CY8C4014SXS-421Z [INFINEON]

Automotive PSoC™ 4000;
CY8C4014SXS-421Z
型号: CY8C4014SXS-421Z
厂家: Infineon    Infineon
描述:

Automotive PSoC™ 4000

文件: 总36页 (文件大小:668K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C40xx  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
General description  
PSoC™ 4 is a scalable and reconfigurable platform architecture for a family of programmable embedded system  
controllers with an Arm® Cortex®-M0 CPU, while being AEC-Q100 compliant. It combines programmable and  
reconfigurable analog and digital blocks with flexible automatic routing. The PSoC™ 4000 product family is the  
smallest member of the PSoC™ 4 platform architecture. It is a combination of a microcontroller with standard  
communication and timing peripherals, a capacitive touch-sensing system (CAPSENSE™) with best-in-class  
performance, and general-purpose analog. PSoC™ 4000 products will be fully upward compatible with members  
of the PSoC™ 4 platform for new applications and design needs.  
Features  
• 32-bit MCU subsystem  
- 16-MHz Arm® Cortex®-M0 CPU  
- Up to 16 KB of flash with Read Accelerator  
- Up to 2 KB of SRAM  
• Programmable Analog  
- Two current DACs (IDACs) for general-purpose or capacitive sensing applications  
- One low-power comparator with internal reference  
• Low power 1.71-V to 5.5-V operation  
- Deep Sleep mode with wake-up on interrupt and I2C address detect  
• Capacitive sensing  
- Capacitive sigma-delta provides best-in-class signal-to-noise ratio (SNR) and water tolerance  
- Infineon-supplied software component makes capacitive sensing design easy  
- Automatic hardware tuning (SmartSense)  
• Serial Communication  
- Multi-master I2C block with the ability to do address matching during Deep Sleep and generate a wake-up on  
match  
• Timing and pulse-width modulation  
- One 16-bit timer/counter/pulse-width modulator (TCPWM) block  
- Center-aligned, Edge, and Pseudo-Random modes  
- Comparator-based triggering of Kill signals for motor drive and other high-reliability digital logic applications  
• Up to 20 programmable GPIO pins  
- 24-pin QFN and 16-pin SOIC packages  
- GPIO pins on Ports 0, 1, and 2 can be CAPSENSE™ or have other functions  
- Drive modes, strengths, and slew rates are programmable  
• Temperature ranges  
- A Grade: –40 °C to +85 °C  
- S-Grade: –40 °C to +105 °C  
- E-Grade: –40 °C to +125 °C  
- Automotive Electronics Council (AEC) Q100 qualified  
• PSoC™ Creator Design Environment  
- Integrated Development Environment (IDE) provides schematic design entry and build (with analog and dig-  
ital automatic routing)  
- Applications Programming Interface (API) component for all fixed-function and programmable peripherals  
• Industry-Standard Tool Compatibility  
- After schematic entry, development can be done with Arm-based industry-standard development tools  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Block diagram  
Block diagram  
CPU Subsystem  
PSoC™ 4000  
SWD/TC  
Cortex  
M0  
16 MHz  
MUL  
SPCIF  
Flash  
16KB  
SRAM  
2KB  
ROM  
4KB  
32-bit  
AHB-Lite  
Read Accelerator  
SRAM Controller  
ROM Controller  
NVIC, IRQMX  
System Resources  
Lite  
System Interconnect (  
)
Single/Multi Layer AHB  
Power  
Sleep Control  
WIC  
Peripherals  
POR  
PWRSYS  
REF  
PCLK  
Peripheral Interconnect (MMIO)  
Clock  
Clock Control  
WDT  
IMO  
ILO  
Reset  
Reset Control  
XRES  
Test  
DFT Logic  
DFT Analog  
Power Modes  
Active/ Sleep  
Deep Sleep  
High Speed I/O Matrix  
20 x GPIOs  
I/O Subsystem  
Datasheet  
2
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Table of contents  
Table of contents  
General description ...........................................................................................................................1  
Features ...........................................................................................................................................1  
Block diagram...................................................................................................................................2  
Table of contents...............................................................................................................................3  
1 Functional overview .......................................................................................................................4  
1.1 CPU and memory subsystem .................................................................................................................................4  
1.2 System resources....................................................................................................................................................4  
1.3 Analog blocks ..........................................................................................................................................................6  
1.4 Fixed function digital ..............................................................................................................................................6  
1.5 GPIO.........................................................................................................................................................................6  
1.6 Special Function Peripherals .................................................................................................................................7  
2 Pinouts ..........................................................................................................................................8  
3 Power ..........................................................................................................................................10  
3.1 Unregulated external supply................................................................................................................................10  
3.2 Regulated external supply....................................................................................................................................11  
4 Development support ...................................................................................................................12  
4.1 Documentation .....................................................................................................................................................12  
4.2 Online ....................................................................................................................................................................12  
4.3 Tools ......................................................................................................................................................................12  
5 Electrical Specifications ................................................................................................................13  
5.1 Absolute Maximum Ratings..................................................................................................................................13  
5.2 Device Level Specifications ..................................................................................................................................13  
5.3 Analog peripherals................................................................................................................................................18  
5.4 Digital peripherals.................................................................................................................................................20  
5.5 Memory..................................................................................................................................................................21  
5.6 System resources..................................................................................................................................................21  
6 Ordering information ....................................................................................................................24  
6.1 Part numbering conventions................................................................................................................................24  
7 Packaging ....................................................................................................................................26  
7.1 Package outline drawings ....................................................................................................................................27  
8 Acronyms.....................................................................................................................................29  
9 Document conventions..................................................................................................................33  
9.1 Units of measure ...................................................................................................................................................33  
Revision history ..............................................................................................................................34  
Datasheet  
3
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Functional description  
1
Functional description  
PSoC™ 4000 devices include extensive support for programming, testing, debugging, and tracing both hardware  
and firmware.  
The Arm® Serial-Wire Debug (SWD) interface supports all programming and debug features of the device.  
Complete debug-on-chip functionality enables full-device debugging in the final system using the standard  
production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the  
standard programming connections are required to fully support debug.  
The PSoC™ Creator IDE provides fully integrated programming and debug support for the PSoC™ 4000 devices.  
The SWD interface is fully compatible with industry-standard third-party tools. The PSoC™ 4000 family provides  
a level of security not possible with multi-chip application solutions or with microcontrollers.  
It has the following advantages:  
• Allows disabling of debug features  
• Robust flash protection  
• Allows customer-proprietary functionality to be implemented in on-chip programmable blocks  
The debug circuits are enabled by default and can only be disabled in firmware. If they are not enabled, the only  
way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new  
firmware that enables debugging.  
Additionally, all device interfaces can be permanently disabled (device security) for applications concerned  
about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and  
interrupting flash programming sequences. All programming, debug, and test interfaces are disabled when  
maximum device security is enabled. Therefore, PSoC™ 4000, with device security enabled, will have only limited  
capability for failure analysis. This is a trade-off the PSoC™ 4000 allows the customer to make.  
2
Functional overview  
CPU and memory subsystem  
CPU  
2.1  
2.1.1  
The Cortex®-M0 CPU in the PSoC™ 4000 is part of the 32-bit MCU subsystem, which is optimized for low-power  
operation with extensive clock gating. Most instructions are 16 bits in length and the CPU executes a subset of  
the Thumb-2 instruction set. This enables fully compatible, binary, upward migration of the code to higher  
performance processors, such as the Cortex-M3 and M4. It includes a nested vectored interrupt controller (NVIC)  
block with eight interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the  
processor from the Deep Sleep mode, allowing power to be switched off to the main processor when the chip is  
in the Deep Sleep mode.  
The CPU also includes a debug interface, the SWD interface, which is a 2-wire form of JTAG. The debug configu-  
ration used for PSoC™ 4000 has four breakpoint (address) comparators and two watchpoint (data) comparators.  
2.1.2  
Flash  
The PSoC™ 4000 device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average  
access times from the flash block. The low-power flash block is designed to deliver zero wait-state (WS) access  
time at 16 MHz. The flash accelerator delivers 85% of the single-cycle SRAM access performance on average.  
2.1.3  
SRAM  
Two KB of SRAM are provided with zero wait-state access at 16 MHz.  
2.1.4  
SROM  
A supervisory ROM that contains boot and configuration routines is provided.  
Datasheet  
4
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Functional overview  
2.2  
System resources  
Power system  
2.2.1  
The power system is described in detail in the section on Power on page 10. It provides an assurance that voltage  
levels are as required for each respective mode and either delays mode entry (for example, on power-on reset  
(POR)) until voltage levels are as required for proper functionality, or generates resets (for example, on brown-out  
detection). The PSoC™ 4000 operates with a single external supply over the range of either 1.8 V ±5% (externally  
regulated) or 1.8 to 5.5 V (internally regulated) and has three different power modes, transitions between which  
are managed by the power system. The PSoC™ 4000 provides Active, Sleep, and Deep Sleep low-power modes.  
All subsystems are operational in Active mode. The CPU subsystem (CPU, flash, and SRAM) is clock-gated off in  
Sleep mode, while all peripherals and interrupts are active with instantaneous wake-up on a wake-up event. In  
Deep Sleep mode, the high-speed clock and associated circuitry is switched off; wake-up from this mode takes  
35 µs.  
2.2.2  
Clock system  
The PSoC™ 4000 clock system is responsible for providing clocks to all subsystems that require clocks and for  
switching between different clock sources without glitching. In addition, the clock system ensures that there are  
no metastable conditions.  
The clock system for the PSoC™ 4000 consists of the internal main oscillator (IMO) and the internal low-frequency  
oscillator (ILO) and provision for an external clock.  
IMO  
FCPU  
Divide By  
2,4,8  
External Clock  
(connects to GPIO pin P0.4)  
Figure 1  
PSoC™ 4000 MCU clocking architecture  
The FCPU signal can be divided down to generate synchronous clocks for the analog and digital peripherals. There  
are four clock dividers for the PSoC™ 4000, each with 16-bit divide capability The 16-bit capability allows flexible  
generation of fine-grained frequency values and is fully supported in PSoC™ Creator.  
2.2.3  
IMO clock source  
The IMO is the primary source of internal clocking in the PSoC™ 4000. It is trimmed during testing to achieve the  
specified accuracy.The IMO default frequency is 24 MHz and it can be adjusted from 24 to 48 MHz in steps of  
4 MHz. The IMO tolerance with Infineon-provided calibration settings is ±2% (24 and 32 MHz).  
2.2.4  
ILO clock source  
The ILO is a very low power, 40-kHz oscillator, which is primarily used to generate clocks for the watchdog timer  
(WDT) and peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve  
accuracy. Infineon provides a software component, which does the calibration.  
2.2.5  
Watchdog timer  
A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during  
Deep Sleep and generates a watchdog reset if not serviced before the set timeout occurs. The watchdog reset is  
recorded in a Reset Cause register, which is firmware readable.  
Datasheet  
5
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Functional overview  
2.2.6  
Reset  
The PSoC™ 4000 can be reset from a variety of sources including a software reset. Reset events are asynchronous  
and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset  
and allows software to determine the cause of the reset. An XRES pin is reserved for external reset on the 24-pin  
package. An internal POR is provided on the 16-pin package. The XRES pin has an internal pull-up resistor that is  
always enabled.  
2.2.7  
Voltage reference  
The PSoC™ 4000 reference system generates all internally required references. A 1.2-V voltage reference is  
provided for the comparator. The IDACs are based on a ±5% reference.  
2.3  
Analog blocks  
2.3.1  
Low-power comparators  
The PSoC™ 4000 has a low-power comparator, which uses the built-in voltage reference. Any one of up to 16 pins  
can be used as a comparator input and the output of the comparator can be brought out to a pin. The selected  
comparator input is connected to the minus input of the comparator with the plus input always connected to the  
1.2-V voltage reference  
2.3.2  
Current DACs  
The PSoC™ 4000 has two IDACs, which can drive any of up to 16 pins on the chip. These IDACs have programmable  
current ranges.  
2.3.3  
Analog multiplexed buses  
The PSoC™ 4000 has two concentric independent buses that go around the periphery of the chip. These buses  
(called amux buses) are connected to firmware-programmable analog switches that allow the chip's internal  
resources (IDACs, comparator) to connect to any pin on Ports 0, 1, and 2.  
2.4  
Fixed function digital  
2.4.1  
Timer/Counter/PWM (TCPWM) block  
The TCPWM block consists of a 16-bit counter with user-programmable period length. There is a capture register  
to record the count value at the time of an event (which may be an I/O event), a period register that is used to  
either stop or auto-reload the counter when its count is equal to the period register, and compare registers to  
generate compare value signals that are used as PWM duty cycle outputs. The block also provides true and  
complementary outputs with programmable offset between them to allow use as dead-band programmable  
complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this  
is used in motor drive systems when an over-current state is indicated and the PWM driving the FETs needs to be  
shut off immediately with no time for software intervention.  
2.4.2  
Serial communication block (SCB)  
The PSoC™ 4000 has a serial communication block, which implements a multi-master I2C interface.  
I2C Mode: The hardware I2C block implements a full multi-master and slave interface (it is capable of  
multi-master arbitration). This block is capable of operating at speeds of up to 400 kbps (Fast Mode) and has  
flexible buffering options to reduce interrupt overhead and latency for the CPU. It also supports EZI2C that  
creates a mailbox address range in the memory of the PSoC™ 4000 and effectively reduces I2C communication to  
reading from and writing to an array in memory. In addition, the block supports an 8-deep FIFO for receive and  
Datasheet  
6
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Functional overview  
transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock  
stretching caused by the CPU not having read data on time.  
The I2C peripheral is compatible with the I2C Standard-mode and Fast-mode devices as defined in the NXP  
I2C-bus specification and user manual (UM10204). The I2C bus I/O is implemented with GPIO in open-drain  
modes.  
The PSoC™ 4000 is not completely compliant with the I2C spec in the following respect:  
• GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently  
of the rest of the I2C system.  
2.5  
GPIO  
The PSoC™ 4000 has up to 20 GPIOs. The GPIO block implements the following:  
• Eight drive modes:  
- Analog input mode (input and output buffers disabled)  
- Input only  
- Weak pull-up with strong pull-down  
- Strong pull-up with weak pull-down  
- Open drain with strong pull-down  
- Open drain with strong pull-up  
- Strong pull-up with strong pull-down  
- Weak pull-up with weak pull-down  
• Input threshold select (CMOS or LVTTL).  
• Individual control of input and output buffer enabling/disabling in addition to the drive strength modes  
• Selectable slew rates for dV/dt related noise control to improve EMI  
The pins are organized in logical entities called ports, which are 8-bit in width (less for Ports 2 and 3). During  
power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess  
turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various  
signals that may connect to an I/O pin.  
Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the  
pins themselves.  
Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt  
service routine (ISR) vector associated with it (4 for PSoC™ 4000).  
2.6  
Special function peripherals  
CAPSENSE™  
2.6.1  
CAPSENSE™ is supported in the PSoC™ 4000 through a CSD block that can be connected to up to 16 pins through  
an analog mux bus via an analog switch (pins on Port 3 are not available for CAPSENSE™ purposes). CAPSENSE™  
function can thus be provided on any available pin or group of pins in a system under software control. A PSoC™  
Creator component is provided for the CAPSENSE™ block to make it easy for the user.  
Shield voltage can be driven on another mux bus to provide water-tolerance capability. Water tolerance is  
provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from  
attenuating the sensed input. Proximity sensing can also be implemented.  
The CAPSENSE™ block has two IDACs, which can be used for general purposes if CAPSENSE™ is not being used  
(both IDACs are available in that case) or if CAPSENSE™ is used without water tolerance (one IDAC is available).  
Datasheet  
7
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Pinouts  
3
Pinouts  
The following is the pin list for PSoC™ 4000. All Port pins support GPIO. Ports 0, 1, and 2 support CSD CAPSENSE™  
and analog mux bus connections.  
Table 1  
PSoC™ 4000 pin descriptions  
24-pin QFN 16-pin SOIC  
Name Name  
Pin  
Pin  
TCPWM signals  
Alternate functions  
1
P0.0/TRIN0  
TRIN0: Trigger Input 0  
P0.1/TRIN1/  
CMPO_0  
2
3
4
P0.1/TRIN1/CMPO_0 TRIN1: Trigger Input 1 CMPO_0: Sense Comp Out  
3
4
P0.2/TRIN2  
P0.3/TRIN3  
P0.2/TRIN2  
TRIN2: Trigger Input 2  
TRIN3: Trigger Input 3  
P0.4/TRIN4/  
CMPO_0/EXT_CL  
K
P0.4/TRIN4/CMPO_0/E  
XT_CLK  
CMPO_0: Sense Comp Out,  
External Clock, CMOD Cap  
5
5
TRIN4: Trigger Input 4  
6
VCCD  
VDD  
6
7
VCCD  
VDD  
VSS  
7
8
VSS  
8
9
P0.5  
9
P0.5  
P0.6  
10  
11  
12  
13  
14  
15  
16  
17  
P0.6  
10  
P0.7  
P1.0  
P1.1/OUT0  
P1.2/SCL  
P1.3/SDA  
P1.4/UND0  
P1.5/OVF0  
11  
12  
13  
P1.1/OUT0  
P1.2/SCL  
P1.3/SDA  
OUT0: PWM OUT 0  
I2C Clock  
I2C Data  
UND0: Underflow Out  
OVF0: Overflow Out  
CMPO_0: Sense Comp Out,  
Internal Reset function  
during POR (must not have  
load to ground during POR).  
P1.6/OVF0/UND0/  
nOUT0/CMPO_0  
P1.6/OVF0/UND0/  
nOUT0/CMPO_0  
nOUT0: Complement  
of OUT0 (not OUT)  
18  
14  
P1.7/MATCH/EXT  
_CLK  
19  
20  
21  
15 P1.7/MATCH/EXT_CLK  
MATCH: Match Out  
External Clock  
P2.0  
16  
1
P2.0  
P3.0/SDA/  
SWD_IO  
P3.0/SDA/  
SWD_IO  
I2C Data, SWD IO  
P3.1/SCL/  
SWD_CLK  
P3.1/SCL/  
SWD_CLK  
22  
2
I2C Clock, SWD Clock  
23  
24  
P3.2  
OUT0:PWM OUT 0  
XRES  
XRES: External Reset  
Datasheet  
8
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Pinouts  
Descriptions of the pin functions are as follows:  
VDD: Power supply for both analog and digital sections.  
VSS: Ground pin.  
VCCD: Regulated digital supply (1.8 V ±5%).  
Pins belonging to Ports 0, 1, and 2 can all be used as CSD sense and shield pins can be connected to AMUXBUS A  
or B or can all be used as GPIO pins that can be driven by the firmware.  
Pins on Port 3 can be used as GPIO, in addition to their alternate functions listed above.  
The following packages are provided: 24-pin QFN and 16-pin SOIC.  
24  
23  
22  
21 20  
19  
18  
P0.0  
P0.1  
1
2
3
4
5
6
P1.6  
P1.5  
P1.4  
P1.3  
P1.2  
P1.1  
17  
16  
15  
14  
13  
QFN  
24  
Top  
View  
P0.2  
P0.3  
P0.4  
VCCD  
7
8
9
10  
11  
12  
Figure 2  
24-pin QFN pinout  
P3.0  
1
2
3
4
5
6
16  
15  
14  
13  
12  
11  
P2.0  
P1.7  
P1.6  
P1.3  
P1.2  
P3.1  
P0.1  
P0.2  
P0.4  
16-SOIC  
Top View  
P1.1  
VCCD  
VDD  
7
8
P0.6  
P0.5  
10  
9
VSS  
Figure 3  
16-pin SOIC pinout  
Datasheet  
9
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Power  
4
Power  
The following power system diagrams (Figure 4 and Figure 5) show the set of power supply pins as implemented  
for the PSoC™ 4000. The system has one regulator in Active mode for the digital circuitry. There is no analog  
regulator; the analog circuits run directly from the VDD input. There is a separate regulator for the Deep Sleep  
mode. The supply voltage range is either 1.8 V ±5% (externally regulated) or 1.8 V to 5.5 V (unregulated externally;  
regulated internally) with all functions and circuits operating over that range.  
The PSoC™ 4000 family allows two distinct modes of power supply operation: Unregulated external supply and  
regulated external supply.  
4.1  
Unregulated external supply  
In this mode, the PSoC™ 4000 is powered by an external power supply that can be anywhere in the range of 1.8  
to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from  
a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC™  
4000 supplies the internal logic and the VCCD output of the PSoC™ 4000 must be bypassed to ground via an  
external capacitor (0.1 µF; X5R ceramic or better).  
Bypass capacitors must be used from VDDD to ground. The typical practice for systems in this frequency range is  
to use a capacitor in the 1-µF range, in parallel with a smaller capacitor (0.1 µF, for example). Note that these are  
simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass  
capacitor parasitic should be simulated to design and obtain optimal bypassing.  
An example of a bypass scheme follows (VDDIO is available on the 16-QFN package).  
5. 5V  
Power supply connections when 1.8 VDD  
1.8 V to 5.5 V  
PSoC4000  
VDD  
1 F  
0. 1 F  
VCCD  
F
0. 1  
VSS  
Figure 4  
24-pin QFN bypass scheme example - Unregulated external supply  
Datasheet  
10  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Power  
4.2  
Regulated external supply  
In this mode, the PSoC™ 4000 is powered by an external power supply that must be within the range of 1.71[1] to  
1.89 V; note that this range needs to include the power supply ripple too. In this mode, the VDD and VCCD pins are  
shorted together and bypassed. The internal regulator is disabled in the firmware.  
An example of a bypass scheme follows.  
Power supply connections when 1.71 VDD 1.89 V  
1.71 V to 1.89 V  
PSoC 4000  
VDD  
VCCD  
1 F  
0.1 F  
VSS  
Figure 5  
24-pin QFN bypass scheme example - Regulated external supply  
Note  
1. 1.75 V for E-grade devices.  
Datasheet  
11  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Development support  
5
Development support  
The PSoC™ 4000 family has a rich set of documentation, development tools, and online resources to assist you  
during your development process. Visit www.infineon.com/psoc4 to find out more.  
5.1  
Documentation  
A suite of documentation supports the PSoC™ 4000 family to ensure that you can find answers to your questions  
quickly. This section contains a list of some of the key documents.  
Software User Guide: A step-by-step guide for using PSoC™ Creator. The software user guide shows you how the  
PSoC™ Creator build process works in detail, how to use source control with PSoC™ Creator, and much more.  
Component Datasheets: The flexibility of PSoC™ allows the creation of new peripherals (components) long after  
the device has gone into production. Component data sheets provide all of the information needed to select and  
use a particular component, including a functional description, API documentation, example code, and AC/DC speci-  
fications.  
Application Notes: PSoC™ application notes discuss a particular application of PSoC™ in depth; examples include  
brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to  
the application note document.  
Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to  
use a PSoC™ device, including a complete description of all PSoC™ registers. The TRM is available in the Documen-  
tation section at www.infineon.com/psoc4.  
5.2  
Online  
In addition to print documentation, the PSoC™ forums connect you with fellow PSoC™ users and experts in PSoC™  
from around the world, 24 hours a day, 7 days a week.  
5.3  
Tools  
With industry standard cores, programming, and debugging interfaces, the PSoC™ 4000 family is part of a devel-  
opment tool ecosystem. Visit us at www.infineon.com/psoccreator for the latest information on the revolutionary,  
easy to use PSoC™ Creator IDE, supported third party compilers, programmers, debuggers, and development kits.  
Datasheet  
12  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Electrical Specifications  
6
Electrical Specifications  
6.1  
Table 2  
Absolute Maximum Ratings  
Absolute Maximum Ratings[2]  
Details/  
Spec ID# Parameter  
Description  
Min  
–0.5  
–0.5  
Typ  
Max  
6
Unit  
Conditions  
SID1  
SID2  
VDDD_ABS  
VCCD_ABS  
Digital supply relative to VSS  
V
V
Direct digital core voltage input  
relative to VSS  
1.95  
VDD  
+
SID3  
SID4  
VGPIO_ABS  
IGPIO_ABS  
GPIO voltage  
–0.5  
–25  
V
0.5  
Maximum current per GPIO  
GPIO injection current,  
25  
mA  
Current injected  
per pin  
SID5  
IGPIO_injection Max for VIH > VDDD, and  
Min for VIL < VSS  
–0.5  
0.5  
mA  
V
Electrostatic discharge human  
body model  
BID44  
ESD_HBM  
2000  
Electrostatic discharge charged  
device model  
BID45  
BID46  
ESD_CDM  
LU  
500  
V
Pin current for latch-up  
–140  
140  
mA  
6.2  
Device Level Specifications  
All specifications are valid for –40 °C TA 85 °C for A grade devices and –40 °C TA 105 °C for S grade devices and  
–40 °C TA 125 °C for Grade-E devices, except where noted. Specifications are valid for 1.71 V to 5.5 V, except  
where noted.  
Table 3  
DC Specifications  
Typical values measured at VDD = 3.3 V and 25 °C.  
Spec ID# Parameter  
SID53 VDD  
Description  
Min  
Typ  
Max  
Units Details/Conditions  
With regulator  
Power supply input voltage  
1.8  
5.5  
V
enabled  
Internally  
1.71  
1.89  
V
Power supply input voltage  
unregulated supply  
SID255  
SID54  
VDD  
(VCCD = VDD  
)
1.75  
1.71  
1.75  
1.89  
VDD  
VDD  
V
V
V
-40 °C TA 125 °C  
VDDIO  
VDDIO domain supply  
-40 °C TA 125 °C  
External regulator voltage  
bypass  
SID55  
SID56  
CEFC  
CEXC  
0.1  
1
µF X5R ceramic or better  
µF X5R ceramic or better  
Power supply bypass capacitor  
Active Mode, VDD = 1.8 to 5.5 V  
Execute from flash;  
CPU at 6 MHz  
SID9  
IDD5  
2.0  
2.85  
mA  
Note  
2. Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the device. Exposure to  
Absolute Maximum conditions for extended periods of time may affect device reliability. The Maximum Storage Tempera-  
ture is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below Absolute  
Maximum conditions but above normal operating conditions, the device may not operate to specification.  
Datasheet  
13  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Electrical Specifications  
Table 3  
DC Specifications (continued)  
Typical values measured at VDD = 3.3 V and 25 °C.  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units Details/Conditions  
Execute from flash;  
CPU at 12 MHz  
SID12  
SID16  
IDD8  
3.2  
3.75  
mA  
mA  
Execute from flash;  
CPU at 16 MHz  
IDD11  
4.0  
4.5  
Sleep Mode, VDDD = 1.71 to 5.5 V  
SID25  
IDD20  
I2C wakeup, WDT on. 6 MHz  
I2C wakeup, WDT on. 12 MHz  
1.1  
1.4  
mA  
mA  
SID25A  
IDD20A  
Deep Sleep Mode, VDD = 1.8 to 3.6 V (Regulator on)  
SID31 IDD26  
I2C wakeup and WDT on  
Deep Sleep Mode, VDD = 3.6 to 5.5 V (Regulator on)  
SID34 IDD29  
I2C wakeup and WDT on  
2.5  
2.5  
8.2  
12  
µA  
µA  
µA  
Deep Sleep Mode, VDD = VCCD = 1.71 to 1.89 V (Regulator bypassed)  
SID37  
IDD32  
I2C wakeup and WDT on  
2.5  
2
9.2  
XRES Current  
Supply current while XRES  
asserted  
SID307  
IDD_XR  
5
mA  
Table 4  
AC Specifications  
Details/  
Spec ID# Parameter  
Description  
CPU frequency  
Wakeup from Sleep mode  
Min  
Typ  
Max Units  
Conditions  
SID48  
SID49[3]  
SID50[3]  
FCPU  
DC  
0
35  
16  
MHz 1.71 VDD 5.5  
TSLEEP  
µs  
µs  
TDEEPSLEEP Wakeup from Deep Sleep mode  
Note  
3. Guaranteed by characterization.  
Datasheet  
14  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Electrical Specifications  
6.2.1  
GPIO  
Table 5  
GPIO DC Specifications  
Details/  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units  
Conditions  
[4]  
SID57  
VIH  
VIL  
VIH  
VIL  
VIH  
VIL  
Input voltage high threshold 0.7 × VDDD  
V
V
V
V
V
V
CMOS Input  
SID58  
Input voltage low threshold  
LVTTL input, VDDD < 2.7 V  
LVTTL input, VDDD < 2.7 V  
LVTTL input, VDDD 2.7 V  
LVTTL input, VDDD 2.7 V  
0.3 × VDDD  
CMOS Input  
[4]  
[4]  
SID241  
SID242  
SID243  
SID244  
0.7× VDDD  
2.0  
0.3 × VDDD  
0.8  
IOH = 4 mA  
at 3 V VDDD  
SID59  
SID60  
SID61  
SID62  
SID62A  
VOH  
VOH  
VOL  
VOL  
Output voltage high level  
Output voltage high level  
Output voltage low level  
Output voltage low level  
VDDD –0.6  
V
V
V
V
V
IOH = 1 mA  
at 1.8 V VDDD  
VDDD –0.5  
IOL = 4 mA  
at 1.8 V VDDD  
0.6  
0.6  
0.4  
IOL = 10 mA  
at 3 V VDDD  
IOL = 3 mA  
at 3 V VDDD  
VOL  
Output voltage low level  
Pull-up resistor  
SID63  
SID64  
RPULLUP  
3.5  
3.5  
5.6  
5.6  
8.5  
8.5  
kΩ  
kΩ  
RPULLDOWN Pull-down resistor  
Input leakage current  
SID65  
SID66  
IIL  
2
nA 25 °C, VDDD = 3.0 V  
(absolute value)  
CIN  
Input capacitance  
3
7
pF  
V
SID67[5] VHYSTTL  
Input hysteresis LVTTL  
15  
40  
mV  
DDD 2.7 V  
0.05 ×  
VDDD  
SID68[5] VHYSCMOS  
Input hysteresis CMOS  
mV VDD < 4.5 V  
mV VDD > 4.5 V  
SID68A[5] VHYSCMOS5V5 Input hysteresis CMOS  
200  
Current through protection  
SID69[5] IDIODE  
100  
µA  
diode to VDD/VSS  
Maximum total source or  
SID69A[5] ITOT_GPIO  
85  
mA  
sink chip current  
Notes  
4. V must not exceed V  
+ 0.2 V.  
DDD  
IH  
5. Guaranteed by characterization.  
Datasheet  
15  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Electrical Specifications  
Table 6  
GPIO AC Specifications  
(Guaranteed by Characterization)  
Details/  
Spec ID# Parameter  
Description  
Min  
2
Typ  
Max Units  
Conditions  
Rise time in fast strong  
mode  
3.3 V VDDD  
,
SID70  
SID71  
SID72  
SID73  
TRISEF  
TFALLF  
TRISES  
TFALLS  
12  
12  
60  
60  
ns  
ns  
Cload = 25 pF  
3.3 V VDDD  
,
Fall time in fast strong mode  
2
Cload = 25 pF  
Rise time in slow strong  
mode  
3.3 V VDDD  
,
10  
10  
Cload = 25 pF  
Fall time in slow strong  
mode  
3.3 V VDDD,  
Cload = 25 pF  
90/10%, 25 pF  
GPIO FOUT; 3.3 V VDDD   
5.5 V.  
Fast strong mode.  
SID74  
SID75  
SID76  
SID245  
SID246  
FGPIOUT1  
FGPIOUT2  
FGPIOUT3  
FGPIOUT4  
FGPIOIN  
16  
16  
7
MHz load, 60/40 duty  
cycle  
GPIO FOUT; 1.71 VVDDD  
3.3 V.  
Fast strong mode.  
90/10%, 25 pF  
MHz load, 60/40 duty  
cycle  
GPIO FOUT; 3.3 V VDDD   
5.5 V.  
Slow strong mode.  
90/10%, 25 pF  
MHz load, 60/40 duty  
cycle  
GPIO FOUT; 1.71 V VDDD   
3.3 V.  
Slow strong mode.  
90/10%, 25 pF  
MHz load, 60/40 duty  
cycle  
3.5  
16  
GPIO input operating  
frequency;  
1.71 V VDDD 5.5 V  
MHz 90/10% VIO  
Datasheet  
16  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Electrical Specifications  
6.2.2  
XRES  
Table 7  
XRES DC Specifications  
Details/  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units  
Conditions  
SID77  
SID78  
SID79  
SID80  
VIH  
Input voltage high threshold 0.7 × VDDD  
V
V
CMOS Input  
VIL  
Input voltage low threshold  
Pull-up resistor  
3.5  
0.3 × VDDD  
CMOS Input  
RPULLUP  
CIN  
5.6  
3
8.5  
7
kΩ  
pF  
Input capacitance  
Typical hysteresis  
SID81[6]  
VHYSXRES  
Input voltage hysteresis  
05 × VDD  
mV is 200 mV  
for VDD > 4.5V  
Table 8  
XRES AC Specifications  
Details/  
Spec ID# Parameter  
Description  
Min  
5
Typ  
Max  
Units  
µs  
Conditions  
SID83[6]  
TRESETWIDTH Reset pulse width  
3
Wake-up time from reset  
release  
BID#194[6] TRESETWAKE  
ms  
Note  
6. Guaranteed by characterization.  
Datasheet  
17  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Electrical Specifications  
6.3  
Analog peripherals  
6.3.1  
Comparator  
Table 9  
Comparator DC specifications  
Details/  
Spec ID# Parameter  
Description  
Min Typ  
Max  
Units  
Conditions  
Block current, High Bandwidth  
mode  
SID330[7]  
SID331[7]  
SID332[7]  
ICMP1  
110  
85  
µA  
µA  
ICMP2  
Block current, Low Power mode  
Offset voltage, High Bandwidth  
mode  
VOFFSET1  
10  
30  
mV  
Offset voltage, Low Power  
mode  
SID333[7]  
SID334[7]  
VOFFSET2  
ZCMP  
10  
30  
V
DC input impedance of  
comparator  
35  
MΩ  
Max input  
voltage is lower  
of 3.6 V or VDD  
SID338[7]  
VINP_COMP Comparator input range  
0
3.6  
V
Table 10  
Comparator AC specifications (Guaranteed by characterization)  
Details/  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
90  
Units  
ns  
Conditions  
Response Time High Bandwidth  
mode, 50-mV overdrive  
SID336[7]  
TCOMP1  
Response Time Low Power  
mode, 50-mV overdrive  
SID337[7]  
TCOMP2  
110  
ns  
Note  
7. Guaranteed by characterization.  
Datasheet  
18  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Electrical Specifications  
6.3.2  
CSD  
Table 11  
CSD and IDAC Block Specifications  
Spec ID#  
Parameter  
Description  
Min Typ  
Max  
Units Details/Conditions  
CSD and IDAC Specifications  
VDD >2V(withripple),  
mV 25 °C TA,  
Max allowed ripple on  
SYS.PER#3  
VDD_RIPPLE  
±50  
power supply, DC to 10 MHz  
Sensitivity = 0.1 pF  
VDD > 1.75V (with  
ripple), 25 C TA,  
Max allowed ripple on  
SYS.PER#16 VDD_RIPPLE_1.8  
SID.CSD#15 VREF  
±25  
1.3  
mV Parasitic Capaci-  
tance (CP) < 20 pF,  
Sensitivity 0.4 pF  
power supply, DC to 10 MHz  
Voltage reference for CSD  
and Comparator  
1.1 1.2  
V
SID.CSD#16 IDAC1IDD  
SID.CSD#17 IDAC2IDD  
IDAC1 (8-bits) block current  
IDAC2 (7-bits) block current  
1125  
1125  
µA  
µA  
1.8 V ±5% or 1.8 V to  
5.5 V  
1.71  
1.75  
0.8  
5.5  
5.5  
V
V
V
SID308  
VCSD  
Voltage range of operation  
-40 °C TA 125 °C  
Voltage compliance range  
of IDAC  
SID308A  
VCOMPIDAC  
VDD – 0.8  
SID309  
SID310  
SID311  
SID312  
IDAC1DNL  
IDAC1INL  
IDAC2DNL  
IDAC2INL  
DNL for 8-bit resolution  
INL for 8-bit resolution  
DNL for 7-bit resolution  
INL for 7-bit resolution  
–1  
–3  
–1  
–3  
1
3
1
3
LSB  
LSB  
LSB  
LSB  
Ratio of counts of finger to  
noise. Guaranteed by  
characterization  
Capacitance range of  
SID313  
SNR  
5
Ratio 9 to 35 pF, 0.1 pF  
sensitivity  
Output current of IDAC1 (8  
bits) in high range  
SID314  
SID314A  
SID315  
SID315A  
IDAC1CRT1  
IDAC1CRT2  
IDAC2CRT1  
IDAC2CRT2  
612  
306  
µA  
µA  
µA  
µA  
Output current of IDAC1(8  
bits) in low range  
Output current of IDAC2 (7  
bits) in high range  
304.8  
152.4  
Output current of IDAC2 (7  
bits) in low range  
SID320  
SID321  
SID322  
IDACOFFSET  
IDACGAIN  
All zeroes input  
±1  
±10  
7
LSB  
%
Full-scale error less offset  
Mismatch between IDACs  
IDACMISMATCH  
LSB  
Settling time to 0.5 LSB for  
8-bit IDAC  
Full-scale transition.  
No external load.  
SID323  
SID324  
SID325  
IDACSET8  
IDACSET7  
CMOD  
10  
10  
µs  
µs  
nF  
Settling time to 0.5 LSB for  
7-bit IDAC  
Full-scale transition.  
No external load.  
External modulator  
capacitor.  
5-V rating,  
2.2  
X7R or NP0 cap.  
Datasheet  
19  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Electrical Specifications  
6.4  
Digital peripherals  
6.4.1  
Timer counter pulse-width modulator (TCPWM)  
Table 12  
TCPWM specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Units Details/Conditions  
Block current  
SID.TCPWM.1 ITCPWM1  
SID.TCPWM.2 ITCPWM2  
SID.TCPWM.2A ITCPWM3  
45  
145  
160  
Fc  
µA All modes (TCPWM)  
µA All modes (TCPWM)  
µA All modes (TCPWM)  
consumption at 3 MHz  
Block current  
consumption at 8 MHz  
Block current  
consumption at 16 MHz  
Fc max = CLK_SYS.  
MHz  
TCPWMFREQ  
TPWMENEXT  
SID.TCPWM.3  
SID.TCPWM.4  
Operating frequency  
Maximum = 16 MHz  
For all trigger  
Input trigger pulse width  
2/Fc  
ns  
events[8]  
Minimum  
possible  
width of Overflow,  
Underflow, and CC  
Output trigger pulse  
widths  
TPWMEXT  
SID.TCPWM.5  
2/Fc  
ns  
(Counter  
Compare  
outputs  
equals  
value)  
Minimum  
time  
TCRES  
PWMRES  
QRES  
SID.TCPWM.5A  
SID.TCPWM.5B  
SID.TCPWM.5C  
Resolution of counter  
PWM resolution  
1/Fc  
1/Fc  
1/Fc  
ns between successive  
counts  
Minimum pulse width  
of PWM Output  
Minimum pulse width  
ns between Quadrature  
phase inputs.  
ns  
Quadrature inputs  
resolution  
6.4.2  
Table 13  
I2C  
Fixed I2C DC specifications[8]  
Spec ID  
Parameter  
II2C1  
Description  
Min  
Typ  
Max Units Details/Conditions  
SID149  
Block current  
consumption at 100 kHz  
25  
135  
2.5  
µA  
µA  
µA  
SID150  
SID152  
II2C2  
II2C4  
Block current  
consumption at 400 kHz  
I2C enabled in Deep Sleep  
mode  
Table 14  
Fixed I2C AC specifications[8]  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Units Details/Conditions  
SID153  
FI2C1  
Bit rate  
400 Kbps –  
Note  
8. Guaranteed by characterization.  
Datasheet  
20  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Electrical Specifications  
6.5  
Memory  
Table 15  
Flash DC specifications  
Spec ID  
Parameter  
VPE  
Flash AC specifications  
Description  
Min  
1.71  
1.75  
Typ  
Max  
5.5  
Units Details/Conditions  
V
V
SID173  
Erase and program voltage  
5.5  
-40 °C TA 125 °C  
Table 16  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
20  
13  
7
Units Details/Conditions  
Row (block) write time  
(erase and program)  
Row (block) =  
ms  
[9]  
SID174  
SID175  
SID176  
SID178  
SID180[10] TDEVPROG  
SID181[10] FEND  
TROWWRITE  
128 bytes  
[9]  
TROWERASE  
Row erase time  
ms  
ms  
ms  
Row program time after  
erase  
[9]  
TROWPROGRAM  
[9]  
TBULKERASE  
Bulk erase time (16 KB)  
Total device program time  
Flash endurance  
15  
[9]  
7.5 seconds –  
100 K  
cycles  
Flash retention. TA 55 °C,  
SID182[10] FRET  
20[11]  
years  
100 K P/E cycles  
Flash retention. TA 85 °C,  
10 K P/E cycles  
SID182A[10]  
10[12]  
years  
6.6  
System resources  
Power-on reset (POR)  
6.6.1  
Table 17  
Power-on reset (PRES)  
Spec ID  
Parameter Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
SID.CLK#6 SR_POWER  
Power supply slew rate  
1
67  
V/ms On power-up and  
power-down  
SID185[10] VRISEIPOR  
SID186[10] VFALLIPOR  
Rising trip voltage  
Falling trip voltage  
0.80  
0.70  
1.5  
1.4  
V
V
Table 18  
Spec ID  
Brown-out detect (BOD) for VCCD  
Parameter  
Description  
Min  
Typ  
Max  
1.62  
1.5  
Unit  
Details/Conditions  
BOD trip voltage in active and  
sleep modes  
BOD trip voltage in Deep Sleep 1.11  
SID190[10] VFALLPPOR  
SID192[10] VFALLDPSLP  
1.48  
V
V
Notes  
9. It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations  
will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU  
lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not  
inadvertently activated.  
10.Guaranteed by characterization.  
11.Infineon provides a retention calculator to calculate the retention lifetime based on customers' individual temperature  
profiles for operation over the –40 °C to +125 °C ambient temperature range. Contact https://www.infineon.com/sup-  
port.  
12.Infineon provides a retention calculator to calculate the retention lifetime based on customers' individual temperature  
profiles for operation over the –40 °C to +125 °C ambient temperature range. Contact https://www.infineon.com/sup-  
port.  
Datasheet  
21  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Electrical Specifications  
6.6.2  
SWD interface  
Table 19  
SWD interface specifications  
Details/  
Spec ID  
SID213  
Parameter  
F_SWDCLK1  
F_SWDCLK2  
Description  
Min  
Typ  
Max  
14  
Units  
MHz  
MHz  
Conditions  
SWDCLK 1/3 CPU  
clock frequency  
3.3 V VDD 5.5 V  
SWDCLK 1/3 CPU  
clock frequency  
SID214  
1.71 V VDD 3.3 V  
7
SID215[13] T_SWDI_SETUP T = 1/f SWDCLK  
SID216[13] T_SWDI_HOLD T = 1/f SWDCLK  
SID217[13] T_SWDO_VALID T = 1/f SWDCLK  
SID217A[13] T_SWDO_HOLD T = 1/f SWDCLK  
0.25 × T  
ns  
ns  
ns  
ns  
0.25 × T  
0.5 × T  
1
6.6.3  
Internal main oscillator  
Table 20  
IMO DC specifications  
(Guaranteed by Design)  
Spec ID  
Parameter  
IIMO1  
Description  
Min  
Typ  
Max  
Units Details/Conditions  
SID218  
IMO operating current at 48  
MHz  
250  
µA  
-40 °C TA 85 °C  
SID219  
IIMO2  
IMO operating current at 24  
MHz  
180  
µA  
-40 °C TA 85 °C  
Table 21  
Spec ID  
IMO AC specifications  
Parameter  
FIMOTOL1  
Description  
Min  
Typ  
Max  
Units Details/Conditions  
Frequency variation at 24  
and 32 MHz (trimmed)  
2 V VDD 5.5 V, and  
%
SID223  
±2  
–25 °C TA 85 °C  
Frequency variation  
(trimmed)  
SID223A FIMOTOLVCCD  
±4  
%
All  
SID226  
SID228  
TSTARTIMO  
IMO startup time  
7
µs  
ps  
TJITRMSIMO2  
RMS jitter at 24 MHz  
145  
Note  
13.Guaranteed by characterization.  
Datasheet  
22  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Electrical Specifications  
6.6.4  
Internal low-speed oscillator  
Table 22  
ILO DC specifications  
(Guaranteed by Design)  
Spec ID  
Parameter  
Description  
ILO operating current  
ILO leakage current  
Min  
Typ  
0.3  
2
Max  
1.05  
15  
Units Details/Conditions  
SID231[14] IILO1  
µA  
nA  
-40 °C TA 85 °C  
-40 °C TA 85 °C  
SID233[14] IILOLEAK  
Table 23  
Spec ID  
SID234[14] TSTARTILO1  
SID236[14] TILODUTY  
ILO AC Specifications  
Parameter  
Description  
ILO startup time  
ILO duty cycle  
Min  
Typ  
Max  
2
Units Details/Conditions  
ms  
%
-40 °C TA 85 °C  
-40 °C TA 85 °C  
40  
20  
50  
40  
60  
80  
SID237  
FILOTRIM1  
ILO frequency range  
kHz -40 °C TA 85 °C  
6.6.5  
External clock  
Table 24  
External clock specifications  
Spec ID  
Parameter Description  
Min  
Typ  
Max  
Units Details/Conditions  
SID305[14] ExtClkFreq  
SID306[14] ExtClkDuty  
External clock input  
frequency  
0
16  
MHz  
Duty cycle; measured at VDD/2  
45  
55  
%
6.6.6  
Block  
Table 25  
Block specs  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units Details/Conditions  
SID262[14] TCLKSWITCH  
System clock source  
switching time  
3
4
Periods –  
Note  
14.Guaranteed by characterization.  
Datasheet  
23  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Ordering information  
7
Ordering information  
The PSoC™ 4000 part numbers and features are listed in the following table.  
Operating  
Features  
Package  
temperature  
MPN  
CY8C4014SXA-421Z  
CY8C4014LQA-422Z  
CY8C4014SXS-421Z  
CY8C4014LQS-422Z  
CY8C4014SXE-421Z[15]  
CY8C4014LQE-422Z  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
7.1  
Part numbering conventions  
PSoC™ 4 devices follow the part numbering convention described in the following table. All fields are  
single-character alphanumeric (0, 1, 2, …, 9, A,B, …, Z) unless stated otherwise.  
The part numbers are of the form CY8C4ABCDEF-XYZ where the fields are defined as follows.  
CY 8C  
4
A B C D E F  
- G H I  
Z
Examples  
Cypress (an Infineon  
company) Prefix  
4 :PSoC4  
0 : 4000 Family  
1 : 16 MHz  
Architecture  
Family Group within Architecture  
Speed Grade  
4 : 16 KB  
Flash Capacity  
LQ: QFN  
SX : SOIC  
Package Code  
A: AEC-Q100, -40 °C to +85 °C  
S: AEC-Q100, -40 °C to +105 °C  
E: AEC-Q100, -40 °C to +125 °C  
Temperature Range  
Peripheral Set  
Fab Location Indicator  
Z = New fab location  
Blank = Initial fab location  
Note  
15.Contact Infineon for availability of this device.  
Datasheet  
24  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Ordering information  
The field values are listed in the following table:  
Field  
Description  
Values  
Meaning  
CY8C  
Cypress (an Infineon  
company) prefix  
4
A
B
Architecture  
Family  
CPU speed  
4
0
1
PSoC™ 4  
4000 Family  
16 MHz  
4
48 MHz  
C
Flash capacity  
Package code  
3
4
5
6
7
8 KB  
16 KB  
32 KB  
64 KB  
128 KB  
SOIC  
DE  
SX  
LQ  
QFN  
F
GHI  
Z
Temperature range  
Attributes code  
Fab location change  
A/S  
000-999  
Automotive  
Code of feature set in specific family  
Datasheet  
25  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Packaging  
8
Packaging  
Table 26  
Package list  
Spec ID#  
BID#26  
BID#40  
Package  
24-pin QFN  
16-pin SOIC  
Description  
24-pin 4 4 0.6 mm QFN with 0.5-mm pitch  
16-pin SOIC (150 Mil)  
Table 27  
Parameter  
TA  
Package characteristics  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Operating ambient  
temperature  
For A grade devices  
–40  
25.00  
85  
°C  
TA  
TA  
TJ  
TJ  
TJ  
Operating ambient  
temperature  
For S grade devices  
For E grade devices  
For A grade devices  
For S grade devices  
For E grade devices  
–40  
–40  
–40  
–40  
–40  
25.00  
105  
125  
100  
120  
140  
°C  
°C  
°C  
°C  
°C  
Operating ambient  
temperature  
25.00  
Operating junction  
temperature  
Operating junction  
temperature  
Operating junction  
temperature  
TJA  
TJA  
Package JA (24-pin QFN)  
Package JA (16-pin SOIC)  
38.01  
°C/W  
°C/W  
142.14  
Table 28  
Solder reflow peak temperature  
Package Maximum peak temperature  
All 260 °C  
Maximum time at peak temperature  
30 seconds  
Table 29  
Package moisture sensitivity level (MSL), IPC/JEDEC J-STD-020  
Package  
MSL  
All  
MSL 3  
Datasheet  
26  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Packaging  
8.1  
Package outline drawings  
001-13937 *H  
Figure 6  
24-pin QFN ((4 × 4 × 0.55 mm) 2.65 × 2.65 E-Pad (Sawn)) package outline  
The center pad on the QFN package should be connected to ground (VSS) for best mechanical, thermal, and  
electrical performance. If not connected to ground, it should be electrically floating and not connected to any  
other signal.  
Datasheet  
27  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Packaging  
51-85068 *F  
Figure 7  
16-pin SOIC (150 Mils) package outline  
Datasheet  
28  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Acronyms  
9
Acronyms  
Table 30  
Acronyms used in this document  
Acronym  
Description  
abus  
ADC  
AG  
analog local bus  
analog-to-digital converter  
analog global  
AHB  
AMBA (advanced microcontroller bus architecture) high-performance bus, an Arm data  
transfer bus  
ALU  
arithmetic logic unit  
AMUXBUS  
API  
analog multiplexer bus  
application programming interface  
application program status register  
advanced RISC machine, a CPU architecture  
automatic thump mode  
APSR  
Arm®  
ATM  
BW  
bandwidth  
CAN  
CMRR  
CPU  
CRC  
Controller Area Network, a communications protocol  
common-mode rejection ratio  
central processing unit  
cyclic redundancy check, an error-checking protocol  
digital-to-analog converter, see also IDAC, VDAC  
digital filter block  
DAC  
DFB  
DIO  
digital input/output, GPIO with only digital capabilities, no analog. See GPIO.  
Dhrystone million instructions per second  
direct memory access, see also TD  
differential nonlinearity, see also INL  
do not use  
DMIPS  
DMA  
DNL  
DNU  
DR  
port write data registers  
DSI  
digital system interconnect  
DWT  
ECC  
data watchpoint and trace  
error correcting code  
ECO  
EEPROM  
EMI  
external crystal oscillator  
electrically erasable programmable read-only memory  
electromagnetic interference  
external memory interface  
EMIF  
EOC  
EOF  
end of conversion  
end of frame  
EPSR  
ESD  
execution program status register  
electrostatic discharge  
ETM  
FIR  
embedded trace macrocell  
finite impulse response, see also IIR  
Datasheet  
29  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Acronyms  
Table 30  
Acronyms used in this document (continued)  
Acronym  
Description  
FPB  
FS  
flash patch and breakpoint  
full-speed  
GPIO  
HVI  
general-purpose input/output, applies to a PSoC™ pin  
high-voltage interrupt, see also LVI, LVD  
integrated circuit  
IC  
IDAC  
IDE  
current DAC, see also DAC, VDAC  
integrated development environment  
Inter-Integrated Circuit, a communications protocol  
infinite impulse response, see also FIR  
internal low-speed oscillator, see also IMO  
internal main oscillator, see also ILO  
integral nonlinearity, see also DNL  
input/output, see also GPIO, DIO, SIO, USBIO  
initial power-on reset  
I2C, or IIC  
IIR  
ILO  
IMO  
INL  
I/O  
IPOR  
IPSR  
IRQ  
interrupt program status register  
interrupt request  
ITM  
instrumentation trace macrocell  
liquid crystal display  
LCD  
LIN  
Local Interconnect Network, a communications protocol.  
link register  
LR  
LUT  
LVD  
lookup table  
low-voltage detect, see also LVI  
low-voltage interrupt, see also HVI  
low-voltage transistor-transistor logic  
multiply-accumulate  
LVI  
LVTTL  
MAC  
MCU  
MISO  
NC  
microcontroller unit  
master-in slave-out  
no connect  
NMI  
NRZ  
NVIC  
NVL  
opamp  
PAL  
nonmaskable interrupt  
non-return-to-zero  
nested vectored interrupt controller  
nonvolatile latch, see also WOL  
operational amplifier  
programmable array logic, see also PLD  
program counter  
PC  
PCB  
PGA  
PHUB  
printed circuit board  
programmable gain amplifier  
peripheral hub  
Datasheet  
30  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Acronyms  
Table 30  
Acronyms used in this document (continued)  
Acronym  
Description  
PHY  
PICU  
PLA  
physical layer  
port interrupt control unit  
programmable logic array  
PLD  
PLL  
programmable logic device, see also PAL  
phase-locked loop  
PMDD  
POR  
PRES  
PRS  
PS  
package material declaration data sheet  
power-on reset  
precise power-on reset  
pseudo random sequence  
port read data register  
PSoC™  
PSRR  
PWM  
RAM  
RISC  
RMS  
RTC  
RTL  
Programmable System-on-Chip  
power supply rejection ratio  
pulse-width modulator  
random-access memory  
reduced-instruction-set computing  
root-mean-square  
real-time clock  
register transfer language  
remote transmission request  
receive  
RTR  
RX  
SAR  
SC/CT  
SCL  
successive approximation register  
switched capacitor/continuous time  
I2C serial clock  
SDA  
S/H  
I2C serial data  
sample and hold  
SINAD  
SIO  
signal to noise and distortion ratio  
special input/output, GPIO with advanced features. See GPIO.  
start of conversion  
SOC  
SOF  
SPI  
start of frame  
Serial Peripheral Interface, a communications protocol  
slew rate  
SR  
SRAM  
SRES  
SWD  
SWV  
TD  
static random access memory  
software reset  
serial wire debug, a test protocol  
single-wire viewer  
transaction descriptor, see also DMA  
total harmonic distortion  
transimpedance amplifier  
THD  
TIA  
Datasheet  
31  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Acronyms  
Table 30  
Acronyms used in this document (continued)  
Acronym  
Description  
TRM  
TTL  
technical reference manual  
transistor-transistor logic  
transmit  
TX  
UART  
UDB  
USB  
Universal Asynchronous Transmitter Receiver, a communications protocol  
universal digital block  
Universal Serial Bus  
USBIO  
VDAC  
WDT  
WOL  
WRES  
XRES  
XTAL  
USB input/output, PSoC™ pins used to connect to a USB port  
voltage DAC, see also DAC, IDAC  
watchdog timer  
write once latch, see also NVL  
watchdog timer reset  
external reset I/O pin  
crystal  
Datasheet  
32  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Document conventions  
10  
Document conventions  
10.1  
Units of measure  
Table 31  
Units of measure  
Symbol  
°C  
dB  
Unit of measure  
degrees Celsius  
decibel  
fF  
Hz  
femto farad  
hertz  
KB  
1024 bytes  
kbps  
Khr  
kHz  
k  
ksps  
LSB  
Mbps  
MHz  
M  
Msps  
µA  
kilobits per second  
kilohour  
kilohertz  
kilo ohm  
kilosamples per second  
least significant bit  
megabits per second  
megahertz  
mega-ohm  
megasamples per second  
microampere  
microfarad  
µF  
µH  
µs  
µV  
microhenry  
microsecond  
microvolt  
µW  
mA  
ms  
mV  
nA  
microwatt  
milliampere  
millisecond  
millivolt  
nanoampere  
nanosecond  
nanovolt  
ns  
nV  
ohm  
pF  
picofarad  
ppm  
ps  
parts per million  
picosecond  
s
second  
sps  
sqrtHz  
V
samples per second  
square root of hertz  
volt  
W
watt  
Datasheet  
33  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Revision history  
Revision history  
Document  
Date  
revision  
Description of changes  
**  
2014-05-23  
New data sheet for new device family.  
Changed status from Advance to Preliminary.  
Updated Electrical Specifications:  
Updated Device Level Specifications:  
Updated description above Table 3.  
*A  
2014-07-23  
Updated Memory:  
Updated Table 16:  
Added Note 10 and referred the same note in minimum value of SID182 spec.  
Added Note 13 and referred the same note in minimum value of SID182A spec.  
Updated Electrical Specifications:  
Updated Device Level Specifications:  
Updated Table 3:  
Updated entire table.  
Updated Analog peripherals:  
Updated Comparator:  
Updated Table 9:  
Added maximum value of ICMP1 parameter as 110 µA.  
Added maximum value of ICMP2 parameter as 85 µA.  
Updated Table 10:  
Changed maximum value of TCOMP1 parameter from 50 ns to 90 ns.  
Changed maximum value of TCOMP2 parameter from 100 ns to 110 ns.  
Updated Digital peripherals:  
Removed Timer.  
Added Timer counter pulse-width modulator (TCPWM).  
Removed Counter.  
Removed Pulse Width Modulation (PWM).  
Updated I2C:  
Updated Table 13:  
Changed maximum value of II2C1 parameter from 10.5 µA to 25 µA.  
Added maximum value of II2C4 parameter as 2.5 µA.  
Updated Power-on reset (POR):  
Updated Table 17:  
*B  
2014-12-12  
Updated entire table.  
Updated Memory:  
Updated Table 16:  
Added maximum value of TBULKERASE parameter as 15 ms.  
Added maximum value of TDEVPROG parameter as 7.5 seconds.  
Updated System resources:  
Updated Power-on reset (POR):  
Updated Table 18:  
Added maximum value of VFALLPPOR parameter as 1.62 V.  
Changed minimum value of VFALLDPSLP parameter from 1.14 V to 1.11 V.  
Updated Internal main oscillator:  
Updated Table 20:  
Changed maximum value of IIMO1 parameter from 1000 µA to 250 µA.  
Changed maximum value of IIMO2 parameter from 325 µA to 180 µA.  
Updated Table 21:  
Added maximum value of TSTARTIMO parameter as 7 µs.  
Updated Packaging:  
Updated Table 27:  
Added values for TJ parameter corresponding to Condition “For A grade devices”.  
Changed maximum value of TJ parameter corresponding to Condition “For S grade devices” from 100 °C to  
120 °C.  
Removed TJC parameter and its details.  
*C  
*D  
2015-01-06  
2015-02-24  
Changed status from Preliminary to Final.  
Updated Ordering information:  
No change in part numbers.  
Updated Part numbering conventions.  
Updated Block diagram.  
Added Low Power Comparator block.  
Updated Pinouts.  
Updated Table 1.  
Updated details in “Name” column of pin 14 and pin 15 corresponding to 24-pin QFN and also updated details  
in “Alternate Functions” column corresponding to same pins.  
Updated details in “Name” column of pin 12 and pin 13 corresponding to 16-pin SOIC and also updated details  
in “Alternate Functions” column corresponding to same pins.  
Updated Packaging.  
*E  
2016-02-17  
2017-06-05  
Updated Package outline drawings.  
spec 001-13937 – Changed revision from *E to *F.  
Updated to new template.  
Updated Ordering information  
Updated part numbers.  
*F  
Updated to new template.  
Completing Sunset Review.  
Datasheet  
34  
001-92145 Rev. *L  
2023-01-19  
Automotive PSoC™ 4: PSoC™ 4000  
Based on Arm® Cortex®-M0 CPU  
Revision history  
Document  
Date  
revision  
Description of changes  
Updated Packaging.  
Updated Package outline drawings.  
spec 001-13937 – Changed revision from *F to *G.  
spec 51-85068 – Changed revision from *E to *F.  
Removed Note “Dimensions of the QFN package drawings are in millimeters.” and its reference.  
Updated to new template.  
*G  
2019-06-05  
Completing Sunset Review.  
Added Automotive-E temperature range related information in all instances across the document.  
Updated Ordering information.  
*H  
*I  
2019-07-11  
2020-02-12  
Updated part numbers.  
Updated to new template.  
Updated Electrical Specifications.  
Updated Absolute Maximum Ratings.  
Updated Table 2.  
Changed maximum value of ESD_HBM parameter from 2200 V to 2000 V.  
Updated to new template.  
Removed note on Grade-E specifications.  
Updated Table 3: Updated SID 255, SID54.  
Updated Table 11: Updated SID 308.  
Updated Table 15: Updated SID 173.  
*J  
2020-07-28  
Updated Table 20, Table 22, and Table 23: Updated Details/Conditions.  
Updated Ordering information: Removed note for availability of Grade-E devices. Removed note on  
same silicon ID.  
Updated Figure 6 (001-13937 *G to *H) in Package outline drawings.  
Updated SID.CLK #6 parameter.  
Updated conditions for Device-Level Specification.  
*K  
*L  
2021-10-07  
2023-01-19  
Product Information Notice #7235128.  
Updated Table 21: Removed “for A grade devices and –25 °C” from Details and conditions for SID223.  
Updated to Infineon template.  
Datasheet  
35  
001-92145 Rev. *L  
2023-01-19  
Please read the Important Notice and Warnings at the end of this document  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
WARNINGS  
The information given in this document shall in no Due to technical requirements products may contain  
Edition 2023-01-19  
Published by  
event be regarded as a guarantee of conditions or dangerous substances. For information on the types  
characteristics (“Beschaffenheitsgarantie”).  
in question please contact your nearest Infineon  
Technologies office.  
With respect to any examples, hints or any typical  
Infineon Technologies AG  
81726 Munich, Germany  
values stated herein and/or any information Except as otherwise explicitly approved by Infineon  
regarding the application of the product, Infineon Technologies in  
a
written document signed by  
Technologies hereby disclaims any and all authorized  
representatives of Infineon  
warranties and liabilities of any kind, including Technologies, Infineon Technologies’ products may  
without limitation warranties of non-infringement of not be used in any applications where a failure of the  
intellectual property rights of any third party.  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
© 2023 Infineon Technologies AG.  
All Rights Reserved.  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Do you have a question about this  
document?  
Email:  
erratum@infineon.com  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  
Document reference  
001-92145 Rev. *L  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY