF  
7.5 KB  
(OK to populate  
USB regs and  
4K FIFO buffers  
(RD#,WR#)  
data memory  
here—RD#/WR#  
strobes are not  
active)  
E200  
E1FF  
0.5 KB RAM  
Data (RD#,WR#)*  
E000  
40 KB  
External  
Data  
Memory  
(RD#,WR#)  
64 KB  
External  
Code  
Memory  
(PSEN#)  
3FFF  
(Ok to populate  
data memory  
here—RD#/WR#  
strobes are not  
active)  
16 KB  
RAM  
Data  
(RD#,WR#)*  
0000  
Data  
Code  
*SUDPTR, USB upload/download, I2C interface boot access  
Document Number: 38-08032 Rev. AD  
Page 11 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Register Addresses  
FFFF  
4 KB EP2-EP8  
buffers  
(8 x 512)  
F000  
EFFF  
2 KB RESERVED  
E800  
E7FF  
E7C0  
64 BEP1IN  
E7BF  
E780  
E77F  
E740  
E73F  
E700  
E6FF  
64 Bytes EP1OUT  
64 Bytes EP0 IN/OUT  
64 Bytes RESERVED  
8051 Addressable Registers  
(512)  
E500  
E4FF  
E480  
E47F  
Reserved (128)  
128 Bytes GPIF Waveforms  
Reserved (512)  
E400  
E3FF  
E200  
E1FF  
512 Bytes  
8051 xdata RAM  
E000  
Document Number: 38-08032 Rev. AD  
Page 12 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Setup Data Buffer  
Endpoint RAM  
Aseparate 8-byte buffer at 0xE6B8-0xE6BF holds the setup data  
from a CONTROL transfer.  
Size  
3 × 64 bytes  
(Endpoints 0 and 1)  
Endpoint Configurations (Hi-Speed Mode)  
8 × 512 bytes (Endpoints 2, 4, 6, 8)  
Endpoints 0 and 1 are the same for every configuration.  
Endpoint 0 is the only CONTROL endpoint, and endpoint 1 can  
be either BULK or INTERRUPT.  
Organization  
EP0  
The endpoint buffers can be configured in any 1 of the 12  
configurations shown in the vertical columns. When operating in  
the Full-Speed BULK mode, only the first 64 bytes of each buffer  
are used. For example, in Hi-Speed mode, the max packet size  
is 512 bytes, but in Full-Speed mode, it is 64 bytes. Even though  
a buffer is configured to a 512-byte buffer, in Full-Speed mode,  
only the first 64 bytes are used. The unused endpoint buffer  
space is not available for other operations. An example endpoint  
configuration is the EP2–1024 double-buffered; EP6–512  
quad-buffered (column 8).  
Bidirectional endpoint zero, 64-byte buffer  
EP1IN, EP1OUT  
64 byte buffers, bulk or interrupt  
EP2, 4, 6, 8  
Eight 512-byte buffers, bulk, interrupt, or isochronous. EP4 and  
EP8 can be double buffered; EP2 and 6 can be either double,  
triple, or quad buffered. For Hi-Speed endpoint configuration  
options, see Figure 5.  
Figure 5. Endpoint Configuration  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
EP0 IN&OUT  
EP1 IN  
EP1 OUT  
EP2  
512  
EP2  
EP2  
EP2 EP2  
EP2 EP2  
EP2  
512  
EP2  
EP2  
512  
EP2  
EP2  
512  
512  
512  
512  
512  
512  
512  
1024  
1024  
1024  
1024  
512  
512  
512  
512  
512  
1024  
EP4  
512  
EP4 EP4  
512  
512  
512  
512  
512  
512  
512  
512  
EP6  
1024  
1024  
1024  
1024  
1024  
512  
512  
512  
512  
EP6  
512  
EP6  
512  
EP6  
EP6 EP6  
EP6  
EP6  
EP6 EP6  
512  
512  
1024  
1024  
512  
512  
512  
512  
512  
512  
1024  
1024  
1024  
512  
512  
512  
512  
EP8  
512  
EP8  
512  
EP8  
512  
EP8  
512  
EP8  
512  
1024  
512  
512  
512  
512  
512  
512  
1024  
1024  
1024  
512  
512  
512  
512  
512  
10  
11  
12  
9
4
5
8
1
2
3
6
7
Document Number: 38-08032 Rev. AD  
Page 13 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Default Full-Speed Alternate Settings  
Table 6. Default Full Speed Alternate Settings[8, 9]  
Alternate Setting  
0
64  
0
1
2
3
ep0  
64  
64  
64  
ep1out  
ep1in  
ep2  
64 bulk  
64 bulk  
64 int  
64 int  
64 int  
0
64 int  
0
64 bulk out (2×)  
64 bulk out (2×)  
64 bulk in (2×)  
64 bulk in (2×)  
64 int out (2×)  
64 bulk out (2×)  
64 int in (2×)  
64 iso out (2×)  
64 bulk out (2×)  
64 iso in (2×)  
64 bulk in (2×)  
ep4  
0
ep6  
0
ep8  
0
64 bulk in (2×)  
Default High Speed Alternate Settings  
Table 7. Default Hi-Speed Alternate Settings[8, 9]  
Alternate Setting  
0
1
2
3
ep0  
64  
0
64  
64  
64  
ep1out  
ep1in  
ep2  
512 bulk[10]  
512 bulk[10]  
64 int  
64 int  
0
64 int  
64 int  
0
512 bulk out (2×)  
512 bulk out (2×)  
512 bulk in (2×)  
512 bulk in (2×)  
512 int out (2×)  
512 bulk out (2×)  
512 int in (2×)  
512 bulk in (2×)  
512 iso out (2×)  
512 bulk out (2×)  
512 iso in (2×)  
512 bulk in (2×)  
ep4  
0
ep6  
0
ep8  
0
Notes  
8. “0” means “not implemented.”  
9. “2×” means “double buffered.”  
10. Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1.  
Document Number: 38-08032 Rev. AD  
Page 14 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Alternatively, an externally supplied clock of 5 MHz–48 MHz  
feeding the IFCLK pin can be used as the interface clock. IFCLK  
can be configured to function as an output clock when the GPIF  
and FIFOs are internally clocked. An output enable bit in the  
IFCONFIG register turns this clock output off, if desired. Another  
bit within the IFCONFIG register inverts the IFCLK signal  
whether internally or externally sourced.  
External FIFO Interface  
Architecture  
The FX2LP slave FIFO architecture has eight 512-byte blocks in  
the endpoint RAM that directly serve as FIFO memories and are  
controlled by FIFO control signals (such as IFCLK, SLCS#,  
SLRD, SLWR, SLOE, PKTEND, and flags).  
In operation, some of the eight RAM blocks fill or empty from the  
SIE, while the others are connected to the I/O transfer logic. The  
transfer logic takes two forms: the GPIF for internally generated  
control signals and the slave FIFO interface for externally  
controlled transfers.  
GPIF  
The GPIF is a flexible 8-bit or 16-bit parallel interface driven by  
a user-programmable finite state machine. It enables the  
CY7C68013A/15A to perform local bus mastering and can  
implement a wide variety of protocols such as ATA interface,  
printer parallel port, and Utopia.  
Master/Slave Control Signals  
The GPIF has six programmable control outputs (CTL), nine  
address outputs (GPIFADRx), and six general-purpose ready  
inputs (RDY). The data bus width can be 8 or 16 bits. Each GPIF  
vector defines the state of the control outputs, and determines  
what state a ready input (or multiple inputs) must be before  
proceeding. The GPIF vector can be programmed to advance a  
FIFO to the next data value, advance an address, etc. A  
sequence of the GPIF vectors make up a single waveform that  
is executed to perform the desired data move between the  
FX2LP and the external device.  
The FX2LP endpoint FIFOs are implemented as eight physically  
distinct 25616 RAM blocks. The 8051/SIE can switch any of the  
RAM blocks between two domains, the USB (SIE) domain and  
the 8051-I/O Unit domain. This switching is done virtually  
instantaneously, giving essentially zero transfer time between  
“USB FIFOs” and “Slave FIFOs.” Because they are physically  
the same memory, no bytes are actually transferred between  
buffers.  
At any time, some RAM blocks are filling/emptying with the USB  
data under SIE control, while other RAM blocks are available to  
the 8051, the I/O control unit, or both. The RAM blocks operates  
as single-port in the USB domain, and dual-port in the 8051-I/O  
domain. The blocks can be configured as single-, double-, triple-,  
or quad-buffered as previously shown.  
Six Control OUT Signals  
The 100-pin and 128-pin packages bring out all six Control  
Output pins (CTL0-CTL5). The 8051 programs the GPIF unit to  
define the CTL waveforms. The 56-pin package brings out three  
of these signals, CTL0–CTL2. CTLx waveform edges can be  
programmed to make transitions as fast as once per clock  
(20.8 ns using a 48-MHz clock).  
The I/O control unit implements either an internal master (M for  
Master) or external master (S for Slave) interface.  
In Master (M) mode, the GPIF internally controls FIFOADR[1..0]  
to select a FIFO. The RDY pins (two in the 56-pin package, six  
in the 100-pin and 128-pin packages) can be used as flag inputs  
from an external FIFO or other logic if desired. The GPIF can be  
run from either an internally derived clock or externally supplied  
clock (IFCLK), at a rate that transfers data up to 96 MBytes/s  
(48 Hz IFCLK with 16-bit interface).  
Six Ready IN Signals  
The 100-pin and 128-pin packages bring out all six Ready inputs  
(RDY0–RDY5). The 8051 programs the GPIF unit to test the  
RDY pins for GPIF branching. The 56-pin package brings out two  
of these signals, RDY0–1.  
In the Slave (S) mode, FX2LP accepts either an internally  
derived clock or externally supplied clock (IFCLK, max frequency  
48 MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals  
from external logic. When using an external IFCLK, the external  
clock must be present before switching to the external clock with  
the IFCLKSRC bit. Each endpoint can individually be selected  
for byte or word operation by an internal configuration bit and a  
Slave FIFO Output Enable signal (SLOE) that enables data of  
the selected width. External logic must ensure that the output  
enable signal is inactive when writing data to a slave FIFO. The  
slave interface can also operate asynchronously, where the  
SLRD and SLWR signals act directly as strobes, rather than a  
clock qualifier as in synchronous mode. The signals SLRD,  
SLWR, SLOE, and PKTEND are gated by the signal SLCS#.  
Nine GPIF Address OUT Signals  
Nine GPIF address lines are available in the 100-pin and 128-pin  
packages, GPIFADR[8..0]. The GPIF address lines enable  
indexing through up to a 512-byte block of RAM. If more address  
lines are needed, then I/O port pins are used.  
Long Transfer Mode  
In the master mode, the 8051 appropriately sets GPIF  
transaction count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1,  
or GPIFTCB0) for unattended transfers of up to 232 transactions.  
The GPIF automatically throttles data flow to prevent under or  
overflow until the full number of requested transactions  
complete. The GPIF decrements the value in these registers to  
represent the current status of the transaction.  
GPIF and FIFO Clock Rates  
An 8051 register bit selects one of two frequencies for the  
internally supplied interface clock: 30 MHz and 48 MHz.  
Document Number: 38-08032 Rev. AD  
Page 15 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
under the control of a mode bit (AUTOPTRSET-UP.0). Using the  
external FX2LP autopointer access (at 0xE67B–0xE67C)  
enables the autopointer to access all internal and external RAM  
to the part.  
ECC Generation  
The EZ-USB can calculate ECCs (Error Correcting Codes)[11] on  
data that passes across its GPIF or Slave FIFO interfaces. There  
are two ECC configurations: Two ECCs, each calculated over  
256 bytes (SmartMedia Standard); and one ECC calculated over  
512 bytes.  
Also, autopointers can point to any FX2LP register or endpoint  
buffer space. When the autopointer access to external memory  
is enabled, locations 0xE67B and 0xE67C in XDATA and code  
space cannot be used.  
The ECC can correct any one-bit error or detect any two-bit error.  
ECC Implementation  
2
I C Controller  
The two ECC configurations are selected by the ECCM bit:  
FX2LP has one I2C port that is driven by two internal controllers,  
the one that automatically operates at boot time to load  
VID/PID/DID and configuration information, and another that the  
8051 uses when running to control external I2C devices. The I2C  
port operates in master mode only.  
ECCM = 0  
Two 3-byte ECCs, each calculated over a 256-byte block of data.  
This configuration conforms to the SmartMedia Standard.  
Write any value to ECCRESET, then pass data across the GPIF  
or Slave FIFO interface. The ECC for the first 256 bytes of data  
is calculated and stored in ECC1. The ECC for the next 256 bytes  
is stored in ECC2. After the second ECC is calculated, the values  
in the ECCx registers do not change until ECCRESET is written  
again, even if more data is subsequently passed across the  
interface.  
I2C Port Pins  
The I2C pins SCL and SDA must have external 2.2-kpull-up  
resistors even if no EEPROM is connected to the FX2LP.  
External EEPROM device address pins must be configured  
properly. See Table 8 for configuring the device address pins.  
ECCM = 1  
Table 8. Strap Boot EEPROM Address Lines to These Values  
One 3-byte ECC calculated over a 512-byte block of data.  
Bytes  
16  
Example EEPROM  
24LC00[13]  
24LC01  
A2  
N/A  
0
A1  
N/A  
0
A0  
N/A  
0
Write any value to ECCRESET then pass data across the GPIF  
or Slave FIFO interface. The ECC for the first 512 bytes of data  
is calculated and stored in ECC1; ECC2 is unused. After the  
ECC is calculated, the values in ECC1 do not change even if  
more data is subsequently passed across the interface, till  
ECCRESET is written again.  
128  
256  
4K  
24LC02  
0
0
0
24LC32  
0
0
1
8K  
24LC64  
0
0
1
USB Uploads and Downloads  
16K  
24LC128  
0
0
1
The core has the ability to directly edit the data contents of the  
internal 16-KB RAM and of the internal 512-byte scratch pad  
RAM via a vendor-specific command. This capability is normally  
used when soft downloading the user code and is available only  
to and from the internal RAM, only when the 8051 is held in reset.  
The available RAM spaces are 16 KB from 0x0000–0x3FFF  
(code/data) and 512 bytes from 0xE000–0xE1FF (scratch pad  
I2C Interface Boot Load Access  
At power-on reset, the I2C interface boot loader loads the  
VID/PID/DID configuration bytes and up to 16 KB of  
program/data. The available RAM spaces are 16 KB from  
0x0000–0x3FFF and 512 bytes from 0xE000–0xE1FF. The 8051  
is in reset. I2C interface boot loads only occur after power-on  
reset.  
data RAM)[12]  
.
Autopointer Access  
I2C Interface General-Purpose Access  
FX2LP provides two identical autopointers. They are similar to  
the internal 8051 data pointers but with an additional feature:  
they can optionally increment after every memory access. This  
capability is available to and from both internal and external  
RAM. Autopointers are available in external FX2LP registers  
The 8051 can control peripherals connected to the I2C bus using  
the I2CTL and I2DAT registers. FX2LP provides I2C master  
control only; it is never an I2C slave.  
Notes  
11. To use the ECC logic, the GPIF or Slave FIFO interface must be configured for byte-wide operation.  
12. After the data is downloaded from the host, a “loader” can execute from internal RAM to transfer downloaded data to external memory.  
13. This EEPROM does not have address pins.  
Document Number: 38-08032 Rev. AD  
Page 16 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Compatible with Previous Generation EZ-USB FX2  
CY7C68013A/14A and CY7C68015A/16A Differences  
The EZ-USB FX2LP is form-, fit-, and with minor exceptions,  
functionally-compatible with its predecessor, the EZ-USB FX2.  
This makes for an easy transition for designers wanting to  
upgrade their systems from the FX2 to the FX2LP. The pinout  
and package selection are identical and a vast majority of  
firmware previously developed for the FX2 functions in the  
FX2LP.  
CY7C68013A is identical to CY7C68014A in form, fit, and  
functionality. CY7C68015A is identical to CY7C68016A in form,  
fit, and functionality. CY7C68014A and CY7C68016A have a  
lower suspend current than CY7C68013A and CY7C68015A  
respectively and are ideal for power-sensitive battery  
applications.  
CY7C68015A and CY7C68016A are available in 56-pin QFN  
package only. Two additional GPIO signals are available on the  
CY7C68015A and CY7C68016A to provide more flexibility when  
neither IFCLK or CLKOUT are needed in the 56-pin package.  
For designers migrating from the FX2 to the FX2LP, a change in  
the bill of material and review of the memory allocation (due to  
increased internal memory) is required. For more information  
about migrating from EZ-USB FX2 to EZ-USB FX2LP, see the  
application note titled Migrating from EZ-USB FX2 to EZ-USB  
FX2LP available in the Cypress web site.  
USB developers wanting to convert their FX2 56-pin application  
to a bus-powered system directly benefit from these additional  
signals. The two GPIOs give developers the signals they need  
for the power-control circuitry of their bus-powered application  
without pushing them to a high-pincount version of FX2LP.  
Table 9. Part Number Conversion Table  
EZ-USB FX2  
Part Number  
EZ-USB FX2LP  
Part Number  
Package  
Description  
The CY7C68015A is only available in the 56-pin QFN package  
Table 10. CY7C68013A/14A and CY7C68015A/16A  
Pin Differences  
CY7C68013A-56PVXC or 56-pin  
CY7C68013-56PVC  
CY7C68014A-56PVXC  
SSOP  
CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A  
56-pin  
CY7C68013A-56PVXCTor SSOP –  
CY7C68014A-56PVXCT Tape and  
Reel  
IFCLK  
PE0  
PE1  
CY7C68013-56PVCT  
CLKOUT  
CY7C68013A-56LFXC or  
56-pin QFN  
CY7C68013-56LFC  
CY7C68013-100AC  
CY7C68013-128AC  
CY7C68014A-56LFXC  
CY7C68013A-100AXC or 100-pin  
CY7C68014A-100AXC  
CY7C68013A-128AXC or 128-pin  
CY7C68014A-128AXC TQFP  
TQFP  
Document Number: 38-08032 Rev. AD  
Page 17 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
The 100-pin package adds functionality to the 56-pin package by  
adding these pins:  
Pin Assignments  
Figure 6 on page 19 identifies all signals for the five package  
types. The following pages illustrate the individual pin diagrams,  
plus a combination diagram showing which of the full set of  
signals are available in the 128-pin, 100-pin, and 56-pin  
packages.  
PORTC or alternate GPIFADR[7:0] address signals  
PORTE or alternate GPIFADR[8] address signal and seven  
additional 8051 signals  
Three GPIF Control signals  
Four GPIF Ready signals  
The signals on the left edge of the 56-pin package in Figure 6  
on page 19 are common to all versions in the FX2LP family with  
the noted differences between the CY7C68013A/14A and the  
CY7C68015A/16A.  
Nine 8051 signals (two USARTs, three timer inputs, INT4, and  
INT5#)  
Three modes are available in all package versions: Port, GPIF  
master, and Slave FIFO. These modes define the signals on the  
right edge of the diagram. The 8051 selects the interface mode  
using the IFCONFIG[1:0] register bits. Port mode is the power on  
default configuration.  
BKPT, RD#, WR#.  
The 128-pin package adds the 8051 address and data buses  
plus control signals. Note that two of the required signals, RD#  
and WR#, are present in the 100-pin version.  
In the 100-pin and 128-pin versions, an 8051 control bit can be  
set to pulse the RD# and WR# pins when the 8051 reads  
from/writes to PORTC. This feature is enabled by setting the  
PORTCSTB bit in the CPUCS register.  
PORTC Strobe Feature Timings on page 46 displays the timing  
diagram of the read and write strobing function on accessing  
PORTC.  
Document Number: 38-08032 Rev. AD  
Page 18 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Figure 6. Signal  
GPIF Master  
Port  
Slave FIFO  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
PB7  
PB6  
PB5  
PB4  
PB3  
PB2  
PB1  
PB0  
FD[15]  
FD[14]  
FD[13]  
FD[12]  
FD[11]  
FD[10]  
FD[9]  
FD[8]  
FD[7]  
FD[6]  
FD[5]  
FD[4]  
FD[3]  
FD[2]  
FD[1]  
FD[0]  
FD[15]  
FD[14]  
FD[13]  
FD[12]  
FD[11]  
FD[10]  
FD[9]  
FD[8]  
FD[7]  
FD[6]  
FD[5]  
FD[4]  
FD[3]  
FD[2]  
FD[1]  
FD[0]  
XTALIN  
XTALOUT  
RESET#  
WAKEUP#  
SCL  
SDA  
56  
SLRD  
SLWR  
RDY0  
RDY1  
**PE0 replaces IFCLK  
& PE1 replaces CLKOUT  
on CY7C68015A/16A  
**PE0  
**PE1  
FLAGA  
FLAGB  
FLAGC  
CTL0  
CTL1  
CTL2  
INT0#/PA0  
INT1#/PA1  
PA2  
WU2/PA3  
PA4  
INT0#/ PA0  
INT1#/ PA1  
SLOE  
INT0#/PA0  
INT1#/PA1  
PA2  
WU2/PA3  
PA4  
PA5  
PA6  
IFCLK  
CLKOUT  
WU2/PA3  
FIFOADR0  
FIFOADR1  
PKTEND  
DPLUS  
DMINUS  
PA5  
PA6  
PA7  
PA7/FLAGD/SLCS#  
PA7  
CTL3  
CTL4  
CTL5  
RDY2  
RDY3  
RDY4  
RDY5  
100  
BKPT  
PORTC7/GPIFADR7  
PORTC6/GPIFADR6  
PORTC5/GPIFADR5  
PORTC4/GPIFADR4  
PORTC3/GPIFADR3  
PORTC2/GPIFADR2  
PORTC1/GPIFADR1  
PORTC0/GPIFADR0  
RxD0  
TxD0  
RxD1  
TxD1  
INT4  
INT5#  
T2  
PE7/GPIFADR8  
PE6/T2EX  
PE5/INT6  
PE4/RxD1OUT  
PE3/RxD0OUT  
PE2/T2OUT  
PE1/T1OUT  
PE0/T0OUT  
T1  
T0  
RD#  
WR#  
CS#  
OE#  
PSEN#  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
128  
A8  
A7  
A6  
A5  
A4  
A3  
EA  
A2  
A1  
A0  
Document Number: 38-08032 Rev. AD  
Page 19 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Figure 7. CY7C68013A/CY7C68014A 128-Pin TQFP Pin Assignment  
1
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
CLKOUT  
VCC  
GND  
PD0/FD8  
*WAKEUP  
VCC  
2
3
4
RDY0/*SLRD  
RDY1/*SLWR  
RDY2  
RDY3  
RDY4  
RDY5  
AVCC  
XTALOUT  
XTALIN  
AGND  
NC  
RESET#  
5
CTL5  
6
A3  
A2  
A1  
A0  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
GND  
PA7/*FLAGD/SLCS#  
PA6/*PKTEND  
PA5/FIFOADR1  
PA4/FIFOADR0  
D7  
NC  
NC  
D6  
D5  
AVCC  
DPLUS  
DMINUS  
AGND  
A11  
A12  
A13  
A14  
A15  
VCC  
GND  
INT4  
T0  
T1  
T2  
CY7C68013A/CY7C68014A  
128-pin TQFP  
PA3/*WU2  
PA2/*SLOE  
PA1/INT1#  
PA0/INT0#  
VCC  
GND  
PC7/GPIFADR7  
PC6/GPIFADR6  
PC5/GPIFADR5  
PC4/GPIFADR4  
PC3/GPIFADR3  
PC2/GPIFADR2  
PC1/GPIFADR1  
PC0/GPIFADR0  
CTL2/*FLAGC  
CTL1/*FLAGB  
CTL0/*FLAGA  
VCC  
*IFCLK  
RESERVED  
BKPT  
EA  
SCL  
SDA  
CTL4  
CTL3  
GND  
OE#  
* denotes programmable polarity  
Document Number: 38-08032 Rev. AD  
Page 20 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Figure 8. CY7C68013A/CY7C68014A 100-Pin TQFP Pin Assignment  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VCC  
GND  
PD0/FD8  
*WAKEUP  
VCC  
RESET#  
2
3
RDY0/*SLRD  
RDY1/*SLWR  
RDY2  
RDY3  
RDY4  
RDY5  
AVCC  
XTALOUT  
XTALIN  
AGND  
NC  
4
5
CTL5  
GND  
6
7
PA7/*FLAGD/SLCS#  
PA6/*PKTEND  
PA5/FIFOADR1  
PA4/FIFOADR0  
PA3/*WU2  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
PA2/*SLOE  
PA1/INT1#  
PA0/INT0#  
NC  
NC  
CY7C68013A/CY7C68014A  
100-pin TQFP  
VCC  
GND  
AVCC  
DPLUS  
DMINUS  
AGND  
VCC  
GND  
INT4  
T0  
T1  
PC7/GPIFADR7  
PC6/GPIFADR6  
PC5/GPIFADR5  
PC4/GPIFADR4  
PC3/GPIFADR3  
PC2/GPIFADR2  
PC1/GPIFADR1  
PC0/GPIFADR0  
CTL2/*FLAGC  
CTL1/*FLAGB  
CTL0/*FLAGA  
VCC  
T2  
*IFCLK  
RESERVED  
BKPT  
SCL  
CTL4  
CTL3  
SDA  
* denotes programmable polarity  
Document Number: 38-08032 Rev. AD  
Page 21 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Figure 9. CY7C68013A/CY7C68014A 56-Pin SSOP Pin Assignment  
CY7C68013A/CY7C68014A  
56-pin SSOP  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
PD5/FD13  
PD4/FD12  
PD3/FD11  
PD2/FD10  
PD1/FD9  
PD0/FD8  
*WAKEUP  
VCC  
2
PD6/FD14  
PD7/FD15  
GND  
CLKOUT  
VCC  
3
4
5
6
7
GND  
8
RDY0/*SLRD  
RDY1/*SLWR  
AVCC  
XTALOUT  
XTALIN  
AGND  
RESET#  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
PA7/*FLAGD/SLCS#  
PA6/PKTEND  
PA5/FIFOADR1  
PA4/FIFOADR0  
PA3/*WU2  
PA2/*SLOE  
PA1/INT1#  
PA0/INT0#  
VCC  
AVCC  
DPLUS  
DMINUS  
AGND  
VCC  
GND  
*IFCLK  
RESERVED  
SCL  
SDA  
VCC  
CTL2/*FLAGC  
CTL1/*FLAGB  
CTL0/*FLAGA  
GND  
VCC  
GND  
PB7/FD7  
PB6/FD6  
PB5/FD5  
PB4/FD4  
PB0/FD0  
PB1/FD1  
PB2/FD2  
PB3/FD3  
* denotes programmable polarity  
Document Number: 38-08032 Rev. AD  
Page 22 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Figure 10. CY7C68013A/14A/15A/16A 56-Pin QFN Pin Assignment  
RESET#  
RDY0/*SLRD  
RDY1/*SLWR  
AVCC  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
GND  
PA7/*FLAGD/SLCS#  
PA6/*PKTEND  
PA5/FIFOADR1  
PA4/FIFOADR0  
PA3/*WU2  
3
XTALOUT  
XTALIN  
4
CY7C68013A/CY7C68014A  
5
&
AGND  
6
CY7C68015A/CY7C68016A  
AVCC  
7
56-pin QFN  
PA2/*SLOE  
PA1/INT1#  
DPLUS  
8
DMINUS  
AGND  
9
PA0/INT0#  
10  
11  
12  
13  
14  
VCC  
VCC  
CTL2/*FLAGC  
CTL1/*FLAGB  
GND  
*IFCLK/**PE0  
RESERVED  
29 CTL0/*FLAGA  
* denotes programmable polarity  
** denotes CY7C68015A/CY7C68016A pinout  
Document Number: 38-08032 Rev. AD  
Page 23 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Figure 11. CY7C68013A 56-pin VFBGA Pin Assignment – Top View  
1
2
3
4
5
6
7
8
1A  
1B  
1C  
2A  
2B  
2C  
3A  
3B  
3C  
4A  
4B  
4C  
5A  
5B  
5C  
6A  
6B  
6C  
7A  
7B  
7C  
8A  
8B  
8C  
A
B
C
D
1D  
2D  
7D  
8D  
1E  
1F  
1G  
1H  
2E  
2F  
2G  
2H  
7E  
7F  
7G  
7H  
8E  
8F  
8G  
8H  
E
3F  
4F  
5F  
6F  
F
G
H
3G  
3H  
4G  
4H  
5G  
5H  
6G  
6H  
Document Number: 38-08032 Rev. AD  
Page 24 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
CY7C68013A/15A Pin Descriptions  
Table 11. FX2LP Pin Descriptions[14]  
128 100  
56  
56  
56  
Name  
Type Default Reset[15]  
Description  
TQFP TQFP SSOP QFN VFBGA  
Analog VCC. Connect this pin to the 3.3 V power  
source. This signal provides power to the analog  
section of the chip.  
10  
17  
9
10  
14  
3
7
2D  
1D  
AVCC  
Power  
Power  
N/A  
N/A  
N/A  
N/A  
Analog VCC. Connect this pin to the 3.3 V power  
source. This signal provides power to the analog  
section of the chip.  
16  
AVCC  
Analog Ground. Connect to ground with as short  
a path as possible.  
13  
20  
12  
19  
13  
17  
6
2F  
1F  
AGND  
AGND  
Ground N/A  
Ground N/A  
N/A  
N/A  
Analog Ground. Connect to ground with as short  
a path as possible.  
10  
19  
18  
18  
17  
16  
15  
9
8
1E  
2E  
DMINUS  
DPLUS  
A0  
I/O/Z  
I/O/Z  
Z
Z
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Z
Z
Z
Z
Z
Z
Z
Z
N/A  
N/A  
L
USB D– Signal. Connect to the USB D– signal.  
USB D+ Signal. Connect to the USB D+ signal.  
94  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
I/O/Z  
95  
A1  
L
96  
A2  
L
97  
A3  
L
117  
118  
119  
120  
126  
127  
128  
21  
A4  
L
A5  
L
A6  
L
8051 Address Bus. This bus is driven at all times.  
When the 8051 is addressing internal RAM it  
reflects the internal address.  
A7  
L
A8  
L
A9  
L
A10  
A11  
A12  
A13  
A14  
A15  
D0  
L
L
22  
L
23  
L
24  
L
25  
L
59  
Z
Z
Z
Z
Z
Z
Z
Z
60  
D1  
I/O/Z  
8051 Data Bus. This bidirectional bus is  
high impedance when inactive, input for bus reads,  
and output for bus writes. The data bus is used for  
external 8051 program and data memory. The data  
bus is active only for external bus accesses, and is  
driven LOW in suspend.  
61  
D2  
I/O/Z  
62  
D3  
I/O/Z  
63  
D4  
I/O/Z  
86  
D5  
I/O/Z  
87  
D6  
I/O/Z  
88  
D7  
I/O/Z  
Program Store Enable. This active LOW signal  
indicates an 8051 code fetch from external  
memory. It is active for program memory fetches  
from 0x4000–0xFFFF when the EA pin is LOW, or  
from 0x0000–0xFFFF when the EA pin is HIGH.  
39  
PSEN#  
Output  
H
H
Notes  
14. Unused inputs must not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power up and in  
standby. Note also that no pins should be driven while the device is powered down.  
15. The Reset column indicates the state of signals during reset (RESET# asserted) or during Power on Reset (POR).  
Document Number: 38-08032 Rev. AD  
Page 25 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Table 11. FX2LP Pin Descriptions[14] (continued)  
128 100 56 56 56  
Name  
Type Default Reset[15]  
Description  
TQFP TQFP SSOP QFN VFBGA  
Breakpoint. This pin goes active (HIGH) when the  
8051 address bus matches the BPADDRH/L  
registers and breakpoints are enabled in the  
BREAKPTregister (BPEN = 1). If the BPPULSE bit  
in the BREAKPT register is HIGH, this signal  
pulses HIGH for eight 12-/24-/48-MHz clocks. If the  
BPPULSE bit is LOW, the signal remains HIGH  
until the 8051 clears the BREAK bit (by writing 1 to  
it) in the BREAKPT register.  
34  
28  
BKPT  
Output  
L
L
Active LOW Reset. Resets the entire chip. See  
section ”Reset and Wakeup” on page 9 for more  
details.  
99  
35  
77  
49  
42  
8B  
RESET#  
EA  
Input  
Input  
N/A  
N/A  
N/A  
N/A  
External Access. This pin determines where the  
8051fetchescodebetweenaddresses0x0000and  
0x3FFF. If EA = 0 the 8051 fetches this code from  
its internal RAM. IF EA = 1 the 8051 fetches this  
code from external memory.  
Crystal Input. Connect this signal to a 24-MHz  
parallel-resonant, fundamental mode crystal and  
load capacitor to GND.  
It is also correct to drive XTALIN with an external  
24-MHz square wave derived from another clock  
source. When driving from an external source, the  
driving signal should be a 3.3-V square wave.  
12  
11  
11  
10  
12  
11  
5
4
1C  
2C  
XTALIN  
Input  
N/A  
N/A  
N/A  
N/A  
Crystal Output. Connect this signal to a 24-MHz  
parallel-resonant, fundamental mode crystal and  
load capacitor to GND.  
XTALOUT  
Output  
If an external clock is used to drive XTALIN, leave  
this pin open.  
CLKOUT on  
CY7C68013A  
and  
CY7C68014A  
------------------  
PE1 on  
Clock  
Driven  
O/Z 12 MHz  
CLKOUT: 12-, 24- or 48-MHz clock, phase-locked  
to the 24-MHz input clock. The 8051 defaults to  
12-MHz operation. The 8051 may three-state this  
output by setting CPUCS.1 = 1.  
------------------------------------------------------------------  
------PE1 is a bidirectional I/O port pin.  
1
100  
5
54  
2B  
----------  
Z
---------- ----------  
CY7C68015A  
and  
-
I
I/O/Z  
CY7C68016A  
Port A  
Multiplexed pin whose function is selected by  
PORTACFG.0  
PA0 is a bidirectional I/O port pin.  
INT0# is the active-LOW 8051 INT0 interrupt input  
signal, which is either edge-triggered (IT0 = 1) or  
level-triggered (IT0 = 0).  
Z
PA0 or  
INT0#  
I
82  
67  
68  
40  
41  
33  
34  
8G  
6G  
I/O/Z  
I/O/Z  
(PA0)  
(PA0)  
Multiplexed pin whose function is selected by:  
PORTACFG.1  
PA1 is a bidirectional I/O port pin.  
PA1 or  
INT1#  
I
Z
83  
(PA1)  
(PA1) INT1# is the active-LOW 8051 INT1 interrupt input  
signal, which is either edge-triggered (IT1 = 1) or  
level-triggered (IT1 = 0).  
Document Number: 38-08032 Rev. AD  
Page 26 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Table 11. FX2LP Pin Descriptions[14] (continued)  
128 100 56 56 56  
Name  
Type Default Reset[15]  
Description  
TQFP TQFP SSOP QFN VFBGA  
Multiplexed pin whose function is selected by two  
bits:  
IFCONFIG[1:0].  
Z
PA2 or  
SLOE  
I
84  
69  
42  
35  
8F  
I/O/Z  
(PA2) PA2 is a bidirectional I/O port pin.  
SLOE is an input-only output enable with program-  
mable polarity (FIFOPINPOLAR.4) for the slave  
FIFOs connected to FD[7..0] or FD[15..0].  
(PA2)  
Multiplexed pin whose function is selected by:  
WAKEUP.7 and OEA.3  
PA3 is a bidirectional I/O port pin.  
WU2 is an alternate source for USB Wakeup,  
enabled by WU2EN bit (WAKEUP.1) and polarity  
PA3 or  
WU2  
I
Z
85  
70  
43  
36  
7F  
I/O/Z  
(PA3)  
(PA3) set by WU2POL (WAKEUP.4). If the 8051 is in  
suspend and WU2EN = 1, a transition on this pin  
starts up the oscillator and interrupts the 8051 to  
enable it to exit the suspend mode. Asserting this  
pin inhibits the chip from suspending if WU2EN = 1.  
Multiplexed pin whose function is selected by:  
IFCONFIG[1..0].  
PA4 or  
FIFOADR0  
I
Z
89  
90  
71  
72  
44  
45  
37  
38  
6F  
8C  
I/O/Z  
I/O/Z  
PA4 is a bidirectional I/O port pin.  
(PA4)  
(PA4)  
FIFOADR0 is an input-only address select for the  
slave FIFOs connected to FD[7..0] or FD[15..0].  
Multiplexed pin whose function is selected by:  
IFCONFIG[1..0].  
PA5 or  
FIFOADR1  
I
Z
PA5 is a bidirectional I/O port pin.  
(PA5)  
(PA5)  
FIFOADR1 is an input-only address select for the  
slave FIFOs connected to FD[7..0] or FD[15..0].  
Multiplexed pin whose function is selected by the  
IFCONFIG[1:0] bits.  
PA6 is a bidirectional I/O port pin.  
PA6 or  
PKTEND  
I
Z
91  
92  
73  
74  
46  
47  
39  
40  
7C  
6C  
I/O/Z  
I/O/Z  
(PA6)  
(PA6) PKTEND is an input used to commit the FIFO  
packet data to the endpoint and whose polarity is  
programmable via FIFOPINPOLAR.5.  
Multiplexed pin whose function is selected by the  
IFCONFIG[1:0] and PORTACFG.7 bits.  
PA7 is a bidirectional I/O port pin.  
PA7 or  
FLAGD or  
SLCS#  
I
Z
(PA7)  
(PA7) FLAGD is a programmable slave-FIFO output  
status flag signal.  
SLCS# gates all other slave FIFO enable/strobes  
Port B  
Multiplexed pin whose function is selected by the  
Z
PB0 or  
FD[0]  
I
following bits: IFCONFIG[1..0].  
(PB0)  
44  
34  
35  
36  
25  
26  
27  
18  
19  
20  
3H  
4F  
4H  
I/O/Z  
I/O/Z  
I/O/Z  
(PB0)  
PB0 is a bidirectional I/O port pin.  
FD[0] is the bidirectional FIFO/GPIF data bus.  
Multiplexed pin whose function is selected by the  
following bits: IFCONFIG[1..0].  
(PB1) PB1 is a bidirectional I/O port pin.  
PB1 or  
FD[1]  
I
Z
45  
46  
(PB1)  
FD[1] is the bidirectional FIFO/GPIF data bus.  
Multiplexed pin whose function is selected by the  
following bits: IFCONFIG[1..0].  
(PB2) PB2 is a bidirectional I/O port pin.  
PB2 or  
FD[2]  
I
Z
(PB2)  
FD[2] is the bidirectional FIFO/GPIF data bus.  
Document Number: 38-08032 Rev. AD  
Page 27 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Table 11. FX2LP Pin Descriptions[14] (continued)  
128 100 56 56 56  
Name  
Type Default Reset[15]  
Description  
TQFP TQFP SSOP QFN VFBGA  
Multiplexed pin whose function is selected by the  
following bits: IFCONFIG[1..0].  
(PB3) PB3 is a bidirectional I/O port pin.  
PB3 or  
FD[3]  
I
Z
47  
54  
55  
56  
57  
37  
44  
45  
46  
47  
28  
29  
30  
31  
32  
21  
22  
23  
24  
25  
4G  
5H  
5G  
5F  
6H  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
(PB3)  
FD[3] is the bidirectional FIFO/GPIF data bus.  
Multiplexed pin whose function is selected by the  
following bits: IFCONFIG[1..0].  
(PB4) PB4 is a bidirectional I/O port pin.  
PB4 or  
FD[4]  
I
Z
(PB4)  
FD[4] is the bidirectional FIFO/GPIF data bus.  
Multiplexed pin whose function is selected by the  
following bits: IFCONFIG[1..0].  
(PB5) PB5 is a bidirectional I/O port pin.  
PB5 or  
FD[5]  
I
Z
(PB5)  
FD[5] is the bidirectional FIFO/GPIF data bus.  
Multiplexed pin whose function is selected by the  
following bits: IFCONFIG[1..0].  
(PB6) PB6 is a bidirectional I/O port pin.  
PB6 or  
FD[6]  
I
Z
(PB6)  
FD[6] is the bidirectional FIFO/GPIF data bus.  
Multiplexed pin whose function is selected by the  
following bits: IFCONFIG[1..0].  
(PB7) PB7 is a bidirectional I/O port pin.  
PB7 or  
FD[7]  
I
Z
(PB7)  
FD[7] is the bidirectional FIFO/GPIF data bus.  
PORT C  
Multiplexed pin whose function is selected by  
Z
PC0 or  
GPIFADR0  
I
PORTCCFG.0  
(PC0)  
72  
73  
74  
75  
76  
77  
78  
79  
57  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
(PC0)  
PC0 is a bidirectional I/O port pin.  
GPIFADR0 is a GPIF address output pin.  
Multiplexed pin whose function is selected by  
PC1 or  
GPIFADR1  
Z
I
PORTCCFG.1  
(PC1)  
58  
59  
60  
61  
62  
63  
64  
(PC1)  
PC1 is a bidirectional I/O port pin.  
GPIFADR1 is a GPIF address output pin.  
Multiplexed pin whose function is selected by  
PORTCCFG.2  
(PC2) (PC2) PC2 is a bidirectional I/O port pin.  
GPIFADR2 is a GPIF address output pin.  
PC2 or  
GPIFADR2  
I
Z
Multiplexed pin whose function is selected by  
PORTCCFG.3  
(PC3) (PC3) PC3 is a bidirectional I/O port pin.  
PC3 or  
GPIFADR3  
I
Z
GPIFADR3 is a GPIF address output pin.  
Multiplexed pin whose function is selected by  
PORTCCFG.4  
(PC4) (PC4) PC4 is a bidirectional I/O port pin.  
GPIFADR4 is a GPIF address output pin.  
PC4 or  
GPIFADR4  
I
Z
Multiplexed pin whose function is selected by  
PORTCCFG.5  
(PC5) (PC5) PC5 is a bidirectional I/O port pin.  
GPIFADR5 is a GPIF address output pin.  
PC5 or  
GPIFADR5  
I
Z
Multiplexed pin whose function is selected by  
PORTCCFG.6  
(PC6) (PC6) PC6 is a bidirectional I/O port pin.  
GPIFADR6 is a GPIF address output pin.  
PC6 or  
GPIFADR6  
I
Z
Multiplexed pin whose function is selected by  
PORTCCFG.7  
(PC7) (PC7) PC7 is a bidirectional I/O port pin.  
GPIFADR7 is a GPIF address output pin.  
PC7 or  
GPIFADR7  
I
Z
Document Number: 38-08032 Rev. AD  
Page 28 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Table 11. FX2LP Pin Descriptions[14] (continued)  
128 100 56 56 56  
Name  
Type Default Reset[15]  
Description  
TQFP TQFP SSOP QFN VFBGA  
PORT D  
Multiplexed pin whose function is selected by the  
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide)  
(PD0) (PD0) bits.  
FD[8] is the bidirectional FIFO/GPIF data bus.  
PD0 or  
FD[8]  
I
Z
102  
103  
104  
105  
121  
122  
123  
80  
81  
82  
83  
95  
96  
97  
98  
52  
53  
54  
55  
56  
1
45  
46  
47  
48  
49  
50  
51  
52  
8A  
7A  
6B  
6A  
3B  
3A  
3C  
2A  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
Multiplexed pin whose function is selected by the  
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide)  
(PD1) (PD1) bits.  
FD[9] is the bidirectional FIFO/GPIF data bus.  
PD1 or  
FD[9]  
I
Z
Multiplexed pin whose function is selected by the  
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide)  
(PD2) (PD2) bits.  
PD2 or  
FD[10]  
I
Z
FD[10] is the bidirectional FIFO/GPIF data bus.  
Multiplexed pin whose function is selected by the  
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide)  
(PD3) (PD3) bits.  
FD[11] is the bidirectional FIFO/GPIF data bus.  
PD3 or  
FD[11]  
I
Z
Multiplexed pin whose function is selected by the  
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide)  
(PD4) (PD4) bits.  
FD[12] is the bidirectional FIFO/GPIF data bus.  
PD4 or  
FD[12]  
I
Z
Multiplexed pin whose function is selected by the  
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide)  
(PD5) (PD5) bits.  
PD5 or  
FD[13]  
I
Z
FD[13] is the bidirectional FIFO/GPIF data bus.  
Multiplexed pin whose function is selected by the  
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide)  
(PD6) (PD6) bits.  
FD[14] is the bidirectional FIFO/GPIF data bus.  
PD6 or  
FD[14]  
I
Z
2
Multiplexed pin whose function is selected by the  
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide)  
(PD7) (PD7) bits.  
FD[15] is the bidirectional FIFO/GPIF data bus.  
PD7 or  
FD[15]  
I
Z
124  
3
Port E  
Multiplexed pin whose function is selected by the  
PORTECFG.0 bit.  
PE0 is a bidirectional I/O port pin.  
T0OUT is an active-HIGH signal from 8051  
Timer-counter0. T0OUT outputs a high level for  
one CLKOUT clock cycle when Timer0 overflows.  
If Timer0 is operated in Mode 3 (two separate  
timer/counters), T0OUTis active when the low byte  
timer/counter overflows.  
PE0 or  
T0OUT  
I
Z
108  
86  
I/O/Z  
(PE0)  
(PE0)  
Multiplexed pin whose function is selected by the  
PORTECFG.1 bit.  
PE1 is a bidirectional I/O port pin.  
T1OUT is an active HIGH signal from 8051  
Timer-counter1. T1OUT outputs a high level for  
one CLKOUT clock cycle when Timer1 overflows.  
If Timer1 is operated in Mode 3 (two separate  
timer/counters), T1OUTis active when the low byte  
timer/counter overflows.  
PE1 or  
T1OUT  
I
Z
109  
87  
I/O/Z  
(PE1)  
(PE1)  
Document Number: 38-08032 Rev. AD  
Page 29 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Table 11. FX2LP Pin Descriptions[14] (continued)  
128 100 56 56 56  
Name  
Type Default Reset[15]  
Description  
TQFP TQFP SSOP QFN VFBGA  
Multiplexed pin whose function is selected by the  
PORTECFG.2 bit.  
PE2 is a bidirectional I/O port pin.  
PE2 or  
T2OUT  
I
Z
110  
111  
88  
89  
I/O/Z  
I/O/Z  
(PE2)  
(PE2) T2OUT is the active HIGH output signal from 8051  
Timer2. T2OUTis active (HIGH) for one clock cycle  
when Timer/Counter 2 overflows.  
Multiplexed pin whose function is selected by the  
PORTECFG.3 bit.  
PE3 is a bidirectional I/O port pin.  
PE3 or  
RXD0OUT  
I
Z
RXD0OUT is an active HIGH signal from 8051  
(PE3)  
(PE3) UART0. If RXD0OUT is selected and UART0 is in  
Mode 0, this pin provides the output data for  
UART0 only when it is in sync mode. Otherwise it  
is a 1.  
Multiplexed pin whose function is selected by the  
PORTECFG.4 bit.  
PE4 is a bidirectional I/O port pin.  
RXD1OUT is an active-HIGH output from 8051  
(PE4) UART1. When RXD1OUT is selected and UART1  
is in Mode 0, this pin provides the output data for  
UART1 only when it is in sync mode. In Modes 1,  
2, and 3, this pin is HIGH.  
PE4 or  
RXD1OUT  
I
Z
112  
113  
90  
91  
I/O/Z  
I/O/Z  
(PE4)  
Multiplexed pin whose function is selected by the  
PORTECFG.5 bit.  
PE5 is a bidirectional I/O port pin.  
PE5 or  
INT6  
I
Z
(PE5)  
(PE5) INT6 is the 8051 INT6 interrupt request input  
signal. The INT6 pin is edge-sensitive, active  
HIGH.  
Multiplexed pin whose function is selected by the  
PORTECFG.6 bit.  
PE6 is a bidirectional I/O port pin.  
T2EX is an active HIGH input signal to the 8051  
Timer2. T2EX reloads timer 2 on its falling edge.  
T2EX is active only if the EXEN2 bit is set in  
T2CON.  
PE6 or  
T2EX  
I
Z
114  
115  
92  
93  
I/O/Z  
I/O/Z  
(PE6)  
(PE6)  
Multiplexed pin whose function is selected by the  
PORTECFG.7 bit.  
(PE7) PE7 is a bidirectional I/O port pin.  
GPIFADR8 is a GPIF address output pin.  
PE7 or  
GPIFADR8  
I
Z
(PE7)  
Multiplexed pin whose function is selected by the  
following bits:  
IFCONFIG[1..0].  
RDY0 is a GPIF input signal.  
SLRD is the input-only read strobe with program-  
mable polarity (FIFOPINPOLAR.3) for the slave  
FIFOs connected to FD[7..0] or FD[15..0].  
RDY0 or  
SLRD  
4
3
8
1
1A  
Input  
N/A  
N/A  
Multiplexed pin whose function is selected by the  
following bits:  
IFCONFIG[1..0].  
RDY1 is a GPIF input signal.  
SLWR is the input-only write strobe with program-  
mable polarity (FIFOPINPOLAR.2) for the slave  
FIFOs connected to FD[7..0] or FD[15..0].  
RDY1 or  
SLWR  
5
6
4
5
9
2
1B  
Input  
Input  
N/A  
N/A  
N/A  
N/A  
RDY2  
RDY2 is a GPIF input signal.  
Document Number: 38-08032 Rev. AD  
Page 30 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Table 11. FX2LP Pin Descriptions[14] (continued)  
128 100 56 56 56  
Name  
Type Default Reset[15]  
Description  
TQFP TQFP SSOP QFN VFBGA  
7
8
9
6
7
8
RDY3  
Input  
Input  
Input  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
RDY3 is a GPIF input signal.  
RDY4 is a GPIF input signal.  
RDY5 is a GPIF input signal.  
RDY4  
RDY5  
Multiplexed pin whose function is selected by the  
following bits:  
IFCONFIG[1..0].  
CTL0 or  
FLAGA  
CTL0 is a GPIF control output.  
FLAGA is a programmable slave-FIFO output  
status flag signal.  
Defaults to programmable for the FIFO selected by  
the FIFOADR[1:0] pins.  
69  
70  
71  
54  
55  
56  
36  
37  
38  
29  
30  
31  
7H  
7G  
8H  
O/Z  
O/Z  
O/Z  
H
H
H
L
L
L
Multiplexed pin whose function is selected by the  
following bits:  
IFCONFIG[1..0].  
CTL1 is a GPIF control output.  
FLAGB is a programmable slave-FIFO output  
status flag signal.  
Defaults to FULL for the FIFO selected by the  
FIFOADR[1:0] pins.  
CTL1 or  
FLAGB  
Multiplexed pin whose function is selected by the  
following bits:  
IFCONFIG[1..0].  
CTL2 is a GPIF control output.  
FLAGC is a programmable slave-FIFO output  
status flag signal.  
CTL2 or  
FLAGC  
Defaults to EMPTY for the FIFO selected by the  
FIFOADR[1:0] pins.  
66  
67  
98  
51  
52  
76  
CTL3  
O/Z  
H
H
H
L
L
L
CTL3 is a GPIF control output.  
CTL4 is a GPIF control output.  
CTL5 is a GPIF control output.  
CTL4  
Output  
Output  
CTL5  
IFCLK on  
CY7C68013A I/O/Z  
and  
Interface Clock, used for synchronously clocking  
data into or out of the slave FIFOs. IFCLK also  
serves as a timing reference for all slave FIFO  
control signals and GPIF. When internal clocking is  
used (IFCONFIG.7 = 1) the IFCLK pin can be  
configured to output 30/48 MHz by bits  
Z
Z
CY7C68014A  
32  
26  
20  
13  
2G  
IFCONFIG.5 and IFCONFIG.6. IFCLK may be  
inverted, whether internally or externally sourced,  
by setting the bit IFCONFIG.4 =1.  
------------------  
PE0 on  
CY7C68015A  
and  
---------- ---------- ---------- ------------------------------------------------------------------  
I
Z
-----  
I/O/Z  
PE0 is a bidirectional I/O port pin.  
CY7C68016A  
INT4 is the 8051 INT4 interrupt request input  
signal. The INT4 pin is edge-sensitive, active  
HIGH.  
28  
22  
84  
INT4  
Input  
Input  
N/A  
N/A  
N/A  
N/A  
INT5# is the 8051 INT5 interrupt request input  
signal. The INT5 pin is edge-sensitive, active LOW.  
106  
INT5#  
T2 is the active HIGH T2 input signal to 8051  
Timer2, which provides the input to Timer2 when  
C/T2 = 1. When C/T2 = 0, Timer2 does not use this  
pin.  
31  
25  
T2  
Input  
N/A  
N/A  
Document Number: 38-08032 Rev. AD  
Page 31 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Table 11. FX2LP Pin Descriptions[14] (continued)  
128 100 56 56 56  
Name  
Type Default Reset[15]  
Description  
TQFP TQFP SSOP QFN VFBGA  
T1 is the active HIGH T1 signal for 8051 Timer1,  
which provides the input to Timer1 when C/T1 is 1.  
When C/T1 is 0, Timer1 does not use this bit.  
30  
29  
53  
52  
51  
50  
24  
23  
43  
42  
41  
40  
T1  
T0  
Input  
Input  
N/A  
N/A  
N/A  
H
N/A  
N/A  
N/A  
L
T0 is the active HIGH T0 signal for 8051 Timer0,  
which provides the input to Timer0 when C/T0 is 1.  
When C/T0 is 0, Timer0 does not use this bit.  
RXD1is an active HIGH input signal for 8051  
UART1, which provides data to the UART in all  
modes.  
RXD1  
TXD1  
RXD0  
TXD0  
Input  
TXD1is an active HIGH output pin from 8051  
UART1, which provides the output clock in sync  
mode, and the output data in async mode.  
Output  
Input  
RXD0 is the active HIGH RXD0 input to 8051  
UART0, which provides data to the UART in all  
modes.  
N/A  
H
N/A  
L
TXD0 is the active HIGH TXD0 output from 8051  
UART0, which provides the output clock in sync  
mode, and the output data in async mode.  
Output  
CS# is the active LOW chip select for external  
memory.  
42  
41  
40  
38  
CS#  
WR#  
RD#  
OE#  
Output  
Output  
Output  
Output  
H
H
H
H
H
H
H
H
WR# is the active LOW write strobe output for  
external memory.  
32  
31  
RD# is the active LOW read strobe output for  
external memory.  
OE# is the active LOW output enable for external  
memory.  
33  
27  
79  
21  
14  
2H  
Reserved  
Input  
N/A  
N/A  
Reserved. Connect to ground.  
USB Wakeup. If the 8051 is in suspend, asserting  
this pin starts up the oscillator and interrupts the  
8051 to enable it to exit the suspend mode. Holding  
WAKEUP asserted inhibits the EZ-USB chip from  
suspending. This pin has programmable polarity  
(WAKEUP.4).  
101  
51  
44  
7B  
WAKEUP  
Input  
N/A  
N/A  
Z
(if  
Clock for the I2C interface. Connect to VCC with a  
2.2-kresistor, even if no I2C peripheral is  
attached.  
36  
37  
29  
30  
22  
23  
15  
16  
3F  
SCL  
SDA  
OD  
OD  
Z
Z
booting  
is done)  
Z
(if  
Data for I2C compatible interface. Connect to  
VCC with a 2.2-kresistor, even if no I2C  
compatible peripheral is attached.  
3G  
booting  
is done)  
2
1
6
18  
24  
55  
11  
17  
5A  
1G  
7E  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
VCC. Connect to the 3.3-V power source.  
VCC. Connect to the 3.3-V power source.  
VCC. Connect to the 3.3-V power source.  
VCC. Connect to 3.3-V power source.  
VCC. Connect to the 3.3-V power source.  
VCC. Connect to the 3.3-V power source.  
VCC. Connect to the 3.3-V power source.  
26  
43  
48  
64  
68  
81  
20  
33  
38  
49  
53  
66  
34  
27  
8E  
39  
32  
5C  
Document Number: 38-08032 Rev. AD  
Page 32 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Table 11. FX2LP Pin Descriptions[14] (continued)  
128 100 56 56 56  
Name  
Type Default Reset[15]  
Description  
TQFP TQFP SSOP QFN VFBGA  
100  
107  
78  
85  
50  
43  
5B  
VCC  
Power  
Power  
N/A  
N/A  
N/A  
N/A  
VCC. Connect to the 3.3-V power source.  
VCC. Connect to the 3.3-V power source.  
VCC  
3
2
7
19  
56  
12  
4B  
1H  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Ground N/A  
Ground N/A  
Ground N/A  
Ground N/A  
Ground N/A  
Ground N/A  
Ground N/A  
Ground N/A  
Ground N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
27  
21  
39  
48  
50  
65  
75  
94  
99  
49  
58  
33  
35  
26  
28  
7D  
8D  
65  
80  
93  
48  
41  
4C  
116  
125  
4
53  
4A  
14  
15  
16  
13  
14  
15  
NC  
NC  
NC  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
No Connect. This pin must be left open.  
No Connect. This pin must be left open.  
No Connect. This pin must be left open.  
Document Number: 38-08032 Rev. AD  
Page 33 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Register Summary  
FX2LP register bit definitions are described in the FX2LP TRM in greater detail.  
Table 12. FX2LP Register Summary  
Hex Size  
Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default Access  
GPIF Waveform Memories  
E400 128 WAVEDATA  
GPIF Waveform  
Descriptor 0, 1, 2, 3 data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
xxxxxxxx RW  
E480 128 reserved  
GENERAL CONFIGURATION  
E50D  
GPCR2  
General Purpose Configu- reserved  
ration Register 2  
reserved  
0
reserved  
FULL_-  
SPEED_ON-  
LY  
reserved  
reserved  
reserved  
reserved  
00000000 R  
E600  
E601  
1
1
CPUCS  
CPU Control & Status  
0
PORTCSTB CLKSPD1  
CLKSPD0 CLKINV  
CLKOE  
IFCFG1  
8051RES  
IFCFG0  
00000010 rrbbbbbr  
10000000 RW  
IFCONFIG  
Interface Configuration  
(Ports, GPIF, slave FIFOs)  
IFCLKSRC 3048MHZ  
IFCLKOE  
FLAGB1  
FLAGD1  
0
IFCLKPOL ASYNC GSTATE  
[16]  
[16]  
E602  
E603  
E604  
1
1
1
PINFLAGSAB  
Slave FIFO FLAGA and  
FLAGB Pin Configuration  
FLAGB3  
FLAGB2  
FLAGD2  
0
FLAGB0  
FLAGD0  
0
FLAGA3  
FLAGC3  
EP3  
FLAGA2  
FLAGC2  
EP2  
FLAGA1  
FLAGC1  
EP1  
FLAGA0  
FLAGC0  
EP0  
00000000 RW  
00000000 RW  
PINFLAGSCD  
Slave FIFO FLAGC and FLAGD3  
FLAGD Pin Configuration  
[16]  
FIFORESET  
Restore FIFOS to default NAKALL  
state  
xxxxxxxx W  
E605  
E606  
E607  
E608  
1
1
1
1
BREAKPT  
BPADDRH  
BPADDRL  
UART230  
Breakpoint Control  
0
0
0
0
BREAK  
A11  
A3  
BPPULSE  
BPEN  
A9  
0
00000000 rrrrbbbr  
xxxxxxxx RW  
xxxxxxxx RW  
Breakpoint Address H  
Breakpoint Address L  
A15  
A7  
0
A14  
A6  
0
A13  
A5  
0
A12  
A4  
0
A10  
A2  
0
A8  
A0  
A1  
230 Kbaud internally  
generated ref. clock  
0
230UART1 230UART0 00000000 rrrrrrbb  
[16]  
E609  
E60A  
E60B  
1
1
1
FIFOPINPOLAR  
Slave FIFO Interface pins  
polarity  
0
0
PKTEND  
SLOE  
rv4  
SLRD  
rv3  
SLWR  
rv2  
EF  
FF  
00000000 rrbbbbbb  
REVID  
Chip Revision  
rv7  
0
rv6  
0
rv5  
0
rv1  
rv0  
RevA  
00000001  
R
[16]  
REVCTL  
Chip Revision Control  
0
0
0
dyn_out  
enh_pkt  
00000000 rrrrrrbb  
UDMA  
E60C 1  
3
GPIFHOLDAMOUNT MSTB Hold Time  
(for UDMA)  
0
0
0
0
0
0
HOLDTIME1 HOLDTIME0 00000000 rrrrrrbb  
reserved  
ENDPOINT CONFIGURATION  
E610  
E611  
1
1
EP1OUTCFG  
Endpoint 1-OUT  
Configuration  
VALID  
VALID  
0
0
TYPE1  
TYPE1  
TYPE0  
TYPE0  
0
0
0
0
0
0
0
0
10100000 brbbrrrr  
10100000 brbbrrrr  
EP1INCFG  
Endpoint 1-IN  
Configuration  
E612  
E613  
E614  
E615  
1
1
1
1
2
1
EP2CFG  
EP4CFG  
EP6CFG  
EP8CFG  
reserved  
Endpoint 2 Configuration VALID  
Endpoint 4 Configuration VALID  
Endpoint 6 Configuration VALID  
Endpoint 8 Configuration VALID  
DIR  
DIR  
DIR  
DIR  
TYPE1  
TYPE1  
TYPE1  
TYPE1  
TYPE0  
TYPE0  
TYPE0  
TYPE0  
SIZE  
0
0
0
0
0
BUF1  
0
BUF0  
0
10100010 bbbbbrbb  
10100000 bbbbrrrr  
11100010 bbbbbrbb  
11100000 bbbbrrrr  
SIZE  
0
BUF1  
0
BUF0  
0
[16]  
[16]  
[16]  
[16]  
E618  
E619  
E61A  
E61B  
EP2FIFOCFG  
Endpoint 2 / slave FIFO  
configuration  
0
0
0
0
INFM1  
INFM1  
INFM1  
INFM1  
OEP1  
OEP1  
OEP1  
OEP1  
AUTOOUT AUTOIN  
AUTOOUT AUTOIN  
AUTOOUT AUTOIN  
AUTOOUT AUTOIN  
ZEROLENIN 0  
ZEROLENIN 0  
ZEROLENIN 0  
ZEROLENIN 0  
WORDWIDE 00000101 rbbbbbrb  
WORDWIDE 00000101 rbbbbbrb  
WORDWIDE 00000101 rbbbbbrb  
WORDWIDE 00000101 rbbbbbrb  
1
1
1
EP4FIFOCFG  
EP6FIFOCFG  
EP8FIFOCFG  
reserved  
Endpoint 4 / slave FIFO  
configuration  
Endpoint 6 / slave FIFO  
configuration  
Endpoint 8 / slave FIFO  
configuration  
E61C 4  
[16  
E620  
E621  
E622  
E623  
E624  
E625  
E626  
E627  
1
1
1
1
1
1
1
1
EP2AUTOINLENH  
Endpoint 2 AUTOIN  
Packet Length H  
0
0
0
0
0
PL10  
PL2  
0
PL9  
PL8  
PL0  
PL8  
PL0  
PL8  
PL0  
PL8  
PL0  
00000010 rrrrrbbb  
00000000 RW  
[16]  
[16]  
EP2AUTOINLENL  
Endpoint 2 AUTOIN  
Packet Length L  
PL7  
0
PL6  
0
PL5  
0
PL4  
0
PL3  
0
PL1  
PL9  
PL1  
PL9  
PL1  
PL9  
PL1  
EP4AUTOINLENH  
Endpoint 4 AUTOIN  
Packet Length H  
00000010 rrrrrrbb  
00000000 RW  
[16]  
EP4AUTOINLENL  
EP6AUTOINLENH  
Endpoint 4 AUTOIN  
Packet Length L  
PL7  
0
PL6  
0
PL5  
0
PL4  
0
PL3  
0
PL2  
PL10  
PL2  
0
[16]  
Endpoint 6 AUTOIN  
Packet Length H  
00000010 rrrrrbbb  
00000000 RW  
[16]  
[16]  
EP6AUTOINLENL  
Endpoint 6 AUTOIN  
Packet Length L  
PL7  
0
PL6  
0
PL5  
0
PL4  
0
PL3  
0
EP8AUTOINLENH  
Endpoint 8 AUTOIN  
Packet Length H  
00000010 rrrrrrbb  
00000000 RW  
[16]  
EP8AUTOINLENL  
Endpoint 8 AUTOIN  
Packet Length L  
PL7  
PL6  
PL5  
PL4  
PL3  
PL2  
E628  
E629  
E62A  
1
1
1
ECCCFG  
ECCRESET  
ECC1B0  
ECC Configuration  
ECC Reset  
0
0
0
0
0
0
0
ECCM  
x
00000000 rrrrrrrb  
00000000 W  
00000000 R  
x
x
x
x
x
x
x
ECC1 Byte 0 Address  
LINE15  
LINE14  
LINE13  
LINE12  
LINE11  
LINE10  
LINE9  
LINE8  
Note  
16. Read and writes to these registers may require synchronization delay; see Technical Reference Manual for “Synchronization Delay.”  
Document Number: 38-08032 Rev. AD  
Page 34 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Table 12. FX2LP Register Summary (continued)  
Hex Size  
E62B  
Name  
ECC1B1  
Description  
ECC1 Byte 1 Address  
ECC1 Byte 2 Address  
ECC2 Byte 0 Address  
ECC2 Byte 1 Address  
ECC2 Byte 2 Address  
b7  
LINE7  
b6  
LINE6  
b5  
LINE5  
b4  
LINE4  
b3  
LINE3  
b2  
LINE2  
b1  
LINE1  
b0  
LINE0  
Default Access  
00000000 R  
1
E62C 1  
E62D 1  
ECC1B2  
COL5  
COL4  
COL3  
LINE13  
LINE5  
COL3  
COL2  
LINE12  
LINE4  
COL2  
COL1  
LINE11  
LINE3  
COL1  
COL0  
LINE10  
LINE2  
COL0  
0
LINE17  
LINE9  
LINE1  
0
LINE16  
LINE8  
LINE0  
0
00000000 R  
ECC2B0  
LINE15  
LINE7  
COL5  
LINE14  
LINE6  
00000000 R  
E62E  
E62F  
1
1
1
ECC2B1  
00000000 R  
ECC2B2  
COL4  
00000000 R  
[17]  
[17]  
E630  
H.S.  
EP2FIFOPFH  
Endpoint 2 / slave FIFO  
Programmable Flag H  
DECIS  
PKTSTAT  
IN:PKTS[2] IN:PKTS[1] IN:PKTS[0]  
OUT:PFC12 OUT:PFC11 OUT:PFC10  
PFC9  
PFC8  
10001000 bbbbbrbb  
E630  
F.S.  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
EP2FIFOPFH  
Endpoint 2 / slave FIFO  
Programmable Flag H  
DECIS  
PFC7  
PKTSTAT  
PFC6  
OUT:PFC12 OUT:PFC11 OUT:PFC10 0  
PFC9  
PFC1  
PFC1  
0
IN:PKTS[2] 10001000 bbbbbrbb  
OUT:PFC8  
[17]  
[17]  
[17]  
E631  
H.S.  
EP2FIFOPFL  
EP2FIFOPFL  
Endpoint 2 / slave FIFO  
Programmable Flag L  
PFC5  
PFC4  
PFC4  
PFC3  
PFC3  
PFC2  
PFC2  
PFC0  
PFC0  
PFC8  
PFC8  
PFC0  
PFC0  
PFC8  
00000000 RW  
E631  
F.S  
Endpoint 2 / slave FIFO  
Programmable Flag L  
IN:PKTS[1] IN:PKTS[0] PFC5  
OUT:PFC7  
00000000 RW  
OUT:PFC6  
E632  
H.S.  
EP4FIFOPFH  
EP4FIFOPFH  
Endpoint 4 / slave FIFO  
Programmable Flag H  
DECIS  
PKTSTAT  
0
IN: PKTS[1] IN: PKTS[0] 0  
OUT:PFC10 OUT:PFC9  
10001000 bbrbbrrb  
10001000 bbrbbrrb  
00000000 RW  
[17]  
E632  
F.S  
Endpoint 4 / slave FIFO  
Programmable Flag H  
DECIS  
PFC7  
PKTSTAT  
PFC6  
0
OUT:PFC10 OUT:PFC9  
0
0
[17]  
[17]  
[17]  
E633  
H.S.  
EP4FIFOPFL  
EP4FIFOPFL  
Endpoint 4 / slave FIFO  
Programmable Flag L  
PFC5  
PFC4  
PFC4  
PFC3  
PFC3  
PFC2  
PFC2  
0
PFC1  
PFC1  
PFC9  
PFC9  
PFC1  
PFC1  
0
E633  
F.S  
Endpoint 4 / slave FIFO  
Programmable Flag L  
IN: PKTS[1] IN: PKTS[0] PFC5  
OUT:PFC7  
00000000 RW  
OUT:PFC6  
E634  
H.S.  
EP6FIFOPFH  
EP6FIFOPFH  
Endpoint 6 / slave FIFO  
Programmable Flag H  
DECIS  
PKTSTAT  
IN:PKTS[2] IN:PKTS[1] IN:PKTS[0]  
OUT:PFC12 OUT:PFC11 OUT:PFC10  
00001000 bbbbbrbb  
[17]  
E634  
F.S  
Endpoint 6 / slave FIFO  
Programmable Flag H  
DECIS  
PFC7  
PKTSTAT  
PFC6  
OUT:PFC12 OUT:PFC11 OUT:PFC10 0  
IN:PKTS[2] 00001000 bbbbbrbb  
OUT:PFC8  
[17]  
[17]  
[17]  
E635  
H.S.  
EP6FIFOPFL  
EP6FIFOPFL  
Endpoint 6 / slave FIFO  
Programmable Flag L  
PFC5  
PFC4  
PFC4  
PFC3  
PFC3  
PFC2  
PFC2  
PFC0  
PFC0  
PFC8  
PFC8  
PFC0  
PFC0  
00000000 RW  
E635  
F.S  
Endpoint 6 / slave FIFO  
Programmable Flag L  
IN:PKTS[1] IN:PKTS[0] PFC5  
OUT:PFC7  
00000000 RW  
OUT:PFC6  
E636  
H.S.  
EP8FIFOPFH  
EP8FIFOPFH  
Endpoint 8 / slave FIFO  
Programmable Flag H  
DECIS  
PKTSTAT  
0
IN: PKTS[1] IN: PKTS[0] 0  
OUT:PFC10 OUT:PFC9  
00001000 bbrbbrrb  
00001000 bbrbbrrb  
00000000 RW  
[17]  
E636  
F.S  
Endpoint 8 / slave FIFO  
Programmable Flag H  
DECIS  
PFC7  
PKTSTAT  
PFC6  
0
OUT:PFC10 OUT:PFC9  
0
0
[17]  
[17]  
E637  
H.S.  
EP8FIFOPFL  
EP8FIFOPFL  
reserved  
Endpoint 8 / slave FIFO  
Programmable Flag L  
PFC5  
PFC4  
PFC4  
PFC3  
PFC3  
PFC2  
PFC2  
PFC1  
PFC1  
E637  
F.S  
Endpoint 8 / slave FIFO  
Programmable Flag L  
IN: PKTS[1] IN: PKTS[0] PFC5  
OUT:PFC7  
00000000 RW  
OUT:PFC6  
8
1
E640  
E641  
E642  
E643  
EP2ISOINPKTS  
EP4ISOINPKTS  
EP6ISOINPKTS  
EP8ISOINPKTS  
reserved  
EP2 (if ISO) IN Packets per AADJ  
frame (1-3)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
INPPF1  
INPPF1  
INPPF1  
INPPF1  
INPPF0  
INPPF0  
INPPF0  
INPPF0  
00000001 brrrrrbb  
00000001 brrrrrrr  
00000001 brrrrrbb  
00000001 brrrrrrr  
1
1
1
EP4 (if ISO) IN Packets per AADJ  
frame (1-3)  
EP6 (if ISO) IN Packets per AADJ  
frame (1-3)  
EP8 (if ISO) IN Packets per AADJ  
frame (1-3)  
E644  
E648  
E649  
4
1
7
[17]  
INPKTEND  
Force IN Packet End  
Skip  
Skip  
0
0
0
0
0
0
EP3  
EP3  
EP2  
EP2  
EP1  
EP1  
EP0  
EP0  
xxxxxxxx  
xxxxxxxx  
W
W
[17]  
OUTPKTEND  
Force OUT Packet End  
INTERRUPTS  
[17]  
E650  
E651  
E652  
E653  
E654  
E655  
E656  
E657  
E658  
E659  
E65A  
E65B  
1
1
1
1
1
1
1
1
1
1
1
1
EP2FIFOIE  
Endpoint 2 slave FIFO Flag 0  
Interrupt Enable  
0
0
0
EDGEPF  
0
PF  
EF  
EF  
EF  
EF  
EF  
EF  
EF  
EF  
EP1  
EP1  
0
FF  
00000000 RW  
[17,18]  
EP2FIFOIRQ  
Endpoint 2 slave FIFO Flag 0  
Interrupt Request  
0
0
0
PF  
FF  
00000000 rrrrrbbb  
00000000 RW  
[17]  
EP4FIFOIE  
Endpoint 4 slave FIFO Flag 0  
Interrupt Enable  
0
0
0
EDGEPF  
0
PF  
FF  
[17,18]  
[17,18]  
[17,18]  
EP4FIFOIRQ  
Endpoint 4 slave FIFO Flag 0  
Interrupt Request  
0
0
0
PF  
FF  
00000000 rrrrrbbb  
00000000 RW  
[17]  
EP6FIFOIE  
Endpoint 6 slave FIFO Flag 0  
Interrupt Enable  
0
0
0
EDGEPF  
0
PF  
FF  
EP6FIFOIRQ  
Endpoint 6 slave FIFO Flag 0  
Interrupt Request  
0
0
0
PF  
FF  
00000000 rrrrrbbb  
00000000 RW  
[17]  
EP8FIFOIE  
EP8FIFOIRQ  
IBNIE  
Endpoint 8 slave FIFO Flag 0  
Interrupt Enable  
0
0
0
EDGEPF  
0
PF  
FF  
Endpoint 8 slave FIFO Flag 0  
Interrupt Request  
0
0
0
PF  
FF  
00000000 rrrrrbbb  
00000000 RW  
IN-BULK-NAK Interrupt  
Enable  
0
0
EP8  
EP8  
EP4  
EP4  
EP6  
EP6  
EP2  
EP2  
EP4  
EP2  
EP2  
EP0  
EP0  
SUTOK  
EP0  
EP0  
IBN  
IBN  
SUDAV  
[18]  
IBNIRQ  
IN-BULK-NAK interrupt  
Request  
0
0
EP4  
00xxxxxx rrbbbbbb  
00000000 RW  
NAKIE  
Endpoint Ping-NAK / IBN EP8  
Interrupt Enable  
EP6  
EP6  
EP0ACK  
EP1  
[18]  
NAKIRQ  
Endpoint Ping-NAK / IBN EP8  
Interrupt Request  
EP1  
0
xxxxxx0x bbbbbbrb  
00000000 RW  
E65C 1  
USBIE  
USB Int Enables  
0
HSGRANT URES  
SUSP  
SOF  
Notes  
17. Read and writes to these registers may require synchronization delay; see Technical Reference Manual for “Synchronization Delay”.  
18. The register can only be reset; it cannot be set.  
Document Number: 38-08032 Rev. AD  
Page 35 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Table 12. FX2LP Register Summary (continued)  
Hex Size  
Name  
Description  
b7  
b6  
EP0ACK  
EP6  
b5  
b4  
b3  
SUSP  
b2  
SUTOK  
EP1IN  
b1  
b0  
SUDAV  
Default Access  
0xxxxxxx rbbbbbbb  
00000000 RW  
[19]  
E65D 1  
USBIRQ  
USB Interrupt Requests  
0
HSGRANT URES  
SOF  
E65E  
1
EPIE  
Endpoint Interrupt  
Enables  
EP8  
EP4  
EP4  
EP2  
EP2  
EP1OUT  
EP0OUT  
EP0IN  
[19]  
[20]  
E65F  
1
EPIRQ  
Endpoint Interrupt  
Requests  
EP8  
EP6  
EP1OUT  
EP1IN  
EP0OUT  
EP0IN  
0
RW  
E660  
E661  
E662  
1
1
1
GPIFIE  
GPIF Interrupt Enable  
GPIF Interrupt Request  
0
0
0
0
0
0
0
0
0
0
0
GPIFWF  
GPIFWF  
0
GPIFDONE 00000000 RW  
GPIFDONE 000000xx RW  
[20]  
GPIFIRQ  
0
0
0
USBERRIE  
USB Error Interrupt  
Enables  
ISOEP8  
ISOEP6  
ISOEP4  
ISOEP2  
ERRLIMIT  
00000000 RW  
[19]  
E663  
1
USBERRIRQ  
USB Error Interrupt  
Requests  
ISOEP8  
ISOEP6  
ISOEP4  
ISOEP2  
0
0
0
ERRLIMIT  
0000000x bbbbrrrb  
E664  
E665  
E666  
1
1
1
ERRCNTLIM  
USB Error counter and limit EC3  
Clear Error Counter EC3:0 x  
EC2  
x
EC1  
x
EC0  
x
LIMIT3  
x
LIMIT2  
x
LIMIT1  
LIMIT0  
xxxx0100 rrrrbbbb  
CLRERRCNT  
INT2IVEC  
x
x
xxxxxxxx W  
Interrupt 2 (USB)  
Autovector  
0
1
0
I2V4  
I2V3  
I2V2  
I2V1  
I2V0  
0
0
00000000 R  
10000000 R  
00000000 RW  
E667  
1
INT4IVEC  
Interrupt 4 (slave FIFO &  
GPIF) Autovector  
0
0
I4V3  
0
I4V2  
0
I4V1  
I4V0  
0
0
0
E668  
E669  
1
7
INTSET-UP  
reserved  
Interrupt 2&4 setup  
AV2EN  
INT4SRC  
AV4EN  
INPUT / OUTPUT  
PORTACFG  
E670  
E671  
E672  
1
1
1
I/O PORTAAlternate  
Configuration  
FLAGD  
GPIFA7  
GPIFA8  
SLCS  
GPIFA6  
T2EX  
0
0
0
0
INT1  
INT0  
00000000 RW  
00000000 RW  
00000000 RW  
PORTCCFG  
PORTECFG  
I/O PORTC Alternate  
Configuration  
GPIFA5  
INT6  
GPIFA4  
GPIFA3  
GPIFA2  
GPIFA1  
T1OUT  
GPIFA0  
T0OUT  
I/O PORTE Alternate  
Configuration  
RXD1OUT RXD0OUT T2OUT  
E673  
E677  
E678  
4
1
1
reserved  
reserved  
2
I CS  
I²C Bus  
START  
STOP  
d6  
LASTRD  
ID1  
d4  
0
ID0  
d3  
0
BERR  
d2  
ACK  
d1  
DONE  
d0  
000xx000 bbbrrrrr  
xxxxxxxx RW  
00000000 RW  
xxxxxxxx RW  
xxxxxxxx RW  
Control & Status  
E679  
E67A  
E67B  
1
1
1
I2DAT  
I²C Bus  
Data  
d7  
0
d5  
0
2
I CTL  
I²C Bus  
Control  
0
0
STOPIE  
D1  
400KHZ  
D0  
XAUTODAT1  
XAUTODAT2  
UDMA CRC  
Autoptr1 MOVX access, D7  
when APTREN=1  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
E67C 1  
Autoptr2 MOVX access, D7  
when APTREN=1  
D1  
D0  
[20]  
E67D 1  
UDMACRCH  
UDMA CRC MSB  
UDMA CRC LSB  
UDMA CRC Qualifier  
CRC15  
CRC14  
CRC6  
0
CRC13  
CRC5  
0
CRC12  
CRC4  
0
CRC11  
CRC3  
CRC10  
CRC2  
CRC9  
CRC1  
CRC8  
CRC0  
01001010 RW  
10111010 RW  
[20]  
E67E  
E67F  
1
1
UDMACRCL  
CRC7  
UDMACRC-  
QUALIFIER  
QENABLE  
QSTATE  
QSIGNAL2 QSIGNAL1 QSIGNAL0 00000000 brrrbbbb  
USB CONTROL  
USBCS  
E680  
E681  
E682  
E683  
E684  
E685  
E686  
E687  
E688  
1
1
1
1
1
1
1
1
2
USB Control & Status  
Put chip into suspend  
HSM  
x
0
0
0
DISCON  
NOSYNSOF RENUM  
SIGRSUME x0000000 rrrrbbbb  
SUSPEND  
WAKEUPCS  
TOGCTL  
x
x
x
x
x
x
x
xxxxxxxx W  
Wakeup Control & Status WU2  
WU  
S
WU2POL  
WUPOL  
I/O  
0
DPEN  
EP2  
FC10  
FC2  
MF2  
FA2  
WU2EN  
EP1  
FC9  
FC1  
MF1  
FA1  
WUEN  
EP0  
FC8  
FC0  
MF0  
FA0  
xx000101 bbbbrbbb  
x0000000 rrrbbbbb  
00000xxx R  
Toggle Control  
Q
R
EP3  
0
USBFRAMEH  
USBFRAMEL  
MICROFRAME  
FNADDR  
USB Frame count H  
USB Frame count L  
Microframe count, 0-7  
USB Function address  
0
0
0
0
FC7  
0
FC6  
0
FC5  
0
FC4  
0
FC3  
0
xxxxxxxx  
00000xxx R  
0xxxxxxx R  
R
0
FA6  
FA5  
FA4  
FA3  
reserved  
ENDPOINTS  
[20]  
E68A  
E68B  
1
1
EP0BCH  
Endpoint 0 Byte Count H (BC15)  
Endpoint 0 Byte Count L (BC7)  
(BC14)  
BC6  
(BC13)  
BC5  
(BC12)  
BC4  
(BC11)  
BC3  
(BC10)  
BC2  
(BC9)  
BC1  
(BC8)  
BC0  
xxxxxxxx RW  
xxxxxxxx RW  
[20]  
EP0BCL  
E68C 1  
E68D 1  
reserved  
EP1OUTBC  
Endpoint 1 OUT Byte  
Count  
0
BC6  
BC5  
BC4  
BC3  
BC2  
BC1  
BC0  
0xxxxxxx RW  
E68E  
E68F  
E690  
E691  
E692  
E694  
E695  
E696  
E698  
E699  
1
1
1
1
2
1
1
2
1
1
reserved  
EP1INBC  
Endpoint 1 IN Byte Count  
Endpoint 2 Byte Count H  
0
0
BC6  
0
BC5  
0
BC4  
0
BC3  
0
BC2  
BC10  
BC2  
BC1  
BC9  
BC1  
BC0  
BC8  
BC0  
0xxxxxxx RW  
00000xxx RW  
xxxxxxxx RW  
[20]  
EP2BCH  
[20]  
EP2BCL  
Endpoint 2 Byte Count L BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
reserved  
[20]  
EP4BCH  
Endpoint 4 Byte Count H  
0
0
0
0
0
0
BC9  
BC1  
BC8  
BC0  
000000xx RW  
xxxxxxxx RW  
[20]  
EP4BCL  
Endpoint 4 Byte Count L BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
BC2  
reserved  
[20]  
EP6BCH  
Endpoint 6 Byte Count H  
0
0
0
0
0
BC10  
BC2  
BC9  
BC1  
BC8  
BC0  
00000xxx RW  
xxxxxxxx RW  
[20]  
EP6BCL  
Endpoint 6 Byte Count L BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
Notes  
19. The register can only be reset; it cannot be set.  
20. Read and writes to these registers may require synchronization delay; see Technical Reference Manual for “Synchronization Delay”.  
Document Number: 38-08032 Rev. AD  
Page 36 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Table 12. FX2LP Register Summary (continued)  
Hex Size  
E69A  
Name  
reserved  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default Access  
2
[21]  
E69C 1  
E69D 1  
EP8BCH  
Endpoint 8 Byte Count H  
0
0
0
0
0
0
BC9  
BC1  
BC8  
BC0  
000000xx RW  
xxxxxxxx RW  
[21]  
EP8BCL  
reserved  
EP0CS  
Endpoint 8 Byte Count L BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
BC2  
E69E  
E6A0  
2
1
Endpoint0ControlandSta-HSNAK  
tus  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BUSY  
BUSY  
BUSY  
0
STALL  
STALL  
STALL  
STALL  
STALL  
STALL  
STALL  
FF  
10000000 bbbbbbrb  
00000000 bbbbbbrb  
00000000 bbbbbbrb  
00101000 rrrrrrrb  
00101000 rrrrrrrb  
00000100 rrrrrrrb  
00000100 rrrrrrrb  
00000010 R  
E6A1  
E6A2  
E6A3  
E6A4  
E6A5  
E6A6  
E6A7  
E6A8  
E6A9  
1
1
1
1
1
1
1
1
1
EP1OUTCS  
EP1INCS  
Endpoint 1 OUT Control  
and Status  
0
Endpoint 1 IN Control and 0  
Status  
EP2CS  
Endpoint2ControlandSta-0  
tus  
NPAK2  
NPAK1  
NPAK0  
NPAK0  
NPAK0  
NPAK0  
0
FULL  
FULL  
FULL  
FULL  
0
EMPTY  
EMPTY  
EMPTY  
EMPTY  
PF  
EP4CS  
Endpoint4ControlandSta-0  
tus  
0
NPAK1  
0
EP6CS  
Endpoint6ControlandSta-0  
tus  
NPAK2  
NPAK1  
0
EP8CS  
Endpoint8ControlandSta-0  
tus  
0
NPAK1  
0
EP2FIFOFLGS  
EP4FIFOFLGS  
EP6FIFOFLGS  
EP8FIFOFLGS  
EP2FIFOBCH  
EP2FIFOBCL  
EP4FIFOBCH  
EP4FIFOBCL  
EP6FIFOBCH  
EP6FIFOBCL  
EP8FIFOBCH  
EP8FIFOBCL  
SUDPTRH  
Endpoint 2 slave FIFO  
Flags  
0
0
0
EF  
Endpoint 4 slave FIFO  
Flags  
0
0
0
0
0
PF  
EF  
FF  
00000010 R  
Endpoint 6 slave FIFO  
Flags  
0
0
0
0
0
PF  
EF  
FF  
00000110 R  
E6AA 1  
E6AB 1  
E6AC 1  
E6AD 1  
E6AE 1  
E6AF 1  
Endpoint 8 slave FIFO  
Flags  
0
0
0
0
0
PF  
EF  
FF  
00000110 R  
Endpoint 2 slave FIFO  
total byte count H  
0
0
0
BC12  
BC4  
0
BC11  
BC3  
0
BC10  
BC2  
BC10  
BC2  
BC10  
BC2  
BC10  
BC2  
A10  
BC9  
BC1  
BC9  
BC1  
BC9  
BC1  
BC9  
BC1  
A9  
BC8  
00000000 R  
Endpoint 2 slave FIFO  
total byte count L  
BC7  
0
BC6  
0
BC5  
0
BC0  
00000000 R  
Endpoint 4 slave FIFO  
total byte count H  
BC8  
00000000 R  
Endpoint 4 slave FIFO  
total byte count L  
BC7  
0
BC6  
0
BC5  
0
BC4  
0
BC3  
BC11  
BC3  
0
BC0  
00000000 R  
Endpoint 6 slave FIFO  
total byte count H  
BC8  
00000000 R  
E6B0  
E6B1  
E6B2  
E6B3  
E6B4  
E6B5  
1
1
1
1
1
1
Endpoint 6 slave FIFO  
total byte count L  
BC7  
0
BC6  
0
BC5  
0
BC4  
0
BC0  
00000000 R  
Endpoint 8 slave FIFO  
total byte count H  
BC8  
00000000 R  
Endpoint 8 slave FIFO  
total byte count L  
BC7  
BC6  
A14  
A6  
0
BC5  
A13  
A5  
0
BC4  
A12  
A4  
BC3  
A11  
A3  
BC0  
00000000 R  
Setup Data Pointer high A15  
address byte  
A8  
xxxxxxxx RW  
xxxxxxx0 bbbbbbbr  
00000001 RW  
SUDPTRL  
Setup Data Pointer low ad- A7  
dress byte  
A2  
A1  
0
SUDPTRCTL  
Setup Data Pointer Auto  
Mode  
0
0
0
0
0
SDPAUTO  
2
8
reserved  
E6B8  
SET-UPDAT  
8 bytes of setup data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
xxxxxxxx R  
SET-UPDAT[0] =  
bmRequestType  
SET-UPDAT[1] =  
bmRequest  
SET-UPDAT[2:3] = wValue  
SET-UPDAT[4:5] = wIndex  
SET-UPDAT[6:7] =  
wLength  
GPIF  
E6C0 1  
E6C1 1  
GPIFWFSELECT  
GPIFIDLECS  
Waveform Selector  
SINGLEWR1 SINGLEWR0 SINGLERD1 SINGLERD0 FIFOWR1 FIFOWR0  
FIFORD1  
0
FIFORD0  
IDLEDRV  
11100100 RW  
10000000 RW  
GPIF Done, GPIF IDLE  
drive mode  
DONE  
0
0
0
0
0
E6C2 1  
E6C3 1  
E6C4 1  
E6C5 1  
GPIFIDLECTL  
GPIFCTLCFG  
Inactive Bus, CTL states  
CTL Drive Type  
0
0
CTL5  
CTL5  
0
CTL4  
CTL4  
0
CTL3  
CTL3  
0
CTL2  
CTL2  
0
CTL1  
CTL1  
0
CTL0  
11111111 RW  
00000000 RW  
00000000 RW  
00000000 RW  
TRICTL  
0
0
CTL0  
[21]  
GPIFADRH  
GPIF Address H  
0
GPIFA8  
GPIFA0  
[21]  
GPIFADRL  
GPIF Address L  
GPIFA7  
GPIFA6  
GPIFA5  
GPIFA4  
GPIFA3  
GPIFA2  
GPIFA1  
FLOWSTATE  
FLOWSTATE  
E6C6 1  
Flowstate Enable and  
Selector  
FSE  
0
0
0
0
FS2  
FS1  
FS0  
00000000 brrrrbbb  
E6C7 1  
E6C8 1  
FLOWLOGIC  
Flowstate Logic  
LFUNC1  
CTL0E3  
LFUNC0  
CTL0E2  
TERMA2  
TERMA1  
TERMA0  
CTL3  
TERMB2  
CTL2  
TERMB1  
CTL1  
TERMB0  
CTL0  
00000000 RW  
00000000 RW  
FLOWEQ0CTL  
CTL-Pin States in  
Flowstate  
(when Logic = 0)  
CTL0E1/  
CTL5  
CTL0E0/  
CTL4  
Note  
21. Read and writes to these registers may require synchronization delay; see Technical Reference Manual for “Synchronization Delay”.  
Document Number: 38-08032 Rev. AD  
Page 37 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Table 12. FX2LP Register Summary (continued)  
Hex Size  
Name  
Description  
b7  
b6  
b5  
b4  
b3  
CTL3  
b2  
CTL2  
b1  
CTL1  
b0  
Default Access  
E6C9 1  
FLOWEQ1CTL  
CTL-Pin States in Flow- CTL0E3  
state (when Logic = 1)  
CTL0E2  
CTL0E1/  
CTL5  
CTL0E0/  
CTL4  
CTL0  
00000000 RW  
E6CA 1  
E6CB 1  
FLOWHOLDOFF  
FLOWSTB  
Holdoff Configuration  
HOPERIOD3 HOPERIOD2 HOPERIOD1 HOPERIOD0 HOSTATE HOCTL2  
HOCTL1  
MSTB1  
HOCTL0  
MSTB0  
00010010 RW  
00100000 RW  
Flowstate Strobe  
Configuration  
SLAVE  
RDYASYNC CTLTOGL  
SUSTAIN  
0
MSTB2  
E6CC 1  
FLOWSTBEDGE  
Flowstate Rising/Falling  
Edge Configuration  
0
0
0
0
0
0
FALLING  
RISING  
00000001 rrrrrrbb  
E6CD 1  
E6CE 1  
FLOWSTBPERIOD Master-Strobe Half-Period D7  
[22]  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
00000010 RW  
00000000 RW  
GPIFTCB3  
GPIFTCB2  
GPIFTCB1  
GPIFTCB0  
GPIF Transaction Count TC31  
Byte 3  
TC30  
TC29  
TC28  
TC27  
TC26  
TC25  
TC24  
[22]  
[22]  
[22]  
E6CF 1  
E6D0 1  
E6D1 1  
2
GPIF Transaction Count TC23  
Byte 2  
TC22  
TC14  
TC6  
TC21  
TC13  
TC5  
TC20  
TC12  
TC4  
TC19  
TC11  
TC3  
TC18  
TC10  
TC2  
TC17  
TC9  
TC1  
TC16  
TC8  
TC0  
00000000 RW  
00000000 RW  
00000001 RW  
00000000 RW  
GPIF Transaction Count TC15  
Byte 1  
GPIF Transaction Count TC7  
Byte 0  
reserved  
reserved  
reserved  
[22]  
E6D2 1  
E6D3 1  
EP2GPIFFLGSEL  
Endpoint 2 GPIF Flag  
select  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000 RW  
EP2GPIFPFSTOP  
Endpoint 2 GPIF stop  
transaction on prog. flag  
FIFO2FLAG 00000000 RW  
[22]  
E6D4 1  
3
EP2GPIFTRIG  
Endpoint 2 GPIF Trigger  
x
x
xxxxxxxx W  
reserved  
reserved  
reserved  
[22]  
E6DA 1  
E6DB 1  
EP4GPIFFLGSEL  
Endpoint 4 GPIF Flag  
select  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000 RW  
EP4GPIFPFSTOP  
Endpoint 4 GPIF stop  
transaction on GPIF Flag  
FIFO4FLAG 00000000 RW  
[22]  
E6DC 1  
3
EP4GPIFTRIG  
Endpoint 4 GPIF Trigger  
x
x
xxxxxxxx W  
reserved  
reserved  
reserved  
[22]  
E6E2  
E6E3  
E6E4  
1
1
EP6GPIFFLGSEL  
Endpoint 6 GPIF Flag  
select  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000 RW  
EP6GPIFPFSTOP  
Endpoint 6 GPIF stop  
transaction on prog. flag  
FIFO6FLAG 00000000 RW  
[22]  
1
3
EP6GPIFTRIG  
Endpoint 6 GPIF Trigger  
x
x
xxxxxxxx W  
reserved  
reserved  
reserved  
[22]  
E6EA 1  
E6EB 1  
EP8GPIFFLGSEL  
Endpoint 8 GPIF Flag  
select  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000 RW  
EP8GPIFPFSTOP  
Endpoint 8 GPIF stop  
transaction on prog. flag  
FIFO8FLAG 00000000 RW  
[22]  
E6EC 1  
3
EP8GPIFTRIG  
Endpoint 8 GPIF Trigger  
x
x
xxxxxxxx W  
reserved  
E6F0  
E6F1  
E6F2  
E6F3  
1
1
1
1
XGPIFSGLDATH  
GPIF Data H  
D15  
D14  
D6  
D13  
D12  
D4  
D4  
0
D11  
D3  
D3  
0
D10  
D2  
D2  
0
D9  
D1  
D1  
0
D8  
D0  
D0  
0
xxxxxxxx RW  
xxxxxxxx RW  
(16-bit mode only)  
XGPIFSGLDATLX  
Read/Write GPIF Data L & D7  
trigger transaction  
D5  
XGPIFSGLDATLNOX Read GPIF Data L, no  
transaction trigger  
D7  
D6  
D5  
xxxxxxxx  
R
GPIFREADYCFG  
Internal RDY, Sync/Async, INTRDY  
RDY pin states  
SAS  
TCXRDY5  
00000000 bbbrrrrr  
E6F4  
E6F5  
E6F6  
1
1
2
GPIFREADYSTAT  
GPIFABORT  
GPIF Ready Status  
0
x
0
x
RDY5  
x
RDY4  
x
RDY3  
x
RDY2  
x
RDY1  
x
RDY0  
x
00xxxxxx  
xxxxxxxx  
R
Abort GPIF Waveforms  
W
reserved  
ENDPOINT BUFFERS  
E740 64 EP0BUF  
EP0-IN/-OUT buffer  
EP1-OUT buffer  
EP1-IN buffer  
D7  
D7  
D7  
D6  
D6  
D6  
D5  
D5  
D5  
D4  
D4  
D4  
D3  
D3  
D3  
D2  
D2  
D2  
D1  
D1  
D1  
D0  
D0  
D0  
xxxxxxxx RW  
xxxxxxxx RW  
xxxxxxxx RW  
RW  
E780 64 EP10UTBUF  
E7C0 64 EP1INBUF  
E800 2048 reserved  
F000 1024 EP2FIFOBUF  
512/1024 byte EP 2 / slave D7  
FIFO buffer (IN or OUT)  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
xxxxxxxx RW  
F400 512 EP4FIFOBUF  
F600 512 reserved  
512 byte EP 4 / slave FIFO D7  
buffer (IN or OUT)  
xxxxxxxx RW  
Note  
22. Read and writes to these registers may require synchronization delay; see Technical Reference Manual for “Synchronization Delay”.  
Document Number: 38-08032 Rev. AD  
Page 38 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Table 12. FX2LP Register Summary (continued)  
Hex Size  
Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default Access  
F800 1024 EP6FIFOBUF  
FC00 512 EP8FIFOBUF  
FE00 512 reserved  
512/1024 byte EP 6 / slave D7  
FIFO buffer (IN or OUT)  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
xxxxxxxx RW  
512 byte EP 8 / slave FIFO D7  
buffer (IN or OUT)  
xxxxxxxx RW  
xxxx  
I²C Configuration Byte  
0
DISCON  
0
0
0
0
0
400KHZ  
xxxxxxxx n/a  
[23]  
Special Function Registers (SFRs)  
[24]  
80  
81  
82  
83  
84  
85  
86  
87  
88  
1
1
1
1
1
1
1
1
1
IOA  
SP  
Port A (bit addressable)  
Stack Pointer  
D7  
D7  
A7  
A15  
A7  
A15  
0
D6  
D6  
A6  
A14  
A6  
A14  
0
D5  
D5  
A5  
A13  
A5  
A13  
0
D4  
D4  
A4  
A12  
A4  
A12  
0
D3  
D3  
A3  
A11  
A3  
A11  
0
D2  
D2  
A2  
A10  
A2  
A10  
0
D1  
D1  
A1  
A9  
A1  
A9  
0
D0  
xxxxxxxx RW  
00000111 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00110000 RW  
00000000 RW  
D0  
DPL0  
DPH0  
Data Pointer 0 L  
Data Pointer 0 H  
Data Pointer 1 L  
Data Pointer 1 H  
Data Pointer 0/1 select  
Power Control  
A0  
A8  
[24]  
DPL1  
DPH1  
A0  
[24]  
A8  
[24]  
DPS  
SEL  
IDLE  
IT0  
PCON  
TCON  
SMOD0  
TF1  
x
1
1
x
x
x
Timer/Counter Control  
(bit addressable)  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
89  
1
TMOD  
Timer/Counter Mode  
Control  
GATE  
CT  
M1  
M0  
GATE  
CT  
M1  
M0  
00000000 RW  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
1
1
1
1
1
1
1
1
1
TL0  
Timer 0 reload L  
Timer 1 reload L  
Timer 0 reload H  
Timer 1 reload H  
Clock Control  
D7  
D7  
D15  
D15  
x
D6  
D6  
D14  
D14  
x
D5  
D4  
D3  
D2  
D1  
D0  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00000001 RW  
TL1  
D5  
D4  
D3  
D2  
D1  
D0  
TH0  
D13  
D13  
T2M  
D12  
D12  
T1M  
D11  
D11  
T0M  
D10  
D10  
MD2  
D9  
D8  
TH1  
D9  
D8  
[24]  
CKCON  
MD1  
MD0  
reserved  
[24]  
IOB  
Port B (bit addressable)  
D7  
D6  
D5  
D4  
D3  
1
D2  
0
D1  
0
D0  
0
xxxxxxxx RW  
00001000 RW  
00000000 RW  
[24]  
EXIF  
External Interrupt Flag(s) IE5  
IE4  
A14  
I²CINT  
A13  
USBNT  
A12  
[24]  
MPAGE  
Upper Addr Byte of MOVX A15  
using @R0 / @R1  
A11  
A10  
A9  
A8  
93  
98  
5
1
reserved  
SCON0  
Serial Port 0 Control  
(bit addressable)  
SM0_0  
SM1_0  
SM2_0  
REN_0  
TB8_0  
RB8_0  
TI_0  
RI_0  
00000000 RW  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A8  
1
1
1
1
1
1
1
1
1
1
5
1
SBUF0  
Serial Port 0 Data Buffer D7  
Autopointer 1 Address H A15  
Autopointer 1 Address L A7  
D6  
D5  
D4  
D3  
A11  
A3  
D2  
D1  
A9  
A1  
D0  
A8  
A0  
00000000 RW  
00000000 RW  
00000000 RW  
[24]  
AUTOPTRH1  
A14  
A6  
A13  
A5  
A12  
A4  
A10  
A2  
[24]  
AUTOPTRL1  
reserved  
[24]  
AUTOPTRH2  
Autopointer 2 Address H A15  
Autopointer 2 Address L A7  
A14  
A6  
A13  
A5  
A12  
A4  
A11  
A3  
A10  
A2  
A9  
A1  
A8  
A0  
00000000 RW  
00000000 RW  
[24]  
AUTOPTRL2  
reserved  
[24]  
IOC  
Port C (bit addressable) D7  
D6  
x
D5  
x
D4  
x
D3  
x
D2  
x
D1  
x
D0  
x
xxxxxxxx RW  
[24]  
INT2CLR  
Interrupt 2 clear  
Interrupt 4 clear  
x
x
xxxxxxxx  
xxxxxxxx  
W
W
[24]  
INT4CLR  
x
x
x
x
x
x
x
reserved  
IE  
Interrupt Enable  
(bit addressable)  
EA  
ES1  
ET2  
ES0  
ET1  
EX1  
ET0  
EX0  
00000000 RW  
A9  
AA  
1
1
reserved  
[24]  
EP2468STAT  
Endpoint 2,4,6,8 status  
flags  
EP8F  
EP8E  
EP6F  
EP6E  
EP4F  
EP4E  
EP2F  
EP2E  
01011010 R  
00100010 R  
01100110 R  
AB  
AC  
1
1
EP24FIFOFLGS  
[24]  
Endpoint 2,4 slave FIFO  
status flags  
0
0
EP4PF  
EP8PF  
EP4EF  
EP8EF  
EP4FF  
EP8FF  
0
0
EP2PF  
EP6PF  
EP2EF  
EP6EF  
EP2FF  
EP6FF  
EP68FIFOFLGS  
[24]  
Endpoint 6,8 slave FIFO  
status flags  
AD  
AF  
B0  
B1  
2
1
1
1
reserved  
[24]  
AUTOPTRSETUP  
Autopointer 1&2 setup  
0
0
0
0
0
APTR2INC APTR1INC APTREN  
00000110 RW  
xxxxxxxx RW  
xxxxxxxx RW  
[24]  
IOD  
Port D (bit addressable) D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
[24]  
IOE  
Port E  
(NOT bit addressable)  
D7  
[24]  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
1
1
1
1
1
1
1
OEA  
Port A Output Enable  
Port B Output Enable  
Port C Output Enable  
Port D Output Enable  
Port E Output Enable  
D7  
D7  
D7  
D7  
D7  
D6  
D6  
D6  
D6  
D6  
D5  
D5  
D5  
D5  
D5  
D4  
D4  
D4  
D4  
D4  
D3  
D3  
D3  
D3  
D3  
D2  
D2  
D2  
D2  
D2  
D1  
D1  
D1  
D1  
D1  
D0  
D0  
D0  
D0  
D0  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
[24]  
OEB  
[24]  
OEC  
[24]  
OED  
[24]  
OEE  
reserved  
IP  
Interrupt Priority (bit ad-  
dressable)  
1
PS1  
PT2  
PS0  
PT1  
PX1  
PT0  
PX0  
10000000 RW  
B9  
1
reserved  
Notes  
23. If no EEPROM is detected by the SIE then the default is 00000000.  
24. SFRs not part of the standard 8051 architecture.  
Document Number: 38-08032 Rev. AD  
Page 39 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Table 12. FX2LP Register Summary (continued)  
Hex Size  
Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default Access  
00000000 R  
[25]  
BA  
1
1
EP01STAT  
Endpoint 0&1 Status  
0
0
0
0
0
0
0
0
0
EP1INBSY EP1OUTBSY EP0BSY  
[25, 26]  
BB  
GPIFTRIG  
Endpoint 2,4,6,8 GPIF  
slave FIFO Trigger  
DONE  
RW  
EP1  
D9  
EP0  
D8  
10000xxx brrrrbbb  
BC  
BD  
1
1
reserved  
[25]  
GPIFSGLDATH  
GPIF Data H (16-bit mode D15  
only)  
D14  
D13  
D12  
D11  
D10  
xxxxxxxx RW  
xxxxxxxx RW  
[25]  
BE  
BF  
1
1
GPIFSGLDATLX  
GPIFSGLDATL-  
GPIF Data L w/ Trigger  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
GPIF Data L w/ No Trigger D7  
xxxxxxxx R  
[25]  
NOX  
[25]  
C0  
1
SCON1  
Serial Port 1 Control (bit SM0_1  
addressable)  
SM1_1  
D6  
SM2_1  
D5  
REN_1  
D4  
TB8_1  
D3  
RB8_1  
D2  
TI_1  
D1  
RI_1  
D0  
00000000 RW  
00000000 RW  
[25]  
C1  
C2  
C8  
1
6
1
SBUF1  
Serial Port 1 Data Buffer D7  
reserved  
T2CON  
Timer/Counter 2 Control TF2  
(bit addressable)  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
CT2  
CPRL2  
00000000 RW  
C9  
CA  
1
1
reserved  
RCAP2L  
Capture for Timer 2, au- D7  
to-reload, up-counter  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
00000000 RW  
00000000 RW  
CB  
1
RCAP2H  
Capture for Timer 2, au- D7  
to-reload, up-counter  
CC  
CD  
CE  
D0  
1
1
2
1
TL2  
Timer 2 reload L  
Timer 2 reload H  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D9  
D0  
D8  
00000000 RW  
00000000 RW  
TH2  
D15  
D14  
D13  
D12  
D11  
D10  
reserved  
PSW  
Program Status Word (bit CY  
addressable)  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00000000 RW  
D1  
D8  
D9  
E0  
7
1
7
1
reserved  
[25]  
EICON  
External Interrupt Control SMOD1  
1
ERESI  
D5  
RESI  
D4  
INT6  
D3  
0
0
0
01000000 RW  
00000000 RW  
reserved  
ACC  
Accumulator (bit address- D7  
able)  
D6  
D2  
D1  
D0  
E1  
E8  
7
1
reserved  
[25]  
EIE  
External Interrupt En-  
able(s)  
1
1
1
EX6  
EX5  
EX4  
EI²C  
EUSB  
11100000 RW  
E9  
F0  
F1  
F8  
7
1
7
1
reserved  
B
B (bit addressable)  
D7  
1
D6  
1
D5  
1
D4  
D3  
D2  
D1  
D0  
00000000 RW  
11100000 RW  
reserved  
[25]  
EIP  
External Interrupt Priority  
Control  
PX6  
PX5  
PX4  
PI²C  
PUSB  
F9  
7
reserved  
R = all bits read-only  
W = all bits write-only  
r = read-only bit  
w = write-only bit  
b = both read/write bit  
Notes  
25. SFRs not part of the standard 8051 architecture.  
26. Read and writes to these registers may require synchronization delay; see Technical Reference Manual for “Synchronization Delay”.  
Document Number: 38-08032 Rev. AD  
Page 40 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Absolute Maximum Ratings  
Operating Conditions  
Exceeding maximum ratings may shorten the useful life of the  
device. User guidelines are not tested.  
TA (ambient temperature under bias)  
Commercial ................................................... 0 °C to +70 °C  
Storage temperature ................................ –65 °C to +150 °C  
TA (ambient temperature under bias)  
Industrial .................................................. –40 °C to +105 °C  
Ambient temperature with  
power supplied (Commercial)......................... 0 °C to +70 °C  
Supply voltage .........................................+3.00 V to +3.60 V  
Ground voltage ................................................................ 0 V  
Ambient temperature with  
power supplied (Industrial) ...................... –40 °C to +105 °C  
FOSC (oscillator or crystal frequency) .... 24 MHz ± 100 ppm,  
Supply voltage to ground potential ..............–0.5 V to +4.0 V  
DC input voltage to any input pin[27] ........................... 5.25 V  
parallel resonant  
DC voltage applied to outputs  
in high Z state .................................... –0.5 V to VCC + 0.5 V  
Power dissipation .................................................... 300 mW  
Static discharge voltage ..........................................>2000 V  
Max output current, per I/O port ................................. 10 mA  
Max output current, all five I/O ports  
(128-pin and 100-pin packages) ................................. 50 mA  
Thermal Characteristics  
Maximum junction temperature ................................. 125 °C  
The following table displays the thermal characteristics of various packages:  
Table 13. Thermal Characteristics  
Jc  
Ja  
Package  
56 SSOP  
Ambient Temperature (°C)  
Junction to Case  
Junction to Ambient Thermal  
Resistance (°C/W)  
Thermal Resistance (°C/W)  
70  
70  
70  
70  
70  
24.4  
11.9  
15.5  
10.6  
30.9  
47.7  
45.9  
43.2  
25.2  
58.6  
100 TQFP  
128 TQFP  
56 QFN  
56 VFBGA  
The junction temperature j, can be calculated using the following equation: j = P*Ja + a  
Where,  
P = Power  
Ja = Junction to ambient temperature (Jc + Ca  
)
a = Ambient temperature (70 °C)  
The case temperature c, can be calculated using the following equation: c = P*Ca + a  
where,  
P = Power  
Ca = Case to ambient temperature  
a = Ambient temperature (70 °C)  
Note  
27. Do not power I/O with the chip power OFF.  
Document Number: 38-08032 Rev. AD  
Page 41 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
DC Electrical Characteristics  
Table 14. DC Characteristics  
Parameter  
VCC  
VCC Ramp Up 0 to 3.3 V  
Description  
Conditions  
Min  
3.00  
200  
2
Typ  
3.3  
Max  
3.60  
Unit  
V
Supply voltage  
s  
V
VIH  
VIL  
Input HIGH voltage  
Input LOW voltage  
5.25  
0.8  
5.25  
0.8  
±10  
–0.5  
2
V
VIH_X  
VIL_X  
II  
Crystal input HIGH voltage  
Crystal input LOW voltage  
Input leakage current  
Output voltage HIGH  
Output LOW voltage  
Output current HIGH  
Output current LOW  
V
–0.5  
V
0< VIN < VCC  
IOUT = 4 mA  
IOUT = –4 mA  
A  
V
VOH  
VOL  
IOH  
IOL  
2.4  
0.4  
4
V
mA  
mA  
pF  
pF  
A  
A  
mA  
mA  
mA  
mA  
ms  
s  
4
Except D+/D–  
D+/D–  
10  
CIN  
Input pin capacitance  
15  
Suspend current  
Connected  
Disconnected  
Connected  
Disconnected  
300  
100  
0.5  
0.3  
50  
35  
380[28]  
150[28]  
1.2[28]  
1.0[28]  
85  
CY7C68014/CY7C68016  
Suspend current  
ISUSP  
CY7C68013/CY7C68015  
8051 running, connected to USB HS  
8051 running, connected to USB FS  
ICC  
Supply current  
65  
Reset time after valid power  
Pin reset after powered on  
5.0  
200  
TRESET  
VCC min = 3.0 V  
USB Transceiver  
USB 2.0 compliant in Full Speed and Hi-Speed modes.  
Note  
28. Measured at Max V , 25 °C.  
CC  
Document Number: 38-08032 Rev. AD  
Page 42 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
AC Electrical Characteristics  
USB Transceiver  
USB 2.0 compliant in Full-Speed and Hi-Speed modes.  
Program Memory Read  
Figure 12. Program Memory Read Timing Diagram  
t
CL  
CLKOUT[29]  
t
t
AV  
AV  
A[15..0]  
t
t
STBH  
STBL  
PSEN#  
D[7..0]  
[30]  
ACC1  
t
DH  
t
data in  
t
SOEL  
OE#  
CS#  
t
SCSL  
Table 15. Program Memory Read Parameters  
Parameter Description  
Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
20.83  
48 MHz  
tCL  
tAV  
1/CLKOUT frequency  
41.66  
24 MHz  
83.2  
12 MHz  
Delay from clock to valid address  
Clock to PSEN LOW  
Clock to PSEN HIGH  
Clock to OE LOW  
0
10.7  
8
tSTBL  
tSTBH  
tSOEL  
tSCSL  
tDSU  
tDH  
0
0
8
11.1  
13  
Clock to CS LOW  
Data setup to clock  
Data hold time  
9.6  
0
Notes  
29. CLKOUT is shown with positive polarity.  
30. t  
is computed from these parameters as follows:  
ACC1  
ACC1  
ACC1  
t
t
(24 MHz) = 3*t – t – t  
= 106 ns.  
= 43 ns.  
CL  
AV  
DSU  
DSU  
(48 MHz) = 3*t – t – t  
CL  
AV  
Document Number: 38-08032 Rev. AD  
Page 43 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Data Memory Read[31]  
Figure 13. Data Memory Read Timing Diagram  
t
CL  
Stretch = 0  
CLKOUT[29]  
t
t
AV  
AV  
A[15..0]  
t
t
STBH  
STBL  
RD#  
t
SCSL  
CS#  
OE#  
t
SOEL  
t
DSU  
[32]  
t
DH  
t
ACC2  
D[7..0]  
data in  
Stretch = 1  
t
CL  
CLKOUT[29]  
t
AV  
A[15..0]  
RD#  
CS#  
t
DSU  
t
DH  
ACC3 [32]  
t
D[7..0]  
data in  
Table 16. Data Memory Read Parameters  
Parameter Description  
1/CLKOUT frequency  
Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
tCL  
20.83  
48 MHz  
41.66  
24 MHz  
83.2  
12 MHz  
tAV  
Delay from clock to valid address  
Clock to RD LOW  
10.7  
11  
11  
13  
11.1  
tSTBL  
tSTBH  
tSCSL  
tSOEL  
tDSU  
tDH  
Clock to RD HIGH  
Clock to CS LOW  
Clock to OE LOW  
Data setup to clock  
Data hold time  
9.6  
0
When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD#  
or WR# is active. The address of AUTOPTR2 is active throughout the cycle and meets the address valid time for which is based on  
the stretch value.  
Notes  
31. The stretch memory cycle feature enables EZ-USB firmware to adjust the speed of data memory accesses not the program memory accesses. Details including typical  
strobe width timings can be found in the section 12.1.2 of the Technical Reference Manual. The address cycle width can be interpreted from these.  
32. t  
and t  
are computed from these parameters as follows:  
ACC3  
ACC2  
ACC2  
ACC2  
ACC3  
ACC3  
t
t
t
t
(24 MHz) = 3*t – t –t  
= 106 ns  
(48 MHz) = 3*t – t – t = 43 ns  
DSU  
CL  
AV DSU  
CL  
AV  
(24 MHz) = 5*t – t –t = 190 ns  
(48 MHz) = 5*t – t – t = 86 ns.  
DSU  
CL  
AV DSU  
CL  
AV  
Document Number: 38-08032 Rev. AD  
Page 44 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
[33]  
Data Memory Write  
Figure 14. Data Memory Write Timing Diagram  
t
CL  
CLKOUT  
A[15..0]  
t
AV  
t
t
t
STBL  
STBH  
AV  
WR#  
CS#  
t
SCSL  
t
ON1  
t
OFF1  
data out  
D[7..0]  
Stretch = 1  
t
CL  
CLKOUT  
A[15..0]  
t
AV  
WR#  
CS#  
t
ON1  
t
OFF1  
data out  
D[7..0]  
Table 17. Data Memory Write Parameters  
Parameter Description  
Delay from clock to valid address  
Min  
Max  
10.7  
11.2  
11.2  
13.0  
13.1  
13.1  
Unit  
ns  
Notes  
tAV  
0
0
0
0
0
tSTBL  
tSTBH  
tSCSL  
tON1  
Clock to WR pulse LOW  
Clock to WR pulse HIGH  
Clock to CS pulse LOW  
Clock to data turn-on  
ns  
ns  
ns  
ns  
tOFF1  
Clock to data hold time  
ns  
When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD#  
or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the address valid time for which is based on  
the stretch value.  
Note  
33. The stretch memory cycle feature enables EZ-USB firmware to adjust the speed of data memory accesses not the program memory accesses. Details including  
typical strobe width timings can be found in the section 12.1.2 of the Technical Reference Manual. The address cycle width can be interpreted from these.  
Document Number: 38-08032 Rev. AD  
Page 45 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
The RD# signal prompts the external logic to prepare the next  
data byte. Nothing gets sampled internally on assertion of the  
RD# signal itself; it is just a prefetch type signal to get the next  
data byte prepared. So, using it with that in mind easily meets the  
setup time to the next read.  
PORTC Strobe Feature Timings  
The RD# and WR# are present in the 100-pin version and the  
128-pin package. In these 100-pin and 128-pin versions, an  
8051 control bit can be set to pulse the RD# and WR# pins when  
the 8051 reads from or writes to PORTC. This feature is enabled  
by setting PORTCSTB bit in CPUCS register.  
The purpose of this pulsing of RD# is to allow the external  
peripheral to know that the 8051 is done reading PORTC and the  
data was latched into PORTC three CLKOUT cycles before  
asserting the RD# signal. After the RD# is pulsed, the external  
logic can update the data on PORTC.  
The RD# and WR# strobes are asserted for two CLKOUT cycles  
when PORTC is accessed.  
The WR# strobe is asserted two clock cycles after PORTC is  
updated and is active for two clock cycles after that, as shown in  
Figure 16.  
Following is the timing diagram of the read and write strobing  
function on accessing PORTC. Refer to Data Memory Read[31]  
on page 44 and Data Memory Write[33] on page 45 for details on  
propagation delay of RD# and WR# signals.  
As for read, the value of PORTC three clock cycles before the  
assertion of RD# is the value that the 8051 reads in. The RD# is  
pulsed for two clock cycles after three clock cycles from the point  
when the 8051 has performed a read function on PORTC.  
Figure 16. WR# Strobe Function when PORTC is Accessed by 8051  
t
CLKOUT  
CLKOUT  
PORTC IS UPDATED  
WR#  
t
t
STBL  
STBH  
Figure 17. RD# Strobe Function when PORTC is Accessed by 8051  
t
CLKOUT  
CLKOUT  
8051 READS PORTC  
RD#  
DATA CAN BE UPDATED BY EXTERNAL LOGIC  
DATA MUST BE HELD FOR 3 CLK CYLCES  
t
t
STBL  
STBH  
Document Number: 38-08032 Rev. AD  
Page 46 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
GPIF Synchronous Signals  
Figure 18. GPIF Synchronous Signals Timing Diagram[34]  
t
IFCLK  
IFCLK  
t
SGA  
GPIFADR[8:0]  
RDY  
X
t
SRY  
t
RYH  
DATA(input)  
valid  
t
SGD  
t
DAH  
CTLX  
t
XCTL  
DATA(output)  
N
N+1  
t
XGD  
Table 18. GPIF Synchronous Signals Parameters with Internally Sourced IFCLK[34, 35]  
Typ  
Parameter  
tIFCLK  
Description  
Min  
Max  
Unit  
Min  
Max  
IFCLK Period  
20.83  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
%
tSRY  
RDYX to clock setup time  
RDYX Hold Time  
8.9  
0
tRYH  
tSGD  
GPIF data to clock setup time  
GPIF data hold time  
9.2  
0
tDAH  
tSGA  
Clock to GPIF address propagation delay  
Clock to GPIF data output propagation delay  
Clock to CTLX output propagation delay  
IFCLK rise time  
7.5  
10  
6.7  
tXGD  
tXCTL  
tIFCLKR  
tIFCLKF  
tIFCLKOD  
tIFCLKJ  
900  
900  
51  
300  
IFCLK fall time  
IFCLK output duty cycle  
49  
IFCLK jitter peak to peak  
ps  
Table 19. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK[35]  
Parameter Description  
tIFCLK  
Min  
Max  
200  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IFCLK period[36]  
20.83  
2.9  
3.7  
3.2  
4.5  
tSRY  
tRYH  
tSGD  
tDAH  
tSGA  
tXGD  
tXCTL  
RDYX to clock setup time  
RDYX Hold Time  
GPIF data to clock setup time  
GPIF data hold time  
Clock to GPIF address propagation delay  
Clock to GPIF data output propagation delay  
Clock to CTLX output propagation delay  
11.5  
15  
10.7  
Notes  
34. Dashed lines denote signals with programmable polarity.  
35. GPIF asynchronous RDY signals have a minimum setup time of 50 ns when using the internal 48-MHz IFCLK.  
x
36. IFCLK must not exceed 48 MHz.  
Document Number: 38-08032 Rev. AD  
Page 47 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Slave FIFO Synchronous Read  
Figure 19. Slave FIFO Synchronous Read Timing Diagram [37]  
t
IFCLK  
IFCLK  
SLRD  
t
RDH  
t
SRD  
t
XFLG  
FLAGS  
DATA  
N+1  
N
t
t
XFD  
OEon  
t
OEoff  
SLOE  
Table 20. Slave FIFO Synchronous Read Parameters with Internally Sourced IFCLK[38]  
Typ  
Parameter  
tIFCLK  
Description  
Min  
Max  
Unit  
Min  
Max  
IFCLK period  
20.83  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
%
tSRD  
SLRD to clock setup time  
18.7  
0
tRDH  
Clock to SLRD hold time  
tOEon  
SLOE turn on to FIFO data valid  
SLOE turn off to FIFO data hold  
Clock to FLAGS output propagation delay  
Clock to FIFO data output propagation delay  
IFCLK rise time  
10.5  
10.5  
9.5  
11  
tOEoff  
tXFLG  
tXFD  
tIFCLKR  
tIFCLKF  
tIFCLKOD  
tIFCLKJ  
900  
900  
51  
300  
IFCLK fall time  
IFCLK output duty cycle  
49  
IFCLK jitter peak to peak  
ps  
Table 21. Slave FIFO Synchronous Read Parameters with Externally Sourced IFCLK[38]  
Parameter  
tIFCLK  
Description  
Min  
20.83  
12.7  
3.7  
Max  
200  
Unit  
ns  
IFCLK period  
tSRD  
tRDH  
tOEon  
tOEoff  
tXFLG  
tXFD  
SLRD to clock setup time  
ns  
Clock to SLRD hold time  
ns  
SLOE turn on to FIFO data valid  
SLOE turn off to FIFO data hold  
Clock to FLAGS output propagation delay  
Clock to FIFO data output propagation delay  
10.5  
10.5  
13.5  
15  
ns  
ns  
ns  
ns  
Notes  
37. Dashed lines denote signals with programmable polarity.  
38. GPIF asynchronous RDY signals have a minimum setup time of 50 ns when using the internal 48-MHz IFCLK.  
x
Document Number: 38-08032 Rev. AD  
Page 48 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Slave FIFO Asynchronous Read  
Figure 20. Slave FIFO Asynchronous Read Timing Diagram [39]  
t
RDpwh  
SLRD  
t
RDpwl  
t
XFLG  
t
FLAGS  
XFD  
DATA  
SLOE  
N+1  
N
t
t
OEoff  
OEon  
Table 22. Slave FIFO Asynchronous Read Parameters[40]  
Parameter Description  
tRDpwl  
Min  
50  
50  
Max  
Unit  
ns  
SLRD pulse width LOW  
SLRD pulse width HIGH  
tRDpwh  
tXFLG  
tXFD  
ns  
SLRD to FLAGS output propagation delay  
SLRD to FIFO data output propagation delay  
SLOE turn-on to FIFO data valid  
70  
ns  
15  
ns  
tOEon  
tOEoff  
10.5  
10.5  
ns  
SLOE turn-off to FIFO data hold  
ns  
Notes  
39. Dashed lines denote signals with programmable polarity.  
40. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz.  
Document Number: 38-08032 Rev. AD  
Page 49 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Slave FIFO Synchronous Write  
Figure 21. Slave FIFO Synchronous Write Timing Diagram [41]  
t
IFCLK  
IFCLK  
SLWR  
t
WRH  
t
SWR  
DATA  
N
Z
Z
t
t
FDH  
SFD  
FLAGS  
t
XFLG  
Table 23. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK[42]  
Parameter  
tIFCLK  
Description  
Min  
20.83  
10.4  
0
Max  
Unit  
ns  
IFCLK period  
tSWR  
tWRH  
tSFD  
SLWR to clock setup time  
ns  
Clock to SLWR hold time  
ns  
FIFO data to clock setup time  
Clock to FIFO data hold time  
Clock to FLAGS output propagation time  
9.2  
0
ns  
tFDH  
tXFLG  
ns  
9.5  
ns  
Table 24. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK[42]  
Parameter  
tIFCLK  
Description  
Min  
20.83  
12.1  
3.6  
Max  
200  
Unit  
ns  
IFCLK Period  
tSWR  
tWRH  
tSFD  
SLWR to clock setup time  
ns  
Clock to SLWR hold time  
ns  
FIFO data to clock setup time  
Clock to FIFO data hold time  
Clock to FLAGS output propagation time  
3.2  
ns  
tFDH  
tXFLG  
4.5  
ns  
13.5  
ns  
Notes  
41. Dashed lines denote signals with programmable polarity.  
42. GPIF asynchronous RDY signals have a minimum setup time of 50 ns when using the internal 48-MHz IFCLK.  
x
Document Number: 38-08032 Rev. AD  
Page 50 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Slave FIFO Asynchronous Write  
Figure 22. Slave FIFO Asynchronous Write Timing Diagram [43]  
t
WRpwh  
SLWR  
t
WRpwl  
t
t
FDH  
SFD  
DATA  
t
XFD  
FLAGS  
Table 25. Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK[44]  
Parameter  
tWRpwl  
tWRpwh  
tSFD  
Description  
Min  
50  
70  
10  
10  
Max  
Unit  
ns  
SLWR pulse LOW  
SLWR pulse HIGH  
ns  
SLWR to FIFO DATA setup time  
FIFO DATA to SLWR hold time  
ns  
tFDH  
ns  
tXFD  
SLWR to FLAGS output propagation delay  
70  
ns  
Notes  
43. Dashed lines denote signals with programmable polarity.  
44. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz.  
Document Number: 38-08032 Rev. AD  
Page 51 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Slave FIFO Synchronous Packet End Strobe  
Figure 23. Slave FIFO Synchronous Packet End Strobe Timing Diagram [45]  
IFCLK  
t
PEH  
PKTEND  
FLAGS  
t
SPE  
t
XFLG  
Table 26. Slave FIFO Synchronous Packet End Strobe Parameters with Internally Sourced IFCLK[46]  
Parameter  
tIFCLK  
Description  
Min  
20.83  
14.6  
0
Max  
Unit  
ns  
IFCLK period  
tSPE  
tPEH  
tXFLG  
PKTEND to clock setup time  
ns  
Clock to PKTEND hold time  
ns  
Clock to FLAGS output propagation delay  
9.5  
ns  
Table 27. Slave FIFO Synchronous Packet End Strobe Parameters with Externally Sourced IFCLK[46]  
Parameter  
tIFCLK  
Description  
Min  
20.83  
8.6  
Max  
200  
Unit  
ns  
IFCLK period  
tSPE  
tPEH  
tXFLG  
PKTEND to clock setup time  
ns  
Clock to PKTEND hold time  
2.5  
ns  
Clock to FLAGS output propagation delay  
13.5  
ns  
Notes  
45. Dashed lines denote signals with programmable polarity.  
46. GPIF asynchronous RDY signals have a minimum setup time of 50 ns when using the internal 48-MHz IFCLK.  
x
Document Number: 38-08032 Rev. AD  
Page 52 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
There is no specific timing requirement that should be met for  
asserting the PKTEND pin to asserting SLWR. PKTEND can be  
asserted with the last data value clocked into the FIFOs or  
thereafter. The setup time tSPE and the hold time tPEH must be  
met.  
caused the last byte or word to be clocked into the previous auto  
committed packet. Figure 24 shows this scenario. X is the value  
the AUTOINLEN register is set to when the IN endpoint is  
configured to be in auto mode.  
Figure 24 shows a scenario where two packets are committed.  
The first packet gets committed automatically when the number  
of bytes in the FIFO reaches X (value set in AUTOINLEN  
register) and the second one byte/word short packet being  
committed manually using PKTEND.  
Although there are no specific timing requirements for PKTEND  
assertion, there is a specific corner-case condition that needs  
attention while using the PKTEND pin to commit a one byte or  
word packet. There is an additional timing requirement that  
needs to be met when the FIFO is configured to operate in auto  
mode and it is required to send two packets back to back: a full  
packet (full defined as the number of bytes in the FIFO meeting  
the level set in AUTOINLEN register) committed automatically  
followed by a short one byte or word packet committed manually  
using the PKTEND pin. In this scenario, the user must ensure to  
assert PKTEND, at least one clock cycle after the rising edge that  
Note that there is at least one IFCLK cycle timing between the  
assertion of PKTEND and clocking of the last byte of the previous  
packet (causing the packet to be committed automatically).  
Failing to adhere to this timing results in the FX2 failing to send  
the one byte or word short packet.  
Figure 24. Slave FIFO Synchronous Write Sequence and Timing Diagram[47]  
t
IFCLK  
IFCLK  
t
t
SFA  
FAH  
FIFOADR  
>= t  
WRH  
>= t  
SWR  
SLWR  
DATA  
t
t
FDH  
t
t
t
t
FDH  
t
t
t
SFD  
t
SFD  
FDH  
t
SFD  
t
SFD  
FDH  
SFD  
SFD  
FDH  
FDH  
X-4  
X-2  
X-1  
1
X-3  
X
At least one IFCLK cycle  
t
SPE  
t
PEH  
PKTEND  
Note  
47. Dashed lines denote signals with programmable polarity.  
Document Number: 38-08032 Rev. AD  
Page 53 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Slave FIFO Asynchronous Packet End Strobe  
Figure 25. Slave FIFO Asynchronous Packet End Strobe Timing Diagram[48]  
t
PEpwh  
PKTEND  
FLAGS  
t
PEpwl  
t
XFLG  
Table 28. Slave FIFO Asynchronous Packet End Strobe Parameters[49]  
Parameter Description  
tPEpwl PKTEND pulse width LOW  
tPWpwh  
tXFLG  
Min  
50  
50  
Max  
Unit  
ns  
PKTEND pulse width HIGH  
ns  
PKTEND to FLAGS output propagation delay  
115  
ns  
Slave FIFO Output Enable  
Figure 26. Slave FIFO Output Enable Timing Diagram[48]  
SLOE  
t
OEoff  
t
OEon  
DATA  
Table 29. Slave FIFO Output Enable Parameters  
Parameter Description  
tOEon  
tOEoff  
Min  
Max  
10.5  
10.5  
Unit  
ns  
SLOE assert to FIFO DATA output  
SLOE deassert to FIFO DATA hold  
ns  
Slave FIFO Address to Flags/Data  
Figure 27. Slave FIFO Address to Flags/Data Timing Diagram[48]  
FIFOADR [1.0]  
t
XFLG  
FLAGS  
DATA  
t
XFD  
N
N+1  
Table 30. Slave FIFO Address to Flags/Data Parameters  
Parameter  
tXFLG  
Description  
FIFOADR[1:0] to FLAGS output propagation delay  
FIFOADR[1:0] to FIFODATA output propagation delay  
Min  
Max  
10.7  
14.3  
Unit  
ns  
tXFD  
ns  
Notes  
48. Dashed lines denote signals with programmable polarity.  
49. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz.  
Document Number: 38-08032 Rev. AD  
Page 54 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Slave FIFO Synchronous Address  
Figure 28. Slave FIFO Synchronous Address Timing Diagram[50]  
IFCLK  
SLCS/FIFOADR [1:0]  
t
t
FAH  
SFA  
Table 31. Slave FIFO Synchronous Address Parameters[51]  
Parameter  
tIFCLK  
tSFA  
tFAH  
Description  
Min  
20.83  
25  
Max  
200  
Unit  
ns  
Interface clock period  
FIFOADR[1:0] to clock setup time  
Clock to FIFOADR[1:0] hold time  
ns  
10  
ns  
Slave FIFO Asynchronous Address  
Figure 29. Slave FIFO Asynchronous Address Timing Diagram [50]  
SLCS/FIFOADR [1:0]  
t
FAH  
t
SFA  
SLRD/SLWR/PKTEND  
Table 32. Slave FIFO Asynchronous Address Parameters[52]  
Parameter  
Description  
Min  
10  
Max  
Unit  
ns  
tSFA  
tFAH  
FIFOADR[1:0] to SLRD/SLWR/PKTEND setup time  
RD/WR/PKTEND to FIFOADR[1:0] hold time  
10  
ns  
Notes  
50. Dashed lines denote signals with programmable polarity.  
51. GPIF asynchronous RDY signals have a minimum setup time of 50 ns when using the internal 48-MHz IFCLK.  
x
52. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz.  
Document Number: 38-08032 Rev. AD  
Page 55 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Sequence Diagram  
Single and Burst Synchronous Read Example  
Figure 30. Slave FIFO Synchronous Read Sequence and Timing Diagram[53]  
t
IFCLK  
IFCLK  
t
t
SFA  
SFA  
t
t
FAH  
FAH  
FIFOADR  
t=0  
T=0  
t
t
>= t  
SRD  
>= t  
RDH  
RDH  
SRD  
SLRD  
SLCS  
t=3  
t=2  
T=3  
T=2  
t
XFLG  
FLAGS  
DATA  
SLOE  
t
t
t
XFD  
t
XFD  
XFD  
XFD  
N+4  
Data Driven: N  
N+2  
N+3  
N+1  
N+1  
t
t
OEon  
t
OEoff  
t
OEoff  
OEon  
t=4  
T=4  
T=1  
t=1  
Figure 31. Slave FIFO Synchronous Sequence of Events Diagram  
IFCLK  
IFCLK  
N
IFCLK  
N+1  
IFCLK  
N+1  
IFCLK  
N+1  
IFCLK  
N+2  
IFCLK  
N+3  
IFCLK  
N+4  
IFCLK  
N+4  
IFCLK  
N+4  
N
FIFO POINTER  
SLOE  
SLRD  
SLOE  
SLRD  
SLOE  
SLRD  
SLRD  
SLOE  
FIFO DATA BUS Not Driven  
Driven: N  
N+1  
Not Driven  
N+1  
N+2  
N+3  
N+4  
N+4  
Not Driven  
Figure 30 shows the timing relationship of the SLAVE FIFO  
signals during a synchronous FIFO read using IFCLK as the  
synchronizing clock. The diagram illustrates a single read  
followed by a burst read.  
asserted (The SLCS and SLRD signals must both be asserted  
to start a valid read condition).  
The FIFO pointer is updated on the rising edge of the IFCLK,  
while SLRD is asserted. This starts the propagation of data  
from the newly addressed location to the data bus. After a  
propagation delay of tXFD (measured from the rising edge of  
IFCLK) the new data value is present. N is the first data value  
read from the FIFO. To have data on the FIFO data bus, SLOE  
MUST also be asserted.  
At t = 0, the FIFO address is stable and the signal SLCS is  
asserted (SLCS may be tied LOW in some applications). Note  
that tSFA has a minimum of 25 ns. This means that when IFCLK  
is running at 48 MHz, the FIFO address setup time is more than  
one IFCLK cycle.  
The same sequence of events are shown for a burst read and  
are marked with the time indicators of T = 0 through 5.  
At t = 1, SLOE is asserted. SLOE is an output enable only,  
whose sole function is to drive the data bus. The data that is  
driven on the bus is the data that the internal FIFO pointer is  
currently pointing to. In this example it is the first data value in  
the FIFO. Note: the data is prefetched and is driven on the bus  
when SLOE is asserted.  
Note For the burst mode, the SLRD and SLOE are left asserted  
during the entire duration of the read. In the burst read mode,  
when SLOE is asserted, data indexed by the FIFO pointer is on  
the data bus. During the first read cycle, on the rising edge of the  
clock, the FIFO pointer is updated and incremented to point to  
address N+1. For each subsequent rising edge of IFCLK, while  
the SLRD is asserted, the FIFO pointer is incremented and the  
next data value is placed on the data bus.  
At t = 2, SLRD is asserted. SLRD must meet the setup time of  
tSRD (time from asserting the SLRD signal to the rising edge of  
the IFCLK) and maintain a minimum hold time of tRDH (time  
from the IFCLK edge to the deassertion of the SLRD signal).  
If the SLCS signal is used, it must be asserted before SLRD is  
Note  
53. Dashed lines denote signals with programmable polarity.  
Document Number: 38-08032 Rev. AD  
Page 56 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Single and Burst Synchronous Write  
Figure 32. Slave FIFO Synchronous Write Sequence and Timing Diagram[54]  
t
IFCLK  
IFCLK  
t
t
SFA  
t
SFA  
t
FAH  
FAH  
FIFOADR  
>= t  
t=0  
WRH  
t
t
>= t  
T=0  
SWR  
WRH  
SWR  
SLWR  
SLCS  
T=2  
T=5  
t=2  
t=3  
t
XFLG  
t
XFLG  
FLAGS  
DATA  
t
t
t
t
t
FDH  
t
t
t
SFD  
SFD  
FDH  
FDH  
SFD  
SFD  
FDH  
N+1  
N+3  
N
N+2  
T=4  
T=3  
t=1  
T=1  
t
SPE  
t
PEH  
PKTEND  
Figure 32 shows the timing relationship of the SLAVE FIFO  
signals during a synchronous write using IFCLK as the  
synchronizing clock. The diagram illustrates a single write  
followed by burst write of three bytes and committing all four  
bytes as a short packet using the PKTEND pin.  
FIFO data bus is written to the FIFO on every rising edge of  
IFCLK. The FIFO pointer is updated on each rising edge of  
IFCLK. In Figure 32, after the four bytes are written to the FIFO,  
SLWR is deasserted. The short 4 byte packet can be committed  
to the host by asserting the PKTEND signal.  
There is no specific timing requirement that should be met for  
asserting PKTEND signal with regards to asserting the SLWR  
signal. PKTEND can be asserted with the last data value or  
thereafter. The only requirement is that the setup time tSPE and  
the hold time tPEH must be met. In the scenario of Figure 32, the  
number of data values committed includes the last value written  
to the FIFO. In this example, both the data value and the  
PKTEND signal are clocked on the same rising edge of IFCLK.  
PKTEND can also be asserted in subsequent clock cycles. The  
FIFOADDR lines should be held constant during the PKTEND  
assertion.  
At t = 0 the FIFO address is stable and the signal SLCS is  
asserted. (SLCS may be tied LOW in some applications) Note  
that tSFA has a minimum of 25 ns. This means when IFCLK is  
running at 48 MHz, the FIFO address setup time is more than  
one IFCLK cycle.  
At t = 1, the external master/peripheral must outputs the data  
value onto the data bus with a minimum set up time of tSFD  
before the rising edge of IFCLK.  
At t = 2, SLWR is asserted. The SLWR must meet the setup  
time of tSWR (time from asserting the SLWR signal to the rising  
edge of IFCLK) and maintain a minimumhold time of tWRH (time  
from the IFCLK edge to the deassertion of the SLWR signal).  
If the SLCS signal is used, it must be asserted with SLWR or  
before SLWR is asserted (The SLCS and SLWR signals must  
both be asserted to start a valid write condition).  
Although there are no specific timing requirement for the  
PKTEND assertion, there is a specific corner-case condition that  
needs attention while using the PKTEND to commit a one  
byte/word packet. Additional timing requirements exist when the  
FIFO is configured to operate in auto mode and it is desired to  
send two packets: a full packet (‘full’ defined as the number of  
bytes in the FIFO meeting the level set in the AUTOINLEN  
register) committed automatically followed by a short one byte or  
word packet committed manually using the PKTEND pin.  
While the SLWR is asserted, data is written to the FIFO and on  
the rising edge of the IFCLK, the FIFO pointer is incremented.  
The FIFO flag is also updated after a delay of tXFLG from the  
rising edge of the clock.  
In this case, the external master must ensure to assert the  
PKTEND pin at least one clock cycle after the rising edge that  
caused the last byte or word that needs to be clocked into the  
previous auto committed packet (the packet with the number of  
bytes equal to what is set in the AUTOINLEN register). Refer to  
Figure 24 on page 53 for further details on this timing.  
The same sequence of events are also shown for a burst write  
and are marked with the time indicators of T = 0 through 5.  
Note For the burst mode, SLWR and SLCS are left asserted for  
the entire duration of writing all the required data values. In this  
burst write mode, after the SLWR is asserted, the data on the  
Note  
54. Dashed lines denote signals with programmable polarity.  
Document Number: 38-08032 Rev. AD  
Page 57 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Sequence Diagram of a Single and Burst Asynchronous Read  
Figure 33. Slave FIFO Asynchronous Read Sequence and Timing Diagram[55]  
t
t
t
t
FAH  
SFA  
SFA  
FAH  
FIFOADR  
t=0  
t
t
t
RDpwh  
t
t
t
RDpwl  
t
t
T=0  
RDpwl  
RDpwl  
RDpwl  
RDpwh  
RDpwh  
RDpwh  
SLRD  
SLCS  
t=3  
t=2  
T=2  
T=3  
T=5  
T=4  
T=6  
t
XFLG  
t
XFLG  
FLAGS  
DATA  
SLOE  
t
t
XFD  
t
XFD  
XFD  
t
XFD  
Data (X)  
Driven  
N+3  
N
N+1  
N+2  
N
t
t
OEon  
t
t
OEoff  
OEoff  
OEon  
t=4  
T=1  
T=7  
t=1  
Figure 34. Slave FIFO Asynchronous Read Sequence of Events Diagram  
SLOE  
SLRD  
SLRD  
SLOE  
SLOE  
SLRD  
N+1  
SLRD  
N+1  
SLRD  
N+2  
SLRD  
N+2  
SLOE  
FIFO POINTER  
N
N
N
N
N+1  
N
N+1  
N+3  
N+2  
N+3  
FIFO DATA BUS Not Driven  
Driven: X  
Not Driven  
N
N+1  
N+1  
N+2  
Not Driven  
Figure 33 shows the timing relationship of the SLAVE FIFO  
signals during an asynchronous FIFO read. It shows a single  
read followed by a burst read.  
The data that is driven, after asserting SLRD, is the updated  
data from the FIFO. This data is valid after a propagation delay  
of tXFD from the activating edge of SLRD. In Figure 33, data N  
is the first valid data read from the FIFO. For data to appear on  
the data bus during the read cycle (SLRD is asserted), SLOE  
must be in an asserted state. SLRD and SLOE can also be tied  
together.  
At t = 0, the FIFO address is stable and the SLCS signal is  
asserted.  
At t = 1, SLOE is asserted. This results in the data bus being  
driven. The data that is driven on to the bus is the previous  
data, the data that was in the FIFO from an earlier read cycle.  
The same sequence of events is also shown for a burst read  
marked with T = 0 through 5.  
At t = 2, SLRD is asserted. The SLRD must meet the minimum  
active pulse of tRDpwl and minimum de-active pulse width of  
Note In the burst read mode, during SLOE is asserted, the data  
bus is in a driven state and outputs the previous data. After SLRD  
is asserted, the data from the FIFO is driven on the data bus  
(SLOE must also be asserted) and then the FIFO pointer is  
incremented.  
t
RDpwh. If SLCS is used, then SLCS must be asserted before  
SLRD is asserted (The SLCS and SLRD signals must both be  
asserted to start a valid read condition.)  
Note  
55. Dashed lines denote signals with programmable polarity.  
Document Number: 38-08032 Rev. AD  
Page 58 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Sequence Diagram of a Single and Burst Asynchronous Write  
Figure 35. Slave FIFO Asynchronous Write Sequence and Timing Diagram[56]  
t
t
t
FAH  
t
SFA  
SFA  
FAH  
FIFOADR  
t=0  
T=0  
t
t
t
t
t
t
t
t
WRpwh  
WRpwl  
WRpwh  
WRpwl  
WRpwl  
WRpwh  
WRpwh  
WRpwl  
SLWR  
SLCS  
t =1  
t=3  
T=1  
T=4  
T=3  
T=7  
T=6  
T=9  
t
XFLG  
t
XFLG  
FLAGS  
DATA  
t
t
t
t
t
t
t
SFD  
t
SFD FDH  
SFD FDH  
SFD FDH  
FDH  
N
N+1  
N+2  
N+3  
t=2  
T=8  
T=2  
T=5  
t
t
PEpwl  
PEpwh  
PKTEND  
Figure 35 shows the timing relationship of the SLAVE FIFO write  
in an asynchronous mode. The diagram shows a single write  
followed by a burst write of 3 bytes and committing the 4byte  
short packet using PKTEND.  
The FIFO flag is also updated after tXFLG from the deasserting  
edge of SLWR.  
The same sequence of events is shown for a burst write and is  
indicated by the timing marks of T = 0 through 5.  
At t = 0 the FIFO address is applied, ensuring that it meets the  
setup time of tSFA. If SLCS is used, it must also be asserted  
(SLCS may be tied LOW in some applications).  
Note In the burst write mode, after SLWR is deasserted, the data  
is written to the FIFO and then the FIFO pointer is incremented  
to the next byte in the FIFO. The FIFO pointer is post  
incremented.  
At t = 1 SLWR is asserted. SLWR must meet the minimum  
active pulse of tWRpwl and minimum de-active pulse width of  
tWRpwh. If the SLCS is used, it must be asserted with SLWR or  
before SLWR is asserted.  
In Figure 35, after the four bytes are written to the FIFO and  
SLWR is deasserted, the short 4-byte packet can be committed  
to the host using PKTEND. The external device should be  
designed to not assert SLWR and the PKTEND signal at the  
same time. It should be designed to assert the PKTEND after  
SLWR is deasserted and met the minimum deasserted pulse  
width. The FIFOADDR lines have to held constant during the  
PKTEND assertion.  
At t = 2, data must be present on the bus tSFD before the  
deasserting edge of SLWR.  
At t = 3, deasserting SLWR causes the data to be written from  
the data bus to the FIFO and then increments the FIFO pointer.  
Note  
56. Dashed lines denote signals with programmable polarity.  
Document Number: 38-08032 Rev. AD  
Page 59 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Ordering Information  
Table 33. Ordering Information  
8051 Address  
/Data Bus  
Ordering Code  
Package Type  
RAM Size # Prog I/Os  
Serial Debug[57]  
Ideal for Battery Powered Applications  
CY7C68014A-128AXC  
CY7C68014A-100AXC  
CY7C68014A-56PVXC  
CY7C68014A-56LTXC  
CY7C68016A-56LTXC  
CY7C68016A-56LTXCT  
128 TQFP – Pb-free  
100 TQFP – Pb-free  
56 SSOP – Pb-free  
56 QFN - Pb-free  
56 QFN - Pb-free  
56 QFN - Pb-free  
16K  
16K  
16K  
16K  
16K  
16K  
40  
40  
24  
24  
26  
26  
16-/8-bit  
Y
Y
N
N
N
N
Ideal for Non Battery Powered Applications  
128 TQFP – Pb-free  
CY7C68013A-128AXC  
CY7C68013A-128AXI  
CY7C68013A-100AXC  
CY7C68013A-100AXI  
CY7C68013A-56PVXC  
CY7C68013A-56PVXCT  
CY7C68013A-56PVXI  
CY7C68013A-56BAXC  
CY7C68013A-56BAXCT  
CY7C68013A-56LTXC  
CY7C68013A-56LTXCT  
CY7C68013A-56LTXI  
CY7C68015A-56LTXC  
Development Tool Kit  
CY3684  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
40  
40  
40  
40  
24  
24  
24  
24  
24  
24  
24  
24  
26  
16-/8-bit  
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
128 TQFP – Pb-free (Industrial)  
100 TQFP – Pb-free  
16-/8-bit  
100 TQFP – Pb-free (Industrial)  
56 SSOP – Pb-free  
56 SSOP – Pb-free  
56 SSOP – Pb-free (Industrial)  
56 VFBGA – Pb-free  
56 VFBGA – Pb-free  
56 QFN – Pb-free  
56 QFN – Pb-free  
56 QFN – Pb-free (Industrial)  
56 QFN – Pb-free  
EZ-USB FX2LP development kit  
EZ-USB FX2LP Discovery Kit  
CY3689  
Reference Design Kit  
CY4611B  
USB 2.0 to ATA/ATAPI reference design using EZ-USB FX2LP  
Ordering Code Definitions  
(C, I)  
(T)  
C
68 XXXX  
XXXXX  
CY  
7
-
Tape and Reel  
Thermal Rating:  
C = Commercial  
I = Industrial  
Package Type:  
LTX = QFN (Saw Type) Pb-free  
LFX = QFN (Punch Type) Pb-free  
Part Number  
Family Code: 68 = USB  
Technology Code: C = CMOS  
Marketing Code: 7 = Cypress Products  
Company ID: CY = Cypress  
Note  
57. As UART is not available in the 56-pin package of CY7C68013A, serial port debugging using Keil Monitor is not possible.  
Document Number: 38-08032 Rev. AD  
Page 60 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Package Diagrams  
The FX2LP is available in five packages:  
56-pin SSOP  
56-pin QFN  
100-pin TQFP  
128-pin TQFP  
56-ball VFBGA  
Figure 36. 56-pin SSOP (300 Mils) Package Outline, 51-85062  
51-85062 *F  
Document Number: 38-08032 Rev. AD  
Page 61 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Figure 37. 56-pin QFN ((8 × 8 × 1 mm) 4.5 × 5.2 E-Pad (Sawn)) Package Outline, 001-53450  
001-53450 *E  
Figure 38. 100-pin TQFP (14 × 20 × 1.4 mm) Package Outline, 51-85050  
ș 2  
ș1  
ș
DIMENSIONS  
MIN. NOM. MAX.  
1.60  
NOTE:  
SYMBOL  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. BODY LENGTH DIMENSION DOES NOT  
INCLUDE MOLD PROTRUSION/END FLASH.  
MOLD PROTRUSION/END FLASH SHALL  
A
0.05  
0.15  
A1  
A2  
D
1.35 1.40 1.45  
15.80 16.00 16.20  
13.90 14.00 14.10  
21.80 22.00 22.20  
19.90 20.00 20.10  
NOT EXCEED 0.0098 in (0.25 mm) PER SIDE.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC  
D1  
E
E1  
BODY SIZE INCLUDING MOLD MISMATCH.  
3. JEDEC SPECIFICATION NO. REF: MS-026.  
0.08  
0.08  
0°  
R
0.20  
0.20  
7°  
1
R2  
ș
ș 1  
ș 2  
c
0°  
11° 12° 13°  
0.20  
0.22 0.30 0.38  
0.45 0.60 0.75  
1.00 REF  
b
L
L1  
L 2  
L 3  
e
0.25 BSC  
0.20  
51-85050 *G  
0.65 TYP  
Document Number: 38-08032 Rev. AD  
Page 62 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Figure 39. 128-pin TQFP (14 × 20 × 1.4 mm) Package Outline, 51-85101  
51-85101 *F  
Document Number: 38-08032 Rev. AD  
Page 63 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Figure 40. 56-ball VFBGA (5 × 5 × 1.0 mm) 0.50 Pitch, 0.30 Ball Package Outline, 001-03901  
001-03901 *F  
Document Number: 38-08032 Rev. AD  
Page 64 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Bypass and flyback caps on VBUS, near connector, are  
recommended.  
PCB Layout Recommendations  
Follow these recommendations to ensure reliable  
high-performance operation:[58]  
DPLUS and DMINUS trace lengths should be kept to within  
2 mm of each other in length, with preferred length of 20 to  
30 mm.  
Four-layer, impedance-controlled boards are required to  
maintain signal quality.  
Maintain a solid ground plane under the DPLUS and DMINUS  
traces. Do not allow the plane to split under these traces.  
Specify impedance targets (ask your board vendor what they  
can achieve).  
Do not place vias on the DPLUS or DMINUS trace routing.  
To control impedance, maintain trace widths and trace spacing.  
Minimize stubs to minimize reflected signals.  
Isolate the DPLUS and DMINUS traces from all other signal  
traces by no less than 10 mm.  
Connections between the USB connector shell and signal  
ground must be near the USB connector.  
Note  
58. Source for recommendations: EZ-USB FX2™PCB Design Recommendations, http://www.cypress.com and High Speed USB Platform Design Guidelines,  
http://www.usb.org/developers/docs/hs_usb_pdg_r1_0.pdf.  
Document Number: 38-08032 Rev. AD  
Page 65 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Quad Flat Package No Leads (QFN) Package Design Notes  
Electrical contact of the part to the PCB is made by soldering the  
leads on the bottom surface of the package to the PCB.  
Therefore, special attention is required to the heat transfer area  
below the package to provide a good thermal bond to the circuit  
board. Design a copper (Cu) fill in the PCB as a thermal pad  
under the package. Heat is transferred from the FX2LP through  
the device’s metal paddle on the bottom side of the package.  
Heat from here is conducted to the PCB at the thermal pad. It is  
then conducted from the thermal pad to the PCB inner ground  
plane by a 5 × 5 array of via. A via is a plated-through hole in the  
PCB with a finished diameter of 13 mil. The QFN’s metal die  
paddle must be soldered to the PCB’s thermal pad. Solder mask  
is placed on the board top side over each via to resist solder flow  
into the via. The mask on the top side also minimizes outgassing  
during the solder reflow process.  
For further information on this package design, refer to  
application notes for Surface Mount Assembly of Amkor's  
MicroLeadFrame (MLF) Packages. You can find this on Amkor's  
website http://www.amkor.com.  
This application note provides detailed information about board  
mounting guidelines, soldering flow, rework process, etc.  
Figure 41 shows  
a cross-sectional area underneath the  
package. The cross section is of only one via. The solder paste  
template should be designed to allow at least 50% solder  
coverage. The thickness of the solder paste template should be  
5 mil. Use the No Clean type 3 solder paste for mounting the part.  
Nitrogen purge is recommended during reflow.  
Figure 42 is a plot of the solder mask pattern and Figure 43  
displays an X-Ray image of the assembly (darker areas indicate  
solder).  
Figure 41. Cross-section of the Area Underneath the QFN Package  
0.017” dia  
Solder Mask  
Cu Fill  
Cu Fill  
0.013” dia  
PCB Material  
PCB Material  
Via hole for thermally connecting the  
This figure only shows the top three layers of the  
circuit board: Top Solder, PCB Dielectric, and  
the Ground Plane  
QFN to the circuit board ground plane.  
Figure 42. Plot of the Solder Mask (White Area)  
Figure 43. X-ray Image of the Assembly  
Document Number: 38-08032 Rev. AD  
Page 66 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Acronyms  
Document Conventions  
Table 34. Acronyms Used in this Document  
Units of Measure  
Table 35. Units of Measure  
Symbol  
Acronym  
ASIC  
ATA  
Description  
application-specific integrated circuit  
advanced technology attachment  
device identifier  
Unit of Measure  
kHz  
mA  
kilohertz  
milliamperes  
DID  
Mbps  
MBPs  
MHz  
uA  
megabits per second  
megabytes per second  
megahertz  
DSL  
digital service line  
DSP  
digital signal processor  
ECC  
error correction code  
microamperes  
volts  
EEPROM electrically erasable programmable read only  
memory  
V
EPP  
enhanced parallel port  
first in first out  
FIFO  
GPIF  
GPIO  
I/O  
general programmable interface  
general purpose input output  
input output  
LAN  
local area network  
MPEG  
PCMCIA  
moving picture experts group  
personal computer memory card international  
association  
PID  
product identifier  
PLL  
phase locked loop  
QFN  
quad flat no leads  
RAM  
SIE  
random access memory  
serial interface engine  
start of frame  
SOF  
SSOP  
TQFP  
USART  
USB  
super small outline package  
thin quad flat pack  
universal serial asynchronous receiver/transmitter  
universal serial bus  
UTOPIA  
universal test and operations physical-layer  
interface  
VFBGA  
VID  
very fine ball grid array  
vendor identifier  
Document Number: 38-08032 Rev. AD  
Page 67 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Errata  
This section describes the errata for the EZ-USB® FX2LP™ CY7C68013A/14A/15A/16A Rev. B silicon. Details include errata trigger  
conditions, scope of impact, available workaround, and silicon revision applicability.  
Contact your local Cypress Sales Representative if you have questions.  
Part Numbers Affected  
Part Number  
CY7C68013A  
CY7C68014A  
CY7C68015A  
CY7C68016A  
Package Type  
Operating Range  
Commercial  
All  
All  
All  
All  
Commercial  
Commercial  
Commercial  
CY7C68013A/14A/15A/16A Qualification Status  
In production  
CY7C68013A/14A/15A/16A Errata Summary  
This table defines the errata for available CY7C68013A/14A/15A/16A family devices. An “X” indicates that the errata pertain to the  
selected device.  
Items  
CY7C68013A/14A/15A/16A Silicon Revision  
Fix Status  
[1.]. Empty Flag Assertion  
X
B
No silicon fix planned currently. Use the workaround.  
1. Empty Flag Assertion  
Problem Definition  
In Slave FIFO Asynchronous Word Wide mode, if a single word data is transferred from the USB host to EP2, configured as OUT  
Endpoint (EP) in the first transaction, then the Empty flag behaves incorrectly. This does not happen if the data size is more than  
one word in the first transaction.  
Parameters Affected  
NA  
Trigger Condition(S)  
In Slave FIFO Asynchronous Word Wide Mode, after firmware boot and initialization, EP2 OUT endpoint empty flag indicates the  
status as ‘Empty’. When data is received in EP2, the status changes to ‘Not-Empty’. However, if data transferred to EP2 is a single  
word, then asserting SLRD with FIFOADR pointing to any other endpoint changes ‘Not-Empty’ status to ‘Empty’ for EP2 even  
though there is a word data (or it is untouched). This is noticed only when the single word is sent as the first transaction and not if  
it follows a multi-word packet as the first transaction.  
Scope of Impact  
External interface does not see data available in EP2 OUT endpoint and can end up waiting for data to be read.  
Workaround  
One of the following workarounds can be used:  
• Send a pulse signal to the SLWR pin, with FIFOADR pins pointing to an endpoint other than EP2, after firmware initialization  
and before or after transferring the data to EP2 from the host  
• Set the length of the first data to EP2 to be more than a word  
• Prioritize EP2 read from the Master for multiple OUT EPs and single word write to EP2  
• Write to an IN EP, if any, from the Master before reading from other OUT EPs (other than EP2) from the Master.  
Fix Status  
There is no silicon fix planned for this currently; use the workarounds provided.  
Document Number: 38-08032 Rev. AD  
Page 68 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Document History Page  
Document Title: CY7C68013A/CY7C68014A/CY7C68015A/CY7C68016A, EZ-USB FX2LP USB Microcontroller High-Speed  
USB Peripheral Controller  
Document Number: 38-08032  
Submission  
Rev.  
ECN No.  
Description of Change  
New data sheet (Advance Information).  
Date  
**  
124316  
128461  
03/17/2003  
09/02/2003  
*A  
Updated Document Title to read as “CY7C68013A/CY7C68015A, EZ-USB FX2LP™ USB Microcon-  
troller High-Speed USB Peripheral Controller”.  
Changed status from Advance Information to Final.  
Added CY7C68015A part related information in all instances across the document.  
Replaced I2C-compatible with I2C in all instances across the document.  
Updated Logic Block Diagram (Added ECC block and fixed errors).  
Updated Functional Overview:  
Updated 8051 Microprocessor:  
Updated 8051 Clock Frequency:  
Added Figure 1.  
Updated Reset and Wakeup:  
Updated Reset Pin:  
Updated description; added Figure 2; and also added Table 5.  
Updated Register Addresses:  
Updated figure below the heading.  
Updated Endpoint RAM:  
Updated Endpoint Configurations (Hi-Speed Mode):  
Updated Figure 5 (for clarity).  
Added ECC Generation.  
Updated I2C Controller:  
Added “I2C Software Reset”.  
Updated Compatible with Previous Generation EZ-USB FX2:  
Updated description; and also updated Table 9.  
Added CY7C68013A/14A and CY7C68015A/16A Differences.  
Updated Register Summary:  
Updated Table 12.  
Updated Package Diagrams:  
spec 51-85144 – Changed revision from *B to *D.  
Minor grammatical edits across the document.  
*B  
*C  
130335  
131673  
10/09/2003  
02/12/2004  
Changed status from Final to Preliminary.  
Updated Functional Overview:  
Updated Reset and Wakeup:  
Updated Reset Pin:  
Updated description; added Note 7 and referred the same note at the end of sentence “If the crystal  
input pin is driven by a clock signal the internal PLLstabilizes in 200 μs after VCC has reached 3.0 Volts”.  
Updated Endpoint RAM:  
Updated Endpoint Configurations (Hi-Speed Mode):  
Updated description (Replaced column 9 with column 8 in last paragraph).  
Updated ECC Generation:  
Updated description.  
Removed “ECC Features”.  
Updated ECC Implementation:  
Updated description.  
Updated Register Summary:  
Updated Table 12.  
*C (cont.)  
131673  
02/12/2004  
Updated DC Electrical Characteristics:  
Updated Table 14:  
Added VIH_X, VIL_X parameters and their corresponding details.  
Updated USB Transceiver:  
Replaced “certified” with “compliant”.  
Updated AC Electrical Characteristics:  
Updated USB Transceiver:  
Replaced “certified” with “compliant”.  
Updated Data Memory Write[33]  
Updated Figure 14.  
:
Added Sequence Diagram.  
Updated Ordering Information:  
Updated Table 33:  
Updated part numbers.  
*D  
230713  
06/09/2004  
Updated Ordering Information:  
Updated Table 33:  
Updated part numbers (Changed Lead free MPNs as per spec change in 28-00054).  
Document Number: 38-08032 Rev. AD  
Page 69 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Document History Page (continued)  
Document Title: CY7C68013A/CY7C68014A/CY7C68015A/CY7C68016A, EZ-USB FX2LP USB Microcontroller High-Speed  
USB Peripheral Controller  
Document Number: 38-08032  
Submission  
Rev.  
ECN No.  
Description of Change  
Date  
*E  
242398  
07/13/2004  
Minor Change:  
Post to external web,  
*F  
271169  
10/07/2004  
Updated Features:  
Added “USB 2.0–USB-IF high speed certified (TID # 40440111)”.  
Added Features (CY7C68013A/14A only).  
Added Features (CY7C68015A/16A only).  
Updated Logic Block Diagram (Added USB 2.0 logo).  
Updated Absolute Maximum Ratings:  
Replaced TBD with values for “Power Dissipation”.  
Updated DC Electrical Characteristics:  
Updated Table 14:  
Updated minimum and maximum values of VCC parameter.  
Replaced TBD with values for VIH_X, VIL_X, ISUSP, ICC parameters.  
Updated AC Electrical Characteristics:  
Updated Slave FIFO Asynchronous Packet End Strobe:  
Updated Table 28:  
Changed maximum value of tXFLG parameter from 70 ns to 115 ns.  
Updated Ordering Information:  
Updated Table 33:  
Updated part numbers.  
*G  
316313  
02/04/2005  
Updated Document Title to read as “CY7C68013A/CY7C68014A/CY7C68015A/CY7C68016A,  
EZ-USB FX2LP™ USB Microcontroller High-Speed USB Peripheral Controller”.  
Changed status from Preliminary to Final.  
Added CY7C68014A, CY7C68016A part related information in all instances across the document.  
Updated DC Electrical Characteristics:  
Updated Table 14:  
Added VCC Ramp Up parameter and its corresponding details.  
Updated AC Electrical Characteristics:  
Updated Slave FIFO Synchronous Packet End Strobe:  
Added description; and also added Figure 24.  
Updated Ordering Information:  
Updated Table 33:  
Updated part numbers.  
*H  
338901  
04/18/2005  
Updated Register Summary:  
Updated Table 12.  
Updated AC Electrical Characteristics:  
Updated Data Memory Read[31]  
Added description.  
:
Updated Data Memory Write[33]  
Added description.  
:
Updated Slave FIFO Synchronous Read:  
Updated Table 20:  
Replaced TBD with “–” under “Min” column corresponding to tXFD parameter.  
Updated Ordering Information:  
Updated Table 33:  
Updated part numbers.  
*I  
371097  
397239  
06/09/2005  
09/19/2005  
Updated AC Electrical Characteristics:  
Added PORTC Strobe Feature Timings.  
*J  
Added 56-pin VFBGA Package related information in all instances across the document.  
Updated Register Summary:  
Updated Table 12.  
Updated DC Electrical Characteristics:  
Updated Table 14:  
Updated minimum and maximum values of VCC parameter.  
Updated Ordering Information:  
Updated Table 33:  
Updated part numbers.  
Updated Package Diagrams:  
Added spec 001-03901 *B.  
Document Number: 38-08032 Rev. AD  
Page 70 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Document History Page (continued)  
Document Title: CY7C68013A/CY7C68014A/CY7C68015A/CY7C68016A, EZ-USB FX2LP USB Microcontroller High-Speed  
USB Peripheral Controller  
Document Number: 38-08032  
Submission  
Rev.  
ECN No.  
Description of Change  
Date  
*K  
420505  
02/09/2006  
Updated Pin Assignments:  
Updated description (Replaced “four package types” with “five package types”).  
Updated Absolute Maximum Ratings:  
Added “Ambient Temperature with Power Supplied (Industrial)” and its corresponding details.  
Added Thermal Characteristics.  
Updated AC Electrical Characteristics:  
Updated Slave FIFO Asynchronous Write:  
Updated Figure 22 (Remove SLCS).  
Updated Sequence Diagram:  
Updated Single and Burst Synchronous Write:  
Updated description.  
Updated Sequence Diagram of a Single and Burst Asynchronous Read:  
Updated description.  
Updated to new template.  
*L  
2064406  
02/04/2008  
Updated Features:  
Replaced “TID # 40440111” with “TID # 40460272”.  
Updated Functional Overview:  
Updated CY7C68013A/14A and CY7C68015A/16A Differences:  
Updated Table 10 (Removed T0OUT and T1OUT in “CY7C68015A/CY7C68016A” column).  
Updated AC Electrical Characteristics:  
Updated Slave FIFO Synchronous Write:  
Updated Table 23 (Updated minimum value of tSWR parameter).  
Updated Package Diagrams:  
spec 51-85144 – Changed revision from *D to *G.  
*M  
2710327  
05/22/2009  
Updated Operating Conditions:  
Changed value of FOSC (oscillator or crystal frequency) from  
“24 MHz ± 100 ppm, Parallel Resonant” to “24 MHz ± 10 ppm, Parallel Resonant”.  
Updated Ordering Information:  
Updated Table 33:  
Updated part numbers.  
Updated Package Diagrams:  
Added spec 51-85187 *C.  
*N  
*O  
2727334  
2756202  
07/01/2009  
08/26/2009  
Updated Package Diagrams:  
spec 51-85187 – Changed revision from *C to *D.  
Fixed Typo in Document History Page (Removed sentence on E-Pad size change from *F revision).  
Updated Ordering Information:  
Updated Table 33:  
No change in part numbers.  
Added a column “Serial Debug” and added details under the column.  
Added Note 57 and referred the same note in “Serial Debug”.  
*P  
2785207  
2811890  
10/12/2009  
11/20/2009  
Updated Ordering Information:  
Updated Table 33:  
No change in part numbers.  
Updated details in “Package Type” column (Added information on Pb-free parts).  
*Q  
Updated Ordering Information:  
Updated Table 33:  
Updated part numbers.  
Updated details under “# Program I/Os” column for CY7C68016A-56LTXC and  
CY7C68016A-56LTXCT MPNs.  
*R  
2896281  
03/19/2010  
Updated Ordering Information:  
Updated Table 33:  
Updated part numbers.  
Updated Package Diagrams:  
spec 51-85062 – Changed revision from *C to *D.  
spec 51-85144 – Changed revision from *G to *H.  
spec 51-85187 – Changed revision from *D to *E.  
spec 51-85050 – Changed revision from *B to *C.  
spec 51-85101 – Changed revision from *C to *D.  
Updated to new template.  
Document Number: 38-08032 Rev. AD  
Page 71 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Document History Page (continued)  
Document Title: CY7C68013A/CY7C68014A/CY7C68015A/CY7C68016A, EZ-USB FX2LP USB Microcontroller High-Speed  
USB Peripheral Controller  
Document Number: 38-08032  
Submission  
Rev.  
ECN No.  
Description of Change  
Date  
*S  
3035980  
09/22/2010  
Updated Operating Conditions:  
Changed value of FOSC (oscillator or crystal frequency) from  
“24 MHz + 10 ppm, Parallel Resonant” to “24 MHz + 100 ppm, Parallel Resonant”.  
Updated Ordering Information:  
Updated Table 33:  
No change in part numbers.  
Added Ordering Code Definitions.  
Added Acronyms and Units of Measure.  
Updated to new template.  
*T  
3161410  
3195232  
02/03/2011  
03/14/2011  
Updated Package Diagrams:  
Removed spec 51-85144 *H.  
Added spec 001-12921 *A.  
Removed spec 51-85187 *E.  
Added spec 001-53450 *B.  
spec 51-85050 – Changed revision from *C to *D.  
spec 51-85101 – Changed revision from *D to *E.  
Completing Sunset Review.  
*U  
Updated table numbering.  
Updated Thermal Characteristics:  
Updated Table 13 (Removed column “Ca Case to Ambient Temperature (°C/W)”).  
Updated AC Electrical Characteristics:  
Updated GPIF Synchronous Signals:  
Updated Table 18 (Added a column “Typ” and added values in that column).  
Updated Slave FIFO Synchronous Read:  
Updated Table 20 (Added a column “Typ” and added values in that column).  
Updated Package Diagrams:  
spec 001-12921 – Changed revision from *A to *B.  
spec 001-03901 – Changed revision from *C to *D.  
*V  
3512313  
3998554  
02/01/2012  
07/19/2013  
Updated Ordering Information:  
Updated Table 33:  
Updated part numbers.  
Updated Package Diagrams:  
spec 51-85062 – Changed revision from *D to *E.  
Removed spec 001-12921 *B.  
spec 001-03901 – Changed revision from *D to *E.  
Completing Sunset Review.  
*W  
Added Errata footnote (Note 6).  
Updated Functional Overview:  
Updated Interrupt System:  
Updated FIFO/GPIF Interrupt (INT4):  
Added Note 6 and referred the same note in “Endpoint 2 empty flag” in Table 4.  
Updated Package Diagrams:  
spec 51-85062 – Changed revision from *E to *F.  
spec 001-53450 – Changed revision from *B to *C.  
Added Errata.  
Updated to new template.  
*X  
4617527  
01/15/2015  
Added More Information.  
Updated Pin Assignments:  
Updated CY7C68013A/15A Pin Descriptions:  
Updated Table 11 (Added a column “Reset” and added details in that column).  
Updated AC Electrical Characteristics:  
Updated Data Memory Read[31]  
:
Added Note 31 and referred the same note in heading.  
Updated Figure 13.  
Updated Data Memory Write[33]  
:
Added Note 31 and referred the same note in heading.  
Updated Package Diagrams:  
spec 001-53450 – Changed revision from *C to *D.  
spec 51-85050 – Changed revision from *D to *E.  
spec 51-85101 – Changed revision from *E to *F.  
Updated to new template.  
Completing Sunset Review.  
*Y  
5317277  
06/28/2016  
Updated to new template.  
Document Number: 38-08032 Rev. AD  
Page 72 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Document History Page (continued)  
Document Title: CY7C68013A/CY7C68014A/CY7C68015A/CY7C68016A, EZ-USB FX2LP USB Microcontroller High-Speed  
USB Peripheral Controller  
Document Number: 38-08032  
Submission  
Rev.  
ECN No.  
Description of Change  
Date  
*Z  
5713641  
04/26/2017  
Updated Package Diagrams:  
spec 51-85050 – Changed revision from *E to *G.  
Updated to new template.  
AA  
AB  
5930426  
6403695  
11/09/2017  
12/06/2018  
Updated AC Electrical Characteristics:  
Updated GPIF Synchronous Signals:  
Updated Table 18.  
Updated Table 19.  
Updated Features:  
Added Note 1 and referred the note at the end in “Integrated I2C controller; runs at 100 or 400 kHz”.  
Updated Functional Overview:  
Updated I2C Bus:  
Added Note 4 and referred the note at the end in “FX2LP supports the I2C bus as a master only at  
100/400 kHz”.  
Updated Thermal Characteristics:  
Added “Maximum junction temperature” and its corresponding details.  
Updated Package Diagrams:  
spec 001-53450 – Changed revision from *D to *E.  
Updated to new template.  
Completing Sunset Review.  
AC  
AD  
6637530  
7113265  
07/26/2019  
04/30/2021  
Updated to new template.  
Updated EZ-USB FX2LP Development Kit in More Information.  
Added “CY3689” in Ordering Information.  
Document Number: 38-08032 Rev. AD  
Page 73 of 74  
CY7C68013A/CY7C68014A  
CY7C68015A/CY7C68016A  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Code Examples | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2003-2021. This document is the property of Cypress Semiconductor Corporation, an Infineon Technologies company, and its affiliates (“Cypress”). This  
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other  
countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks,  
or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software,  
then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source  
code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally  
to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the  
Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation,  
or compilation of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing  
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such  
as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING  
CYPRESS PRODUCTS, WILLBE FREE FROM CORRUPTION,ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, “Security  
Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In  
addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted  
by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or  
circuit described in this document.Any information provided inthis document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility  
of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. “High-Risk Device” means any  
device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices.  
“Critical Component” means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect  
its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product  
as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, including its affiliates, and its directors, officers, employees, agents, distributors, and assigns harmless from and  
against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product  
as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's  
published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the  
product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.  
Cypress, the Cypress logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, Traveo, WICED, and ModusToolbox are trademarks or registered trademarks of Cypress or a subsidiary of  
Cypress in the United States or in other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 38-08032 Rev. AD  
Revised April 30, 2021  
Page 74 of 74  
FX2LP is a trademark and EZ-USB is a registered trademark of Cypress Semiconductor Corporation.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY