CY8C4145LQI-PS433 [INFINEON]

32位PSoC™ 4 Arm® Cortex®-M0/M0+;
CY8C4145LQI-PS433
型号: CY8C4145LQI-PS433
厂家: Infineon    Infineon
描述:

32位PSoC™ 4 Arm® Cortex®-M0/M0+

文件: 总46页 (文件大小:803K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
PSoC 4: PSoC 4100PS Datasheet  
Programmable System-on-Chip (PSoC)  
General Description  
Cypress' PSoC® 4 is a scalable and reconfigurable platform architecture for a family of programmable embedded system controllers  
with an Arm® Cortex™-M0+ CPU. It combines programmable and reconfigurable analog and digital blocks with flexible automatic  
routing. PSoC 4100PS is a member of the PSoC 4 platform architecture. It is a combination of a microcontroller with standard  
communication and timing peripherals, a capacitive touch-sensing system (CapSense) with best-in-class performance, programmable  
general-purpose continuous-time and switched-capacitor analog blocks, and programmable connectivity.  
Features  
Programmable Analog Blocks  
Low-Power Operation  
Two dedicated analog-to-digital converters (ADC) including a  
1.71-V to 5.5-V operation  
12-bit SAR ADC and a 10-bit single-slope ADC  
Deep-Sleep mode with operational analog and 2.5-µA digital  
Four opamps, two low-power comparators, and a flexible  
38-channel analog mux to create custom Analog Front Ends  
(AFE)  
system current  
Watch Crystal Oscillator (WCO)  
Programmable GPIO Pins  
Two 13-bit Voltage DACs  
Up to 38 GPIOs that can be used for analog, digital, CapSense,  
orLCDfunctionswithprogrammabledrivemodes,strengthand  
slew rates  
Two 7-bit Current DACs (IDACs) for general-purpose or capac-  
itive sensing applications on any pin  
®
CapSense Capacitive Sensing  
Includes eight Smart I/Os to implement pin-level Boolean  
Cypress's fourth-generation CapSense Sigma-Delta (CSD)  
providing best-in-class signal-to-noise ratio (SNR) and water  
tolerance  
operations on input and output signals  
48-pin QFN, 48-pin TQFP, 28-pin SSOP, and 45-ball WLCSP  
packages  
Cypress-supplied software component makes capacitive  
sensing design easy  
PSoC Creator Design Environment  
Integrated Design Environment (IDE) provides  
schematic-capture design entry and build (with automatic  
routing of analog and digital signals) and concurrent firmware  
development with an Arm-SWD debugger  
Automatic hardware tuning (SmartSense™)  
Segment LCD Drive  
LCD drive supported on all pins (common or segment)  
Operates in Deep-Sleep mode with four bits per pin memory  
GUI-based configurable PSoC Components with fully  
engineered embedded initialization, calibration and correction  
algorithms  
Programmable Digital Peripherals  
Application Programming Interfaces (API) for all fixed-function  
and programmable peripherals  
Three independent serial communication blocks (SCBs) that  
are run-time configurable as I2C, SPI or UART  
Industry-Standard Tool Compatibility  
Eight 16-bit timer/counter/pulse-width modulator (TCPWM)  
blocks with center-aligned, edge, and pseudo-random modes  
After schematic-capture, firmware development can be done  
with Arm-based industry-standard development tools  
32-bit Signal Processing Engine  
Arm Cortex-M0+ CPU up to 48 MHz  
Up to 32 KB of flash with read accelerator  
Up to 4 KB of SRAM  
Eight-channel descriptor-based DMA controller  
Cypress Semiconductor Corporation  
Document Number: 002-22097 Rev. *E  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised December 17, 2020  
PSoC 4: PSoC 4100PS Datasheet  
More Information  
Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you  
to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article  
KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4:  
Overview: PSoC Portfolio, PSoC Roadmap  
Software User Guide:  
A step-by-step guide for using PSoC Creator. The software  
user guide shows you how the PSoC Creator build process  
works in detail, how to use source control with PSoC Creator,  
and much more.  
Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP  
In addition, PSoC Creator includes a device selection tool.  
Application notes: Cypress offers a large number of PSoC  
application notes covering a broad range of topics, from basic  
to advanced level. Recommended application notes for getting  
started with PSoC 4 are:  
AN79953: Getting Started With PSoC 4  
AN88619: PSoC 4 Hardware Design Considerations  
AN86439: Using PSoC 4 GPIO Pins  
Component Datasheets:  
The flexibility of PSoC allows the creation of new peripherals  
(components) long after the device has gone into production.  
Component datasheets provide all the information needed to  
select and use a particular component, including a functional  
description, API documentation, example code, and AC/DC  
specifications.  
AN57821: Mixed Signal Circuit Board Layout  
AN81623: Digital Design Best Practices  
AN73854: Introduction To Bootloaders  
AN89610: Arm Cortex Code Optimization  
Online:  
In addition to print documentation, the Cypress PSoC forums  
connect you with fellow PSoC users and experts in PSoC  
from around the world, 24 hours a day, 7 days a week.  
AN85951: PSoC® 4 and PSoC Analog Coprocessor  
CapSense® Design Guide  
Technical Reference Manual (TRM) is in two documents:  
Architecture TRM details each PSoC 4 functional block.  
Registers TRM describes each of the PSoC 4 registers.  
Development Kits:  
CY8CKIT-147 PSoC® 4100PS Prototyping Kit enables you  
to evaluate and develop with PSoC 4100PS devices at a low  
cost.  
The MiniProg3 device provides an interface for flash  
programming and debug.  
Document Number: 002-22097 Rev. *E  
Page 2 of 45  
PSoC 4: PSoC 4100PS Datasheet  
PSoC Creator  
PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design  
of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100  
pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:  
1. Drag and drop component icons to build your hardware  
system design in the main design workspace  
3. Configure components using the configuration tools  
4. Explore the library of 100+ components  
5. Review component datasheets  
2. Codesign your application firmware with the PSoC hardware,  
using the PSoC Creator IDE C compiler  
Figure 1. Multiple-Sensor Example Project in PSoC Creator  
1
2
3
4
5
Document Number: 002-22097 Rev. *E  
Page 3 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Contents  
Functional Definition ........................................................6  
CPU and Memory Subsystem .....................................6  
System Resources ......................................................6  
Analog Blocks ..............................................................7  
Fixed Function Digital ..................................................8  
GPIO ...........................................................................8  
Special Function Peripherals .......................................9  
WLCSP Package Bootloader ......................................9  
Pinouts ............................................................................10  
Alternate Pin Functions .............................................12  
Power ...............................................................................14  
Mode 1: 1.8 V to 5.5 V External Supply ....................14  
Development Support ....................................................15  
Documentation ..........................................................15  
Online ........................................................................15  
Tools ..........................................................................15  
Electrical Specifications ................................................16  
Absolute Maximum Ratings ......................................16  
Device Level Specifications .......................................16  
Analog Peripherals ....................................................20  
Digital Peripherals .....................................................30  
Memory .....................................................................32  
System Resources ....................................................33  
Ordering Information ......................................................35  
Packaging ........................................................................37  
Package Diagrams ....................................................38  
Acronyms ........................................................................41  
Document Conventions .................................................43  
Units of Measure .......................................................43  
Revision History .............................................................44  
Sales, Solutions, and Legal Information ......................45  
Worldwide Sales and Design Support .......................45  
Products ....................................................................45  
PSoC® Solutions ......................................................45  
Cypress Developer Community .................................45  
Technical Support .....................................................45  
Document Number: 002-22097 Rev. *E  
Page 4 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Figure 2. Block Diagram  
CPUSubsystem
PSoC 4100PS  
Architecture  
SWD/ TC  
Cortex  
M0+  
SPCIF  
FLASH  
32KB  
SRAM  
4KB  
ROM  
8 KB  
DataWire/  
DMA  
32-bit  
48 MHz  
AHB-Lite  
FAST MUL  
Read Accelerator  
SRAM Controller  
ROM Controller  
Initiator / MMIO  
NVIC, IRQMX  
System Resources  
Lite  
System Interconnect(Multi Layer AHB)  
Peripheral Interconnect (MMIO)  
Power  
Sleep Control  
WIC  
Peripherals  
POR  
REF  
PCLK  
PWRSYS  
Clock  
Clock Control  
WDT  
Programmable  
Analog  
IMO  
ILO  
Reset  
Reset Control  
XRES  
VDAC  
(13-bit)  
SAR ADC  
(12-bit)  
Test  
DFT Logic  
x1  
x2  
DFT Analog  
SARMUX  
CTB  
2x Opamp  
x2  
Power Modes  
Active/Sleep  
Deep Sleep  
High Speed I /O Matrix , Smart I/O  
38 x GPIO, LCD  
I/O Subsystem  
PSoC 4100PS devices include extensive support for  
programming, testing, debugging, and tracing both hardware  
and firmware.  
The debug circuits are enabled by default and can be disabled  
in firmware. If they are not enabled, the only way to re-enable  
them is to erase the entire device, clear flash protection, and  
reprogram the device with new firmware that enables debugging.  
Thus firmware control of debugging cannot be over-ridden  
without erasing the firmware thus providing security.  
The Arm Serial-Wire Debug (SWD) interface supports all  
programming and debug features of the device.  
Complete debug-on-chip functionality enables full-device  
debugging in the final system using the standard production  
device. It does not require special interfaces, debugging pods,  
simulators, or emulators. Only the standard programming  
connections are required to fully support debug.  
Additionally, all device interfaces can be permanently disabled  
(device security) for applications concerned about phishing  
attacks due to a maliciously reprogrammed device or attempts to  
defeat security by starting and interrupting flash programming  
sequences. All programming, debug, and test interfaces are  
disabled when maximum device security is enabled. Therefore,  
PSoC 4100PS, with device security enabled, may not be  
returned for failure analysis. This is a trade-off the PSoC 4100PS  
allows the customer to make.  
The PSoC Creator IDE provides fully integrated programming  
and debug support for the PSoC 4100PS devices. The SWD  
interface is fully compatible with industry-standard third-party  
tools. The PSoC 4100PS family provides a level of security not  
possible with multi-chip application solutions or with  
microcontrollers. It has the following advantages:  
Allows disabling of debug features  
Robust flash protection  
Allows customer-proprietary functionality to be implemented in  
on-chip programmable blocks  
Document Number: 002-22097 Rev. *E  
Page 5 of 45  
PSoC 4: PSoC 4100PS Datasheet  
instantaneous wake-up on a wake-up event. In Deep Sleep  
mode, the high-speed clock and associated circuitry is switched  
off; wake-up from this mode takes 35 µs. The opamps can  
remain operational in Deep Sleep mode.  
Functional Definition  
CPU and Memory Subsystem  
CPU  
Clock System  
The Cortex-M0+ CPU in the PSoC 4100PS is part of the 32-bit  
MCU subsystem, which is optimized for low-power operation  
with extensive clock gating. Most instructions are 16 bits in length  
and the CPU executes a subset of the Thumb-2 instruction set.  
It includes a nested vectored interrupt controller (NVIC) block  
with eight interrupt inputs and also includes a Wakeup Interrupt  
Controller (WIC). The WIC can wake the processor from Deep  
Sleep mode, allowing power to be switched off to the main  
processor when the chip is in Deep Sleep mode.  
The PSoC 4100PS clock system is responsible for providing  
clocks to all subsystems that require clocks and for switching  
between different clock sources without glitching. In addition, the  
clock system ensures that there are no metastable conditions.  
The clock system for the PSoC 4100PS consists of the internal  
main oscillator (IMO), internal low-frequency oscillator (ILO), a  
32 kHz Watch Crystal Oscillator (WCO) and provision for an  
external clock. Clock dividers are provided to generate clocks for  
peripherals on a fine-grained basis. Fractional dividers are also  
provided to enable clocking of higher data rates for UARTs.  
The CPU also includes a debug interface, the serial wire debug  
(SWD) interface, which is a two-wire form of JTAG. The debug  
configuration used for PSoC 4100PS has four breakpoint  
(address) comparators and two watchpoint (data) comparators.  
Figure 3. PSoC 4100PS MCU Clocking Architecture  
IMO  
DMA/DataWire  
HFCLK  
Divide By  
2,4,8  
The DMA engine will be capable of doing independent data  
transfers anywhere within the memory map via a user-program-  
mable descriptor chain. The DataWire capability is used to effect  
single-element transfers from one location in memory to another.  
There are eight DMA channels with a range of selectable trigger  
sources.  
External Clock  
WDC0  
16-bits  
WCO  
LFCLK  
W DC1  
16-bits  
ILO  
W DC2  
32-bits  
Watchdog Counters (W DC)  
WDT  
Flash  
Watchdog Timer (WDT)  
The PSoC 4100PS device has a flash module with a flash  
accelerator, tightly coupled to the CPU to improve average  
access times from the flash block. The low-power flash block is  
designed to deliver two wait-state (WS) access time at 48 MHz.  
The flash accelerator delivers 85% of single-cycle SRAM access  
performance on average.  
Prescaler  
SYSCLK  
7X 16-bit  
HFCLK  
Integer  
Dividers  
Fractional  
Dividers  
3X 16.5-bit, 1X 24.5 bit  
SRAM  
Four KB of SRAM are provided with zero wait-state access at  
48 MHz.  
The HFCLK signal can be divided down to generate  
synchronous clocks for the analog and digital peripherals. There  
are 11 clock dividers for PSoC 4100PS as shown in the diagram  
above.. The 16-bit capability allows flexible generation of  
fine-grained frequency values (there is one 24-bit divider for  
large divide ratios), and is fully supported in PSoC Creator.  
SROM  
Eight KB of SROM are provided that contain boot and configu-  
ration routines.  
System Resources  
IMO Clock Source  
Power System  
The IMO is the primary source of internal clocking in  
PSoC 4100PS. It is trimmed during testing to achieve the  
specified accuracy.The IMO default frequency is 24 MHz and it  
can be adjusted from 24 to 48 MHz in steps of 4 MHz. The IMO  
tolerance with Cypress-provided calibration settings is ±2%.  
The power system is described in detail in the section Power on  
page 14. It provides an assurance that voltage levels are as  
required for each respective mode and either delays mode entry  
(for example, on power-on reset (POR) until voltage levels are  
as required for proper functionality, or generates resets (for  
example, on brown-out detection). PSoC 4100PS operates with  
a single external supply over the range of either 1.8 V ±5%  
(externally regulated) or 1.8 to 5.5 V (internally regulated) and  
has three different power modes, transitions between which are  
managed by the power system. PSoC 4100PS provides Active,  
Sleep, and Deep Sleep low-power modes.  
ILO Clock Source  
The ILO is a very low power, nominally 40-kHz oscillator, which  
is primarily used to generate clocks for the watchdog timer  
(WDT) and peripheral operation in Deep Sleep mode. ILO-driven  
counters can be calibrated to the IMO to improve accuracy.  
Cypress provides a software component, which does the  
calibration.  
All subsystems are operational in Active mode. The CPU  
subsystem (CPU, flash, and SRAM) is clock-gated off in Sleep  
mode, while all peripherals and interrupts are active with  
Document Number: 002-22097 Rev. *E  
Page 6 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Watch Crystal Oscillator (WCO)  
Analog Blocks  
The PSoC 4100PS clock subsystem also implements a  
low-frequency (32-kHz watch crystal) oscillator that can be used  
for Watchdog timing applications.  
12-bit SAR ADC  
The 12-bit, 1-Msps SAR ADC can operate at a maximum clock  
rate of 18 MHz and requires a minimum of 18 clocks at that  
frequency to do a 12-bit conversion.  
Watchdog Timer  
A watchdog timer is implemented in the clock block running from  
the ILO; this allows watchdog operation during Deep Sleep and  
generates a watchdog reset if not serviced before the set timeout  
occurs. The watchdog reset is recorded in a Reset Cause  
register, which is firmware readable.  
The Sample-and-Hold (S/H) aperture is programmable allowing  
the gain bandwidth requirements of the amplifier driving the SAR  
inputs, which determine its settling time, to be relaxed if required.  
It is possible to provide an external bypass (through a fixed pin  
location) for the internal reference amplifier.  
The SAR is connected to a fixed set of pins through an 8-input  
sequencer. The sequencer cycles through selected channels  
autonomously (sequencer scan) with zero switching overhead  
(that is, aggregate sampling bandwidth is equal to 1 Msps  
whether it is for a single channel or distributed over several  
channels). The sequencer switching is effected through a state  
machine or through firmware driven switching. A feature  
provided by the sequencer is buffering of each channel to reduce  
CPU interrupt service requirements. To accommodate signals  
with varying source impedance and frequency, it is possible to  
have different sample times programmable for each channel.  
Also, signal range specification through a pair of range registers  
(low and high range values) is implemented with a corresponding  
out-of-range interrupt if the digitized value exceeds the  
programmed range; this allows fast detection of out-of-range  
values without the necessity of having to wait for a sequencer  
scan to be completed and the CPU to read the values and check  
for out-of-range values in software.  
Reset  
PSoC 4100PS can be reset from a variety of sources including  
a software reset. Reset events are asynchronous and guarantee  
reversion to a known state. The reset cause is recorded in a  
register, which is sticky through reset and allows software to  
determine the cause of the reset. An XRES pin is reserved for  
external reset by asserting it active low. The XRES pin has an  
internal pull-up resistor that is always enabled.  
Voltage Reference  
The PSoC 4100PS reference system generates all internally  
required references. A1.2-V voltage reference is provided for the  
comparator. The IDACs are based on a ±5% reference.  
The SAR is not available in Deep Sleep mode as it requires a  
high-speed clock (up to 18 MHz). The SAR operating range is  
1.71 V to 5.5 V.  
Figure 4. SAR ADC  
AHB System Bus and Programmable Logic  
Interconnect  
SAR Sequencer  
Sequencing  
and Control  
Data and  
Status Flags  
POS  
NEG  
SARADC  
External  
Reference  
and  
Bypass  
(optional )  
Reference  
Selection  
VDDA  
VREF  
VDDA/2  
Inputs from other Ports  
Four Opamps (Continuous-Time Block; CTB)  
VDAC (13 bits)  
PSoC 4100PS has four opamps with Comparator modes which  
allow most common analog functions to be performed on-chip  
eliminating external components; PGAs, Voltage Buffers, Filters,  
Trans-Impedance Amplifiers, and other functions can be  
realized, in some cases with external passives, saving power,  
cost, and space. The on-chip opamps are designed with enough  
bandwidth to drive the Sample-and-Hold circuit of the ADC  
without requiring external buffering.  
The PSoC 4100PS has two 13-bit resolution Voltage DACs.  
Low-power Comparators (LPC)  
PSoC 4100PS has a pair of low-power comparators, which can  
also operate in Deep Sleep modes. This allows the analog  
system blocks to be disabled while retaining the ability to monitor  
external voltage levels during low-power modes. The  
comparator outputs are normally synchronized to avoid  
metastability unless operating in an asynchronous power mode  
where the system wake-up circuit is activated by a comparator  
switch event. The LPC outputs can be routed to pins.  
Document Number: 002-22097 Rev. *E  
Page 7 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Current DACs  
GPIO cells are not overvoltage tolerant and, therefore, cannot  
be hot-swapped or powered up independently of the rest of the  
I2C system.  
PSoC 4100PS has two IDACs, which can drive any of the pins  
on the chip. These IDACs have programmable current ranges.  
UART Mode: This is a full-feature UART operating at up to  
1 Mbps. It supports automotive single-wire interface (LIN),  
infrared interface (IrDA), and SmartCard (ISO7816) protocols, all  
of which are minor variants of the basic UART protocol. In  
addition, it supports the 9-bit multiprocessor mode that allows  
addressing of peripherals connected over common RX and TX  
lines. Common UART functions such as parity error, break  
detect, and frame error are supported. An 8-deep FIFO allows  
much greater CPU service latencies to be tolerated.  
Analog Multiplexed Buses  
PSoC 4100PS has two concentric independent buses that go  
around the periphery of the chip. These buses (called amux  
buses) are connected to firmware-programmable analog  
switches that allow the chip's internal resources (IDACs,  
comparator) to connect to any pin on the I/O Ports.  
Temperature Sensor  
There is an on-chip temperature sensor which is calibrated  
during production to achieve ±1% typical (±5% maximum)  
deviation from accuracy. The SAR ADC is used to measure the  
temperature.  
SPI Mode: The SPI mode supports full Motorola SPI, TI SSP  
(adds a start pulse used to synchronize SPI Codecs), and  
National Microwire (half-duplex form of SPI). The SPI block can  
use the FIFO.  
Fixed Function Digital  
GPIO  
PSoC 4100PS has up to 38 GPIOs. The GPIO block implements  
the following:  
Eight drive modes:  
Timer/Counter/PWM (TCPWM) Block  
The TCPWM block consists of  
a 16-bit counter with  
user-programmable period length. There is a capture register to  
record the count value at the time of an event (which may be an  
I/O event), a period register that is used to either stop or  
auto-reload the counter when its count is equal to the period  
register, and compare registers to generate compare value  
signals that are used as PWM duty cycle outputs. The block also  
provides true and complementary outputs with programmable  
offset between them to allow use as dead-band programmable  
complementary PWM outputs. It also has a Kill input to force  
outputs to a predetermined state; for example, this is used in  
motor drive systems when an over-current state is indicated and  
the PWM driving the FETs needs to be shut off immediately with  
no time for software intervention. There are eight TCPWM blocks  
in PSoC 4100PS.  
Analog input mode (input and output buffers disabled)  
Input only  
Weak pull-up with strong pull-down  
Strong pull-up with weak pull-down  
Open drain with strong pull-down  
Open drain with strong pull-up  
Strong pull-up with strong pull-down  
Weak pull-up with weak pull-down  
Input threshold select (CMOS or LVTTL)  
Individual control of input and output buffer enabling/disabling  
in addition to the drive strength modes  
Selectable slew rates for dV/dt related noise control to improve  
EMI.  
Serial Communication Block (SCB)  
The pins are organized in logical entities called ports, which are  
8-bit in width (less for Ports 2 and 3). During power-on and reset,  
the blocks are forced to the disable state so as not to crowbar  
any inputs and/or cause excess turn-on current. A multiplexing  
network known as a high-speed I/O matrix is used to multiplex  
between various signals that may connect to an I/O pin.  
PSoC 4100PS has three serial communication blocks, which can  
be programmed to have SPI, I2C, or UART functionality.  
I2C Mode: The hardware I2C block implements  
a full  
multi-master and slave interface (it is capable of multi-master  
arbitration). This block is capable of operating at speeds of up to  
1 Mbps (Fast Mode Plus) and has flexible buffering options to  
reduce interrupt overhead and latency for the CPU. It also  
supports EZI2C that creates a mailbox address range in the  
memory of PSoC 4100PS and effectively reduces I2C communi-  
cation to reading from and writing to an array in memory. In  
addition, the block supports an 8-deep FIFO for receive and  
transmit which, by increasing the time given for the CPU to read  
data, greatly reduces the need for clock stretching caused by the  
CPU not having read data on time.  
Data output and pin state registers store, respectively, the values  
to be driven on the pins and the states of the pins themselves.  
Every I/O pin can generate an interrupt if so enabled; each I/O  
port has an interrupt request (IRQ) and interrupt service routine  
(ISR) vector associated with it (4 for PSoC 4100PS). The Smart  
I/O block is a fabric of switches and LUTs that allows Boolean  
functions to be performed on signals being routed to the pins of  
a GPIO port. The Smart I/O block can perform logical operations  
on input pins to the chip and on signals going out as outputs.  
The I2C peripheral is compatible with the I2C Standard-mode and  
Fast-mode devices as defined in the NXP I2C-bus specification  
and user manual (UM10204). The I2C bus I/O is implemented  
with GPIO in open-drain modes.  
PSoC 4100PS is not completely compliant with the I2C spec in  
the following respect:  
Document Number: 002-22097 Rev. *E  
Page 8 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Special Function Peripherals  
WLCSP Package Bootloader  
The WLCSP package is supplied with an I2C bootloader installed  
in flash. The bootloader is compatible with PSoC Creator  
bootloader project files.  
CapSense  
CapSense is supported in PSoC 4100PS through a CSD block  
that can be connected to any pins through an analog mux bus  
via an analog switch. CapSense function can thus be provided  
on any available pin or group of pins in a system under software  
control. A PSoC Creator component is provided for the  
CapSense block to make it easy for the user.  
Shield voltage can be driven on another mux bus to provide  
water-tolerance capability. Water tolerance is provided by driving  
the shield electrode in phase with the sense electrode to keep  
the shield capacitance from attenuating the sensed input.  
Proximity sensing can also be implemented.  
The CapSense block has two IDACs, which can be used for  
general purposes if CapSense is not being used (both IDACs are  
available in that case) or if CapSense is used without water  
tolerance (one IDAC is available). The CapSense block also  
provides a 10-bit Slope ADC function, which can be used in  
conjunction with the CapSense function.  
The CapSense block is an advanced, low-noise, programmable  
block with programmable voltage references and current source  
ranges for improved sensitivity and flexibility. It can also use an  
external reference voltage. It has a full-wave CSD mode that  
alternates sensing to VDDA and ground to null out power-supply  
related noise  
Document Number: 002-22097 Rev. *E  
Page 9 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Pinouts  
The following table provides the pin list for PSoC 4100PS for the 48-QFN, 48-TQFP, 45-WLCSP, and 28-SSOP packages. All port  
pins support GPIO.  
Packages  
48-QFN  
Name  
48-TQFP  
Name  
28-SSOP  
Name  
45-CSP  
Name  
Pin  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
Pin  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
Pin  
21  
Pin  
D3  
E2  
D2  
C3  
D1  
E1  
C2  
B2  
B3  
A1  
B1  
B4  
C1  
A2  
A3  
J2  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
XRES  
P4.0  
P4.1  
P5.0  
P5.1  
P5.2  
P5.3  
VDDA  
VSSA  
VCCD  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
XRES  
P4.0  
P4.1  
P5.0  
P5.1  
P5.2  
P5.3  
VDDA  
VSSA  
VCCD  
P0.0  
P0.1  
P0.2  
P0.0  
P0.1  
22  
23  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
24  
25  
XRES  
P5.0  
XRES  
P4.0  
P4.1  
P5.0  
P5.1  
26  
27  
28  
P5.2  
P5.3  
P5.2  
P5.3  
VDDA  
VDDA  
VSSA  
VCCD  
VDDD  
VSSD  
J3  
1
VCCD  
A4  
B5  
A5  
46  
47  
48  
1
VSSD  
VDDD  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
VDDA  
VSSA  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
46  
47  
48  
1
VSSD  
VDDD  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
VDDA  
VSSA  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
2
3
4
5
6
7
VSSD  
VDDD  
P1.0  
C5  
C4  
D5  
D4  
E3  
E4  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.1  
2
2
P1.2  
3
3
P1.3  
4
4
5
5
6
6
7
7
G3  
E5  
F5  
F4  
F3  
G4  
G5  
H5  
J4  
P1.7  
VDDA  
VSSA  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
8
8
8
VDDA  
VSSA  
P2.0  
9
9
9
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
P2.1  
P2.2  
P2.3  
H4  
Document Number: 002-22097 Rev. *E  
Page 10 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Packages  
48-QFN  
Name  
48-TQFP  
Name  
28-SSOP  
Name  
45-CSP  
Pin  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
Pin  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
Pin  
Pin  
J5  
Name  
P2.7/VREF  
VSSA  
VDDA  
P3.0  
P2.7/VREF  
VSSA  
VDDA  
P3.0  
P2.7/VREF  
VSSA  
VDDA  
P3.0  
14  
P2.7/VREF  
J3  
15  
VDDA  
J2  
H2  
F2  
J1  
P3.1  
P3.1  
16  
17  
18  
P3.1  
P3.2  
P3.3  
P3.1  
P3.2  
P3.2  
P3.2  
P3.3  
P3.3  
H3  
F1  
G2  
G1  
H1  
P3.3  
P3.4  
P3.4  
P3.4  
P3.5  
P3.5  
P3.5  
P3.6  
P3.6  
19  
20  
P3.6  
P3.7  
P3.6  
P3.7  
P3.7  
P3.7  
Descriptions of the Power pins are as follows:  
VDDD: Power supply for the digital section.  
VDDA: Power supply for the analog section.  
VSS: Ground pin.  
VCCD: Regulated digital supply (1.8 V ±5%)  
The 48-pin packages have 38 I/O pins. The 45 CSP and the 28 SSOP have 37 and 20 I/O pins respectively.  
Document Number: 002-22097 Rev. *E  
Page 11 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Alternate Pin Functions  
Each Port pin has can be assigned to one of multiple functions; it can, for example, be an Analog I/O, a Digital Peripheral function, or a CapSense or LCD pin. The pin  
assignments are shown in the following table.  
Active  
DeepSleep  
Port/Pin  
Analog  
SmartIO  
ACT #0  
ACT #1  
ACT #2  
ACT #3  
DS #0  
DS #1  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
SmartIO[0].io[0]  
SmartIO[0].io[1]  
SmartIO[0].io[2]  
SmartIO[0].io[3]  
SmartIO[0].io[4]  
tcpwm.line[4]:1  
tcpwm.tr_in[0]  
tcpwm.tr_in[1]  
cpuss.swd_data:0  
cpuss.swd_clk:0  
scb[0].spi_select1:0  
scb[0].spi_select2:0  
scb[0].spi_select3:0  
tcpwm.line_compl[4]:1  
tcpwm.line[5]:1  
srss.ext_clk  
tcpwm.line_compl[5]:1  
tcpwm.line[6]:1  
scb[1].uart_rx:0  
scb[1].uart_tx:0  
scb[1].i2c_scl:0  
scb[1].i2c_sda:0  
scb[1].spi_mosi:0  
scb[1].spi_miso:0  
P0.5  
P0.6  
P0.7  
SmartIO[0].io[5]  
SmartIO[0].io[6]  
SmartIO[0].io[7]  
tcpwm.line_compl[6]:1  
scb[1].uart_cts:0  
scb[1].uart_rts:0  
lpcomp.comp[0]:0  
lpcomp.comp[1]:0  
scb[1].spi_clk:0  
scb[1].spi_select0:0  
P4.0  
P4.1  
P5.0  
P5.1  
P5.2  
P5.3  
wco_in  
wco_out  
tcpwm.line[0]:2  
tcpwm.line_compl[0]:2  
tcpwm.line[7]:1  
scb[2].uart_rx:1  
scb[2].uart_tx:1  
scb[0].uart_rx:1  
scb[0].uart_tx:1  
scb[0].uart_cts:1  
scb[0].uart_rts:1  
tcpwm.tr_in[5]  
tcpwm.tr_in[6]  
scb[2].i2c_scl:1  
scb[2].i2c_sda:1  
scb[0].i2c_scl:1  
scb[0].i2c_sda:1  
scb[2].spi_mosi:1  
scb[2].spi_miso:1  
scb[0].spi_mosi:1  
scb[0].spi_miso:1  
scb[0].spi_clk:1  
csd.cshieldpads  
csd.vref_ext  
csd.dsi_cmod  
csd.dsi_csh_tank  
tcpwm.line_compl[7]:1  
tcpwm.line[6]:2  
tr_sar_out  
tcpwm.line_compl[6]:2  
scb[0].spi_select0:1  
ctb_pads[8]  
P1.0  
P1.1  
P1.2  
P1.3  
tcpwm.line[0]:1  
tcpwm.line_compl[0]:1  
tcpwm.line[1]:1  
scb[1].uart_rx:1  
scb[1].uart_tx:1  
scb[1].uart_cts:1  
scb[1].uart_rts:1  
scb[1].i2c_scl:1  
scb[1].i2c_sda:1  
scb[1].spi_mosi:1  
scb[1].spi_miso:1  
scb[1].spi_clk:1  
lpcomp.in_p[1]  
ctb_pads[9]  
lpcomp.in_n[1]  
ctb_pads[10]  
ctb_oa0_out_10x[1]  
ctb_pads[11]  
ctb_oa1_out_10x[1]  
tcpwm.line_compl[1]:1  
scb[1].spi_select0:1  
P1.4  
P1.5  
P1.6  
P1.7  
ctb_pads[12]  
ctb_pads[13]  
ctb_pads[14]  
ctb_pads[15]  
tcpwm.line[2]:1  
tcpwm.line_compl[2]:1  
tcpwm.line[3]:1  
scb[1].spi_select1:0  
scb[1].spi_select2:0  
scb[1].spi_select3:0  
tcpwm.line_compl[3]:1  
P2.0  
ctb_pads[0]  
tcpwm.line[4]:0  
scb[2].uart_rx:0  
scb[2].i2c_scl:0  
scb[2].spi_mosi:0  
Document Number: 002-22097 Rev. *E  
Page 12 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Active  
DeepSleep  
Port/Pin  
P2.1  
Analog  
SmartIO  
ACT #0  
ACT #1  
ACT #2  
ACT #3  
DS #0  
DS #1  
ctb_pads[1]  
tcpwm.line_compl[4]:0  
scb[2].uart_tx:0  
scb[2].i2c_sda:0  
scb[2].spi_miso:0  
ctb_pads[2]  
P2.2  
tcpwm.line[5]:0  
tcpwm.line_compl[5]:0  
tcpwm.line[0]:0  
scb[2].uart_cts:0  
scb[2].uart_rts:0  
scb[2].spi_clk:0  
scb[2].spi_select0:0  
scb[2].spi_select1:0  
ctb_oa0_out_10x[0]  
ctb_pads[3]  
ctb_oa1_out_10x[0]  
P2.3  
P2.4  
ctb_pads[4]  
ctb_pads[5]  
P2.5  
P2.6  
tcpwm.line_compl[0]:0  
scb[2].spi_select2:0  
scb[2].spi_select3:0  
ctb_pads[6]  
ctb_pads[7]  
tcpwm.line[1]:0  
tcpwm.line_compl[1]:0  
P2.7  
sar_ext_vref0  
sar_ext_vref1  
P3.0  
P3.1  
sarmux[0]  
sarmux[1]  
tcpwm.line[2]:0  
scb[0].uart_rx:0  
scb[0].uart_tx:0  
scb[0].i2c_scl:0  
scb[0].i2c_sda:0  
scb[0].spi_mosi:0  
scb[0].spi_miso:0  
tcpwm.line_compl[2]:0  
sarmux[2]  
P3.2  
P3.3  
tcpwm.line[3]:0  
scb[0].uart_cts:0  
scb[0].uart_rts:0  
scb[0].spi_clk:0  
lpcomp.in_p[0]  
sarmux[3]  
lpcomp.in_n[0]  
tcpwm.line_compl[3]:0  
scb[0].spi_select0:0  
P3.4  
P3.5  
sarmux[4]  
sarmux[5]  
tcpwm.line[6]:0  
tcpwm.tr_in[2]  
tcpwm.tr_in[3]  
scb[0].spi_select1:1  
scb[0].spi_select2:1  
tcpwm.line_compl[6]:0  
csd.comp  
P3.6  
P3.7  
sarmux[6]  
sarmux[7]  
tcpwm.line[7]:0  
scb[2].uart_rx:2  
scb[2].uart_tx:2  
tcpwm.tr_in[4]  
scb[2].i2c_scl:2  
scb[2].spi_mosi:2  
scb[2].spi_miso:2  
tcpwm.line_compl[7]:0  
scb[2].i2c_sda:2  
Refer to the Technical Reference Manual (TRM) for CTB connection details. The VDAC outputs are buffered through the CTB outputs; any VDAC output may be routed to  
any CTB output.  
Document Number: 002-22097 Rev. *E  
Page 13 of 45  
PSoC 4: PSoC 4100PS Datasheet  
There are two distinct modes of operation. In Mode 1, the supply  
voltage range is 1.8 V to 5.5 V (unregulated externally; internal  
regulator operational). In Mode 2, the supply range is1.8 V ±5%  
(externally regulated; 1.71 to 1.89, internal regulator bypassed).  
Power  
The following power system diagram shows the set of power  
supply pins as implemented for the PSoC 4100PS. The system  
has one regulator in Active mode for the digital circuitry. There is  
no analog regulator; the analog circuits run directly from the  
Mode 1: 1.8 V to 5.5 V External Supply  
V
DDA input.  
In this mode, the PSoC 4100PS is powered by an external power  
supply that can be anywhere in the range of 1.8 to 5.5 V. This  
range is also designed for battery-powered operation. For  
example, the chip can be powered from a battery system that  
starts at 3.5 V and works down to 1.8 V. In this mode, the internal  
regulator of the PSoC 4100PS supplies the internal logic and its  
output is connected to the VCCD pin. The VCCD pin must be  
bypassed to ground via an external capacitor (0.1 µF; X5R  
ceramic or better) and must not be connected to anything else.  
Note that VDDD and VDDA must be shorted together on the  
PCB.  
Figure 5. Power Supply Connections  
VDDA  
VDDA  
Digital  
Domain  
Analog  
Domain  
VSSA  
Mode 2: 1.8 V ±5% External Supply  
In this mode, the PSoC 4100PS is powered by an external power  
supply that must be within the range of 1.71 to 1.89 V; note that  
this range needs to include the power supply ripple too. In this  
mode, the VDDD and VCCD pins are shorted together and  
bypassed.  
VDDD  
VCCD  
VDDD  
VSSD  
1.8 Volt  
Reg  
Bypass capacitors must be used from VDDD and VDDAto ground.  
The typical practice for systems in this frequency range is to use  
a capacitor in the 1-µF range, in parallel with a smaller capacitor  
(0.1 µF, for example). Note that these are simply rules of thumb  
and that, for critical applications, the PCB layout, lead induc-  
tance, and the bypass capacitor parasitic should be simulated to  
design and obtain optimal bypassing.  
Figure 6 shows an example of a bypass scheme.  
Figure 6. External Supply Range from 1.8 V to 5.5 V with Internal Regulator Active  
Power supply bypass connections example  
1. 8V to 5.5 V  
0. 1µF  
1. 8 V to 5.5V  
0. 1µF  
VDDA  
VDDD  
1 µF  
1 µF  
VCCD  
PSoC CY8C4Axx  
0. 1µF  
VSS  
Document Number: 002-22097 Rev. *E  
Page 14 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Technical Reference Manual: The Technical Reference Manual  
(TRM) contains all the technical detail you need to use a PSoC  
device, including a complete description of all PSoC registers.  
The TRM is available in the Documentation section at  
www.cypress.com/psoc4.  
Development Support  
The PSoC 4100PS family has a rich set of documentation,  
development tools, and online resources to assist you during  
your development process. Visit www.cypress.com/psoc4 to find  
out more.  
Online  
Documentation  
In addition to print documentation, the Cypress PSoC forums  
connect you with fellow PSoC users and experts in PSoC from  
around the world, 24 hours a day, 7 days a week.  
A suite of documentation supports the PSoC 4100PS family to  
ensure that you can find answers to your questions quickly. This  
section contains a list of some of the key documents.  
Tools  
Software User Guide: A step-by-step guide for using PSoC  
Creator. The software user guide shows you how the PSoC  
Creator build process works in detail, how to use source control  
with PSoC Creator, and much more.  
With industry standard cores, programming, and debugging  
interfaces, the PSoC 4100PS family is part of a development tool  
ecosystem. Visit us at www.cypress.com/psoccreator for the  
latest information on the revolutionary, easy to use PSoC Creator  
IDE, supported third party compilers, programmers, debuggers,  
and development kits.  
Component Datasheets: The flexibility of PSoC allows the  
creation of new peripherals (components) long after the device  
has gone into production. Component data sheets provide all of  
the information needed to select and use a particular component,  
including a functional description, API documentation, example  
code, and AC/DC specifications.  
Application Notes: PSoC application notes discuss a particular  
application of PSoC in depth; examples include brushless DC  
motor control and on-chip filtering. Application notes often  
include example projects in addition to the application note  
document.  
Document Number: 002-22097 Rev. *E  
Page 15 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Electrical Specifications  
Absolute Maximum Ratings  
Table 1. Absolute Maximum Ratings[1]  
Details/  
Spec ID#  
SID1  
Parameter  
VDD_ABS  
Description  
Min  
–0.5  
–0.5  
Typ  
Max  
6
Unit  
Conditions  
VDDD, VDDA  
,
Digital or Analog supply relative to VSS  
Absolute Max  
Direct digital core voltage input relative  
to VSS  
V
SID2  
VCCD_ABS  
1.95  
SID3  
SID4  
VGPIO_ABS  
IGPIO_ABS  
GPIO voltage  
–0.5  
–25  
VDD+0.5  
25  
Maximum current per GPIO  
mA  
GPIO injection current, Max for VIH  
DDD, and Min for VIL < VSS  
>
Current injected  
per pin  
SID5  
IGPIO_injection  
ESD_HBM  
–0.5  
0.5  
V
Electrostatic discharge human body  
model  
BID44  
2200  
V
Electrostatic discharge charged device  
model  
BID45  
BID46  
ESD_CDM  
LU  
500  
Pin current for latch-up  
–140  
140  
mA  
Device Level Specifications  
All specifications are valid for –40 °C TA 105 °C and TJ 125 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V,  
except where noted.  
Table 2. DC Specifications  
Typical values measured at VDD = 3.3 V and 25 °C.  
Details/  
Conditions  
Spec ID#  
SID53  
Parameter  
VDD  
Description  
Min  
Typ  
Max  
Unit  
With regulator  
enabled  
Power supply input voltage  
Power supply input voltage  
1.8  
5.5  
V
Internally  
unregulated supply  
SID255  
SID54  
SID55  
VDD  
1.71  
1.71  
1.89  
VDD  
(VCCD = VDD  
)
VDDIO  
CEFC  
VDDIO domain supply  
X5R ceramic or  
better  
External regulator voltage bypass  
0.1  
µF  
X5R ceramic or  
better  
SID56  
CEXC  
Power supply bypass capacitor  
1
Active Mode, VDD = 1.8 V to 5.5 V. Typical values measured at VDD = 3.3 V and 25 °C.  
SID10  
SID16  
SID19  
IDD5  
IDD8  
IDD11  
Execute from flash; CPU at 6 MHz  
Execute from flash; CPU at 24 MHz  
Execute from flash; CPU at 48 MHz  
2
5.6  
mA  
10.4  
Sleep Mode, VDDD = 1.8 V to 5.5 V (Regulator on)  
SID22  
SID25  
IDD17  
IDD20  
I2C wakeup WDT, and Comparators on.  
I2C wakeup, WDT, and Comparators on.  
1.1  
3.1  
mA 6 MHz  
12 MHz  
Note  
1. Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended  
periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature  
Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.  
Document Number: 002-22097 Rev. *E  
Page 16 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Table 2. DC Specifications (continued)  
Typical values measured at VDD = 3.3 V and 25 °C.  
Details/  
Conditions  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Sleep Mode, VDDD = 1.71 V to 1.89 V (Regulator bypassed)  
SID28  
IDD23  
I2C wakeup, WDT, and Comparators on.  
I2C wakeup, WDT, and Comparators on.  
1.1  
3.1  
mA 6 MHz  
mA 12 MHz  
SID28A  
IDD23A  
Deep Sleep Mode, VDD = 1.8 V to 3.6 V (Regulator on)  
SID31 IDD26  
I2C wakeup and WDT on  
Deep Sleep Mode, VDD = 3.6 V to 5.5 V (Regulator on)  
SID34 IDD29  
I2C wakeup and WDT on  
Deep Sleep Mode, VDD = 1.71 V to 1.89 V (Regulator bypassed)  
2.5  
2.5  
2.5  
115  
µA  
µA  
µA  
µA  
SID37  
IDD32  
I2C wakeup and WDT on  
XRES Current  
SID307  
IDD_XR  
Supply current while XRES asserted  
300  
Table 3. AC Specifications  
Spec ID# Parameter  
SID48 FCPU  
Description  
CPU frequency  
Min  
Typ  
Max  
Unit Details/Conditions  
DC  
0
48  
MHz 1.71 VDD 5.5  
SID49[2]  
SID50[2]  
TSLEEP  
Wakeup from Sleep mode  
Wakeup from Deep Sleep mode  
µs  
TDEEPSLEEP  
35  
Note  
2. Guaranteed by characterization.  
Document Number: 002-22097 Rev. *E  
Page 17 of 45  
PSoC 4: PSoC 4100PS Datasheet  
GPIO  
Table 4. GPIO DC Specifications  
Spec ID#  
SID57  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
[3]  
VIH  
Input voltage high threshold  
0.7 VDDD  
CMOS Input  
0.3   
SID58  
VIL  
VIH  
VIL  
Input voltage low threshold  
LVTTL input, VDDD < 2.7 V  
LVTTL input, VDDD < 2.7 V  
CMOS Input  
VDDD  
[3]  
[3]  
SID241  
SID242  
0.7 VDDD  
0.3   
VDDD  
SID243  
SID244  
SID59  
SID60  
SID61  
SID62  
SID62A  
SID63  
SID64  
VIH  
VIL  
LVTTL input, VDDD 2.7 V  
LVTTL input, VDDD 2.7 V  
Output voltage high level  
Output voltage high level  
Output voltage low level  
Output voltage low level  
Output voltage low level  
Pull-up resistor  
2.0  
V
0.8  
VOH  
VDDD –0.6  
IOH = 4 mA at 3 V VDDD  
VOH  
VDDD –0.5  
IOH = 1 mA at 1.8 V VDDD  
VOL  
0.6  
0.6  
0.4  
8.5  
8.5  
IOL = 4 mA at 1.8 V VDDD  
VOL  
IOL = 10 mA at 3 V VDDD  
VOL  
IOL = 3 mA at 3 V VDDD  
RPULLUP  
RPULLDOWN  
3.5  
3.5  
5.6  
5.6  
kΩ  
Pull-down resistor  
Input leakage current (absolute  
value)  
SID65  
IIL  
2
nA  
pF  
SID66  
CIN  
Input capacitance  
15  
3
40  
7
SID67[4]  
SID68[4]  
SID68A[4]  
VHYSTTL  
VHYSCMOS  
Input hysteresis LVTTL  
Input hysteresis CMOS  
VDDD 2.7 V  
0.05 × VDDD  
200  
mV VDD < 4.5 V  
VDD > 4.5 V  
VHYSCMOS5V5 Input hysteresis CMOS  
Currentthroughprotectiondiodeto  
DD/VSS  
SID69[4]  
IDIODE  
100  
85  
µA  
V
Maximum total source or sink chip  
current  
SID69A[4]  
ITOT_GPIO  
mA  
Notes  
3.  
V
must not exceed V  
+ 0.2 V.  
IH  
DDD  
4. Guaranteed by characterization.  
Document Number: 002-22097 Rev. *E  
Page 18 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Table 5. GPIO AC Specifications  
(Guaranteed by Characterization)  
Spec ID#  
SID70  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
3.3 V VDDD  
Cload = 25 pF  
3.3 V VDDD  
Cload = 25 pF  
3.3 V VDDD  
Cload = 25 pF  
3.3 V VDDD  
,
TRISEF  
Rise time in fast strong mode  
2
12  
ns  
,
SID71  
SID72  
SID73  
SID74  
SID75  
SID76  
SID245  
SID246  
TFALLF  
Fall time in fast strong mode  
Rise time in slow strong mode  
Fall time in slow strong mode  
2
10  
10  
12  
60  
60  
16  
16  
7
,
TRISES  
ns  
ns  
,
TFALLS  
Cload = 25 pF  
GPIO FOUT; 3.3 V VDDD 5.5 V  
Fast strong mode  
90/10%, 25-pF load,  
60/40 duty cycle  
FGPIOUT1  
FGPIOUT2  
FGPIOUT3  
FGPIOUT4  
FGPIOIN  
GPIO FOUT; 1.71 VVDDD3.3 V  
Fast strong mode  
90/10%, 25-pF load,  
60/40 duty cycle  
GPIO FOUT; 3.3 V VDDD 5.5 V  
Slow strong mode  
90/10%, 25-pF load,  
60/40 duty cycle  
MHz  
GPIO FOUT; 1.71 V VDDD 3.3 V  
Slow strong mode.  
90/10%, 25-pF load,  
60/40 duty cycle  
3.5  
48  
GPIO input operating frequency;  
1.71 V VDDD 5.5 V  
90/10% VIO  
XRES  
Table 6. XRES DC Specifications  
Spec ID# Parameter  
SID77 VIH  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
Input voltage high threshold 0.7 × VDDD  
V
CMOS Input  
SID78  
SID79  
SID80  
VIL  
Input voltage low threshold  
Pull-up resistor  
0.3 VDDD  
RPULLUP  
CIN  
60  
3
7
kΩ  
pF  
Input capacitance  
0.05   
VDD  
Typical hysteresis is  
200 mV for VDD > 4.5 V  
SID81[5]  
VHYSXRES  
Input voltage hysteresis  
mV  
Table 7. XRES AC Specifications  
Spec ID#  
SID83[5]  
Parameter  
Description  
Reset pulse width  
Min  
Typ  
Max  
Unit  
Details/Conditions  
TRESETWIDTH  
1
µs  
Wake-up time from reset  
release  
BID194[5]  
TRESETWAKE  
2.5  
ms  
Note  
5. Guaranteed by characterization.  
Document Number: 002-22097 Rev. *E  
Page 19 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Analog Peripherals  
Table 8. CTB Opamp Specifications  
Spec ID#  
Parameter  
IDD  
Description  
Opamp block current, No load  
power=hi  
Min  
Typ  
Max  
Unit  
Details/Conditions  
SID269  
SID270  
SID271  
IDD_HI  
1100  
550  
150  
2070  
950  
IDD_MED  
IDD_LOW  
power=med  
µA  
power=lo  
350  
Load = 20 pF, 0.1 mA  
GBW  
VDDA = 2.7 V  
Input and output are  
0.2 V to VDDA-0.2 V  
SID272  
SID273  
SID274  
GBW_HI  
GBW_MED  
power=hi  
6
3
1
Input and output are  
0.2 V to VDDA-0.2 V  
power=med  
MHz  
Input and output are  
0.2 V to VDDA-0.2 V  
GBW_LO  
power=lo  
IOUT_MAX  
IOUT_MAX_HI  
VDDA = 2.7 V, 500 mV from rail  
power=hi  
Output is 0.5 V  
SID275  
SID276  
SID277  
10  
10  
5
V
DDA-0.5 V  
Output is 0.5 V  
DDA-0.5 V  
Output is 0.5 V  
DDA-0.5 V  
IOUT_MAX_MID  
power=mid  
mA  
V
IOUT_MAX_LO  
IOUT  
power=lo  
V
VDDA = 1.71 V, 500 mV from rail  
power=hi  
Output is 0.5 V  
VDDA-0.5 V  
SID278  
SID279  
SID280  
IOUT_MAX_HI  
4
4
Output is 0.5 V  
power=mid  
power=lo  
IOUT_MAX_MID  
IOUT_MAX_LO  
mA  
VDDA-0.5 V  
Output is 0.5 V  
2
VDDA-0.5 V  
IDD_Int  
Opamp block current Internal Load  
power=hi  
IDD_HI_Int  
IDD_MED_Int  
GBW  
SID269_I  
SID270_I  
1500  
700  
2300  
1200  
µA  
power=med  
VDDA = 2.7 V  
Output is 0.25 V to  
VDDA-0.25 V  
GBW_HI_Int  
SID272_I  
power=hi  
8
MHz  
General opamp specs for both internal and external modes  
Charge-pump on,  
VIN  
VDDA-0.2  
SID281  
SID282  
–0.05  
VDDA = 2.7 V  
V
VCM  
Charge-pump on, VDDA = 2.7 V  
VDDA-0.2  
-0.05  
Document Number: 002-22097 Rev. *E  
Page 20 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Table 8. CTB Opamp Specifications (continued)  
Spec ID#  
Parameter  
VOUT_1  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
V
V
V
V
DD = 2.7 V  
VDDA  
-0.5  
SID283  
power=hi, Iload=10 mA  
0.5  
DDA = 2.7 V  
DDA = 2.7 V  
DDA = 2.7 V  
VDDA  
-0.2  
VOUT_2  
VOUT_3  
VOUT_4  
VOS_TR  
VOS_TR  
VOS_TR  
SID284  
SID285  
SID286  
SID288  
SID288A  
SID288B  
power=hi, Iload=1 mA  
power=med, Iload=1 mA  
power=lo, Iload=0.1 mA  
Offset voltage, trimmed  
Offset voltage, trimmed  
Offset voltage, trimmed  
0.2  
0.2  
0.2  
–1.0  
V
VDDA  
-0.2  
VDDA  
-0.2  
High mode, input 0 V  
to VDDA-0.2 V  
1.0  
0.5  
1  
Medium mode, input  
0 V to VDDA-0.2 V  
mV  
Low mode, input 0 V  
to VDDA-0.2 V  
2  
VOS_DR_TR  
VOS_DR_TR  
VOS_DR_TR  
SID290  
Offset voltage drift, trimmed  
Offset voltage drift, trimmed  
Offset voltage drift, trimmed  
-10  
10  
µV/C High mode  
3  
SID290A  
SID290B  
Medium mode  
µV/C  
10  
10  
Low mode  
Input is 0 V to  
V
DDA-0.2 V, Output is  
SID291  
SID291A  
SID292  
CMRR  
CMRR2  
PSRR  
DC  
70  
60  
70  
80  
70  
85  
0.2 V to VDDA-0.2 V,  
VDDA ≥ 2.7 V  
Input is 0 V to  
VDDA-0.2 V, Output is  
dB  
DC  
0.2 V to VDDA-0.2 V.  
1.71 V VDDA < 2.7 V  
VDDD = 3.6 V,  
high-power mode,  
input is 0.2 V to  
At 1 kHz, 10-mV ripple  
VDDA-0.2 V  
Noise  
VN2  
Input and output are  
at 0.2 V to VDDA-0.2 V  
SID294  
SID295  
SID296  
Input-referred, 1 kHz, power=Hi  
Input-referred, 10 kHz, power=Hi  
Input-referred, 100 kHz, power=Hi  
72  
28  
15  
Input and output are  
at 0.2 V to VDDA-0.2 V  
nV/  
rtHz  
VN3  
VN4  
Input and output are  
at 0.2 V to VDDA-0.2 V  
Stable up to max. load. Performance  
specs at 50 pF.  
CLOAD  
SID297  
SID298  
SID299  
125  
pF  
V/µs  
µs  
CLOAD = 50 pF, Power = High, VDDA  
= 2.7 V  
SLEW_RATE  
T_OP_WAKE  
6
From disable to enable, no external  
RC dominating  
25  
Document Number: 002-22097 Rev. *E  
Page 21 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Table 8. CTB Opamp Specifications (continued)  
Spec ID#  
Parameter  
OL_GAIN  
Description  
Open Loop Gain  
Min  
Typ  
Max  
Unit  
Details/Conditions  
SID299A  
90  
dB  
Comparator mode; 50-mV drive, Trise=Tfall (approx)  
150  
COMP_MODE  
TPD1  
Input is 0.2 V to  
VDDA-0.2 V  
175  
SID300  
SID301  
Response time; power=hi  
Input is 0.2 V to  
TPD2  
Response time; power=med  
500  
ns  
VDDA-0.2 V  
Input is 0.2 V to  
TPD3  
SID302  
SID303  
SID304  
Response time; power=lo  
Hysteresis  
2500  
VDDA-0.2 V  
VHYST_OP  
WUP_CTB  
10  
mV  
µs  
Wake-up time from Enabled to  
Usable  
25  
Opamp Deep  
Sleep Mode  
Mode 2 is lowest current range. Mode 1 has higher GBW.  
IDD_HI_M1  
SID_DS_1  
SID_DS_2  
SID_DS_3  
SID_DS_4  
SID_DS_5  
SID_DS_6  
Mode 1, High current  
Mode 1, Medium current  
Mode 1, Low current  
Mode 2, High current  
Mode 2, Medium current  
Mode 2, Low current  
1400  
700  
200  
120  
60  
IDD_MED_M1  
IDD_LOW_M1  
IDD_HI_M2  
µA  
µA  
IDD_MED_M2  
IDD_LOW_M2  
15  
20-pF load, no DC  
load  
0.2 V to VDDA-0.2 V  
GBW_HI_M1  
SID_DS_7  
SID_DS_8  
SID_DS_9  
SID_DS_10  
SID_DS_11  
SID_DS_12  
Mode 1, High current  
Mode 1, Medium current  
Mode 1, Low current  
Mode 2, High current  
Mode 2, Medium current  
Mode 2, Low current  
4
20-pF load, no DC  
load 0.2 V to  
GBW_MED_M1  
GBW_LOW_M1  
GBW_HI_M2  
2
VDDA-0.2 V  
20-pF load, no DC  
load 0.2 V to  
0.5  
0.5  
0.2  
0.1  
VDDA-0.2 V  
MHz  
20-pF load, no DC  
load 0.2 V to  
VDDA-0.2 V  
20-pF load, no DC  
load 0.2 V to  
GBW_MED_M2  
VDDAA-0.2 V  
20-pF load, no DC  
load 0.2 V to  
GBW_Low_M2  
VDDA-0.2 V  
Document Number: 002-22097 Rev. *E  
Page 22 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Table 8. CTB Opamp Specifications (continued)  
Spec ID#  
Parameter  
Description  
Mode 1, High current  
Min  
Typ  
Max  
Unit  
Details/Conditions  
With trim 25 °C, 0.2 V  
to VDDA-1.5 V  
VOS_HI_M1  
SID_DS_13  
5
With trim 25 °C, 0.2 V  
to VDDA-1.5 V  
VOS_MED_M1  
VOS_LOW_M1  
VOS_HI_M2  
SID_DS_14  
SID_DS_15  
SID_DS_16  
SID_DS_17  
SID_DS_18  
SID_DS_19  
SID_DS_20  
SID_DS_21  
Mode 1, Medium current  
Mode 1, Low current  
Mode 2, High current  
Mode 2, Medium current  
Mode 2, Low current  
Mode 1, High current  
Mode 1, Medium current  
Mode 1, Low current  
5
5
With trim 25 °C, 0.2 V  
to VDDA-1.5 V  
mV  
With trim 25 °C, 0.2V  
to VDDA-1.5 V  
5
With trim 25 °C, 0.2 V  
to VDDA-1.5 V  
VOS_MED_M2  
VOS_LOW_M2  
IOUT_HI_M1  
5
With trim 25 °C, 0.2 V  
to VDDA-1.5 V  
5
Output is 0.5 V to  
10  
10  
4
VDDA-0.5 V  
Output is 0.5 V to  
IOUT_MED_M1  
IOUT_LOW_M1  
VDDA-0.5 V  
Output is 0.5 V to  
mA  
VDDA-0.5 V  
IOUT_HI_M2  
IOU_MED_M2  
IOU_LOW_M2  
SID_DS_22  
SID_DS_23  
SID_DS_24  
Mode 2, High current  
Mode 2, Medium current  
Mode 2, Low current  
1
1
0.5  
Table 9. PGA Specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
PGA Gain  
Values  
Gain Values are 2,4,16, and 32.  
Gain Error for Low range; Gain = 2  
2
32  
1
1
3
%
%
%
%
%
%
%
SID_PGA_1 PGA_ERR_1 Gain Error for Medium range; Gain = 2  
Gain Error for High range; Gain = 2  
1.5  
1.5  
Gain Error for Low range; Gain = 4  
SID_PGA_2 PGA_ERR_2 Gain Error for Medium range; Gain = 4  
Gain Error for High range; Gain = 4  
1.5  
1.5  
Gain Error for Low range; Gain = 16  
Gain Error for Medium range;  
SID_PGA_3 PGA_ERR_3  
3
%
Gain = 16  
Gain Error for High range; Gain = 16  
Gain Error for Low range; Gain = 32  
3
5
%
%
Gain Error for Medium range;  
SID_PGA_4 PGA_ERR_4  
5
5
%
%
Gain = 32  
Gain Error for High range; Gain = 32  
Document Number: 002-22097 Rev. *E  
Page 23 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Table 10. Voltage DAC Specifications  
(VDAC specs are valid from –20 to 85 °C)  
Spec ID#  
13-bit DAC  
SID_DAC_1  
SID_DAC_2  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
LSB  
V
Details/Conditions  
INL_VDAC1  
Integral non linearity (INL)  
–6  
–1  
5
4
DNL_VDAC1 Differential non linearity (DNL)  
Valid output range is 200  
LSBs from rails. Full  
settling bandwidth to  
within 200 mV of rail.  
SID_DAC_3  
VOUT_VDAC1 Output voltage range  
0.2  
VDDA-0.2  
Zero scale error (output with all  
Zero scale is at analog  
ground  
SID_DAC_4  
SID_DAC_5  
ZSE_VDAC1  
zeroes input)  
20  
2
mV  
%
VDDA ≥ 2.7 V,  
GE_VDAC1  
IDD_VDAC1  
Full scale error less offset  
Block current  
0.3  
VREF = VDDA/2  
SID_DAC_6  
SID_DAC_7  
1.8  
50  
mA  
dB  
PSRR_VDAC1 Power supply rejection ratio  
2.7 V < VDDA 5.5 V  
Wake-up time from Enabled to  
SID_DAC_8  
WUP_VDAC1  
Usable  
32  
72  
µs  
µs  
2.7 V < VDDA 5.5 V  
Wake-up time from Enabled to  
Usable  
SID_DAC_8A WUP_VDAC2  
SID_DAC_9 TS_VDAC1  
VDDA 2.7 V  
500 ksps operation,  
Settling time for DAC  
2
µs  
µs  
VDDA ≥ 2.7 V  
100 ksps operation,  
VDDA 2.7 V  
SID_DAC_9A TS_VDAC2  
Settling time for DAC  
10  
Note  
6. Guaranteed by characterization.  
Document Number: 002-22097 Rev. *E  
Page 24 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Table 11. Comparator DC Specifications  
Spec ID# Parameter  
SID84 VOFFSET1  
VOFFSET2  
VHYST  
Description  
Min Typ  
Max  
±10  
±4  
Unit Details/Conditions  
Input offset voltage, Factory trim  
Input offset voltage, Custom trim  
Hysteresis when enabled  
SID85  
SID86  
mV  
10  
35  
Input common mode voltage in normal  
mode  
SID87  
VICM1  
VICM2  
0
0
VDDD-0.1  
VDDD  
Modes 1 and 2  
Input common mode voltage in low  
power mode  
SID247  
V
VDDD ≥ 2.2 V for  
Temp < 0 °C, VDDD  
≥ 1.8 V for Temp >  
0 °C  
Input common mode voltage in ultra  
low power mode  
SID247A  
VICM3  
0
VDDD-1.15  
SID88  
CMRR  
CMRR  
ICMP1  
ICMP2  
Common mode rejection ratio  
Common mode rejection ratio  
Block current, normal mode  
Block current, low power mode  
50  
42  
VDDD ≥ 2.7V  
dB  
SID88A  
SID89  
VDDD ≤ 2.7V  
400  
100  
SID248  
µA VDDD ≥ 2.2 V for  
Temp < 0 °C, VDDD  
≥ 1.8 V for Temp >  
0 °C  
SID259  
SID90  
ICMP3  
Block current in ultra low-power mode  
DC Input impedance of comparator  
28  
ZCMP  
35  
MΩ  
Table 12. Comparator AC Specifications  
Spec ID# Parameter  
SID91 TRESP1  
Description  
Min Typ  
Max  
Unit Details/Conditions  
Response time, normal mode, 50 mV  
overdrive  
38  
70  
110  
All VDD  
ns  
Response time, low power mode, 50 mV  
overdrive  
SID258  
SID92  
TRESP2  
TRESP3  
200  
15  
VDDD ≥ 2.2 V for  
Response time, ultra-low power mode,  
200 mV overdrive  
Temp < 0 °C, VDDD  
≥ 1.8 V for Temp >  
2.3  
µs  
0 °C  
Table 13. Temperature Sensor Specifications  
Spec ID#  
SID93  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
TSENSACC  
Temperature sensor accuracy  
–5  
±1  
5
°C  
–40 to +85 °C  
Document Number: 002-22097 Rev. *E  
Page 25 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Table 14. SAR Specifications  
Spec ID# Parameter  
SAR ADC DC Specifications  
Description  
Min Typ  
Max  
Unit Details/Conditions  
SID94  
SID95  
SID96  
SID97  
A_RES  
Resolution  
12  
8
bits  
A_CHNLS_S  
A-CHNKS_D  
A-MONO  
Number of channels - single ended  
Number of channels - differential  
Monotonicity  
8 full speed.  
4
Yes.  
With external  
reference.  
SID98  
SID99  
A_GAINERR  
A_OFFSET  
Gain error  
±0.1  
2
%
Measured with 1-V  
reference  
Input offset voltage  
mV  
SID100  
SID101  
SID102  
SID103  
SID104  
SID260  
A_ISAR  
Current consumption  
VSS  
VSS  
1
mA  
V
A_VINS  
Input voltage range - single ended  
Input voltage range - differential[  
Input resistance  
VDDA  
VDDA  
2.2  
A_VIND  
V
A_INRES  
A_INCAP  
VREFSAR  
KΩ  
pF  
V
Input capacitance  
10  
Trimmed internal reference to SAR  
TBD  
SAR ADC AC Specifications  
SID106  
SID107  
SID108  
A_PSRR  
A_CMRR  
A_SAMP  
Power supply rejection ratio  
Common mode rejection ratio  
Sample rate  
70  
66  
1
dB  
dB  
Measured at 1 V  
Msps  
Signal-to-noise and distortion ratio  
(SINAD)  
SID109  
SID110  
SID111  
A_SNR  
A_BW  
A_INL  
65  
dB  
F
IN = 10 kHz  
Input bandwidth without aliasing  
A_samp/2 kHz  
Integral non linearity. VDD = 1.71 to 5.5,  
1 Msps  
–1.7  
2
LSB  
LSB  
LSB  
LSB  
LSB  
V
V
V
V
V
V
REF = 1 to VDD  
REF = 1.71 to VDD  
REF = 1 to VDD  
REF = 1 to VDD  
REF = 1.71 to VDD  
REF = 1 to VDD  
Integral non linearity. VDDD = 1.71 to 3.6,  
1 Msps  
SID111A  
SID111B  
SID112  
A_INL  
A_INL  
A_DNL  
A_DNL  
–1.5  
–1.5  
–1  
1.7  
1.7  
2.2  
2
Integral non linearity. VDD = 1.71 to 5.5,  
500 ksps  
Differential non linearity. VDD = 1.71 to  
5.5, 1 Msps  
Differential non linearity. VDD = 1.71 to  
3.6, 1 Msps  
SID112A  
–1  
Differential non linearity. VDD = 1.71 to  
5.5, 500 ksps  
SID112B  
SID113  
SID261  
A_DNL  
–1  
2.2  
–65  
100  
LSB  
dB  
A_THD  
Total harmonic distortion  
FIN = 10 kHz  
SAR operating speed without external  
ref. bypass  
FSARINTREF  
ksps 12-bit resolution  
Document Number: 002-22097 Rev. *E  
Page 26 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Table 15. CapSense and IDAC Specifications[7]  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Unit Details/Conditions  
DD > 2 V (with  
mV ripple), 25 °C TA,  
V
Max allowed ripple on power supply,  
DC to 10 MHz  
SYS.PER#3  
VDD_RIPPLE  
±50  
Sensitivity = 0.1pF  
VDD > 1.75 V (with  
ripple), 25 °C TA,  
mV Parasitic Capaci-  
tance (CP) < 20 pF,  
Max allowed ripple on power supply,  
DC to 10 MHz  
SYS.PER#16 VDD_RIPPLE_1.8  
±25  
Sensitivity ≥ 0.4 pF  
SID.CSD.BLK ICSD  
SID.CSD#15 VREF  
Maximum block current  
4000  
µA  
V
Voltage reference for CSD and  
Comparator  
VDDA  
0.6  
-
V
DDA - 0.6 or 4.4,  
0.6  
0.6  
1.2  
whichever is lower  
ExternalVoltagereferenceforCSDand  
Comparator  
VDDA  
0.6  
-
VDDA - 0.6 or 4.4,  
whichever is lower  
SID.CSD#15A VREF_EXT  
V
SID.CSD#16 IDAC1IDD  
SID.CSD#17 IDAC2IDD  
IDAC1 (7 bits) block current  
IDAC2 (7 bits) block current  
1750  
1750  
µA  
µA  
1.8 V ±5% or 1.8 V  
to 5.5 V  
SID308  
VCSD  
Voltage range of operation  
1.71  
0.6  
5.5  
V
V
VDDA  
0.6  
VDDA –0.6 or 4.4,  
whichever is lower  
SID308A  
VCOMPIDAC  
Voltage compliance range of IDAC  
SID309  
SID310  
SID311  
SID312  
IDAC1DNL  
IDAC1INL  
IDAC2DNL  
IDAC2INL  
DNL  
INL  
–1  
–3  
–1  
–3  
1
3
LSB  
LSB  
LSB  
LSB  
DNL  
INL  
1.0  
3
Capacitance range  
of 5 to 200 pF,  
Ratio 0.1 pFsensitivity.All  
Ratio of counts of finger to noise.  
Guaranteed by characterization  
SID313  
SNR  
5.0  
use cases. VDDA  
>
2 V.  
Maximum Source current of 7-bit IDAC  
in low range  
SID314  
IDAC7_SRC1  
IDAC7_SRC2  
IDAC7_SRC3  
IDAC7_SRC4  
IDAC7_SRC5  
IDAC7_SRC6  
IDAC7_SINK_1  
IDAC7_SINK_2  
IDAC7_SINK_3  
4.2  
34  
5.4  
41  
µA LSB = 37.5 nA typ.  
µA LSB = 300 nA typ.  
µA LSB = 2.4 µA typ.  
Maximum Source current of 7-bit IDAC  
in medium range  
SID314A  
SID314B  
SID314C  
SID314D  
SID314E  
SID315  
Maximum Source current of 7-bit IDAC  
in high range  
275  
8
330  
10.5  
82  
Maximum Source current of 7-bit IDAC  
in low range, 2X mode  
LSB = 37.5 nA typ.  
µA  
2X output stage  
Maximum Source current of 7-bit IDAC  
in medium range, 2X mode  
LSB = 300 nA typ.  
µA  
69  
2X output stage  
Maximum Source current of 7-bit IDAC  
in high range, 2X mode  
LSB= 2.4 µAtyp.2X  
output stage  
540  
4.2  
34  
660  
5.7  
44  
µA  
Maximum Sink current of 7-bit IDAC in  
low range  
µA LSB = 37.5 nA typ.  
µA LSB = 300 nA typ.  
µA LSB = 2.4 µA typ.  
Maximum Sink current of 7-bit IDAC in  
medium range  
SID315A  
Maximum Sink current of 7-bit IDAC in  
high range  
SID315B  
260  
340  
Note  
7. For optimal CapSense performance, Ports 0, 4, and 5 must be used for large DC loads.  
Document Number: 002-22097 Rev. *E  
Page 27 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Table 15. CapSense and IDAC Specifications[7] (continued)  
Spec ID#  
SID315C  
Parameter  
Description  
Min  
Typ  
Max  
Unit Details/Conditions  
Maximum Sink current of 7-bit IDAC in  
low range, 2X mode  
LSB = 37.5 nA typ.  
µA  
IDAC7_SINK_4  
8
11.5  
2X output stage  
Maximum Sink current of 7-bit IDAC in  
medium range, 2X mode  
LSB = 300 nA typ.  
µA  
SID315D  
SID315E  
SID315F  
SID315G  
SID315H  
SID315J  
SID315K  
SID315L  
SID320  
IDAC7_SINK_5  
IDAC7_SINK_6  
IDAC8_SRC_1  
IDAC8_SRC_2  
IDAC8_SRC_3  
IDAC8_SINK_1  
IDAC8_SINK_2  
IDAC8_SINK_3  
IDACOFFSET1  
68  
540  
8.4  
68  
86  
700  
10.8  
82  
2X output stage  
Maximum Sink current of 7-bit IDAC in  
high range, 2X mode  
LSB= 2.4 µAtyp.2X  
output stage  
µA  
Maximum Source current of 8-bit IDAC  
in low range  
µA LSB = 37.5 nA typ.  
µA LSB = 300 nA typ.  
µA LSB = 2.4 µA typ.  
µA LSB = 37.5 nA typ.  
µA LSB = 300 nA typ.  
µA LSB = 2.4 µA typ.  
Maximum Source current of 8-bit IDAC  
in medium range  
Maximum Source current of 8-bit IDAC  
in high range  
550  
8.4  
68  
680  
11.4  
88  
Maximum Sink current of 8-bit IDAC in  
low range  
Maximum Sink current of 8-bit IDAC in  
medium range  
Maximum Sink current of 8-bit IDAC in  
high range  
540  
670  
1
All zeroes input; Medium and High  
range  
Polarity set by  
LSB  
Source or Sink  
Polarity set by  
LSB  
SID320A  
SID321  
SID322  
IDACOFFSET2  
IDACGAIN  
All zeroes input; Low range  
2
Source or Sink  
Full-scale error less offset  
±20  
9.2  
%
Mismatch between IDAC1 and IDAC2  
in Low mode  
IDACMISMATCH1  
LSB LSB = 37.5 nA typ.  
Mismatch between IDAC1 and IDAC2  
in Medium mode  
SID322A  
SID322B  
SID323  
SID324  
SID325  
IDACMISMATCH2  
IDACMISMATCH3  
IDACSET8  
6
6.8  
10  
10  
LSB LSB = 300 nA typ.  
LSB LSB = 2.4 µA typ.  
Mismatch between IDAC1 and IDAC2  
in High mode  
Full-scaletransition.  
µs  
Settling time to 0.5 LSB for 8-bit IDAC  
Settling time to 0.5 LSB for 7-bit IDAC  
External modulator capacitor.  
No external load.  
Full-scaletransition.  
µs  
IDACSET7  
No external load.  
5-V rating, X7R or  
NP0 cap.  
CMOD  
2.2  
nF  
Document Number: 002-22097 Rev. *E  
Page 28 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Table 16. 10-bit CapSense ADC Specifications  
Spec ID#  
Parameter  
Description  
Min Typ  
Max  
Unit  
Details/Conditions  
SIDA94  
A_RES  
Resolution  
10  
bits 8 full speed.  
SID95  
A_CHNLS_S Number of channels - single-ended  
A-MONO Monotonicity  
A_GAINERR Gain error  
16  
Diff inputs use neighboring I/O  
Yes Yes  
SIDA97  
SIDA98  
TBD  
TBD  
%
With external reference.  
SIDA99  
A_OFFSET  
Input offset voltage  
mV Measured with 1-V reference  
SIDA100  
SIDA101  
A_ISAR  
A_VINS  
Current consumption  
TBD  
mA  
V
VSSA  
VDDA  
Input voltage range - single-ended  
2.2  
20  
SIDA103  
SIDA104  
SIDA106  
SIDA107  
A_INRES  
A_INCAP  
A_PSRR  
A_TACQ  
Input resistance  
KΩ  
pF  
dB  
µs  
µs  
Input capacitance  
Power supply rejection ratio  
Sample acquisition time  
TBD  
1
SIDA108  
A_CONV8  
Conversion time for 8-bit resolution at  
conversion rate = Fhclk/(2^(N+2)).  
Clock frequency = 48 MHz.  
21.3  
Does not include acquisition  
time. Equivalent to 44.8 ksps  
including acquisition time.  
SIDA108A A_CONV10  
Conversion time for 10-bit resolution  
at conversion rate = Fhclk/(2^(N+2)).  
Clock frequency = 48 MHz.  
85.3  
µs  
Does not include acquisition  
time. Equivalent to 11.6 ksps  
including acquisition time.  
Signal-to-noise and distortion ratio  
(SINAD)  
22.4  
2
SIDA109  
SIDA110  
SIDA111  
A_SND  
A_BW  
A_INL  
TBD  
dB  
Input bandwidth without aliasing  
kHz 8-bit resolution  
Integral non linearity. VDD = 1.71 to  
5.5, 1 ksps  
V
REF = 2.4 V or greater  
LSB  
LSB  
Differential non linearity. VDD = 1.71  
to 5.5, 1 ksps  
SIDA112  
A_DNL  
1
Document Number: 002-22097 Rev. *E  
Page 29 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Digital Peripherals  
Timer Counter Pulse-Width Modulator (TCPWM)  
Table 17. TCPWM Specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
SID.TCPWM.1 ITCPWM1  
SID.TCPWM.2 ITCPWM2  
SID.TCPWM.2A ITCPWM3  
Block current consumption at 3 MHz  
45  
All modes (TCPWM)  
Block current consumption at 12 MHz  
Block current consumption at 48 MHz  
155  
650  
μA All modes (TCPWM)  
All modes (TCPWM)  
Fc max = CLK_SYS  
MHz  
TCPWMFREQ  
TPWMENEXT  
SID.TCPWM.3  
SID.TCPWM.4  
Operating frequency  
Fc  
Maximum = 48 MHz  
For all trigger events[8]  
Input trigger pulse width  
2/Fc  
Minimum possible  
width of Overflow,  
Underflow, and CC  
(Counter equals  
Compare value)  
outputs  
TPWMEXT  
SID.TCPWM.5  
Output trigger pulse widths  
2/Fc  
ns  
Minimum time  
between successive  
counts  
TCRES  
PWMRES  
QRES  
SID.TCPWM.5A  
SID.TCPWM.5B  
SID.TCPWM.5C  
Resolution of counter  
PWM resolution  
1/Fc  
1/Fc  
1/Fc  
Minimum pulse width  
of PWM Output  
Minimum pulse width  
between Quadrature  
phase inputs  
Quadrature inputs resolution  
I2C  
Table 18. Fixed I2C DC Specifications[9]  
Spec ID Parameter  
SID149 II2C1  
Description  
Min  
Typ  
Max  
50  
Unit  
Details/Conditions  
Block current consumption at 100 kHz  
Block current consumption at 400 kHz  
Block current consumption at 1 Mbps  
I2C enabled in Deep Sleep mode  
SID150  
SID151  
SID152  
II2C2  
II2C3  
II2C4  
135  
310  
1.4  
µA  
Table 19. Fixed I2C AC Specifications[9]  
Spec ID# Parameter  
SID153 FI2C1  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
Details/Conditions  
Bit rate  
1
Msps –  
Table 20. SPI DC Specifications[10]  
Spec ID# Parameter  
SID163 ISPI1  
Description  
Min  
Typ  
Max  
Unit  
Block current consumption at  
1 Mbits/sec  
360  
Block current consumption at  
4 Mbits/sec  
SID164  
ISPI2  
ISPI3  
560  
600  
µA  
Block current consumption at  
8 Mbits/sec  
SID165  
Note  
8. Trigger events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.  
9. Guaranteed by characterization.  
Document Number: 002-22097 Rev. *E  
Page 30 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Table 21. SPI AC Specifications[10]  
Spec ID#  
Parameter  
FSPI  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
SPIOperatingfrequency(Master;6X  
Oversampling)  
SID166  
8
MHz SID166  
Fixed SPI Master Mode AC Specifications  
SID167  
SID168  
TDMO  
TDSI  
MOSI Valid after SClock driving edge  
15  
MISO Valid before SClock capturing  
edge  
Full clock, late MISO  
ns sampling  
20  
Referred to Slave capturing  
edge  
SID169  
THMO  
Previous MOSI data hold time  
0
Fixed SPI Slave Mode AC Specifications  
MOSI Valid before Sclock Capturing  
edge  
SID170  
SID171  
TDMI  
40  
42 +  
3*Tscb  
TDSO  
MISO Valid after Sclock driving edge  
T
scb = SCB clock  
ns  
MISO Valid after Sclock driving edge  
in Ext. Clk mode  
SID171A TDSO_EXT  
SID172 THSO  
0
48  
Previous MISO data hold time  
Table 22. UART DC Specifications[10]  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
Block current consumption at  
100 Kbits/sec  
SID160  
SID161  
IUART1  
IUART2  
55  
µA  
Block current consumption at  
1000 Kbits/sec  
312  
µA  
Table 23. UART AC Specifications[10]  
Spec ID#  
Parameter  
FUART  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
SID162  
Bit rate  
1
Mbps –  
Table 24. LCD Direct Drive DC Specifications[10]  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
Operating current in low power  
mode  
SID154  
ILCDLOW  
5
µA 16 4 small segment disp. at Hz  
LCD capacitance per  
segment/common driver  
SID155  
SID156  
SID157  
CLCDCAP  
LCDOFFSET  
ILCDOP1  
500  
20  
2
5000  
pF  
Long-term segment offset  
mV  
LCD system operating current  
Vbias = 5 V  
32 4 segments. 50 Hz. 25 °C  
mA  
LCD system operating current  
Vbias = 3.3 V  
32 4 segments. 50 Hz. 25 °C  
4 segments. 50 Hz. 25 °C.  
SID158  
ILCDOP2  
2
Note  
10. Guaranteed by characterization.  
Document Number: 002-22097 Rev. *E  
Page 31 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Table 25. LCD Direct Drive AC Specifications[10]  
Spec ID#  
SID159  
Parameter  
FLCD  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
Details/Conditions  
Details/Conditions  
LCD frame rate  
10  
50  
150  
Hz  
Memory  
Table 26. Flash DC Specifications  
Spec ID#  
Parameter  
VPE  
Description  
Min  
Typ  
Max  
Unit  
SID173  
Erase and program voltage  
1.71  
5.5  
V
Table 27. Flash AC Specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Row (block) write time (erase and  
program)  
[11]  
SID174  
TROWWRITE  
20  
Row (block) = 64 bytes  
[11]  
SID175  
SID176  
SID178  
SID180[12] TDEVPROG  
SID181[12] FEND  
TROWERASE  
Row erase time  
13  
7
ms  
[11]  
TROWPROGRAM  
Row program time after erase  
Bulk erase time (16 KB)  
Total device program time  
Flash endurance  
[11]  
TBULKERASE  
15  
7.5  
[11]  
Seconds –  
100 K  
Cycles  
Flash retention. TA 55 °C, 100 K  
SID182[12] FRET  
20  
10  
P/E cycles  
Flash retention. TA 85 °C, 10 K  
P/E cycles  
SID182A[12]  
Years  
Flash retention. TA 105 °C, 10 K  
Guaranteed by  
characterization  
SID182B[12] FRETQ  
P/E cycles; three years at TA  
10  
85 °C  
CPU execution from  
Flash  
SID256  
SID257  
TWS48  
TWS24  
Number of Wait states at 48 MHz  
Number of Wait states at 24 MHz  
2
1
CPU execution from  
Flash  
Notes  
11. It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied  
on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs.  
Make certain that these are not inadvertently activated.  
12. Guaranteed by characterization.  
Document Number: 002-22097 Rev. *E  
Page 32 of 45  
PSoC 4: PSoC 4100PS Datasheet  
System Resources  
Power-on Reset (POR)  
Table 28. Power On Reset (PRES)  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
At power-up and  
power-down.  
SID.CLK#6 SR_POWER_UP Power supply slew rate  
1
67  
V/ms  
SID185[13] VRISEIPOR  
SID186[13] VFALLIPOR  
Rising trip voltage  
Falling trip voltage  
0.80  
0.70  
1.5  
1.4  
V
Table 29. Brown-out Detect (BOD) for VCCD  
Spec ID  
Parameter  
Description  
Min  
1.48  
1.1  
Typ  
Max  
1.62  
1.5  
Unit  
Details/Conditions  
BOD trip voltage in active and sleep  
modes  
SID190[13] VFALLPPOR  
SID192[13] VFALLDPSLP  
V
BOD trip voltage in Deep Sleep  
SWD Interface  
Table 30. SWD Interface Specifications  
Spec ID#  
Parameter  
Description  
3.3 V VDD 5.5 V  
Min  
Typ  
Max  
Unit  
Details/Conditions  
SWDCLK ≤ 1/3 CPU  
clock frequency  
SID213  
F_SWDCLK1  
14  
MHz  
SWDCLK ≤ 1/3 CPU  
clock frequency  
SID214  
F_SWDCLK2  
1.71 V VDD 3.3 V  
7
SID215[13] T_SWDI_SETUP T = 1/f SWDCLK  
SID216[13] T_SWDI_HOLD T = 1/f SWDCLK  
SID217[13] T_SWDO_VALID T = 1/f SWDCLK  
SID217A[13] T_SWDO_HOLD T = 1/f SWDCLK  
0.25*T  
0.25*T  
ns  
1
0.5*T  
Internal Main Oscillator  
Table 31. IMO DC Specifications  
(Guaranteed by Design)  
Spec ID#  
SID218  
Parameter  
IIMO1  
IIMO2  
Description  
Min  
Typ  
Max  
250  
180  
Unit  
µA  
Details/Conditions  
IMO operating current at 48 MHz  
IMO operating current at 24 MHz  
SID219  
µA  
Table 32. IMO AC Specifications  
Spec ID  
Parameter  
FIMOTOL1  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
Frequency range from 24 to  
48 MHz (4-MHz increments)  
2 V VDD 5.5 V, and  
–25 °C TA 85 °C  
SID223  
–2  
+2  
%
SID226  
SID228  
TSTARTIMO  
IMO startup time  
7
µs  
ps  
TJITRMSIMO2  
RMS jitter at 24 MHz  
145  
Note  
13. Guaranteed by characterization.  
Document Number: 002-22097 Rev. *E  
Page 33 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Internal Low-Speed Oscillator  
Table 33. ILO DC Specifications  
(Guaranteed by Design)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
SID231[14] IILO1  
ILO operating current  
0.3  
1.05  
µA  
Table 34. ILO AC Specifications  
Spec ID Parameter  
Description  
ILO startup time  
Min  
Typ  
Max  
2
Unit  
ms  
Details/Conditions  
SID234[14] TSTARTILO1  
SID236[14] TILODUTY  
ILO duty cycle  
40  
20  
50  
40  
60  
80  
%
SID237  
FILOTRIM1  
ILO frequency range  
kHz  
Table 35. Watch Crystal Oscillator (WCO) Specifications  
Spec ID  
SID398  
SID399  
SID400  
SID401  
SID402  
SID403  
SID404  
SID405  
Parameter  
FWCO  
Description  
Crystal Frequency  
Min  
Typ  
Max  
Unit  
Details/Conditions  
32.768  
250  
kHz  
FTOL  
ESR  
PD  
Frequency tolerance  
50  
50  
ppm With 20-ppm crystal  
Equivalent series resistance  
Drive Level  
kΩ  
µW  
ms  
pF  
1
TSTART  
CL  
Startup time  
500  
12.5  
Crystal Load Capacitance  
Crystal Shunt Capacitance  
Operating Current (high power mode)  
6
C0  
1.35  
pF  
IWCO1  
8
µA  
Table 36. External Clock Specifications  
Spec ID Parameter  
Description  
Min  
0
Typ  
Max  
48  
Unit  
MHz  
%
Details/Conditions  
SID305[14] ExtClkFreq  
SID306[14] ExtClkDuty  
External clock input frequency  
Duty cycle; measured at VDD/2  
45  
55  
Table 37. Block Specs  
Spec ID  
SID262[14] TCLKSWITCH  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
Details/Conditions  
System clock source switching time  
3
4
Periods –  
Table 38. PRGIO Pass-through Time (Delay in Bypass Mode)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Max. delay added by PRGIO in bypass  
mode  
SID252  
PRG_BYPASS  
1.6  
ns  
Note  
14. Guaranteed by characterization.  
Document Number: 002-22097 Rev. *E  
Page 34 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Ordering Information  
Features  
Package  
806  
CY8C4125PVI-PS421 24  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
2
2
2
2
2
2
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
4
4
4
4
4
4
2
2
2
2
2
2
2
2
2
2
2
2
2
2
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2
2
2
2
2
2
2
2
2
3
3
3
3
3
8
8
8
8
8
8
8
8
8
8
8
8
8
8
20  
37  
38  
38  
20  
37  
37  
38  
38  
20  
37  
37  
38  
38  
ksps  
806  
ksps  
CY8C4125FNI-PS423 24  
4125  
806  
ksps  
CY8C4125AZI-PS423 24  
–40 to  
85  
806  
ksps  
CY8C4125LQI-PS423 24  
CY8C4145PVI-PS421 48  
CY8C4145FNI-PS423 48  
CY8C4145FNQ-PS423 48  
CY8C4145AZI-PS423 48  
1000  
ksps  
1000  
ksps  
1000  
ksps  
–40 to  
105  
1000  
ksps  
1000  
ksps  
CY8C4145LQI-PS423 48  
4145  
–40 to  
85  
1000  
ksps  
CY8C4145PVI-PS431 48  
1000  
ksps  
CY8C4145FNI-PS433 48  
CY8C4145FNQ-PS433 48  
CY8C4145AZI-PS433 48  
CY8C4145LQI-PS433 48  
1000  
ksps  
–40 to  
105  
1000  
ksps  
–40 to  
85  
1000  
ksps  
Document Number: 002-22097 Rev. *E  
Page 35 of 45  
PSoC 4: PSoC 4100PS Datasheet  
The nomenclature used in the preceding table is based on the following part numbering convention:  
Field  
CY8C  
4
Description  
Cypress Prefix  
Architecture  
Family  
Values  
Meaning  
4
Arm Cortex-M0+ CPU  
A
1
4100PS Family  
2
24 MHz  
B
C
Maximum frequency  
4
5
48 MHz  
Flash Memory Capacity  
32 KB  
AZ  
LQ  
PV  
FN  
PS  
I
TQFP (0.5mm pitch)  
QFN  
DE  
Package Code  
SSOP  
CSP  
S-Series  
S
F
Series Designator  
Temperature Range  
Attributes Code  
Industrial  
Q
Extended Industrial  
Code of feature set in the specific family  
XYZ  
000-999  
The following is an example of a part number:  
S
XYZ  
Example  
CY8C 4 A B C DE F –  
Cypress Prefix  
Architecture  
Family within Architecture  
CPU Speed  
4 : PSoC 4  
1 :4100 Family  
4 : 48 MHz  
5 : 32KB  
Flash Capacity  
Package Code  
AZ :TQFP  
I: Industrial  
Temperature Range  
Series Designator  
Attributes Code  
Document Number: 002-22097 Rev. *E  
Page 36 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Packaging  
Spec ID#  
BID20  
Package  
48-pin TQFP  
48-pin QFN  
Description  
Package DWG #  
51-85135  
7 × 7 × 1.4 mm height with 0.5-mm pitch  
6 × 6 × 0.6 mm height with 0.4-mm pitch  
BID27  
001-57280  
002-24003  
51-85079  
BID34  
45-ball WLCSP 1.986 × 3.691 × 0.482-mm height with 0.38-mm pitch  
28-pin SSOP 5.3 × 10.2 × 0.65-mm pitch  
BID34A  
Table 39. Package Thermal Characteristics  
Parameter  
TA  
Description  
Operating Ambient temperature  
Operating junction temperature  
Package θJA  
Package  
Min  
–40  
–40  
Typ  
25  
Max  
Unit  
°C  
105  
125  
TJ  
°C  
TJA  
TJC  
TJA  
TJC  
TJA  
TJC  
TJA  
TJC  
48-pin TQFP  
48-pin TQFP  
48-pin QFN  
71  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
Package θJC  
34.3  
18  
Package θJA  
Package θJC  
48-pin QFN  
4.5  
37.2  
0.31  
60  
Package θJA  
45-Ball WLCSP  
45-Ball WLCSP  
28-pin SSOP  
28-pin SSOP  
Package θJC  
Package θJA  
Package θJC  
25  
Table 40. Solder Reflow Peak Temperature  
Maximum Peak  
Temperature  
Package  
Maximum Time at Peak Temperature  
All  
260 °C  
30 seconds  
Table 41. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-020  
Package  
MSL  
All  
MSL 3  
Document Number: 002-22097 Rev. *E  
Page 37 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Package Diagrams  
Figure 7. 48-pin TQFP Package Outline  
51-85135 *C  
Figure 8. 48-Pin QFN Package Outline  
001-57280 *E  
Document Number: 002-22097 Rev. *E  
Page 38 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Figure 9. 45-Ball WLCSP Dimensions  
6
7
5
4
3
2
1
A
B
C
D
E
F
G
H
J
5
NOTES:  
DIMENSIONS  
NOM  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
SYMBOL  
MIN  
-
MAX  
0.482  
-
2. SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.  
3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
D
-
0.141  
-
4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.  
N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX  
SIZE MD X ME.  
1.986 BSC  
3.691 BSC  
1.52 BSC  
3.04 BSC  
0.263 BSC  
0.388 BSC  
E
D1  
E1  
E2  
E3  
5.  
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A  
PLANE PARALLEL TO DATUM C.  
6.  
"SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND  
DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW,  
"SD" OR "SE" = 0.  
MD  
ME  
5
9
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW,  
"SD" = eD/2 AND "SE" = eE/2.  
N
45  
Øb  
eD  
0.19  
0.22  
0.25  
A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK,  
METALIZED MARK, INDENTATION OR OTHER MEANS.  
7.  
0.38 BSC  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER  
eE  
0.38 BSC  
0.00 BSC  
BALLS.  
SD  
9. JEDEC SPECIFICATION NO. REF. : N/A.  
SE  
0.063 BSC  
002-24003 **  
Company Confidential  
Document Number: 002-22097 Rev. *E  
Page 39 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Figure 10. 28-Pin SSOP Package Outline  
51-85079 *G  
Document Number: 002-22097 Rev. *E  
Page 40 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Acronyms  
Table 42. Acronyms used in this Document (continued)  
Table 42. Acronyms used in this Document  
Acronym  
ESD  
Description  
electrostatic discharge  
Acronym  
abus  
Description  
analog local bus  
ETM  
FIR  
embedded trace macrocell  
finite impulse response, see also IIR  
flash patch and breakpoint  
full-speed  
ADC  
AG  
analog-to-digital converter  
analog global  
FPB  
FS  
AHB  
AMBA (advanced microcontroller bus  
architecture) high-performance bus, anArm data  
transfer bus  
GPIO  
general-purpose input/output, applies to a PSoC  
pin  
ALU  
arithmetic logic unit  
HVI  
high-voltage interrupt, see also LVI, LVD  
integrated circuit  
AMUXBUS analog multiplexer bus  
IC  
API  
application programming interface  
IDAC  
current DAC, see also DAC, VDAC  
integrated development environment  
APSR  
Arm®  
ATM  
BW  
application program status register  
advanced RISC machine, a CPU architecture  
automatic thump mode  
IDE  
I2C, or IIC  
Inter-Integrated Circuit, a communications  
protocol  
bandwidth  
IIR  
infinite impulse response, see also FIR  
internal low-speed oscillator, see also IMO  
internal main oscillator, see also ILO  
integral nonlinearity, see also DNL  
input/output, see also GPIO, DIO, SIO, USBIO  
initial power-on reset  
CAN  
Controller Area Network, a communications  
protocol  
ILO  
IMO  
INL  
CMRR  
CPU  
common-mode rejection ratio  
central processing unit  
I/O  
CRC  
cyclic redundancy check, an error-checking  
protocol  
IPOR  
IPSR  
IRQ  
ITM  
LCD  
LIN  
DAC  
digital-to-analog converter, see also IDAC,  
VDAC  
interrupt program status register  
interrupt request  
DFB  
DIO  
digital filter block  
instrumentation trace macrocell  
liquid crystal display  
digital input/output, GPIO with only digital  
capabilities, no analog. See GPIO.  
Local Interconnect Network, a communications  
protocol.  
DMIPS  
DMA  
DNL  
Dhrystone million instructions per second  
direct memory access, see also TD  
differential nonlinearity, see also INL  
do not use  
LR  
link register  
LUT  
lookup table  
DNU  
DR  
LVD  
low-voltage detect, see also LVI  
low-voltage interrupt, see also HVI  
low-voltage transistor-transistor logic  
multiply-accumulate  
port write data registers  
LVI  
DSI  
digital system interconnect  
data watchpoint and trace  
error correcting code  
LVTTL  
MAC  
MCU  
MISO  
NC  
DWT  
ECC  
microcontroller unit  
ECO  
EEPROM  
external crystal oscillator  
master-in slave-out  
electrically erasable programmable read-only  
memory  
no connect  
NMI  
nonmaskable interrupt  
non-return-to-zero  
EMI  
electromagnetic interference  
external memory interface  
end of conversion  
NRZ  
NVIC  
NVL  
opamp  
EMIF  
EOC  
EOF  
EPSR  
nested vectored interrupt controller  
nonvolatile latch, see also WOL  
operational amplifier  
end of frame  
execution program status register  
Document Number: 002-22097 Rev. *E  
Page 41 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Table 42. Acronyms used in this Document (continued)  
Table 42. Acronyms used in this Document (continued)  
Acronym  
PAL  
Description  
programmable array logic, see also PLD  
program counter  
Acronym  
SWD  
Description  
serial wire debug, a test protocol  
single-wire viewer  
PC  
SWV  
TD  
PCB  
PGA  
PHUB  
PHY  
PICU  
PLA  
printed circuit board  
transaction descriptor, see also DMA  
total harmonic distortion  
transimpedance amplifier  
technical reference manual  
transistor-transistor logic  
transmit  
programmable gain amplifier  
peripheral hub  
THD  
TIA  
physical layer  
TRM  
TTL  
TX  
port interrupt control unit  
programmable logic array  
programmable logic device, see also PAL  
phase-locked loop  
PLD  
UART  
UniversalAsynchronous Transmitter Receiver, a  
communications protocol  
PLL  
UDB  
universal digital block  
Universal Serial Bus  
PMDD  
POR  
PRES  
PRS  
PS  
package material declaration data sheet  
power-on reset  
USB  
USBIO  
USB input/output, PSoC pins used to connect to  
a USB port  
precise power-on reset  
pseudo random sequence  
port read data register  
VDAC  
WDT  
voltage DAC, see also DAC, IDAC  
watchdog timer  
PSoC®  
PSRR  
PWM  
RAM  
RISC  
RMS  
RTC  
RTL  
Programmable System-on-Chip™  
power supply rejection ratio  
pulse-width modulator  
WOL  
write once latch, see also NVL  
watchdog timer reset  
external reset I/O pin  
crystal  
WRES  
XRES  
XTAL  
random-access memory  
reduced-instruction-set computing  
root-mean-square  
real-time clock  
register transfer language  
remote transmission request  
receive  
RTR  
RX  
SAR  
SC/CT  
SCL  
successive approximation register  
switched capacitor/continuous time  
I2C serial clock  
SDA  
S/H  
I2C serial data  
sample and hold  
SINAD  
SIO  
signal to noise and distortion ratio  
special input/output, GPIO with advanced  
features. See GPIO.  
SOC  
SOF  
SPI  
start of conversion  
start of frame  
Serial Peripheral Interface, a communications  
protocol  
SR  
slew rate  
SRAM  
SRES  
static random access memory  
software reset  
Document Number: 002-22097 Rev. *E  
Page 42 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Document Conventions  
Units of Measure  
Table 43. Units of Measure  
Symbol  
°C  
Unit of Measure  
degrees Celsius  
decibel  
dB  
fF  
femto farad  
hertz  
Hz  
KB  
kbps  
Khr  
kHz  
k  
1024 bytes  
kilobits per second  
kilohour  
kilohertz  
kilo ohm  
ksps  
LSB  
Mbps  
MHz  
M  
Msps  
µA  
kilosamples per second  
least significant bit  
megabits per second  
megahertz  
mega-ohm  
megasamples per second  
microampere  
microfarad  
µF  
µH  
microhenry  
microsecond  
microvolt  
µs  
µV  
µW  
mA  
ms  
mV  
nA  
microwatt  
milliampere  
millisecond  
millivolt  
nanoampere  
nanosecond  
nanovolt  
ns  
nV  
ohm  
pF  
picofarad  
ppm  
ps  
parts per million  
picosecond  
second  
s
sps  
sqrtHz  
V
samples per second  
square root of hertz  
volt  
Document Number: 002-22097 Rev. *E  
Page 43 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Revision History  
Description Title: PSoC 4: PSoC 4100PS Datasheet Programmable System-on-Chip (PSoC)  
Document Number: 002-22097  
Submission  
Revision  
ECN  
Description of Change  
Date  
**  
6049408  
6155846  
6164274  
6318827  
01/30/2018 New spec  
Updated number of VDACs to 2.  
Updated Voltage DAC Specifications.  
05/03/2018 Corrected typo in Ordering Information.  
Updated Table 2, Table 6, Table 8, Table 10, Table 27, and Table 36.  
*A  
*B  
*C  
04/27/2018  
09/25/2018  
Updated 45-ball WLCSP package drawing.  
Updated Device Level Specifications and Ordering Information.  
12/06/2019 Updated Table 27 and Table 39.  
Updated Sales page and Copyright information.  
*D  
*E  
6740728  
7047124  
Updated Conditions for SR_POWER_UP in Table 28.  
12/17/2020 Updated Figure 10 (spec 51-85079 *F to *G) in Packaging.  
Updated Sales, Solutions, and Legal Information.  
Document Number: 002-22097 Rev. *E  
Page 44 of 45  
PSoC 4: PSoC 4100PS Datasheet  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Code Examples | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2018-2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or  
firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress  
reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property  
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants  
you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce  
the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or  
indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by  
Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the  
Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing  
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such  
as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING  
CYPRESS PRODUCTS, WILLBE FREE FROM CORRUPTION,ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security  
Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In  
addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted  
by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or  
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the  
responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device"  
means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other  
medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk  
Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of  
a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from  
and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress  
product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i)  
Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to  
use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-22097 Rev. *E  
Revised December 17, 2020  
Page 45 of 45  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY