CY8C4124LQS-S433T [INFINEON]

Automotive PSoC™ 4100S;
CY8C4124LQS-S433T
型号: CY8C4124LQS-S433T
厂家: Infineon    Infineon
描述:

Automotive PSoC™ 4100S

文件: 总59页 (文件大小:616K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
r e s t r i c t e d  
CY8C41xx  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Functional description  
PSoC™ 4 is a scalable and reconfigurable platform architecture for a family of programmable embedded system  
controllers with an Arm® Cortex®-M0+ CPU, while being AEC-Q100 compliant. It combines programmable and  
reconfigurable analog and digital blocks with flexible automatic routing. The PSoC™ 4100S product family is a  
member of the PSoC™ 4 platform architecture. It is a combination of a microcontroller with standard  
communication and timing peripherals, a capacitive touch-sensing system (CAPSENSE™) with best-in-class  
performance, programmable general-purpose continuous-time and switched-capacitor analog blocks, and  
programmable connectivity. PSoC™ 4100S products will be upward compatible with members of the PSoC™ 4  
platform for new applications and design needs.  
Features  
• Automotive Electronics Council (AEC) AEC-Q100 Qualified  
• 32-bit MCU subsystem  
- 48-MHz Arm® Cortex®-M0+ CPU  
- Up to 64 KB of flash with read accelerator  
- Up to 8 KB of SRAM  
• Programmable analog  
- Two opamps with reconfigurable high-drive external and high-bandwidth internal drive and Comparator  
modes and ADC input buffering capability. Opamps can operate in Deep Sleep low-power mode.  
- 12-bit 1-Msps SAR ADC with differential and single-ended modes, and channel sequencer with signal averaging  
- Single-slope 10-bit ADC function provided by a capacitance sensing block  
- Two current DACs (IDACs) for general-purpose or capacitive sensing applications on any pin  
- Two low-power comparators that operate in Deep Sleep low-power mode  
• Programmable digital  
- Programmable logic blocks allowing Boolean operations to be performed on port inputs and outputs  
• Low-power 1.71-V to 5.5-V operation  
- Deep Sleep mode with operational analog and 2.5-µA digital system current  
• Capacitive sensing  
- Capacitive sigma-delta (CSD) provides best-in-class signal-to-noise ratio (SNR) (>5:1) and water tolerance  
- Infineon-supplied software component makes capacitive sensing design easy  
- Automatic hardware tuning (SmartSense)  
• LCD drive capability  
- LCD segment drive capability on GPIOs  
• Serial communication  
- Three independent run-time reconfigurable serial communication blocks (SCBs) with re-configurable I2C, SPI,  
UART, or LIN slave functionality  
• Timing and pulse-width modulation  
- Five 16-bit timer/counter/pulse-width modulator (TCPWM) blocks  
- Center-aligned, edge, and pseudo-random modes  
- Comparator-based triggering of Kill signals for motor drive and other high-reliability digital logic applications  
• Up to 38 programmable GPIO pins  
- 24-pin QFN, 28-pin SSOP, 40-pin QFN, and 48-pin QFN packages  
- Any GPIO pin can be CapSense, analog, or digital  
- Drive modes, strengths, and slew rates are programmable  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Features  
• PSoC™ Creator design environment  
- Integrated development environment (IDE) provides  
schematic design entry and build (with analog and digital automatic routing)  
- Applications programming interface (API) component for all fixed-function and programmable peripherals  
• Industry-standard tool compatibility  
- After schematic entry, development can be done with Arm®-based industry-standard development tools  
• Temperature ranges  
- A-grade: –40°C to +85°C  
- S-grade: –40°C to +105°C  
- E-grade: –40°C to +125°C[1]  
Note  
1. This device can also operate at temperatures exceeding 125°C (the high temperature of the AEC-Q100 Grade 1 operating range) for a  
limited amount of time depending on the mission profile of the application. Infineon provides a retention calculator to help estimate  
the retention lifetime based on the customers' individual temperature profiles for operation throughout the –40°C to +150°C ambient  
temperature range. Go to the Infineon community page for more details.  
Datasheet  
2
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Table of contents  
Table of contents  
Functional description.......................................................................................................................1  
Features ...........................................................................................................................................1  
Table of contents...............................................................................................................................3  
Logic block diagram ..........................................................................................................................4  
1 Functional overview .......................................................................................................................5  
1.1 CPU and memory subsystem .................................................................................................................................5  
1.2 System resources....................................................................................................................................................6  
1.3 Analog blocks ..........................................................................................................................................................7  
1.4 Fixed function digital ..............................................................................................................................................9  
1.5 LIN slave mode........................................................................................................................................................9  
1.6 GPIO.......................................................................................................................................................................10  
1.7 Special function peripherals ................................................................................................................................10  
2 Pinouts ........................................................................................................................................12  
2.1 Alternate pin functions .........................................................................................................................................14  
3 Power ..........................................................................................................................................16  
3.1 Mode 1: 1.8 V to 5.5 V external supply..................................................................................................................16  
3.2 Mode 2: 1.8 V ±5% external supply.......................................................................................................................16  
4 Development support ...................................................................................................................18  
4.1 Documentation .....................................................................................................................................................18  
4.2 Online ....................................................................................................................................................................18  
4.3 Tools ......................................................................................................................................................................18  
5 Electrical specifications.................................................................................................................19  
5.1 Absolute maximum ratings ..................................................................................................................................19  
5.2 Device-level specifications ...................................................................................................................................20  
5.3 Analog peripherals................................................................................................................................................25  
5.4 Digital peripherals.................................................................................................................................................37  
5.5 Memory..................................................................................................................................................................41  
5.6 System resources..................................................................................................................................................42  
6 Ordering information ....................................................................................................................45  
7 Packaging information..................................................................................................................49  
7.1 Package diagrams.................................................................................................................................................50  
8 Acronyms.....................................................................................................................................55  
9 Document conventions..................................................................................................................59  
9.1 Units of measure ...................................................................................................................................................59  
Revision history ..............................................................................................................................60  
Datasheet  
3
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Logic block diagram  
Logic block diagram  
CPU Subsystem  
PSoC4100S  
Architecture  
SWD / TC  
Cortex®  
M0+  
SPCIF  
FLASH  
64 KB  
SRAM  
4 KB  
ROM  
8 KB  
32-bit  
48 MHz  
FAST MUL  
NVIC, IRQMUX  
AHB- Lite  
Read Accelerator  
SRAM Controller  
ROM Controller  
System Resources  
Lite  
System Interconnect (Single Layer AHB)  
Peripheral Interconnect (MMIO)  
Power  
Sleep Control  
WIC  
Peripherals  
PCLK  
POR  
REF  
PWRSYS  
Clock  
Clock Control  
WDT  
Programmable  
Analog  
ILO  
IMO  
Reset  
Reset Control  
XRES  
SAR ADC  
)
12-  
bit  
(
Test  
TestMode Entry  
Digital DFT  
Analog DFT  
CTBm  
2 x Opamp  
SARMUX  
High Speed I/O Matrix& 2 x Programmable I/O  
34x GPIOs, LCD  
Power Modes  
Active/ Sleep  
DeepSleep  
I/O Subsystem  
Figure 1  
Logic block diagram  
Datasheet  
4
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Functional overview  
1
Functional overview  
PSoC™ 4100S devices include extensive support for programming, testing, debugging, and tracing both hardware  
and firmware.  
The Arm® SWD interface supports all programming and debug features of the device.  
Complete debug-on-chip functionality enables full-device debugging in the final system using the standard  
production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the  
standard programming connections are required to fully support debug.  
The PSoC™ Creator IDE provides fully integrated programming and debug support for the PSoC™ 4100S devices.  
The SWD interface is fully compatible with industry-standard third-party tools. The PSoC™ 4100S family provides  
a level of security not possible with multi-chip application solutions or with microcontrollers.  
It has the following advantages:  
• Allows disabling of debug features  
• Robust flash protection  
• Allows customer-proprietary functionality to be implemented in on-chip programmable blocks  
The debug circuits are enabled by default and can be disabled in firmware. If they are not enabled, the only way  
to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new  
firmware that enables debugging. Thus firmware control of debugging cannot be over-ridden without erasing the  
firmware thus providing security.  
Additionally, all device interfaces can be permanently disabled (device security) for applications concerned  
about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and  
interrupting flash programming sequences. All programming, debug, and test interfaces are disabled when  
maximum device security is enabled. Therefore, PSoC™ 4100S, with device security enabled, may not be returned  
for failure analysis. This is a trade-off the PSoC™ 4100S allows the customer to make.  
1.1  
CPU and memory subsystem  
CPU  
1.1.1  
The Cortex®-M0+ CPU in the PSoC™ 4100S is part of the 32-bit MCU subsystem, which is optimized for low-power  
operation with extensive clock gating. Most instructions are 16 bits in length and the CPU executes a subset of  
the Thumb-2 instruction set. It includes a nested vectored interrupt controller (NVIC) block with eight interrupt  
inputs and also includes a wakeup interrupt controller (WIC). The WIC can wake the processor from Deep Sleep  
mode, allowing power to be switched off to the main processor when the chip is in Deep Sleep mode.  
The CPU also includes a debug interface, the SWD interface, which is a two-wire form of JTAG. The debug config-  
uration used for PSoC™ 4100S has four breakpoint (address) comparators and two watchpoint (data) compar-  
ators.  
1.1.2  
Flash  
The PSoC™ 4100S device has a flash module with a flash accelerator, tightly coupled to the CPU to improve  
average access times from the flash block. The low-power flash block is designed to deliver two wait state (WS)  
access time at 48 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average.  
1.1.3  
SRAM  
8 KB of SRAM are provided with zero wait state access at 48 MHz.  
1.1.4  
SROM  
An 8 KB supervisory ROM that contains boot and configuration routines is provided.  
Datasheet  
5
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Functional overview  
1.2  
1.2.1  
System resources  
Power system  
The power system is described in detail in the section “Power” on page 16. It provides assurance that voltage  
levels are as required for each respective mode and either delays mode entry (for example, on power-on reset  
(POR)) until voltage levels are as required for proper functionality, or generates resets (for example, on brown-out  
detection). The PSoC™ 4100S operates with a single external supply over the range of either 1.8 V ±5% (externally  
regulated) or 1.8 to 5.5 V (internally regulated) and has three different power modes, transitions between which  
are managed by the power system. The PSoC™ 4100S provides Active, Sleep, and Deep Sleep low-power modes.  
All subsystems are operational in Active mode. The CPU subsystem (CPU, flash, and SRAM) is clock-gated off in  
Sleep mode, while all peripherals and interrupts are active with instantaneous wake-up on a wake-up event. In  
Deep Sleep mode, the high-speed clock and associated circuitry is switched off; wake-up from this mode takes  
35 µs. The opamps can remain operational in Deep Sleep mode.  
1.2.2  
Clock system  
The PSoC™ 4100S clock system is responsible for providing clocks to all subsystems that require clocks and for  
switching between different clock sources without glitching. In addition, the clock system ensures that there are  
no metastable conditions.  
The clock system for the PSoC™ 4100S consists of the internal main oscillator (IMO), internal low-speed oscillator  
(ILO), a 32 kHz watch crystal oscillator (WCO) and provision for an external clock. Clock dividers are provided to  
generate clocks for peripherals on a fine-grained basis. Fractional dividers are also provided to enable clocking  
of higher data rates for UARTs.  
IMO  
HFCLK  
Divide By  
2,4,8  
External Clock  
ILO  
LFCLK  
HFCLK  
Prescaler  
SYSCLK  
Integer  
Dividers  
6X 16-bit  
Fractional  
Dividers  
2X 16.5-bit  
Figure 2  
Clocking architecture  
The HFCLK signal can be divided down to generate synchronous clocks for the analog and digital peripherals.  
There are eight clock dividers for the PSoC™ 4100S; two of those are fractional dividers. The 16-bit capability  
allows flexible generation of fine-grained frequency values and is fully supported in PSoC™ Creator  
1.2.3  
IMO clock source  
The IMO is the primary source of internal clocking in the PSoC™ 4100S. It is trimmed during testing to achieve the  
specified accuracy.The IMO default frequency is 24 MHz and it can be adjusted from 24 to 48 MHz in steps of 4 MHz.  
The IMO tolerance with Infineon-provided calibration settings is ±2%.  
1.2.4  
ILO clock source  
The ILO is a very low power, nominally 40-kHz oscillator, which is primarily used to generate clocks for the  
watchdog timer (WDT) and peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to  
the IMO to improve accuracy. Infineon provides a software component, which does the calibration.  
Datasheet  
6
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Functional overview  
1.2.5  
Watch crystal oscillator (WCO)  
The PSoC™ 4100S clock subsystem also implements a low-frequency (32-kHz watch crystal) oscillator that can  
be used for precision timing applications.  
1.2.6  
Watchdog timer  
A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during  
Deep Sleep and generates a watchdog reset if not serviced before the set timeout occurs. The watchdog reset is  
recorded in a Reset Cause register, which is firmware readable.  
1.2.7  
Reset  
The PSoC™ 4100S can be reset from a variety of sources including a software reset. Reset events are asynchronous  
and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset  
and allows software to determine the cause of the reset. An XRES pin is reserved for external reset by asserting it  
active low. The XRES pin has an internal pull-up resistor that is always enabled.  
1.3  
Analog blocks  
1.3.1  
12-bit successive approximation register (SAR) ADC  
The 12-bit, 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks  
at that frequency to do a 12-bit conversion.  
The Sample-and-Hold (S/H) aperture is programmable allowing the gain bandwidth requirements of the  
amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. It is possible to  
provide an external bypass (through a fixed pin location) for the internal reference amplifier.  
The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through selected  
channels autonomously (sequencer scan) with zero switching overhead (that is, aggregate sampling bandwidth  
is equal to 1 Msps whether it is for a single channel or distributed over several channels). The sequencer switching  
is effected through a state machine or through firmware driven switching. A feature provided by the sequencer  
is buffering of each channel to reduce CPU interrupt service requirements. To accommodate signals with varying  
source impedance and frequency, it is possible to have different sample times programmable for each channel.  
Also, signal range specification through a pair of range registers (low and high range values) is implemented with  
a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast  
detection of out-of-range values without the necessity of having to wait for a sequencer scan to be completed  
and the CPU to read the values and check for out-of-range values in software.  
The SAR is not available in Deep Sleep mode as it requires a high-speed clock (up to 18 MHz). The SAR operating  
range is 1.71 V to 5.5 V.  
Datasheet  
7
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Functional overview  
AHB System Bus and Programmable Logic  
Interconnect  
SAR Sequencer  
Sequencing  
and Control  
Data and  
Status Flags  
POS  
NEG  
SARADC  
External  
Reference  
and  
Bypass  
(optional )  
Reference  
Selection  
VDDD  
VREF  
VDD/2  
Inputs from other Ports  
Figure 3  
SAR ADC  
1.3.2  
Two opamps (Continuous-time block; CTB)  
The PSoC™ 4100S has two opamps with Comparator modes which allow most common analog functions to be  
performed on-chip eliminating external components; PGAs, Voltage Buffers, Filters, Trans-Impedance Amplifiers,  
and other functions can be realized, in some cases with external passives. saving power, cost, and space. The  
on-chip opamps are designed with enough bandwidth to drive the Sample-and-Hold circuit of the ADC without  
requiring external buffering.  
1.3.3  
Low-power comparators (LPC)  
The PSoC™ 4100S has a pair of low-power comparators, which can also operate in Deep Sleep modes. This allows  
the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during  
low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating  
in an asynchronous power mode where the system wake-up circuit is activated by a comparator switch event.  
The LPC outputs can be routed to pins.  
1.3.4  
Current DACs  
The PSoC™ 4100S has two IDACs, which can drive any of the pins on the chip. These IDACs have programmable  
current ranges.  
1.3.5  
Analog multiplexed buses  
The PSoC™ 4100S has two concentric independent buses that go around the periphery of the chip. These buses  
(called amux buses) are connected to firmware-programmable analog switches that allow the chip's internal  
resources (IDACs, comparator) to connect to any pin on the I/O Ports.  
1.3.6  
Programmable digital blocks  
The Programmable I/O (Smart I/O) block is a fabric of switches and LUTs that allows Boolean functions to be  
performed in signals being routed to the pins of a GPIO port. The Smart I/O can perform logical operations on  
input pins to the chip and on signals going out as outputs.  
Datasheet  
8
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Functional overview  
1.4  
Fixed function digital  
1.4.1  
Timer/counter/PWM (TCPWM) block  
The TCPWM block consists of a 16-bit counter with user-programmable period length. There is a capture register  
to record the count value at the time of an event (which may be an I/O event), a period register that is used to  
either stop or auto-reload the counter when its count is equal to the period register, and compare registers to  
generate compare value signals that are used as PWM duty cycle outputs. The block also provides true and  
complementary outputs with programmable offset between them to allow use as dead-band programmable  
complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this  
is used in motor drive systems when an over-current state is indicated and the PWM driving the FETs needs to be  
shut off immediately with no time for software intervention. There are five TCPWM blocks in the PSoC™ 4100S.  
1.4.2  
Serial communication block (SCB)  
The PSoC™ 4100S has three serial communication blocks, which can be programmed to have SPI, I2C, UART or  
LIN Slave functionality.  
I2C Mode: The hardware I2C block implements a full multi-master and slave interface (it is capable of  
multi-master arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has  
flexible buffering options to reduce interrupt overhead and latency for the CPU. It also supports EZI2C that  
creates a mailbox address range in the memory of the PSoC™ 4100S and effectively reduces I2C communication  
to reading from and writing to an array in memory. In addition, the block supports an 8-deep FIFO for receive and  
transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock  
stretching caused by the CPU not having read data on time.  
The I2C peripheral is compatible with the I2C Standard-mode and Fast-mode devices as defined in the NXP  
I2C-bus specification and user manual (UM10204). The I2C bus I/O is implemented with GPIO in open-drain  
modes.  
The PSoC™ 4100S is not completely compliant with the I2C spec in the following respect:  
• GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently  
of the rest of the I2C system.  
UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface  
(LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic  
UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals  
connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame  
error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.  
SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (adds a start pulse used to synchronize SPI Codecs),  
and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.  
1.5  
LIN slave mode  
The LIN Slave mode uses the SCB hardware block and implements a full LIN slave interface. This LIN Slave is  
compliant with LIN v1.3, v2.1/2.2, ISO 17987-6, and SAE J2602-2 specification standards. It is certified by C&S  
GmbH based on the standard protocol and data link layer conformance tests. LIN slave can be operated at baud  
rates of up to ~20 Kbps with a maximum of 40-meter cable length. PSoC™ Creator software supports up to two  
LIN slave interfaces in the PSoC™ 4 device, providing built-in application programming interfaces (APIs) based on  
the LIN specification standard.  
Datasheet  
9
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Functional overview  
1.6  
GPIO  
The PSoC™ 4100S has up to 38 GPIOs.  
The GPIO block implements the following:  
• Eight drive modes:  
- Analog input mode (input and output buffers disabled)  
- Input only  
- Weak pull-up with strong pull-down  
- Strong pull-up with weak pull-down  
- Open drain with strong pull-down  
- Open drain with strong pull-up  
- Strong pull-up with strong pull-down  
- Weak pull-up with weak pull-down  
• Input threshold select (CMOS or LVTTL).  
• Individual control of input and output buffer enabling/disabling in addition to the drive strength modes  
• Selectable slew rates for dV/dt related noise control to improve EMI  
The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the  
blocks are forced to the disabled state so as not to crowbar any inputs and/or cause excess turn-on current. A  
multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may  
connect to an I/O pin.  
Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the  
pins themselves.  
Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt  
service routine (ISR) vector associated with it (5 for PSoC™ 4100S).  
Datasheet  
10  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Functional overview  
1.7  
1.7.1  
Special function peripherals  
CAPSENSE™  
CAPSENSE™ is supported in the PSoC™ 4100S through a CSD block that can be connected to any pins through an  
analog multiplex bus via analog switches. CAPSENSE™ function can thus be provided on any available pin or  
group of pins in a system under software control. A PSoC™ Creator component is provided for the CAPSENSE™  
block to make it easy for the user.  
Shield voltage can be driven on another analog multiplex bus to provide water-tolerance capability. Water  
tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capac-  
itance from attenuating the sensed input. Proximity sensing can also be implemented.  
The CAPSENSE™ block has two IDACs, which can be used for general purposes if CAPSENSE™ is not being used  
(both IDACs are available in that case) or if CAPSENSE™ is used without water tolerance (one IDAC is available).  
The CAPSENSE™ block also provides a 10-bit Slope ADC function which can be used in conjunction with the  
CAPSENSE™ function.  
The CAPSENSE™ block is an advanced, low-noise, programmable block with programmable voltage references  
and current source ranges for improved sensitivity and flexibility. It can also use an external reference voltage. It  
has a full-wave CSD mode that alternates sensing to VDDA and ground to null out power-supply related noise.  
1.7.2  
LCD segment drive  
The PSoC™ 4100S has an LCD controller, which can drive up to 4 commons and up to 32 segments. It uses full  
digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods  
used are referred to as Digital Correlation and PWM. Digital Correlation pertains to modulating the frequency and  
drive levels of the common and segment signals to generate the highest RMS voltage across a segment to light it  
up or to keep the RMS signal to zero. This method is good for STN displays but may result in reduced contrast  
with TN (cheaper) displays. PWM pertains to driving the panel with PWM signals to effectively use the capacitance  
of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This  
method results in higher power consumption but can result in better results when driving TN displays. LCD  
operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).  
Datasheet  
11  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Pinouts  
2
Pinouts  
Table 1 provides the pin list for PSoC™ 4100S for the for the 8-pin QFN, 40-pin QFN, 28-pin SSOP, and 24-pin QFN  
packages. All port pins support GPIO.  
Table 1  
Pin list  
48-QFN-Auto  
40-QFN-Auto  
Pin  
28-SSOP-Auto  
24-QFN-Auto-2  
Pin  
28  
Name  
P0.0  
Name  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
XRES  
VCCD  
VSSD  
VDD  
VDD  
VSSA  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
Pin  
Name  
P0.0  
P0.1  
P0.2  
P0.3  
Pin  
13  
14  
Name  
P0.0  
P0.1  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
33  
34  
35  
36  
37  
38  
39  
19  
20  
21  
22  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
1
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
XRES  
VCCD  
VSSD  
VDDD  
VDDA  
VSSA  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
15  
16  
17  
P0.4  
P0.5  
P0.6  
23  
24  
25  
26  
27  
28  
P0.6  
P0.7  
XRES  
VCCD  
VSS  
18  
19  
20  
21  
XRES  
VCCD  
VSSD  
VDD  
VDD  
22  
VSSA  
1
2
3
4
5
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
23  
24  
P1.2  
P1.3  
P1.5  
P1.6  
P1.7/VREF  
P2.0  
40  
1
P1.7/VREF  
P2.0  
6
P1.7/VREF  
1
2
3
P1.7/VREF  
P2.0  
2
3
P2.1  
2
P2.1  
P2.1  
4
P2.2  
3
P2.2  
5
P2.3  
4
P2.3  
6
7
8
9
P2.4  
P2.5  
P2.6  
P2.7  
5
6
7
8
P2.4  
P2.5  
P2.6  
P2.7  
7
8
9
P2.4  
P2.5  
P2.6  
P2.7  
4
5
P2.6  
P2.7  
10  
12  
13  
14  
15  
16  
VSSD  
P3.0  
P3.1  
P3.2  
P3.3  
9
VSSD  
P3.0  
P3.1  
P3.2  
P3.3  
10  
11  
12  
13  
11  
12  
13  
14  
P3.0  
P3.1  
P3.2  
P3.3  
6
P3.0  
7
8
P3.2  
P3.3  
Datasheet  
12  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Pinouts  
Table 1  
48-QFN-Auto  
Pin  
Pin list (continued)  
40-QFN-Auto  
28-SSOP-Auto  
24-QFN-Auto-2  
Name  
P3.4  
P3.5  
P3.6  
P3.7  
VDDD  
P4.0  
P4.1  
P4.2  
P4.3  
NC  
Pin  
Name  
P3.4  
P3.5  
P3.6  
P3.7  
Pin  
Name  
Pin  
Name  
17  
18  
19  
20  
21  
22  
23  
24  
25  
10  
11  
26  
27  
14  
15  
16  
17  
18  
19  
20  
21  
P4.0  
P4.1  
P4.2  
P4.3  
15  
16  
17  
18  
P4.0  
P4.1  
P4.2  
P4.3  
9
P4.0  
P4.1  
P4.2  
P4.3  
10  
11  
12  
NC  
NC  
NC  
The power pins description is as follows:  
VDDD: Power supply for the digital section.  
VDDA: Power supply for the analog section.  
VSSD, VSSA: Ground pins for the digital and analog sections respectively.  
VCCD: Regulated digital supply (1.8 V ± 5%)  
VDD: On some packages, VDDA and VDDD are shorted inside and brought out as a single power supply  
NC: No connection  
Datasheet  
13  
002-15106 Rev. *J  
2023-02-21  
2.1  
Alternate pin functions  
Each port pin has can be assigned to one of multiple functions. For example, it can be an analog I/O, a digital peripheral function, an LCD pin, or a  
CAPSENSE™ pin.  
Table 2 provides the pin assignments.  
Table 2  
Alternate pin functions  
Alternate  
Alternate  
Alternate  
Name  
Analog  
Smart I/O  
Deep Sleep 1 Deep Sleep 2  
Deep Sleep 3  
Deelp Sleep 4  
Function 1  
Function 2  
Function 3  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P1.0  
lpcomp.in_p[0]  
lpcomp.in_n[0]  
lpcomp.in_p[1]  
lpcomp.in_n[1]  
wco.wco_in  
scb[2].uart_cts:0  
scb[2].uart_rts:0  
tcpwm.tr_in[0]  
tcpwm.tr_in[1]  
lcd.com[0]  
lcd.com[1]  
lcd.com[2]  
lcd.com[3]  
lcd.com[4]  
lcd.com[5]  
lcd.com[6]  
lcd.com[7]  
lcd.com[8]  
lcd.seg[0]  
lcd.seg[1]  
lcd.seg[2]  
lcd.seg[3]  
lcd.seg[4]  
lcd.seg[5]  
lcd.seg[6]  
lcd.seg[7]  
lcd.seg[8]  
scb[2].i2c_scl:0 scb[0].spi_select1:0  
scb[2].i2c_sda:0 scb[0].spi_select2:0  
scb[0].spi_select3:0  
scb[2].spi_select0  
scb[1].uart_rx:0  
scb[1].uart_tx:0  
scb[1].uart_cts:0  
scb[1].uart_rts:0  
scb[0].uart_rx:1  
scb[2].uart_rx:0  
scb[2].uart_tx:0  
scb[2].uart_tx:1  
scb[1].i2c_scl:0  
scb[1].i2c_sda:0  
scb[1].spi_mosi:1  
scb[1].spi_miso:1  
scb[1].spi_clk:1  
wco.wco_out  
srss.adft_por_pad_hv  
srss.ext_clk  
tcpwm.line[0]:2  
tcpwm.line[2]:1  
scb[1].spi_select0:1  
scb[0].spi_mosi:1  
pass.ctb0_pads[0]  
pass.ctb0_pads[1]  
scb[0].i2c_scl:0  
scb[0].i2c_sda:0  
scb[2].i2c_scl:1  
P1.1  
P1.2  
P1.3  
tcpwm.line_-  
compl[2]:1  
scb[0].uart_tx:1  
scb[0].uart_cts:1  
scb[0].uart_rts:1  
lcd.com[9]  
lcd.com[10]  
lcd.com[11]  
lcd.seg[9]  
lcd.seg[10]  
lcd.seg[11]  
scb[0].spi_miso:1  
scb[0].spi_clk:1  
pass.ctb0_pads[2]  
tcpwm.line[3]:1  
tcpwm.tr_in[2]  
tcpwm.tr_in[3]  
pass.ctb0_oa0_out_10x  
pass.ctb0_pads[3]  
tcpwm.line_-  
compl[3]:1  
scb[2].i2c_sda:1 scb[0].spi_select0:1  
pass.ctb0_oa1_out_10x  
P1.4  
P1.5  
P1.6  
P1.7  
pass.ctb0_pads[4]  
pass.ctb0_pads[5]  
pass.ctb0_pads[6]  
lcd.com[12]  
lcd.com[13]  
lcd.com[14]  
lcd.com[15]  
lcd.seg[12]  
lcd.seg[13]  
lcd.seg[14]  
lcd.seg[15]  
scb[0].spi_select1:1  
scb[0].spi_select2:1  
scb[0].spi_select3:1  
scb[2].spi_clk  
pass.ctb0_pads[7]  
pass.sar_ext_vref0  
pass.sar_ext_vref1  
P2.0  
P2.1  
pass.sarmux_pads[0] prgio[0].io[0] tcpwm.line[4]:0  
csd.comp  
tcpwm.tr_in[4]  
tcpwm.tr_in[5]  
lcd.com[16]  
lcd.com[17]  
lcd.seg[16]  
lcd.seg[17]  
scb[1].i2c_scl:1  
scb[1].i2c_sda:1  
scb[1].spi_mosi:2  
scb[1].spi_miso:2  
pass.sarmux_pads[1] prgio[0].io[1] tcpwm.line_-  
compl[4]:0  
P2.2  
pass.sarmux_pads[2] prgio[0].io[2]  
lcd.com[18]  
lcd.seg[18]  
scb[1].spi_clk:2  
Table 2  
Alternate pin functions (continued)  
Alternate  
Alternate  
Alternate  
Name  
Analog  
Smart I/O  
Deep Sleep 1 Deep Sleep 2  
Deep Sleep 3  
Deelp Sleep 4  
Function 1  
Function 2  
Function 3  
P2.3  
P2.4  
P2.5  
pass.sarmux_pads[3] prgio[0].io[3]  
lcd.com[19]  
lcd.com[20]  
lcd.com[21]  
lcd.seg[19]  
lcd.seg[20]  
lcd.seg[21]  
scb[1].spi_select0:2  
scb[1].spi_select1:1  
scb[1].spi_select2:1  
pass.sarmux_pads[4] prgio[0].io[4] tcpwm.line[0]:1  
pass.sarmux_pads[5] prgio[0].io[5] tcpwm.line_-  
compl[0]:1  
P2.6  
P2.7  
pass.sarmux_pads[6] prgio[0].io[6] tcpwm.line[1]:1  
lcd.com[22]  
lcd.com[23]  
lcd.seg[22]  
lcd.seg[23]  
scb[1].spi_select3:1  
scb[2].spi_mosi  
pass.sarmux_pads[7] prgio[0].io[7] tcpwm.line_-  
compl[1]:1  
lpcomp.comp[0]:1  
P3.0  
P3.1  
prgio[1].io[0] tcpwm.line[0]:0  
scb[1].uart_rx:1  
scb[1].uart_tx:1  
lcd.com[24]  
lcd.com[25]  
lcd.seg[24]  
lcd.seg[25]  
scb[1].i2c_scl:2  
scb[1].i2c_sda:2  
scb[1].spi_mosi:0  
scb[1].spi_miso:0  
prgio[1].io[1] tcpwm.line_-  
compl[0]:0  
P3.2  
P3.3  
prgio[1].io[2] tcpwm.line[1]:0  
scb[1].uart_cts:1  
scb[1].uart_rts:1  
lcd.com[26]  
lcd.com[27]  
lcd.seg[26]  
lcd.seg[27]  
cpuss.swd_data  
cpuss.swd_clk  
scb[1].spi_clk:0  
prgio[1].io[3] tcpwm.line_-  
compl[1]:0  
scb[1].spi_select0:0  
P3.4  
P3.5  
prgio[1].io[4] tcpwm.line[2]:0  
tcpwm.tr_in[6]  
lcd.com[28]  
lcd.com[29]  
lcd.seg[28]  
lcd.seg[29]  
scb[1].spi_select1:0  
scb[1].spi_select2:0  
prgio[1].io[5] tcpwm.line_-  
compl[2]:0  
P3.6  
P3.7  
prgio[1].io[6] tcpwm.line[3]:0  
lcd.com[30]  
lcd.com[31]  
lcd.seg[30]  
lcd.seg[31]  
scb[1].spi_select3:0  
scb[2].spi_miso  
prgio[1].io[7] tcpwm.line_-  
compl[3]:0  
lpcomp.comp[1]:1  
P4.0  
P4.1  
P4.2  
csd.vref_ext  
scb[0].uart_rx:0  
scb[0].uart_tx:0  
scb[0].uart_cts:0  
lcd.com[32]  
lcd.com[33]  
lcd.com[34]  
lcd.seg[32]  
lcd.seg[33]  
lcd.seg[34]  
scb[0].i2c_scl:1  
scb[0].i2c_sda:1  
lpcomp.comp[0]:0  
scb[0].spi_mosi:0  
scb[0].spi_miso:0  
scb[0].spi_clk:0  
csd.cshieldpads  
csd.cmodpads  
csd.cmodpadd  
P4.3  
csd.csh_tankpads  
csd.csh_tankpadd  
scb[0].uart_rts:0  
lcd.com[35]  
lcd.seg[35]  
lpcomp.comp[1]:0 scb[0].spi_select0:0  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Power  
3
Power  
Figure 4 illustrates the set of power supply pins as implemented for the PSoC™ 4100S. The system has one  
regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from  
the VDDA input.  
VDDA  
VDDD  
VDDA  
VSSA  
VDDD  
VSSD  
Analog  
Domain  
Digital  
Domain  
VCCD  
1.8 Volt  
Regulator  
Figure 4  
Power supply connections  
There are two distinct modes of operation. In Mode 1, the supply voltage range is 1.8 V to 5.5 V (unregulated  
externally; internal regulator operational). In Mode 2, the supply range is1.8 V ±5% (externally regulated; 1.71 to  
1.89, internal regulator bypassed).  
3.1  
Mode 1: 1.8 V to 5.5 V external supply  
In this mode, the PSoC™ 4100S is powered by an external power supply that can be anywhere in the range of 1.8  
to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from  
a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the  
PSoC™ 4100S supplies the internal logic and its output is connected to the VCCD pin. The VCCD pin must be  
bypassed to ground via an external capacitor (0.1 µF; X5R ceramic or better) and must not be connected to  
anything else.  
Datasheet  
16  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Power  
3.2  
Mode 2: 1.8 V ±5% external supply  
In this mode, the PSoC™ 4100S is powered by an external power supply that must be within the range of 1.71 to  
1.89 V; note that this range needs to include the power supply ripple too. In this mode, the VDD and VCCD pins  
are shorted together and bypassed.  
Bypass capacitors must be used from VDDD to ground. The typical practice for systems in this frequency range is  
to use a capacitor in the 1-µF range, in parallel with a smaller capacitor (0.1 µF, for example). Note that these are  
simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass  
capacitor parasitic should be simulated to design and obtain optimal bypassing.  
On some packages, VDDD and VDDA pins are shorted inside the package and brought out as a generic VDD pin. In  
that case, only 0.1 µF and 1 µF decoupling capacitors are required on the VDD pin. Figure 5 illustrates an example  
of a bypass scheme.  
Power supply bypass connections example  
1.8 V to 5.5 V  
1.8 V to 5.5 V  
VDDA  
VDD  
1F  
F  
0.1F  
0.1F  
VCCD  
0.1F  
PSoC4100S  
VSS  
Figure 5  
External supply range from 1.8 V to 5.5 V with internal regulator active  
Datasheet  
17  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Development support  
4
Development support  
The PSoC™ 4100S family has a rich set of documentation, development tools, and online resources to assist you  
during your development process. Visit www.infineon.com/psoc4 to find out more.  
4.1  
Documentation  
A suite of documentation supports the PSoC™ 4100S family to ensure that you can find answers to your questions  
quickly. This section contains a list of some of the key documents.  
Software User Guide: A step-by-step guide for using PSoC™ Creator. The software user guide shows you how the  
PSoC™ Creator build process works in detail, how to use source control with PSoC™ Creator, and much more.  
Component Datasheets: The flexibility of PSoC™ allows the creation of new peripherals (components) long after  
the device has gone into production. Component data sheets provide all of the information needed to select and  
use a particular component, including a functional description, API documentation, example code, and AC/DC  
specifications.  
Application Notes: PSoC™ application notes discuss a particular application of PSoC™ in depth; examples  
include brushless DC motor control and on-chip filtering. Application notes often include example projects in  
addition to the application note document.  
Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need  
to use a PSoC™ device, including a complete description of all PSoC™ registers. The TRM is available in the  
Documentation section at www.infineon.com/psoc4.  
4.2  
Online  
In addition to print documentation, the PSoC™ forums connect you with fellow PSoC™ users and experts in  
PSoC™ from around the world, 24 hours a day, 7 days a week.  
4.3  
Tools  
With industry standard cores, programming, and debugging interfaces, the PSoC™ 4100S family is part of a devel-  
opment tool ecosystem. Visit us at www.infineon.com/psoccreator for the latest information on the revolu-  
tionary, easy to use PSoC™ Creator IDE, supported third party compilers, programmers, debuggers, and devel-  
opment kits.  
Datasheet  
18  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
5
Electrical specifications  
5.1  
Table 3  
Absolute maximum ratings  
Absolute maximum ratings[2]  
Details/  
Spec ID  
SID1  
Parameter Description  
Min  
–0.5  
–0.5  
Typ  
Max  
6
Units  
conditions  
VDDD_ABS  
VCCD_ABS  
VGPIO_ABS  
IGPIO_ABS  
Digital supply relative to VSS  
Direct digital core voltage input  
relative to VSS  
SID2  
1.95  
V
SID3  
SID4  
GPIO voltage  
–0.5  
–25  
VDD+0.5  
25  
Maximum current per GPIO  
Current  
injected per  
pin  
mA  
GPIO injection current, Max for  
VIH > VDDD, and Min for VIL < VSS  
SID5  
IGPIO_injection  
ESD_HBM  
–0.5  
0.5  
Electrostatic discharge human  
body model  
BID44  
2200  
V
Electrostatic discharge charged  
device model  
BID45  
BID46  
ESD_CDM  
LU  
500  
Pin current for latch-up  
–140  
140  
mA  
Note  
2. Usage above the absolute maximum conditions listed in Table 3 may cause permanent damage to the device.  
Exposure to Absolute Maximum conditions for extended periods of time may affect device reliability. The  
Maximum Storage Temperature is 150°C in compliance with JEDEC Standard JESD22-A103, High  
Temperature Storage Life. When used below Absolute Maximum conditions but above normal operating  
conditions, the device may not operate to specification.  
Datasheet  
19  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
5.2  
Device-level specifications  
All specifications are valid for –40°C TA 85°C for Grade-A devices, –40°C TA 105°C for Grade-S devices, and  
–40°C TA 125°C for Grade-E devices. Specifications are valid for 1.71 V to 5.5 V, except where noted.[3]  
5.2.1  
Table 4  
DC specifications  
DC specifications  
Typical values measured at VDD = 3.3 V and 25°C.  
Details/  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
conditions  
Internally  
regulated  
supply  
SID53  
VDD  
Power supply input voltage  
1.8  
5.5  
V
Internally  
unregulated  
supply  
Power supply input voltage  
SID255  
VDD  
1.71  
1.89  
(VCCD = VDDD = VDDA  
)
SID54  
SID55  
VCCD  
CEFC  
Output voltage (for core logic)  
1.8  
0.1  
X5R ceramic or  
better  
External regulator voltage bypass  
µF  
X5R ceramic or  
better  
SID56  
CEXC  
Power supply bypass capacitor  
1
Active Mode, VDD = 1.8 V to 5.5 V. Typical values measured at VDD = 3.3 V and 25 °C.  
Max is at 125°C  
and 5.5 V  
SID10  
SID16  
SID19  
IDD5  
IDD8  
IDD11  
Execute from flash; CPU at 6 MHz  
Execute from flash; CPU at 24 MHz  
Execute from flash; CPU at 48 MHz  
1.8  
3.0  
5.4  
2.7  
Max is at 125°C  
and 5.5 V  
4.75  
6.85  
mA  
Max is at 125°C  
and 5.5 V  
Sleep Mode, VDDD = 1.8 V to 5.5 V (Regulator on)  
I2C wakeup WDT, and Compar-  
6 MHZ. Max is at  
125°C and 5.5 V.  
SID22  
IDD17  
1.7  
2.2  
2.2  
2.5  
ators on  
mA  
mA  
12 MHZ. Max is  
at 125°C and  
5.5 V.  
I2C wakeup, WDT, and Compar-  
ators on.  
SID25  
IDD20  
Sleep Mode, VDDD = 1.71 V to 1.89 V (Regulator bypassed)  
I2C wakeup, WDT, and  
Comparators on  
6 MHZ. Max is at  
125°C and 5.5 V.  
SID28  
IDD23  
0.7  
1.0  
0.9  
1.2  
12 MHZ. Max is  
mA at 125°C and  
5.5 V.  
I2C wakeup, WDT, and  
Comparators on  
SID28A  
IDD23A  
Deep Sleep Mode, VDD = 1.8 V to 3.6 V (Regulator on)  
Max is at 3.6 V  
µA  
SID31  
IDD26  
I2C wakeup and WDT on  
2.5  
150  
and 125°C.  
Note  
3. This device is not AEC-Q100 Grade 0 qualified, so Infineon does not guarantee performance at +150°C. The  
specifications for 125°C < TA 150°C are best estimates of the performance.  
Datasheet  
20  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
Table 4  
DC specifications (continued)  
Typical values measured at VDD = 3.3 V and 25°C.  
Details/  
Spec ID  
Deep Sleep Mode, VDD = 3.6 V to 5.5 V (Regulator on)  
SID34 IDD29  
I2C wakeup and WDT on  
Parameter  
Description  
Min  
Typ  
2.5  
2.5  
2
Max  
150  
160  
5
Unit  
µA  
conditions  
Max is at 5.5 V  
and 125°C.  
Deep Sleep Mode, VDD = VCCD = 1.71 V to 1.89 V (Regulator bypassed)  
Max is at 1.89 V  
and 125°C.  
SID37  
IDD32  
I2C wakeup and WDT on  
µA  
XRES Current  
Supply current while XRES  
asserted  
SID307  
IDD_XR  
mA  
5.2.2  
AC specifications  
Table 5  
AC specifications  
Details/  
Spec ID Parameter  
Min  
Typ  
Max  
Units  
Description  
conditions  
SID48  
FCPU  
CPU frequency  
Wakeup from Sleep mode  
Wakeup from Deep Sleep mode  
DC  
0
35  
48  
MHz 1.71 VDD 5.5  
SID49[4] TSLEEP  
µs  
SID50[4] TDEEPSLEEP  
Note  
4. Guaranteed by characterization.  
Datasheet  
21  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
5.2.3  
Table 6  
GPIO  
GPIO DC specifications  
Spec ID Parameter Description  
Min  
Typ  
Max Unit Details/conditions  
0.7   
[5]  
SID57  
VIH  
VIL  
VIH  
VIL  
Input voltage high threshold  
Input voltage low threshold  
LVTTL input, VDDD < 2.7 V  
LVTTL input, VDDD < 2.7 V  
CMOS Input  
VDDD  
0.3   
SID58  
CMOS Input  
VDDD  
0.7   
[5]  
[5]  
SID241  
SID242  
VDDD  
0.3   
VDDD  
SID243  
SID244  
SID59  
VIH  
VIL  
LVTTL input, VDDD 2.7 V  
LVTTL input, VDDD 2.7 V  
Output voltage high level  
2.0  
0.8  
V
VOH  
VDDD –0.6  
IOH = 4 mA at 3 V VDDD  
IOH = 1 mA at 1.8 V  
VDDD  
SID60  
SID61  
SID62  
VOH  
Output voltage high level  
Output voltage low level  
Output voltage low level  
VDDD –0.5  
IOL = 4 mA at 1.8 V  
VDDD  
VOL  
VOL  
0.6  
0.6  
IOL = 10 mA at 3 V  
VDDD  
SID62A  
SID63  
VOL  
Output voltage low level  
Pull-up resistor  
3.5  
3
5.6  
0.4  
8.5  
IOL = 3 mA at 3 V VDDD  
RPULLUP  
RPULLUP  
–40°C TA 125°C  
SID63A  
SID64  
Pull-up resistor  
kΩ 125°C TA 150°C  
–40°C TA 125°C  
125°C TA 150°C  
RPULLDOWN Pull-down resistor  
RPULLDOWN Pull-down resistor  
3.5  
3
5.6  
8.5  
SID64A  
Input leakage current  
SID65  
IIL  
2
7
nA 25°C, VDDD = 3.0 V  
(absolute value)  
SID66  
CIN  
Input capacitance  
pF  
V
DDD 2.7 V, –40°C   
SID67[6] VHYSTTL  
SID67A[6] VHYSTTL  
SID68[6] VHYSCMOS  
Input hysteresis LVTTL  
Input hysteresis LVTTL  
Input hysteresis CMOS  
25  
40  
TA 125°C  
7.5  
125°C TA 150°C  
mV  
0.05 ×  
VDDD  
VDD < 4.5 V  
SID68A[6] VHYSCMOS5V5 Input hysteresis CMOS  
200  
VDD > 4.5 V  
Current through protection  
SID69[6] IDIODE  
100  
µA  
diode to VDD/VSS  
Maximum total source or sink  
SID69A[6] ITOT_GPIO  
200  
mA  
chip current  
Notes  
5. VIH must not exceed VDDD + 0.2 V.  
6. Guaranteed by characterization.  
Datasheet  
22  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
Table 7  
GPIO AC Specifications  
(Guaranteed by Characterization)  
Spec ID Parameter Description  
Min Typ Max Unit Details/conditions  
Rise time in fast strong  
mode  
Rise time in fast strong  
mode  
Fall time in fast strong  
mode  
Fall time in fast strong  
mode  
Rise time in slow strong  
mode  
Rise time in slow strong  
mode  
Fall time in slow strong  
mode  
Fall time in slow strong  
mode  
3.3 V VDDD, Cload = 25 pF, –40°C   
TA 125°C  
3.3 V VDDD, Cload = 25 pF, 125°C   
TA 150°C  
3.3 V VDDD, Cload = 25 pF, –40°C   
TA 125°C  
3.3 V VDDD, Cload = 25 pF, 125°C   
TA 150°C  
3.3 V VDDD, Cload = 25 pF, –4°C TA  
125°C  
3.3 V VDDD, Cload = 25 pF, 125°C   
TA 150°C  
3.3 V VDDD, Cload = 25 pF, –40°C   
TA 125°C  
3.3 V VDDD, Cload = 25 pF, 125°C   
TA 150°C  
SID70  
SID70A TRISEF  
SID71 TFALLF  
SID71A TFALLF  
SID72 TRISES  
SID72A TRISES  
SID73 TFALLS  
SID73A TFALLS  
TRISEF  
2
12  
25  
ns  
2
12  
25  
10  
60  
ns  
130  
60  
10  
130  
ns  
GPIO FOUT; 3.3 V VDDD   
5.5 V  
90/10%, 25-pF load, 60/40 duty  
cycle  
SID74  
SID75  
SID76  
FGPIOUT1  
33  
16.7  
7
Fast strong mode  
GPIO FOUT; 1.71 VVDDD  
3.3 V  
Fast strong mode  
GPIO FOUT; 3.3 V VDDD   
5.5 V  
Slow strong mode  
GPIO FOUT; 1.71 V VDDD   
3.3 V  
Slow strong mode.  
GPIO input operating  
frequency;  
1.71 V VDDD 5.5 V  
90/10%, 25-pF load, 60/40 duty  
cycle  
FGPIOUT2  
90/10%, 25-pF load, 60/40 duty  
cycle  
FGPIOUT3  
MHz  
90/10%, 25-pF load, 60/40 duty  
cycle  
SID245 FGPIOUT4  
SID246 FGPIOIN  
3.5  
48  
90/10% VIO  
Datasheet  
23  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
5.2.4  
XRES  
Table 8  
XRES DC specifications  
Spec ID Parameter Description  
Min  
Typ Max Unit Details/conditions  
0.7 ×  
VDDD  
SID77  
SID78  
VIH  
VIL  
Input voltage high threshold  
Input voltage low threshold  
V
CMOS Input  
0.3   
VDDD  
SID79  
SID80  
RPULLUP  
CIN  
Pull-up resistor  
Input capacitance  
60  
7
kΩ  
pF  
Typical hysteresis is 200 mV  
for VDD > 4.5 V  
SID81[7] VHYSXRES  
Input voltage hysteresis  
100  
mV  
µA  
Current through protection  
diode to VDD/VSS  
SID82  
IDIODE  
100  
Table 9  
XRES AC specifications  
Spec ID Parameter Description  
Min  
Typ  
Max Unit Details/conditions  
SID83[7] TRESETWIDTH Reset pulse width  
1
µs  
Wake-up time from reset  
BID194[7] TRESETWAKE  
2.7  
ms  
release  
Note  
7. Guaranteed by characterization.  
Datasheet  
24  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
5.3  
Analog peripherals  
5.3.1  
CTBm opamp  
Table 10  
CTBm opamp specifications  
Spec ID  
Parameter  
Description  
Min Typ  
Max  
Unit Details/conditions  
Opamp block current,  
External load  
IDD  
SID269  
SID270  
SID270A  
SID271  
SID271A  
IDD_HI  
power = hi  
1100  
550  
1850  
950  
IDD_MED  
IDD_MED  
IDD_LOW  
IDD_LOW  
power = med  
power = med  
power = lo  
power = lo  
–40°C TA 125°C  
1075  
350  
µA  
125°C TA 150°C  
–40°C TA 125°C  
125°C TA 15 °C  
150  
500  
Load = 20 pF, 0.1 mA  
VDDA = 2.7 V  
GBW  
Input and output are  
0.2 V to VDDA-0.2 V, –  
40°C TA 125°C  
SID272  
SID272A  
SID273  
GBW_HI  
GBW_HI  
GBW_MED  
power = hi  
power = hi  
power = med  
6
4.5  
3
125°C TA 150°C  
Input and output are  
0.2 V to VDDA-0.2 V, –  
40°C TA 125°C  
MHz  
SID273A  
SID274  
GBW_MED  
GBW_LO  
power = med  
power = lo  
3
1
125°C TA 150°C  
Input and output are  
0.2 V to VDDA-0.2 V  
VDDA = 2.7 V, 500 mV  
from rail  
IOUT_MAX  
Output is 0.5 V,  
VDDA-0.5 V  
SID275  
SID276  
SID277  
IOUT_MAX_HI  
power = hi  
10  
10  
5
Output is 0.5 V,  
VDDA-0.5 V  
IOUT_MAX_MID power = mid  
mA  
mA  
Output is 0.5 V,  
VDDA-0.5 V  
IOUT_MAX_LO  
IOUT  
IOUT_MAX_HI  
IOUT_MAX_MID  
IOUT_MAX_LO  
IDD_Int  
power = lo  
VDDA = 1.71 V, 500 mV  
from rail  
Output is 0.5 V,  
VDDA-0.5 V  
SID278  
SID279  
SID280  
power = hi  
4
4
Output is 0.5 V,  
VDDA-0.5 V  
power = mid  
Output is 0.5 V,  
VDDA-0.5 V  
power = lo  
2
Opamp block current  
Internal Load  
Datasheet  
25  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
Table 10  
Spec ID  
SID269_I  
CTBm opamp specifications (continued)  
Parameter  
IDD_HI_Int  
IDD_MED_Int  
IDD_LOW_Int  
GBW  
Description  
power = hi  
Min Typ  
Max  
1700  
900  
Unit Details/conditions  
1500  
SID270_I  
SID271_I  
power = med  
power = lo  
700  
µA  
VDDA = 2.7 V  
Output is 0.25 V to  
VDDA-0.25 V  
GBW_HI_Int  
SID272_I  
power = hi  
8
MHz  
General opamp specs  
for both internal and  
external modes  
Charge-pump on, VDDA  
= 2.7 V  
VIN  
VDDA-0.2  
VDDA-0.2  
SID281  
SID282  
–0.05  
–0.05  
V
Charge-pump on, VDDA  
= 2.7 V  
VCM  
VOUT  
VOUT_1  
VDDA = 2.7 V  
power = hi,  
Iload = 10 mA  
V
DDA -0.5  
SID283  
SID284  
SID285  
SID286  
0.5  
0.2  
0.2  
0.2  
power = hi,  
Iload = 1 mA  
VOUT_2  
VOUT_3  
VOUT_4  
VDDA -0.2  
VDDA -0.2  
V
power = med,  
Iload = 1 mA  
power = lo,  
Iload = 0.1 mA  
V
DDA -0.2  
1.0  
High mode, input 0 V  
to VDDA-0.2 V,  
Offset voltage,  
trimmed  
VOS_TR  
SID288  
–1.0 0.5  
–40°C TA 125°C  
High mode, input 0 V  
to VDDA-0.2 V, 125°C   
Offset voltage,  
trimmed  
–1.3  
1.3  
VOS_TR  
SID288C  
mV  
TA 150°C  
Medium mode, input  
0 V to VDDA-0.2 V  
Offset voltage,  
trimmed  
VOS_TR  
VOS_TR  
SID288A  
SID288B  
1  
Low mode, input 0 V  
to VDDA-0.2 V  
Offset voltage,  
trimmed  
2  
Datasheet  
26  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
Table 10  
Spec ID  
CTBm opamp specifications (continued)  
Parameter  
Description  
Min Typ  
Max  
Unit Details/conditions  
High mode, –40°C TA  
125°C  
Offset voltage drift,  
trimmed  
VOS_DR_TR  
SID290  
–10  
–15  
3  
10  
High mode, 125°C TA  
150°C  
Offset voltage drift,  
trimmed  
15  
VOS_DR_TR  
VOS_DR_TR  
VOS_DR_TR  
VOS_DR_TR  
VOS_DR_TR  
SID290C  
SID290A  
SID290D  
SID290B  
SID290E  
Medium mode, –40°C  
TA 125°C  
Offset voltage drift,  
trimmed  
10  
15  
10  
15  
µV/°C  
Medium mode, 125°C  
TA 150°C  
Offset voltage drift,  
trimmed  
Low mode, –40°C TA  
125°C  
Offset voltage drift,  
trimmed  
Low mode, 125°C TA  
150°C  
Offset voltage drift,  
trimmed  
Input is 0 V to  
VDDA-0.2 V, Output is  
SID291  
SID292  
CMRR  
PSRR  
DC  
70  
70  
80  
85  
0.2 V to VDDA-0.2 V  
dB  
VDDD = 3.6 V,  
high-power mode,  
input is 0.2 V to  
At 1 kHz, 10-mV ripple  
VDDA-0.2 V  
Datasheet  
27  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
Table 10  
Spec ID  
CTBm opamp specifications (continued)  
Parameter  
Description  
Min Typ  
Max  
Unit Details/conditions  
Noise  
Input and output are  
at 0.2 V to VDDA-0.2 V  
Input-referred, 1 kHz,  
power = Hi  
SID294  
SID295  
VN2  
VN3  
72  
28  
Input and output are  
nV/rtHz at 0.2 V to VDDA-0.2 V  
Input-referred,10 kHz,  
power = Hi  
Input-referred,  
100 kHz,  
power = Hi  
Input and output are  
at 0.2 V to VDDA-0.2 V  
SID296  
VN4  
15  
Stable up to max.  
load. Performance  
specs at 50 pF.  
6
CLOAD  
SID297  
SID298  
125  
pF  
Cload = 50 pF, Power =  
High, VDDA = 2.7 V  
SLEW_RATE  
V/µs  
From disable to  
T_OP_WAKE enable, no external RC  
dominating  
SID299  
25  
µs  
SID299A  
OL_GAIN  
Open Loop Gain  
90  
dB  
Comparator mode;  
50 mV drive, Trise = Tfall  
COMP_MODE  
(approx.)  
Input is 0.2 V to  
Response time; power  
= hi  
SID300  
SID301  
TPD1  
TPD2  
150  
500  
VDDA-0.2 V  
Input is 0.2 V to  
VDDA-0.2 V  
Response time; power  
= med  
ns  
Input is 0.2 V to  
Response time; power  
= lo  
SID302  
SID303  
SID304  
TPD3  
2500  
V
DDA-0.2 V  
VHYST_OP  
WUP_CTB  
Hysteresis  
10  
mV  
µs  
Wake-up time from  
Enabled to Usable  
25  
Mode 2 is lowest  
current range. Mode 1  
has higher GBW.  
Deep Sleep  
Mode  
Datasheet  
28  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
Table 10  
Spec ID  
CTBm opamp specifications (continued)  
Parameter  
Description  
Min Typ  
Max  
Unit Details/conditions  
IDD_HI_M1  
SID_DS_1  
Mode 1, High current  
1400  
25°C  
Mode 1, Medium  
current  
IDD_MED_M1  
SID_DS_2  
700  
25°C  
IDD_LOW_M1  
IDD_HI_M2  
SID_DS_3  
SID_DS_4  
Mode 1, Low current  
Mode 2, High current  
200  
25°C  
µA  
120  
25°C  
Mode 2, Medium  
current  
IDD_MED_M2  
IDD_LOW_M2  
SID_DS_5  
SID_DS_6  
60  
25°C  
25°C  
Mode 2, Low current  
15  
20-pF load,  
no DC load 0.2 V to  
4
GBW_HI_M1  
SID_DS_7  
SID_DS_8  
SID_DS_9  
SID_DS_10  
SID_DS_11  
SID_DS_12  
Mode 1, High current  
VDDA-0.2 V  
20-pF load,  
no DC load 0.2 V to  
Mode 1, Medium  
current  
2
GBW_MED_M1  
GBW_LOW_M1  
GBW_HI_M2  
VDDA-0.2 V  
20-pF load,  
no DC load 0.2 V to  
Mode 1, Low current  
Mode 2, High current  
0.5  
VDDA-0.2 V  
MHz  
20-pF load,  
no DC load 0.2 V to  
0.5  
VDDA-0.2 V  
20-pF load,  
no DC load 0.2 V to  
Mode 2, Medium  
current  
GBW_MED_M2  
0.2  
VDDA-0.2 V  
20-pF load,  
no DC load 0.2 V to  
GBW_Low_M2  
Mode 2, Low current  
Mode 1, High current  
0.1  
VDDA-0.2 V  
With trim 25°C,  
0.2 V to VDDA-0.2 V  
5
VOS_HI_M1  
SID_DS_13  
SID_DS_14  
SID_DS_15  
SID_DS_16  
SID_DS_17  
SID_DS_18  
With trim 25°C,  
0.2 V to VDDA-0.2 V  
Mode 1, Medium  
current  
5
VOS_MED_M1  
VOS_LOW_M2  
VOS_HI_M2  
With trim 25°C,  
0.2 V to VDDA-0.2 V  
5
Mode 1, Low current  
Mode 2, High current  
mV  
With trim 25°C,  
0.2V to VDDA-0.2 V  
5
With trim 25°C,  
0.2 V to VDDA-0.2 V  
Mode 2, Medium  
current  
5
VOS_MED_M2  
VOS_LOW_M2  
With trim 25°C,  
0.2 V to VDDA-0.2 V  
5
Mode 2, Low current  
Datasheet  
29  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
Table 10  
Spec ID  
CTBm opamp specifications (continued)  
Parameter  
Description  
Min Typ  
Max  
Unit Details/conditions  
Output is 0.5 V to  
IOUT_HI_M1  
SID_DS_19  
SID_DS_20  
Mode 1, High current  
10  
VDDA-0.5 V  
Output is 0.5 V to  
Mode 1, Medium  
current  
IOUT_MED_M1  
10  
VDDA-0.5 V  
Output is 0.5 V to  
4
IOUT_LOW_M1  
IOUT_HI_M2  
IOU_MED_M2  
IOU_LOW_M2  
SID_DS_21  
SID_DS_22  
SID_DS_23  
SID_DS_24  
Mode 1, Low current  
mA  
VDDA-0.5 V  
1
Mode 2, High current  
Mode 2, Medium  
current  
1
Mode 2, Low current  
0.5  
Datasheet  
30  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
5.3.2  
Table 11  
Comparator  
Comparator DC specifications  
Spec ID  
Parameter Description  
Details/conditions  
Min Typ  
Max  
Unit  
Input offset voltage, Factory  
Normal mode, –40°C  
SID84  
VOFFSET1  
±15  
±10  
trim  
TA 125°C  
Input offset voltage, Factory  
trim  
Input offset voltage, Custom  
trim  
Input offset voltage, Custom  
trim  
125 °C TA 150°C,  
normal mode  
SID84A  
SID85  
VOFFSET1  
±4  
mV Low power mode, –  
VOFFSET2  
40°C TA 125°C  
125°C TA 150°C,  
low power mode  
SID85A  
VOFFSET2  
±4  
SID86  
SID86A  
VHYST  
VHYST  
Hysteresis when enabled  
Hysteresis when enabled  
10  
35  
40  
–40°C TA 125°C  
125°C TA 150°C  
Input common mode voltage  
in normal mode  
Input common mode voltage  
in low power mode  
Input common mode voltage  
in ultra low power mode  
Common mode rejection  
ratio  
Common mode rejection  
ratio  
Common mode rejection  
ratio  
SID87  
VICM1  
VICM2  
VICM3  
CMRR  
CMRR  
CMRR  
0
0
VDDD-0.1  
Modes 1 and 2  
SID247  
SID247A  
SID88  
VDDD  
V
VDDD 2.2 V  
at –40°C  
VDDD 2.7 V, –40°C   
TA 125°C  
VDDD 2.7 V; 125°C   
TA 150°C  
0
VDDD-1.15  
50  
SID88B  
SID88A  
50  
dB  
VDDD 2.7 V, –40°C   
TA 125°C  
42  
Common mode rejection  
ratio  
Block current, normal mode  
Block current, low power  
mode  
VDDD 2.7 V; 125°C   
TA 150°C  
SID88C  
SID89  
CMRR  
ICMP1  
ICMP2  
42  
400  
100  
SID248  
µA  
Block current in ultra  
low-power mode  
DC Input impedance of  
comparator  
VDDD 2.2 V  
SID259  
SID90  
ICMP3  
ZCMP  
6
at –40°C  
35  
MΩ  
Table 12  
Spec ID  
Comparator AC specifications  
Parameter Description  
Response time, normal mode,  
Min Typ  
Max  
110  
200  
Unit  
Details/conditions  
SID91  
TRESP1  
50 mV overdrive  
38  
70  
Response time, low power  
mode, 50 mV overdrive  
SID258  
TRESP2  
ns  
µs  
Response time, ultra-low  
power mode, 200 mV  
overdrive  
SID92  
TRESP3  
2.3  
15  
VDDD 2.2 V at –40°C  
Datasheet  
31  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
5.3.3  
Temperature sensor  
Table 13  
Temperature sensor specifications  
Spec ID Parameter  
SID93 TSENSACC  
SID93A TSENSACC  
Description  
Temperature sensor accuracy  
Temperature sensor accuracy –15  
Min  
–5  
Typ  
±1  
Max  
5
+15  
Unit Details/conditions  
°C  
°C  
–40°C to +85°C  
–85°C to +150°C  
5.3.4  
Table 14  
SAR ADC  
SAR ADC DC specifications  
Spec ID Parameter  
Description  
Min Typ  
Max  
Unit Details/conditions  
SID94 A_RES  
Resolution  
12  
bits  
Number of channels - single  
ended  
SID95 A_CHNLS_S  
8
8 full speed.  
Number of channels - differ-  
ential  
Monotonicity  
Diff inputs use neigh-  
boring I/O  
Yes.  
With external  
reference.  
SID96 A-CHNKS_D  
SID97 A-MONO  
4
SID98 A_GAINERR Gain error  
±0.1  
%
Measured with 1-V  
mV reference, –40°C TA  
125°C  
SID99 A_OFFSET  
Input offset voltage  
2
SID99A A_OFFSET  
SID100 A_ISAR  
Input offset voltage  
Current consumption  
Input voltage range - single  
ended  
Input voltage range - differ-  
ential  
2.7  
1
mV 125°C TA 150°C  
mA  
SID101 A_VINS  
SID102 A_VIND  
VSS  
VSS  
VDDA  
VDDA  
V
V
SID103 A_INRES  
SID104 A_INCAP  
Input resistance  
Input capacitance  
Trimmed internal reference to  
SAR  
2.2  
10  
KΩ  
pF  
SID260 VREFSAR  
TBD  
V
Table 15  
SAR ADC AC Specifications  
Spec ID Parameter Description  
Min Typ  
Max  
Unit Details/conditions  
SID106 A_PSRR  
SID107 A_CMRR  
Power supply rejection ratio  
70  
dB  
Measured at 1 V, –40°C  
TA 125°C  
Common mode rejection ratio  
66  
dB  
SID107A A_CMRR  
SID108 A_SAMP  
SID108A A_SAMP  
Common mode rejection ratio  
Sample rate  
Sample rate  
66  
1
dB 125°C TA 150°C  
Msps –40°C TA 125°C  
Msps 125°C TA 150°C  
0.375  
Signal-to-noise and distortion  
ratio (SINAD)  
Signal-to-noise and distortion  
ratio (SINAD)  
Input bandwidth without  
aliasing  
FIN = 10 kHz, –40°C TA  
SID109 A_SNR  
SID109A A_SNR  
SID110 A_BW  
SID111 A_INL  
65  
65  
dB  
125°C  
dB 125°C TA 150°C  
A_samp/  
2
kHz  
Integral non linearity.  
VDD = 1.71 to 5.5, 1 Msps  
VREF = 1 to VDD, –40°C   
TA 125°C  
–1.7  
2
LSB  
Datasheet  
32  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
Table 15  
SAR ADC AC Specifications (continued)  
Spec ID Parameter Description  
Min Typ  
Max  
Unit Details/conditions  
Integral non linearity.  
VREF = 1.71 to VDD, –  
SID111A A_INL  
SID111B A_INL  
SID111C A_INL  
SID111D A_INL  
SID111E A_INL  
SID112 A_DNL  
SID112A A_DNL  
SID112B A_DNL  
SID112C A_DNL  
SID112D A_DNL  
–1.5  
–1.5  
–4.5  
–4.5  
–4.5  
–1  
1.7  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
VDDD = 1.71 to 3.6, 1 Msps  
40°C TA 125°C  
Integral non linearity.  
VDD = 1.71 to 5.5, 500 ksps  
Integral non linearity. VDD = 4.5  
to 5.5 V, 375 ksps  
Integral non linearity.  
VDD = 3 to 4.5 V, 300 ksps  
Integral non linearity.  
VDD = 1.71 to 3 V, 150 ksps  
Differential non linearity.  
VDD = 1.71 to 5.5, 1 Msps  
Differential non linearity.  
VDD = 1.71 to 3.6, 1 Msps  
Differential non linearity.  
VDD = 1.71 to 5.5, 500 ksps  
Differential non linearity. VDD  
4.5 to 5.5V, 375 ksps  
Differential non linearity. VDD = 3  
to 4.5 V, 300 ksps  
Differential non linearity. VDD  
1.71 to 3 V, 150 ksps  
VREF = 1 to VDD, –40°C   
TA 125°C  
VREF = 1 to VDD, 125°C   
TA 150°C  
VREF = 1 to VDD, 125°C   
TA 150°C  
VREF = 1 to VDD, 125°C   
TA 150°C  
VREF = 1 to VDD, –40°C   
TA 125°C  
VREF = 1.71 to VDD, –40  
°C TA 125°C  
VREF = 1 to VDD, –40°C   
TA 125°C  
VREF = 1 to VDD, 125°C   
TA 150°C  
VREF = 1 to VDD, 125°C   
TA 150°C  
VREF = 1 to VDD, 125°C   
TA 150°C  
1.7  
3.3  
3.3  
3.4  
2.2  
2
–1  
–1  
2.2  
3.2  
3.2  
=
–1  
–1  
=
SID112E A_DNL  
SID113 A_THD  
SID113A A_THD  
–1  
3.3  
–65  
Total harmonic distortion  
dB Fin = 10 kHz  
Fin = 10 kHz, 125°C TA  
150°C  
–65  
Total harmonic distortion  
dB  
SAR operating speed without  
external reference bypass  
SID261 FSARINTREF  
100  
ksps 12-bit resolution  
5.3.5  
Table 16  
CSD and IDAC  
CSD and IDAC specifications  
Spec ID  
Parameter  
Description  
Min Typ  
Max  
Unit Details/conditions  
SYS.PER#3 VDD_RIPPLE  
VDD > 2 V (with ripple),  
mV 25°C TA,  
Max allowed ripple on  
power supply, DC to 10 MHz  
±50  
Sensitivity = 0.1 pF  
SYS.PER#16 VDD_RIPPLE_1.8  
VDD > 1.75 V (with  
ripple), 25°C TA,  
Max allowed ripple on  
power supply, DC to 10 MHz  
±25  
mV Parasitic Capacitance  
(CP) < 20 pF,  
Sensitivity 0.4 pF  
SID.CSD.BLK ICSD  
Maximum block  
current for both IDACs  
in dynamic  
Maximum block current  
4000  
µA (switching) mode  
including compar-  
ators, buffer, and  
reference generator.  
Datasheet  
33  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
Table 16  
Spec ID  
CSD and IDAC specifications (continued)  
Parameter  
Description  
Min Typ  
Max  
Unit Details/conditions  
SID.CSD#15 VREF  
Voltage reference for CSD  
and Comparator  
External Voltage reference  
for CSD and Comparator  
VDDA - 0.06 or 4.4,  
0.6  
0.6  
1.2 VDDA - 0.6  
VDDA - 0.6  
whichever is lower  
V
SID.CSD#15A VREF_EXT  
VDDA - 0.06 or 4.4,  
whichever is lower  
SID.CSD#16 IDAC1IDD  
SID.CSD#17 IDAC2IDD  
IDAC1 (7 bits) block current  
IDAC2 (7 bits) block current  
1750  
1750  
µA  
SID308  
VCSD  
1.8 V ±5% or 1.8 V to  
Voltage range of operation 1.71  
5.5  
5.5 V  
V
SID308A  
VCOMPIDAC  
Voltage compliance range  
of IDAC  
VDDA - 0.06 or 4.4,  
whichever is lower  
0.6  
VDDA –0.6  
SID309  
SID310  
IDAC1DNL  
IDAC1INL  
DNL  
–1  
–3  
–1  
1
3
1
INL is ±5 LSB for  
VDDA < 2 V  
INL  
SID311  
SID312  
IDAC2DNL  
IDAC2INL  
DNL  
LSB  
INL is ±5 LSB for  
INL  
INL  
–3  
3
7
VDDA < 2 V, –40°C TA   
125 °C  
SID312A  
SID313  
IDAC2INL  
SNR  
125°C TA 150°C  
Capacitance range of  
Ratio of counts of finger to  
noise. Guaranteed by  
characterization  
5 to 35 pF, 0.1-pF  
5
sensitivity. All use  
cases. VDDA > 2 V  
SID314  
IDAC1CRT1  
IDAC1CRT2  
IDAC1CRT3  
IDAC1CRT12  
IDAC1CRT22  
Output current of IDAC1 (7  
bits) in low range  
Output current of IDAC1(7  
bits) in medium range  
Output current of IDAC1(7  
bits) in high range  
Output current of IDAC1 (7  
bits) in low range, 2X mode  
4.2  
34  
275  
8
5.2  
41  
LSB = 37.5-nA typ  
SID314A  
SID314B  
SID314C  
SID314D  
LSB = 300-nA typ  
LSB = 2.4-µA typ  
330  
10.5  
LSB = 37.5-nA typ. 2X  
µA output stage  
Output current of IDAC1(7  
bits) in medium range, 2X  
mode  
LSB = 300-nA typ. 2X  
output stage  
69  
82  
SID314E  
SID315  
IDAC1CRT32  
IDAC2CRT1  
Output current of IDAC1(7  
bits) in high range, 2X mode  
Output current of IDAC2 (7  
bits) in low range  
LSB = 2.4-µA typ.2X  
output stage  
540  
4.2  
660  
5.2  
LSB = 37.5-nA typ.  
Datasheet  
34  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
Table 16  
CSD and IDAC specifications (continued)  
Spec ID  
Parameter  
Description  
Min Typ  
Max  
Unit Details/conditions  
SID315A  
IDAC2CRT2  
Output current of IDAC2 (7  
bits) in medium range  
Output current of IDAC2 (7  
bits) in high range  
Output current of IDAC2 (7  
bits) in low range, 2X mode  
Output current of IDAC2(7  
bits) in medium range, 2X  
mode  
Output current of IDAC2(7  
bits) in high range, 2X mode  
Output current of IDAC in  
8-bit mode in low range  
Output current of IDAC in  
8-bit mode in medium  
range  
Output current of IDAC in  
8-bit mode in high range  
34  
275  
8
41  
LSB = 300-nA typ.  
SID315B  
SID315C  
SID315D  
IDAC2CRT3  
IDAC2CRT12  
IDAC2CRT22  
330  
LSB = 2.4-µA typ.  
LSB = 37.5-nA typ. 2X  
output stage  
10.5  
LSB = 300-nA typ. 2X  
output stage  
69  
82  
µA  
SID315E  
SID315F  
SID315G  
IDAC2CRT32  
IDAC3CRT13  
IDAC3CRT23  
LSB = 2.4-µA typ. 2X  
output stage  
540  
8
660  
10.5  
LSB = 37.5-nA typ  
69  
82  
LSB = 300-nA typ  
SID315H  
SID320  
IDAC3CRT33  
IDACOFFSET  
540  
660  
LSB = 2.4-µA typ  
Polarity set by Source  
or Sink. Offset is 2  
All zeros input  
1
LSB  
LSBs for 37.5 nA/LSB  
mode  
SID321  
SID321A  
SID322  
IDACGAIN  
IDACGAIN  
IDACMIS-  
MATCH1  
IDACMIS-  
MATCH2  
IDACMIS-  
MATCH3  
IDACMIS-  
Full-scale error less offset  
Full-scale error less offset  
Mismatch between IDAC1  
and IDAC2 in Low mode  
Mismatch between IDAC1  
and IDAC2 in Medium mode  
Mismatch between IDAC1  
and IDAC2 in High mode  
Mismatch between IDAC1  
and IDAC2 in High mode  
Settling time to 0.5 LSB for  
8-bit IDAC  
Settling time to 0.5 LSB for  
7-bit IDAC  
External modulator  
capacitor  
±10  
±11  
–40°C TA 125°C  
125°C TA 150°C  
%
9.2  
4.6  
2.3  
6.3  
10  
10  
LSB = 37.5-nA typ.  
LSB = 300-nA typ.  
SID322A  
SID322B  
SID322C  
SID323  
SID324  
SID325  
LSB  
LSB = 2.4 µA typ, –40°C  
TA 125°C  
125°C TA 150°C  
MATCH4  
IDACSET8  
Full-scale transition.  
No external load.  
µs  
IDACSET7  
CMOD  
Full-scale transition.  
No external load.  
5-V rating, X7R or NP0  
cap  
2.2  
nF  
Datasheet  
35  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
5.3.6  
10-bit CAPSENSE™ ADC  
Table 17  
10-bit CAPSENSE™ ADC specifications  
Spec ID  
Parameter  
Description  
Details/conditions  
Min Typ Max Unit  
Auto-zeroing is  
bits required every milli-  
second  
SIDA94  
A_RES  
Resolution  
10  
Number of channels - single  
ended  
Monotonicity  
SIDA95  
SIDA97  
A_CHNLS_S  
A-MONO  
16  
Defined by AMUX Bus.  
Yes  
%
In VREF (2.4 V) mode  
with VDDA bypass  
capacitance of 10 µF  
SIDA98  
SIDA99  
A_GAINERR  
A_OFFSET  
Gain error  
±2  
3
In VREF (2.4 V) mode  
Input offset voltage  
mV with VDDA bypass  
capacitance of 10 µF  
SIDA100  
SIDA101  
A_ISAR  
A_VINS  
Current consumption  
Input voltage range - single  
ended  
0.25  
mA  
VSSA  
VDDA  
V
SIDA103  
SIDA104  
A_INRES  
A_INCAP  
Input resistance  
Input capacitance  
2.2  
20  
KΩ  
pF  
In VREF (2.4 V) mode  
Power supply rejection  
ratio  
SIDA106  
SIDA107  
A_PSRR  
A_TACQ  
60  
1
dB with VDDA bypass  
capacitance of 10 µF  
µs  
Sample acquisition time  
Does not include  
acquisition time.  
Conversion time for 8-bit  
resolution at conversion  
rate = Fhclk/(2^(N+2)).  
Clock frequency = 48 MHz.  
SIDA108  
A_CONV8  
21.3  
µs Equivalent to  
44.8 ksps including  
acquisition time.  
Does not include  
acquisition time.  
µs Equivalent to  
11.6 ksps including  
acquisition time.  
Conversion time for 10-bit  
resolution at conversion  
rate = Fhclk/(2^(N+2)).  
SIDA108A A_CONV10  
85.3  
Clock frequency = 48 MHz.  
With 10-Hz input sine  
Signal-to-noise and  
Distortion ratio (SINAD)  
wave, external 2.4-V  
SIDA109  
A_SND  
61  
dB  
reference, VREF (2.4 V)  
mode  
Input bandwidth without  
aliasing  
Integral Non Linearity. 1  
ksps  
Differential Non Linearity. 1  
ksps  
SIDA110  
SIDA111  
SIDA112  
A_BW  
A_INL  
A_DNL  
22.4  
2
kHz 8-bit resolution  
LSB VREF = 2.4 V or greater  
1
LSB  
Datasheet  
36  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
5.4  
Digital peripherals  
5.4.1  
Timer counter pulse-width modulator (TCPWM)  
Table 18  
TCPWM specifications  
Spec ID  
Parameter Description  
Details/conditions  
Min Typ Max Unit  
Block current consumption at  
All modes (TCPWM)  
ITCPWM1  
SID.TCPWM.1  
SID.TCPWM.2  
SID.TCPWM.2A  
SID.TCPWM.3  
45  
155  
650  
Fc  
3 MHz  
Block current consumption at  
12 MHz  
Block current consumption at  
48 MHz  
All modes (TCPWM)  
All modes (TCPWM)  
ITCPWM2  
µA  
ITCPWM3  
Fc max = CLK_SYS  
Maximum = 48 MHz  
TCPWMFREQ  
Operating frequency  
MHz  
For all trigger  
events[8]  
TPWMENEXT  
SID.TCPWM.4  
Input trigger pulse width  
2/Fc  
Minimum possible  
width of Overflow,  
Underflow, and CC  
(Counter equals  
Compare value)  
outputs  
TPWMEXT  
SID.TCPWM.5  
Output trigger pulse widths  
2/Fc  
Minimum time  
between successive  
counts  
ns  
TCRES  
SID.TCPWM.5A  
SID.TCPWM.5B  
Resolution of counter  
PWM resolution  
1/Fc  
1/Fc  
Minimum pulse  
width of PWM  
Output  
PWMRES  
Minimum pulse  
width between  
Quadrature phase  
inputs  
QRES  
SID.TCPWM.5C  
Quadrature inputs resolution 1/Fc  
Note  
8. Trigger events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is  
selected.  
Datasheet  
37  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
5.4.2  
Table 19  
I2C  
Fixed I2C DC specifications[9]  
Parameter Description  
Spec ID  
Min Typ Max Unit Details/conditions  
SID149  
II2C1  
II2C2  
II2C3  
II2C4  
Block current consumption at  
50  
100 kHz  
SID150  
SID151  
Block current consumption at  
400 kHz  
135  
310  
1.4  
µA  
Block current consumption at 1  
Mbps  
I2C enabled in Deep Sleep mode  
SID152  
Table 20  
Fixed I2C AC Specifications[9]  
Parameter Description  
Spec ID  
Min Typ Max Unit Details/conditions  
Msps –  
SID153  
FI2C1  
Bit rate  
1
5.4.3  
Table 21  
SPI  
SPI DC Specifications[10]  
Spec ID  
Parameter Description  
Min Typ Max Unit Details/conditions  
Block current consumption at  
SID163  
ISPI1  
ISPI2  
ISPI3  
360  
560  
600  
1 Mbps  
Block current consumption at  
4 Mbps  
SID164  
SID165  
µA  
Block current consumption at  
8 Mbps  
Table 22  
SPI AC Specifications[10]  
Spec ID Parameter Description  
Min  
Typ  
Max Unit Details/conditions  
SPI Operating frequency  
(Master; 6X Oversampling)  
SID166  
FSPI  
8
MHz  
Fixed SPI Master Mode AC Specifications  
MOSI Valid after SClock driving  
edge  
MISO Valid before SClock  
capturing edge  
SID167  
SID168  
SID169  
TDMO  
TDSI  
20  
0
15  
Full clock, late MISO  
sampling  
Referred to Slave  
capturing edge  
ns  
THMO  
Previous MOSI data hold time  
Note  
9. Guaranteed by characterization.  
Datasheet  
38  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
Table 22  
SPI AC Specifications[10] (continued)  
Spec ID Parameter Description  
Min  
Typ  
Max Unit Details/conditions  
Fixed SPI Slave Mode AC Specifications  
MOSI Valid before Sclock  
Capturing edge  
MISO Valid after Sclock driving  
edge  
MISO Valid after Sclock driving  
edge in Ext. Clk mode  
Previous MISO data hold time  
SID170  
SID171  
TDMI  
TDSO  
40  
42 +  
3*Tcpu  
TCPU = 1/FCPU  
ns  
ns  
SID171A TDSO_EXT  
SID172 THSO  
SID172A TSSELSSCK  
0
48  
SSEL Valid to first SCK valid  
edge  
100  
5.4.4  
Table 23  
UART  
UART DC specifications[11]  
Spec ID Parameter Description  
Min  
Typ  
Max Unit Details/conditions  
Block current consumption at  
100 Kbps  
SID160  
SID161  
IUART1  
IUART2  
55  
µA  
µA  
Block current consumption at  
1000 Kbps  
312  
Table 24  
UART AC specifications[11]  
Spec ID Parameter Description  
Min  
Typ  
Max Unit Details/conditions  
Mbps –  
SID162 FUART  
Bit rate  
1
Note  
10.Guaranteed by characterization.  
Datasheet  
39  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
5.4.5  
Table 25  
LCD  
LCD Direct Drive DC specifications[11]  
Spec ID Parameter Description  
Min  
Typ  
Max Unit Details/conditions  
Operating current in low power  
16 4 small segment  
SID154 ILCDLOW  
SID155 CLCDCAP  
5
µA  
mode  
disp. at 50 Hz  
LCD capacitance per  
segment/common driver  
500  
20  
2
5000  
pF  
SID156 LCDOFFSET Long-term segment offset  
mV  
LCD system operating current  
32 4 segments. 50 Hz.  
25°C  
SID157 ILCDOP1  
Vbias = 5 V  
mA  
LCD system operating current  
32 4 segments. 50 Hz.  
25°C  
SID158 ILCDOP2  
Vbias = 3.3 V  
2
Table 26  
Spec ID Parameter Description  
LCD Direct Drive AC specifications[11]  
Min  
10  
Typ  
50  
Max Unit Details/conditions  
150 Hz  
SID159 FLCD  
LCD frame rate  
Note  
11.Guaranteed by characterization.  
Datasheet  
40  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
5.5  
Memory  
5.5.1  
Table 27  
Flash  
Flash DC specifications  
Spec ID  
Parameter Description  
Min  
Typ  
Max  
Unit Details/conditions  
SID173  
VPE  
Erase and program voltage 1.71  
5.5  
V
Table 28  
Spec ID  
Flash AC Specifications  
Parameter Description  
Min  
Typ  
Max  
20  
16  
4
Unit Details/conditions  
Row (block) write time  
(erase and program)  
Row erase time  
Row program time after  
erase  
Bulk erase time (64 KB)  
Row (block) =  
128 bytes  
[12]  
SID174  
TROWWRITE  
[12]  
SID175  
TROWERASE  
TROWPROGRAM  
ms  
[12]  
SID176  
[12]  
SID178  
TBULKERASE  
35  
7
Total device program  
time  
[12]  
SID180[13]  
SID181[13]  
TDEVPROG  
Seconds  
FEND  
Flash endurance  
100 K  
20  
Cycles  
Flash retention. TA 55  
°C, 100 K P/E cycles  
Flash retention. TA 85  
°C, 10 K P/E cycles  
SID182[13, 14] FRET  
Years  
SID182A[13, 14] FRET  
10  
2
Number of Wait states  
at 48 MHz  
Number of Wait states  
at 24 MHz  
CPU execution from  
Flash  
CPU execution from  
Flash  
SID256  
SID257  
TWS48  
TWS24  
1
Notes  
12.It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or  
Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the  
XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and  
watchdogs. Make certain that these are not inadvertently activated.  
13.Guaranteed by characterization.  
14.Infineon provides a retention calculator to calculate the retention lifetime based on the customers' individual  
temperature profiles for operation over the –40 °C to +150 °C ambient temperature range. For more  
information, visit the Infineon community page.  
Datasheet  
41  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
5.6  
System resources  
5.6.1  
Table 29  
Power-on reset (POR)  
Power-on reset (PRES)  
Details/  
Min  
Typ  
Max  
Unit  
Spec ID  
Parameter  
Description  
conditions  
On power-up &  
power-down  
SID.CLK#6 SR_POWER  
Power supply slew rate  
1[15]  
67  
V/ms  
SID185[16] VRISEIPOR  
SID186[16] VFALLIPOR  
Rising trip voltage  
Falling trip voltage  
0.80  
0.70  
1.5  
1.4  
V
Table 30  
Spec ID  
Brown-out detect (BOD) for VCCD  
Parameter Description  
Min  
Typ  
Max  
Unit Details/conditions  
SID190[16] VFALLPPOR  
BOD trip voltage in active and 1.48  
sleep modes  
1.62  
V
SID192[16] VFALLDPSLP BOD trip voltage in Deep  
Sleep  
1.11  
1.5  
5.6.2  
SWD interface  
Table 31  
SWD interface specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit Details/conditions  
SWDCLK 1/3 CPU  
SID213  
SID214  
F_SWDCLK1  
3.3 V VDD 5.5 V  
14  
clock frequency  
MHz  
SWDCLK 1/3 CPU  
clock frequency  
F_SWDCLK2  
1.71 V VDD 3.3 V  
7
SID215[17] T_SWDI_SETUP T = 1/f SWDCLK  
SID216[17] T_SWDI_HOLD T = 1/f SWDCLK  
SID217[17] T_SWDO_VALID T = 1/f SWDCLK  
SID217A[17] T_SWDO_HOLD T = 1/f SWDCLK  
0.25*T  
0.25*T  
ns  
1
0.5*T  
Notes  
15.If minimum ramp rate cannot be met, XRES should be asserted during voltage ramp (1.5 V > VDDD > 1.0 V for  
ramp-down or until voltage is stable for ramp-up). Note that a glitch on the I2C bus could occur during  
voltage ramp in this case.  
16.Guaranteed by characterization.  
Datasheet  
42  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
5.6.3  
Internal main oscillator  
Table 32  
IMO DC specifications  
(Guaranteed by design)  
Spec ID  
Parameter  
IIMO1  
Description  
Min  
Typ  
Max  
Unit Details/conditions  
SID218  
IMO operating current at  
48 MHz  
250  
µA  
SID219  
IIMO2  
IMO operating current at  
24 MHz  
180  
µA  
Table 33  
IMO AC specifications  
Spec ID Parameter  
SID223 FIMOTOL1  
Description  
Min  
Typ  
Max  
Unit Details/conditions  
Frequency variation at 24,  
32, and 48 MHz (trimmed)  
±2  
%
%
–40°C TA 125°C  
125°C TA 150°C  
Frequency variation at 24,  
32, and 48 MHz (trimmed)  
SID223A FIMOTOL1  
±4  
SID226  
SID228  
TSTARTIMO  
IMO startup time  
7
µs  
ps  
TJITRMSIMO2  
RMS jitter at 24 MHz  
145  
5.6.4  
Internal low-speed oscillator  
Table 34  
ILO DC specifications  
(Guaranteed by Design)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit Details/conditions  
µA  
SID231[17] IILO1  
ILO operating current  
0.3  
1.05  
Table 35  
Spec ID  
SID234[17] TSTARTILO1  
SID236[17] TILODUTY  
ILO AC specifications  
Parameter  
Description  
Min  
Typ  
Max  
2
Unit Details/conditions  
ILO startup time  
ILO duty cycle  
ms  
%
40  
20  
50  
40  
60  
80  
SID237  
FILOTRIM1  
ILO frequency range  
kHz  
5.6.5  
Watch crystal oscillator  
Table 36  
Watch crystal oscillator specifications  
Spec ID Parameter Description  
Min Typ  
Max Unit Details/conditions  
kHz  
250 ppm With 20-ppm crystal  
SID398  
SID399  
SID400  
SID401  
FWCO  
FTOL  
ESR  
PD  
Crystal frequency  
Frequency tolerance  
Equivalent series resistance  
Drive Level  
32.768  
50  
50  
1
kΩ  
µW  
Note  
17.Guaranteed by characterization.  
Datasheet  
43  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Electrical specifications  
Table 36  
Watch crystal oscillator specifications  
Spec ID Parameter Description  
Min Typ  
Max Unit Details/conditions  
SID402  
SID403  
SID404  
SID405  
TSTART  
CL  
Startup time  
6
500  
12.5  
ms  
pF  
pF  
µA  
Crystal load capacitance  
Crystal shunt capacitance  
C0  
1.35  
IWCO1  
Operating current (high power  
mode)  
8
SID406  
IWCO2  
Operating current (low power  
mode)  
1
µA  
5.6.6  
External clock  
Table 37  
External clock specifications  
Spec ID Parameter Description  
Min Typ Max Unit Details/conditions  
SID305[18] ExtClkFreq  
SID306[18] ExtClkDuty  
External clock input frequency  
Duty cycle; measured at VDD/2  
0
48  
55  
MHz  
%
45  
5.6.7  
Block  
Table 38  
Block specs  
Spec ID Parameter Description  
Min Typ  
Max  
Unit Details/conditions  
SID262[18] TCLKSWITCH System clock source switching  
time  
3
4
Periods –  
5.6.8  
PRGIO pass-through time  
Table 39  
PRGIO pass-through time (Delay in bypass mode)  
Spec ID Parameter Description  
Min Typ Max  
1.6  
Unit Details/conditions  
Max. delay added by PRGIO in  
SID252 PRG_BYPASS  
ns  
bypass mode  
Note  
18.Guaranteed by characterization.  
Datasheet  
44  
002-15106 Rev. *J  
2023-02-21  
6
Ordering information  
Table 40 lists the marketing part numbers for the PSoC™ 4100S family.  
Table 40 Ordering information  
MPN  
Features  
Packages  
Operating temperature  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
48  
48  
48  
48  
24  
24  
16  
16  
16  
16  
16  
16  
32  
32  
32  
32  
32  
32  
64  
64  
64  
64  
16  
16  
4
4
4
4
4
4
4
4
4
4
4
4
8
8
8
8
4
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
X
X
-
X
-
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
2
2
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
24  
34  
24  
34  
24  
34  
24  
34  
24  
34  
24  
34  
24  
34  
24  
34  
24  
34  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
CY8C4124PVA-S412  
CY8C4124LQA-S413  
CY8C4124PVA-S422  
CY8C4124LQA-S423  
CY8C4124PVA-S432  
CY8C4124LQA-S433  
CY8C4125PVA-S412  
CY8C4125LQA-S413  
CY8C4125PVA-S422  
CY8C4125LQA-S423  
CY8C4125PVA-S432  
CY8C4125LQA-S433  
CY8C4146PVA-S422  
CY8C4146LQA-S423  
CY8C4146PVA-S432  
CY8C4146LQA-S433  
CY8C4124PVS-S412  
CY8C4124LQS-S413  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
806 Ksps  
806 Ksps  
806 Ksps  
806 Ksps  
-
-
X
X
X
X
-
-
806 Ksps  
806 Ksps  
806 Ksps  
806 Ksps  
1000 Ksps  
1000 Ksps  
1000 Ksps  
1000 Ksps  
-
-
X
X
-
-
X
X
X
X
-
Note  
19. Alternate fab available.  
Table 40  
Ordering information (continued)  
MPN  
Features  
Packages  
Operating temperature  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
48  
48  
48  
48  
24  
24  
24  
24  
24  
24  
24  
24  
16  
16  
16  
16  
32  
32  
32  
32  
32  
32  
64  
64  
64  
64  
16  
16  
16  
16  
16  
16  
32  
32  
4
4
4
4
4
4
4
4
4
4
8
8
8
8
4
4
4
4
4
4
4
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
-
X
806 Ksps  
806 Ksps  
806 Ksps  
806 Ksps  
-
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
2
2
2
2
2
2
2
2
2
2
2
3
3
3
2
2
2
2
2
2
2
2
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
24  
34  
24  
34  
24  
34  
24  
34  
24  
34  
24  
34  
24  
34  
24  
34  
24  
34  
24  
34  
24  
34  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
CY8C4124PVS-S422  
CY8C4124LQS-S423  
CY8C4124PVS-S432  
CY8C4124LQS-S433  
CY8C4125PVS-S412  
CY8C4125LQS-S413  
CY8C4125PVS-S422  
CY8C4125LQS-S423  
CY8C4125PVS-S432  
CY8C4125LQS-S433  
CY8C4146PVS-S422  
CY8C4146LQS-S423  
CY8C4146PVS-S432  
CY8C4146LQS-S433  
CY8C4124PVE-S412  
CY8C4124LQE-S413  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
-
806 Ksps  
806 Ksps  
806 Ksps  
806 Ksps  
1000 Ksps  
1000 Ksps  
1000 Ksps  
1000 Ksps  
-
-
X
X
-
-
X
X
X
X
-
[19]  
-
[19]  
806 Ksps  
806 Ksps  
806 Ksps  
806 Ksps  
-
CY8C4124PVE-S422  
CY8C4124LQE-S423  
CY8C4124PVE-S432  
CY8C4124LQE-S433  
CY8C4125PVE-S412  
-
X
X
X
X
-
CY8C4125LQE-S413  
Note  
19. Alternate fab available.  
Table 40  
Ordering information (continued)  
MPN  
Features  
Packages  
Operating temperature  
[19]  
24  
24  
24  
24  
48  
48  
48  
48  
32  
32  
32  
32  
64  
64  
64  
64  
4
4
4
4
8
8
8
8
-
-
-
-
-
-
-
-
2
2
2
2
2
2
2
2
-
-
X
806 Ksps  
806 Ksps  
806 Ksps  
806 Ksps  
1000 Ksps  
1000 Ksps  
1000 Ksps  
1000 Ksps  
2
2
2
2
2
2
2
2
5
5
5
5
5
5
5
5
2
2
2
2
2
3
3
3
16  
16  
16  
16  
16  
16  
16  
16  
24  
34  
24  
34  
24  
34  
24  
34  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
CY8C4125PVE-S422  
CY8C4125LQE-S423  
CY8C4125PVE-S432  
CY8C4125LQE-S433  
CY8C4146PVE-S422  
CY8C4146LQE-S423  
CY8C4146PVE-S432  
X
X
X
X
X
X
X
X
X
-
[19]  
-
X
X
CY8C4146LQE-S433  
Note  
19. Alternate fab available.  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Ordering information  
The nomenclature used in the preceding table is based on the following part numbering convention:  
Field  
Description  
Values  
Meaning  
Cypress (an Infineon  
company) Prefix  
CY8C  
4
A
Architecture  
Family  
4
0
PSoC™ 4  
4000 family  
2
4
4
5
6
LQ  
PV  
A
S
E
S
M
24 MHz  
48 MHz  
16 KB  
32 KB  
64 KB  
B
CPU speed  
Flash capacity  
Package code  
C
QFN  
SSOP  
DE  
F
Automotive (AEC-Q100: –40°C to +85°C)  
Automotive (AEC-Q100: –40 °C to +105 °C)  
Automotive (AEC-Q100: –40°C to +125°C)  
PSoC™ 4A-S1, PSoC™ 4A-S2  
PSoC™ 4A-M  
Temperature range  
S
Silicon family  
XYZ  
Attributes code  
000-999  
Code of feature set in the specific family  
The following is an example of a part number:  
CY8C  
4
A
B
C
DE  
F
S
XYZ  
T
T = Tape and Reel  
Attributes Code  
Silicon Family  
Temperature Range  
Package Code  
Flash Capacity  
CPU Speed  
Family within Architecture  
Architecture  
CYPRESS (an Infineon company)  
Prefix  
Example  
4: PSoC 4  
2: 4200 Family  
4: 48 MHz  
5: 32 KB  
PV: SSOP  
A, S, E: Automotive  
Datasheet  
48  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Packaging information  
7
Packaging information  
The PSoC™ 4100S will be offered in 24-pin QFN, 28-pin SSOP, 40 pin QFN, and 48-pin QFN packages.  
Table 41 provides the package dimensions and Infineon drawing numbers.  
Table 41  
Spec ID  
Package list  
Package  
Description  
Package drawing  
002-16818  
BID27  
BID28  
BID29  
40-pin QFN  
28-pin SSOP  
24-pin QFN  
6 6 0.6 mm height with 0.5-mm pitch  
28LD SSOP 210 MILS O28.21  
4.0 4.0 0.6 mm (Wettable flank)  
51-85079  
002-18982  
Table 42  
Package thermal characteristics  
Parameter Description  
Package  
Conditions  
For A-grade devices  
For S-grade devices  
For E-grade devices  
For A-grade devices  
For S-grade devices  
For E-grade devices  
Min  
–40  
–40  
–40  
–40  
–40  
–40  
Typ Max  
Unit  
°C  
°C  
°C  
°C  
°C  
°C  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
25  
25  
25  
85  
105  
125  
100  
120  
140  
Operating Ambient  
TA  
TJ  
temperature  
Operating Junction  
temperature  
25  
TJA  
TJC  
TJA  
TJC  
Package θJA  
Package θJC  
Package θJA  
Package θJC  
40-pin QFN  
40-pin QFN  
28-pin SSOP  
28-pin SSOP  
3
66.58  
46.28  
Table 43  
Solder reflow peak temperature  
Package  
All  
Maximum peak temperature  
Maximum time at peak temperature  
260 °C  
30 seconds  
Table 44  
Package moisture sensitivity level (MSL), IPC/JEDEC J-STD-020  
Package  
MSL  
All  
MSL 3  
Datasheet  
49  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Packaging information  
7.1  
Package diagrams  
002-16818 *B  
40-pin QFN (6.0 × 6.0 × 0.6 mm) LD40A 4.6 × 4.6 mm E-Pad (Sawn) package outline  
Figure 6  
Datasheet  
50  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Packaging information  
51-85079 *G  
Figure 7  
28-pin SSOP (210 Mils) package outline  
Datasheet  
51  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Packaging information  
002-18982 *A  
Figure 8  
24-pin QFN 4.0 x 4.0 x 0.6 mm package outline (wettable flank)  
Datasheet  
52  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Acronyms  
8
Acronyms  
Table 45  
Acronyms Used in this Document  
Acronym  
abus  
ADC  
Description  
analog local bus  
analog-to-digital converter  
analog global  
AG  
AMBA (advanced microcontroller bus architecture) high-performance bus, an Arm data  
transfer bus  
AHB  
ALU  
arithmetic logic unit  
AMUXBUS  
API  
analog multiplexer bus  
application programming interface  
application program status register  
advanced RISC machine, a CPU architecture  
automatic thump mode  
APSR  
Arm®  
ATM  
BW  
bandwidth  
CMRR  
CPU  
CRC  
common-mode rejection ratio  
central processing unit  
cyclic redundancy check, an error-checking protocol  
digital-to-analog converter, see also IDAC, VDAC  
digital input/output, GPIO with only digital capabilities, no analog. See GPIO.  
Dhrystone million instructions per second  
direct memory access, see also TD  
differential nonlinearity, see also INL  
do not use  
DAC  
DIO  
DMIPS  
DMA  
DNL  
DNU  
DR  
port write data registers  
DSI  
digital system interconnect  
DWT  
ECC  
data watchpoint and trace  
error correcting code  
ECO  
external crystal oscillator  
EEPROM  
EMI  
electrically erasable programmable read-only memory  
electromagnetic interference  
external memory interface  
EMIF  
EOC  
EOF  
end of conversion  
end of frame  
EPSR  
ESD  
execution program status register  
electrostatic discharge  
ETM  
FPB  
embedded trace macrocell  
flash patch and breakpoint  
GPIO  
HVI  
general-purpose input/output, applies to a PSoC™ pin  
high-voltage interrupt, see also LVI, LVD  
Datasheet  
53  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Acronyms  
Table 45  
Acronyms Used in this Document (continued)  
Acronym  
IC  
Description  
integrated circuit  
IDAC  
current DAC, see also DAC, VDAC  
integrated development environment  
Inter-Integrated Circuit, a communications protocol  
internal low-speed oscillator, see also IMO  
internal main oscillator, see also ILO  
integral nonlinearity, see also DNL  
input/output, see also GPIO, DIO, SIO, USBIO  
initial power-on reset  
IDE  
I2C, or IIC  
ILO  
IMO  
INL  
I/O  
IPOR  
IPSR  
IRQ  
interrupt program status register  
interrupt request  
ITM  
instrumentation trace macrocell  
liquid crystal display  
LCD  
LIN  
Local Interconnect Network, a communications protocol.  
link register  
LR  
LUT  
lookup table  
LVD  
low-voltage detect, see also LVI  
low-voltage interrupt, see also HVI  
low-voltage transistor-transistor logic  
multiply-accumulate  
LVI  
LVTTL  
MAC  
MCU  
MISO  
NC  
microcontroller unit  
master-in slave-out  
no connect  
NMI  
nonmaskable interrupt  
NRZ  
NVIC  
NVL  
non-return-to-zero  
nested vectored interrupt controller  
nonvolatile latch, see also WOL  
operational amplifier  
opamp  
PC  
program counter  
PCB  
PGA  
PHUB  
PHY  
PICU  
PLL  
printed circuit board  
programmable gain amplifier  
peripheral hub  
physical layer  
port interrupt control unit  
phase-locked loop  
PMDD  
POR  
PRES  
package material declaration data sheet  
power-on reset  
precise power-on reset  
Datasheet  
54  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Acronyms  
Table 45  
Acronyms Used in this Document (continued)  
Acronym  
PRS  
Description  
pseudo random sequence  
port read data register  
PS  
PSoC™  
PSRR  
PWM  
RAM  
RISC  
RMS  
RTC  
Programmable System-on-Chip  
power supply rejection ratio  
pulse-width modulator  
random-access memory  
reduced-instruction-set computing  
root-mean-square  
real-time clock  
RTL  
register transfer language  
remote transmission request  
receive  
RTR  
RX  
SAR  
successive approximation register  
switched capacitor/continuous time  
I2C serial clock  
SC/CT  
SCL  
SDA  
S/H  
I2C serial data  
sample and hold  
SINAD  
SIO  
signal to noise and distortion ratio  
special input/output, GPIO with advanced features. See GPIO.  
start of conversion  
SOC  
SOF  
SPI  
start of frame  
Serial Peripheral Interface, a communications protocol  
slew rate  
SR  
SRAM  
SRES  
SWD  
SWV  
TD  
static random access memory  
software reset  
serial wire debug, a test protocol  
single-wire viewer  
transaction descriptor, see also DMA  
total harmonic distortion  
transimpedance amplifier  
technical reference manual  
transistor-transistor logic  
transmit  
THD  
TIA  
TRM  
TTL  
TX  
UART  
UDB  
USB  
USBIO  
VDAC  
Universal Asynchronous Receiver-Transmitter, a communications protocol  
universal digital block  
Universal Serial Bus  
USB input/output, PSoC™ pins used to connect to a USB port  
voltage DAC, see also DAC, IDAC  
Datasheet  
55  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Acronyms  
Table 45  
Acronyms Used in this Document (continued)  
Acronym  
WDT  
Description  
watchdog timer  
WOL  
write once latch, see also NVL  
watchdog timer reset  
external reset I/O pin  
crystal  
WRES  
XRES  
XTAL  
Datasheet  
56  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Document conventions  
9
Document conventions  
9.1  
Units of measure  
Table 46  
Units of measure  
Symbol  
°C  
Unit of measure  
degrees Celsius  
decibel  
dB  
fF  
femto farad  
hertz  
Hz  
KB  
1024 bytes  
kbps  
Khr  
kHz  
k  
ksps  
LSB  
Mbps  
MHz  
M  
Msps  
µA  
kilobits per second  
kilohour  
kilohertz  
kilo ohm  
kilosamples per second  
least significant bit  
megabits per second  
megahertz  
mega-ohm  
megasamples per second  
microampere  
microfarad  
µF  
µH  
microhenry  
microsecond  
microvolt  
µs  
µV  
µW  
mA  
ms  
microwatt  
milliampere  
millisecond  
millivolt  
mV  
nA  
nanoampere  
nanosecond  
nanovolt  
ns  
nV  
ohm  
pF  
picofarad  
ppm  
ps  
parts per million  
picosecond  
second  
s
sps  
sqrtHz  
V
samples per second  
square root of hertz  
volt  
Datasheet  
57  
002-15106 Rev. *J  
2023-02-21  
r e s t r i c t e d  
Automotive PSoC™ 4: PSoC™ 4100S family  
Based on Arm® Cortex®-M0+ CPU  
Revision history  
Revision history  
Document  
Date  
Description of changes  
revision  
**  
2016-07-18  
New data sheet.  
Updated Logic block diagram.  
Updated Figure 1.  
Updated Packaging information:  
Updated Package diagrams:  
Removed spec 001-80659 *A.  
Added spec 002-16818 **.  
*A  
*B  
2016-11-18  
2017-02-06  
Changed status from Advance to Preliminary.  
Updated to new template.  
Changed datasheet status to Final.  
Added Note 1 for E-grade temperature range. Added new specs for the  
device usage at 150C temperature range.  
Added SID67A, SID277A, SID107A, SID108A, SID111C, SID111D, SID111E,  
SID112C, SID112D, SID112E, SID113A  
*C  
*D  
2017-05-30  
2018-04-09  
Removed SID93A  
Updated max value for SID321A  
Updated Note 1.  
Updated DC specifications - Updated typ and max values for SID10, SID16,  
SID19, SID22, SID25, SID28, SID28A, SID31, SID34, SID37, and SID307.  
Added Note 3 under Device-level specifications.  
Updated Ordering information.  
Added Errata.  
*E  
*F  
*G  
2018- 05-23  
2019-04-24  
2020-05-04  
Updated SID64A, SID113, and SID113A specs.  
Removed Errata.  
Updated Ordering information.  
Updated and Copyright year.  
Updated SID.CLK#6 parameter.  
*H  
2020-09-29  
2021-12-01  
2023-02-21  
Updated conditions for Device-level specifications.  
Refer to Product Information Notice #6965423.  
Updated GPIO count.  
Updated Pinouts.  
Updated max values for SID31, SID34, and SID37.  
Added footnote for SID.CLK#6.  
*I  
Updated Ordering information and Packaging information.  
Converted to Infineon template.  
Updated Ordering information  
Changed Cypress references to Infineon.  
Removed package diagram 002-23807.  
*J  
Datasheet  
58  
002-15106 Rev. *J  
2023-02-21  
Please read the Important Notice and Warnings at the end of this document  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
WARNINGS  
The information given in this document shall in no Due to technical requirements products may contain  
Edition 2023-02-21  
Published by  
event be regarded as a guarantee of conditions or dangerous substances. For information on the types  
characteristics (“Beschaffenheitsgarantie”).  
in question please contact your nearest Infineon  
Technologies office.  
With respect to any examples, hints or any typical  
Infineon Technologies AG  
81726 Munich, Germany  
values stated herein and/or any information Except as otherwise explicitly approved by Infineon  
regarding the application of the product, Infineon Technologies in a written document signed by  
Technologies hereby disclaims any and all authorized  
representatives  
of  
Infineon  
warranties and liabilities of any kind, including Technologies, Infineon Technologies’ products may  
without limitation warranties of non-infringement of not be used in any applications where a failure of the  
intellectual property rights of any third party.  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
© 2023 Infineon Technologies AG.  
All Rights Reserved.  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Do you have a question about this  
document?  
Email:  
erratum@infineon.com  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  
Document reference  
002-15106 Rev. *J  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY