CY8C6144AZI-S4F12 [INFINEON]

32-位PSoC™ 6 Arm® Cortex®-M4 / M0+;
CY8C6144AZI-S4F12
型号: CY8C6144AZI-S4F12
厂家: Infineon    Infineon
描述:

32-位PSoC™ 6 Arm® Cortex®-M4 / M0+

文件: 总74页 (文件大小:1248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
PSoC 6 MCU: CY8C61x4  
Datasheet  
PSoC 61 MCU  
General Description  
PSoC® 6 MCU is a high-performance, ultra-low-power and secured MCU platform, purpose-built for IoT applications. The CY8C61x4  
product line, based on the PSoC 6 MCU platform, is a combination of a dual CPU microcontroller with low-power flash technology,  
digital programmable logic, high-performance analog-to-digital conversion and standard communication and timing peripherals.  
Features  
Note: In PSoC 61 the Cortex M0+ is reserved for system  
functions, and is not available for applications.  
Segment LCD Drive  
Supports up to 61 segments and up to 8 commons  
Operates in System Deep Sleep mode  
32-bit Dual CPU Subsystem  
150-MHz Arm® Cortex®-M4F (CM4) with single-cycle multiply  
(Floating Point and Memory Protection Unit)  
Serial Communication  
Six run-time configurable serial communication blocks (SCBs)  
Five SCBs: configurable as SPI, I2C, or UART  
One Deep Sleep SCB: configurable as SPI or I2C  
USB Full-Speed device interface  
100-MHz Cortex-M0+ (CM0+) with single-cycle multiply and  
MPU  
User-selectable core logic operation at either 1.1 V or 0.9 V  
Active CPU current slope with 1.1-V core operation  
Cortex-M4: 40 µA/MHz  
One CAN FD block  
Cortex-M0+: 20 µA/MHz  
Timing and Pulse-Width Modulation  
Active CPU current slope with 0.9-V core operation  
Cortex-M4: 22 µA/MHz  
Cortex-M0+: 15 µA/MHz  
Twelve timer/counter pulse-width modulators (TCPWMs)  
Center-aligned, Edge, and Pseudo-random modes  
Comparator-based triggering of Kill signals  
Three DMA controllers  
Programmable Analog  
Memory Subsystem  
Two 12-bit 2-Msps SAR ADCs with synchronized sampling,  
differential and single-ended modes, 16-channel sequencer  
with result averaging, and Deep Sleep operation  
256-KB application flash and 32-KB supervisory flash (SFlash);  
read-while-write (RWW) support. Two 8-KB flash caches, one  
for each CPU.  
One12-bitvoltage-modedigital-to-analogconverter(DAC)with  
< 2-μs settling time  
128-KB SRAM with programmable power control and retention  
granularity  
Two low-power comparators available in Deep Sleep and  
Hibernate modes  
One-time-programmable (OTP) 1-Kb eFuse array  
Low-Power 1.7-V to 3.6-V Operation  
Two opamps with low-power operation modes  
Always-on low frequency Deep Sleep operation  
Built-in temperature sensor connected to ADC  
Six power modes for fine-grained power management  
Deep Sleep mode current of 7 µA with 64-KB SRAM retention  
On-chip DC-DC Buck converter, <1-µA quiescent current  
Backup domain with 64 bytes of memory and real-time clock  
Up to 62 Programmable GPIOs  
One Smart I/O™ port (6 I/Os) enables Boolean operations on  
GPIO pins; available during system Deep Sleep  
Flexible Clocking Options  
8-MHz internal main oscillator (IMO) with ±2% accuracy  
Ultra-low-power 32-kHz internal low-speed oscillator (ILO)  
On-chip crystal oscillators (16 to 35 MHz, and 32 kHz)  
Phase-locked loop (PLL) for multiplying clock frequency  
Frequency-locked loop (FLL) for multiplying IMO frequency  
Programmable drive modes, strengths, and slew rates  
Two overvoltage-tolerant (OVT) pins  
Quad-SPI (QSPI)/Serial Memory Interface (SMIF)  
Execute-In-Place (XIP) from external Quad SPI Flash  
On-the-fly encryption and decryption  
4-KB cache for greater XIP performance with lower power  
Supports single, dual, and quad interfaces with throughput up  
to 320 Mbps  
Cypress Semiconductor Corporation  
Document Number: 002-33480 Rev. *E  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised October 18, 2022  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Capacitive Sensing  
Device Identification and Revisions  
Cypress CapSense® Sigma-Delta (CSD) provides  
Product line ID (12-bit): 0x10E  
Major/Minor die revision ID: 1/3  
best-in-class SNR, liquid tolerance, and proximity sensing  
Enables dynamic usage of both self and mutual sensing  
Automatic hardware tuning (SmartSense™)  
Firmware Revisions: ROM Boot: 8.1, Flash Boot: 3.1.0.528  
(see Boot Code section)  
Security Built into Platform Architecture  
Authentication during boot using hardware hashing  
All debug and test ingress paths can be disabled  
Up to eight protection contexts  
This product line has a JTAG ID which is available through the  
SWJ interface. It is a 32-bit ID, where:  
The most significant digit is the device revision, based on the  
Major Die Revision  
Cryptography Accelerators  
The next four digits correspond to the part number, for example  
Hardware acceleration for symmetric and asymmetric  
"E4B0" as a hexadecimal number  
cryptographic methods and hash functions  
The three least significant digits are the manufacturer ID, in this  
case "069" as a hexadecimal number  
True random number generation (TRNG) function  
The Silicon ID system call can be used by firmware to get Silicon  
ID and ROM Boot data. For more information, see the technical  
reference manual (TRM).  
Packages  
80-TQFP, 64-TQFP, 68-QFN  
The Flash Boot version can be read directly from designated  
addresses 0x1600 2004 and 0x1600 2018. For more  
information, see the technical reference manual (TRM).  
Document Number: 002-33480 Rev. *E  
Page 2 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Contents  
Development Ecosystem................................................. 4  
PSoC 6 MCU Resources .............................................4  
ModusToolbox Software ..............................................5  
Blocks and Functionality................................................. 6  
Functional Description..................................................... 8  
CPU and Memory Subsystem .....................................8  
System Resources ....................................................11  
Programmable Analog Subsystems ..........................14  
Programmable Digital ................................................16  
Fixed-Function Digital ................................................16  
GPIO .........................................................................17  
CapSense Subsystem ...............................................18  
Pinouts ............................................................................ 21  
Power Supply Considerations....................................... 31  
Electrical Specifications ................................................ 36  
Absolute Maximum Ratings .......................................36  
Device-Level Specifications ......................................36  
Analog Peripherals ....................................................44  
Digital Peripherals .....................................................54  
Memory .....................................................................57  
System Resources ....................................................58  
Ordering Information...................................................... 63  
PSoC 6 MPN Decoder ..............................................63  
Packaging........................................................................ 65  
Acronyms........................................................................ 69  
Document Conventions ................................................. 71  
Units of Measure .......................................................71  
Revision History ............................................................. 72  
Sales, Solutions, and Legal Information ...................... 73  
Worldwide Sales and Design Support .......................73  
Products ....................................................................73  
PSoC® Solutions ......................................................73  
Cypress Developer Community .................................73  
Technical Support .....................................................73  
Document Number: 002-33480 Rev. *E  
Page 3 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Development Ecosystem  
PSoC 6 MCU Resources  
Cypress provides a wealth of data at www.cypress.com to help you select the right PSoC device and quickly and effectively integrate  
it into your design. The following is an abbreviated list of resources for PSoC 6 MCU:  
Overview: PSoC Portfolio, PSoC Roadmap  
Product Selectors: PSoC 6 MCU  
PSoC 6 MCU Programming Specification provides the infor-  
mation necessary to program PSoC 6 MCU nonvolatile  
memory  
Application Notes cover a broad range of topics, from basic  
to advanced level, and include the following:  
AN221774: Getting Started with PSoC 6 MCU  
Development Tools  
The ModusToolbox® software enables cross platform code  
developmentwitharobustsuiteoftoolsandsoftwarelibraries  
AN218241: PSoC 6 MCU Hardware Design Guide  
AN213924: PSoC 6 MCU Device Firmware Update Guide  
AN215656: PSoC 6 MCU Dual-CPU System Design  
AN219528: PSoC 6 MCU Power Reduction Techniques  
AN221111: PSoC 6 MCU Creating a Secured System  
AN85951: PSoC 4, PSoC 6 MCU CapSense Design Guide  
There is no kit available for the PSoC 61 product line. How-  
ever, the CY8CKIT-062S4 PSoC 62S4 Pioneer Kit is avail-  
able: a low-cost hardware platform that enables design and  
debug of the PSoC 62 CY8C62x5 product line.  
PSoC 6 CAD libraries provide footprint and schematic sup-  
port for common tools. BSDL files and IBIS models are also  
available.  
CodeExamplesdemonstrateproductfeaturesandusage,and  
are also available on Cypress GitHub repositories.  
Training Videos are available on a wide range of topics  
including the PSoC 6 MCU 101 series  
Technical Reference Manuals (TRMs) provide detailed  
descriptions of PSoC 6 MCU architecture and registers.  
Cypress Developer Community enables connection with  
fellow PSoC developers around the world, 24 hours a day, 7  
days a week, and hosts a dedicated PSoC 6 MCU Community  
Document Number: 002-33480 Rev. *E  
Page 4 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
ModusToolbox Software  
ModusToolbox Software is Cypress' comprehensive collection of multi-platform tools and software libraries that enable an immersive  
development experience for creating converged MCU and wireless systems. It is:  
Comprehensive - it has the resources you need  
Flexible - you can use the resources in your own workflow  
Atomic - you can get just the resources you want  
Cypress provides a large collection of code repositories on GitHub. This includes:  
Board Support Packages (BSPs) aligned with Cypress kits  
Low-level resources, including a hardware abstraction layer (HAL) and peripheral driver library (PDL)  
Middleware enabling industry-leading features such as CapSense®, Bluetooth Low Energy, and mesh networks  
An extensive set of thoroughly tested code example applications  
Note: The HAL provides a high-level, simplified interface to configure and use the hardware blocks on Cypress MCUs. It is a generic  
interface that can be used across multiple product families. For example, it wraps the PSoC 6 PDL with a simplified API, but the PDL  
exposes all low-level peripheral functionality. You can leverage the HAL's simpler and more generic interface for most of an application,  
even if one portion requires finer-grained control.  
ModusToolbox Software is IDE-neutral and easily adaptable to your workflow and preferred development environment. It includes a  
project creator, peripheral and library configurators, a library manager, as well as the optional Eclipse IDE for ModusToolbox. For  
information on using Cypress tools, refer to the documentation delivered with ModusToolbox software, and AN228571: Getting Started  
with PSoC 6 MCU on ModusToolbox.  
Figure 1. ModusToolbox Software Tools  
Document Number: 002-33480 Rev. *E  
Page 5 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Blocks and Functionality  
Figure 2 shows the major subsystems and a simplified view of their interconnections. The color coding shows the lowest power mode  
where a block is still functional. For example, the SRAM is functional down to Sleep Mode.  
Figure 2. Block Diagram  
Color Key:  
Power Modes and  
Domains  
PSoC 61 MCU  
CY8C61x4  
Programmable Analog  
2x SAR ADC 12-bit  
System LP/ULP Mode  
CPUs Active/Sleep  
System Resources  
DAC 12-bit  
Power  
Clocks  
OVP  
POR  
LVD  
IMO  
FLL  
ECO  
PLL  
2x Opamp  
System  
DeepSleep Mode  
BOD  
Temperature Sensor  
Buck Regulator  
XRES Reset  
Backup Regs  
2x MCWDT  
ILO  
RTC  
WDT  
WCO  
System  
Hibernate Mode  
CapSense  
LCD  
PMIC Control  
Backup  
Domain  
LP Comparator  
CPU Subsystem  
12x TCPWM  
SCB  
Cortex M4F CPU  
150/50 MHz, 1.1/0.9 V  
SWJ, ETM, ITM, CTI  
5x I2C, SPI,  
UART, or LIN  
Cortex M0+ CPU  
100/25 MHz, 1.1/0.9 V  
SWJ, MTB, CTI  
I2C or SPI  
eFuse: 1024 bits  
CAN FD  
3x DMA  
Controller  
QSPI (SMIF)  
with OTF Encryption/Decryption  
Crypto  
DES/TDES, AES, SHA,  
CRC, TRNG, RSA/ECC  
Accelerator  
USB  
PHY  
USB -FS  
Flash  
256 KB + 32 KB  
8 KB cache for each CPU  
SRAM  
128 KB  
ROM  
64 KB  
Document Number: 002-33480 Rev. *E  
Page 6 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
There are three debug access ports, one each for CM4 and CM0+, and a system port.  
PSoC 6 MCU devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware. All  
device interfaces can be permanently disabled (device security) for applications concerned about attacks due to a maliciously  
reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. All programming,  
debug, and test interfaces are disabled when maximum device security is enabled. The security level is settable by the user.  
Complete debug-on-chip functionality enables full device debugging in the final system using the standard production device. It does  
not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required  
to fully support debug.  
The Eclipse IDE for ModusToolbox provides fully integrated programming and debug support for these devices. The SWJ (SWD and  
JTAG) interface is fully compatible with industry-standard third party probes. With the ability to disable debug features, with very robust  
flash protection, and by allowing customer-proprietary functionality to be implemented in on-chip programmable blocks,  
PSoC 6 MCU provides multiple levels of security.  
Document Number: 002-33480 Rev. *E  
Page 7 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
CPU and Memory Subsystem  
Functional Description  
PSoC 6 has multiple bus masters, as Figure 2 shows. They are:  
CPUs, DMA controllers, QSPI,USB, and a Crypto block.  
Generally, all memory and peripherals can be accessed and  
shared by all bus masters through multi-layer Arm AMBA  
high-performance bus (AHB) arbitration. Accesses between  
CPUs can be synchronized using an inter-processor  
communication (IPC) block.  
The following sections provide an overview of the features,  
capabilities and operation of each functional block identified in  
the block diagram in Figure 2. For more detailed information,  
refer to the following documentation:  
Board Support Package (BSP) Documentation  
BSPs are available on GitHub. They are aligned with Cypress  
kits and provide files for basic device functionality such as  
hardware configuration files, startup code, and linker files.  
The BSP also includes other libraries that are required to sup-  
port a kit. Each BSP has its own documentation, but typically  
includes an API reference such as the example here. This  
search link finds all currently available BSPs on the Cypress  
GitHub site.  
CPUs  
There are two Arm Cortex CPUs:  
The Cortex-M4 (CM4) has single-cycle multiply, a floating-point  
unit (FPU), and a memory protection unit (MPU). It can run at up  
to 150 MHz. This is the main CPU, designed for a short interrupt  
response time, high code density, and high throughput.  
CM4 implements a version of the Thumb instruction set based  
on Thumb-2 technology (defined in the Armv7-M Architecture  
Reference Manual).  
Hardware Abstraction Layer API Reference Manual  
The Cypress Hardware Abstraction Layer (HAL) provides a  
high-level interface to configure and use hardware blocks on  
Cypress MCUs. It is a generic interface that can be used  
across multiple product families. You can leverage the HAL's  
simpler and more generic interface for most of an application,  
even if one portion requires finer-grained control. The HAL  
API Reference provides complete details. Example applica-  
tions that use the HAL download it automatically from the  
GitHub repository.  
The Cortex-M0+ (CM0+) has single-cycle multiply, and an MPU.  
It can run at up to 100 MHz; however, for CM4 speeds above  
100 MHz, CM0+ and bus peripherals are limited to half the speed  
of CM4. Thus, for CM4 running at 150 MHz, CM0+ and  
peripherals are limited to 75 MHz.  
CM0+ is the secondary CPU; it is used to implement system calls  
and device-level security, safety, and protection features.  
Peripheral Driver Library (PDL) Application Programming  
Interface (API) Reference Manual  
CM0+ implements the Armv6-M Thumb instruction set (defined  
in the Armv6-M Architecture Reference Manual).  
The Peripheral Driver Library (PDL) integrates device header  
files and peripheral drivers into a single package and supports  
all PSoC 6 MCU product lines. The drivers abstract the hard-  
ware functions into a set of easy-to-use APIs. These are fully  
documented in the PDLAPI Reference. Example applications  
that use the PSoC 6 PDL download it automatically from the  
GitHub repository.  
The CPUs have the following power draw, at VDDD = 3.3 V and  
using the internal buck regulator:  
Table 1. Active Current Slope at VDDD = 3.3 V Using the  
Internal Buck Regulator  
System Power Mode  
ULP  
LP  
Architecture Technical Reference Manual (TRM)  
Cortex-M0+  
Cortex-M4  
15 A/MHz  
22 A/MHz  
20 A/MHz  
40 A/MHz  
CPU  
The architecture TRM provides a detailed description of each  
resource in the device. This is the next reference to use if it is  
necessary to understand the operation of the hardware below  
the software provided by PDL. It describes the architecture  
and functionality of each resource and explains the operation  
of each resource in all modes. It provides specific guidance  
regarding the use of associated registers.  
The CPUs can be selectively placed in their Sleep and Deep  
Sleep power modes as defined by Arm.  
Both CPUs have nested vectored interrupt controllers (NVIC) for  
rapid and deterministic interrupt response, and wakeup interrupt  
controllers (WIC) for CPU wakeup from Deep Sleep power  
mode.  
Register Technical Reference Manual  
The CPUs have extensive debug support. PSoC 6 has a debug  
access port (DAP) that acts as the interface for device  
programming and debug. An external programmer or debugger  
(the “host”) communicates with the DAP through the device  
serial wire debug (SWD) or Joint Test Action Group (JTAG)  
interface pins. Through the DAP (and subject to device security  
restrictions), the host can access the device memory and  
peripherals as well as the registers in both CPUs.  
The register TRM provides a complete list of all registers in  
the device. It includes the breakdown of all register fields,  
their possible settings, read/write accessibility, and default  
states. All registers that have a reasonable use in typical ap-  
plications have functions to access them from within PDL.  
Note that ModusToolbox and PDL may provide software de-  
fault conditions for some registers that are different from and  
override the hardware defaults.  
Each CPU offers debug and trace features as follows:  
CM4 supports six hardware breakpoints and four watchpoints,  
4-bit embedded trace macrocell (ETM), serial wire viewer  
(SWV), and printf()-style debugging through the single wire  
output (SWO) pin.  
Document Number: 002-33480 Rev. *E  
Page 8 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
CM0+ supports four hardware breakpoints and two watch-  
points, and a micro trace buffer (MTB) with 4 KB dedicated  
RAM.  
source and destination. The size of data transfer per descriptor  
varies based on the type of DMA channel. Refer to the technical  
reference manual for details.  
PSoC 6 also has an Embedded Cross Trigger for synchronized  
debugging and tracing of both CPUs.  
Cryptography Accelerator (Crypto)  
This subsystem consists of hardware implementation and  
acceleration of cryptographic functions and random number  
generators.  
Interrupts  
This product line has 175system and peripheral interrupt  
sources and supports interrupts and system exception on both  
CPUs. CM4 has 175 interrupt request lines (IRQ), with the  
interrupt source ‘n’ directly connected to IRQn. CM0+ has eight  
interrupts IRQ[7:0] with configurable mapping of one or more  
interrupt sources to any of the IRQ[7:0]. CM0+ also supports  
eight internal (software only) interrupts.  
The Crypto subsystem supports the following:  
Encryption/Decryption Functions  
Data Encryption Standard (DES)  
Triple DES (3DES)  
Advanced Encryption Standard (AES) (128-, 192-, 256-bit)  
Elliptic Curve Cryptography (ECC)  
RSA cryptography functions  
Each interrupt supports configurable priority levels (eight levels  
for CM4 and four levels for CM0+). Up to four system interrupts  
can be mapped to each of the CPUs' non-maskable interrupts  
(NMI). Up to 45 interrupt sources are capable of waking the  
device from Deep Sleep power mode using the WIC. Refer to the  
technical reference manual for details.  
Hashing functions  
Secure Hash Algorithm (SHA)  
SHA-1  
SHA-224/-256/-384/-512  
InterProcessor Communication (IPC)  
Message authentication functions (MAC)  
In addition to the Arm SEV and WFE instructions, a hardware  
InterProcessor Communication (IPC) block is included. It  
includes 16 IPC channels and 16 IPC interrupt structures. The  
IPC channels can be used to implement data communication  
between the processors. Each IPC channel also implements a  
locking scheme which can be used to manage shared resources.  
The IPC interrupts let one processor interrupt the other, signaling  
an event. This is used to trigger events such as notify and release  
of the corresponding IPC channels. Some IPC channels and  
other resources are reserved, as Table 2 shows:  
Hashed message authentication code (HMAC)  
Cipher-based message authentication code (CMAC)  
32-bit cyclic redundancy code (CRC) generator  
Random number generators  
Pseudo random number generator (PRNG)  
True random number generator (TRNG)  
Protection Units  
This product line has multiple types of protection units to control  
erroneous or unauthorized access to memory and peripheral  
registers. CM4 and CM0+ have Arm MPUs for protection at the  
bus master level. Other bus masters use additional MPUs.  
Shared memory protection units (SMPUs) help implement  
memory protection for memory/ resources that are shared  
among multiple bus masters. Peripheral protection units (PPU)  
are similar to SMPUs but are designed for protecting the  
peripheral register space.  
Table 2. Distribution of IPC Channels and Other Resources  
Resources Available  
Resources Consumed  
IPC channels,  
16 available  
8 reserved  
IPC interrupts,  
16 available  
8 reserved  
Protection units support memory and peripheral access  
attributes including address range, read/write, code/data,  
privilege level, secured/non-secured, and protection context.  
Some protection unit resources are reserved for system usage;  
see the technical reference manual (TRM) for details.  
Other interrupts  
CM0+ NMI  
1 reserved  
Reserved  
Other resources:  
clock dividers, DMA  
channels, etc.  
1 CM0+ interrupt mux  
Direct Memory Access (DMA) Controllers  
This product line has three DMA controllers, with 32, 30, and 2  
channels, which support CPU-independent accesses to memory  
and peripherals. The descriptors for DMA channels can be in  
SRAM or flash. Therefore, the number of descriptors are limited  
only by the size of the memory. Each descriptor can transfer data  
in two nested loops with configurable address increments to the  
Document Number: 002-33480 Rev. *E  
Page 9 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Memory  
Boot Code  
PSoC 6 contains flash, SRAM, ROM, and eFuse memory blocks.  
Two blocks of code, ROM Boot and Flash Boot, are  
pre-programmed into the device and work together to provide  
device startup and configuration, basic security features,  
life-cycle stage management and other system functions.  
Flash  
There is up to 256 KB of application flash, organized in  
128 KB sectors. There is also a 32 KB supervisory flash  
(SFlash) sector.  
ROM Boot  
On a device reset, the boot code in ROM is the first code to  
execute. This code performs the following:  
Integrity checks of flash boot code  
Device trim setting (calibration)  
Setting the device protection units  
Data stored in SFlash includes device trim values, Flash Boot  
code, and encryption keys. After the device transitions into  
the “Secure” lifecycle stage, SFlash can no longer be  
changed.  
The flash has 128-bit-wide accesses to reduce power. This  
enables flash updates during code execution. Write opera-  
tions can be performed at the row level. A row is 512 bytes.  
Read operations are supported in both System Low Power  
and Ultra-Low Power modes, however write operations may  
not be performed in System Ultra-Low Power mode.  
Setting device access restrictions for lifecycle states  
ROM cannot be changed and acts as the root of trust in a  
secured system.  
Flash Boot  
Flash boot is firmware stored in SFlash that ensures that only  
a validated application may run on the device. It also ensures  
that the firmware image has not been modified, such as by a  
malicious third party.  
The flash controller has two caches, one for each CPU. Each  
cache is 8 KB, with 4-way set associativity.  
SRAM  
Flash boot:  
Up to 128 KB of SRAM is provided. Power control and reten-  
tion granularity is implemented in 32 KB blocks allowing the  
user to control the amount of memory retained in Deep Sleep.  
Memory is not retained in Hibernate mode.  
Is validated by ROM Boot  
Runs after ROM Boot and before the user application  
Enables system calls  
Configures the Debug Access Port  
Launches the user application  
ROM  
If the user application cannot be validated, then flash boot  
ensures that the device is transitioned into a safe state.  
The 64-KB ROM, also referred to as the supervisory ROM  
(SROM), provides code (ROM Boot) for several system func-  
tions. The ROM contains device initialization, flash write, se-  
curity, eFuse programming, and other system-level routines.  
ROM code is executed only by the CM0+ CPU, in protection  
context 0. A system function can be initiated by either CPU,  
or through the DAP. This causes an NMI in CM0+, which  
causes CM0+ to execute the system function.  
eFuse  
A one-time-programmable (OTP) eFuse array consists of  
1024 bits, of which 648 are reserved for system use such as  
die ID, device ID, initial trim settings, device life cycle, and  
security settings. The remaining bits are available for storing  
security key information, hash values, unique IDs or similar  
custom content.  
Each fuse is individually programmed; once programmed (or  
“blown”), its state cannot be changed. Blowing a fuse transi-  
tions it from the default state of 0 to 1. To program an eFuse,  
VDDIO0 must be at 2.5 V ±5%, at 14 mA.  
Because blowing an eFuse is an irreversible process, pro-  
gramming is recommended only in mass production program-  
ming under controlled factory conditions. For more informa-  
tion, see PSoC 6 MCU Programming Specifications.  
Document Number: 002-33480 Rev. *E  
Page 10 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Memory Map  
System Resources  
Both CPUs have a fixed address map, with shared access to  
memory and peripherals. The 32-bit (4 GB) address space is  
divided into Arm-defined regions shown in Table 3. Note that  
Code can be executed from the code and External RAM regions.  
Power System  
The power system provides assurance that voltage levels are as  
required for each respective mode and will either delay mode  
entry (on power-on reset (POR), for example) until voltage levels  
are as required for proper function or generate resets (brown-out  
detect (BOD)) when the power supply drops below specified  
levels. The design guarantees safe chip operation between  
power supply voltage dropping below specified levels (for  
example, below 1.7 V) and the reset occurring. There are no  
voltage sequencing requirements. The VDDD supply (1.7 to  
3.6 V) powers an on-chip buck regulator or a low-dropout  
regulator (LDO), selectable by the user. In addition, both the buck  
and the LDO offer a selectable (0.9 or  
Table 3. Address Map for CM4 and CM0+  
Address Range  
Name  
Use  
Program code region.  
Datacanalsobeplaced  
here. It includes the  
exception vector table,  
which starts at address  
0.  
0x0000 0000 – 0x1FFF FFFF  
Code  
Data region. This  
region is not supported  
in PSoC 6.  
0x2000 0000 – 0x3FFF FFFF  
SRAM  
1.1 V) core operating voltage (VCCD).The selection lets users  
choose between two system power modes:  
All peripheral registers.  
Code cannot be  
System Low Power (LP) operates VCCD at 1.1 V and offers high  
performance, with no restrictions on device configuration.  
executed from this  
region. CM4 bit-band in  
this region is not  
0x4000 0000 – 0x5FFF FFFF Peripheral  
System Ultra Low Power (ULP) operates VCCD at 0.9 V for  
exceptional low power, but imposes limitations on maximum  
clock speeds.  
supported in PSoC 6.  
SMIF or Quad SPI, (see  
the Quad-SPI/Serial  
External Memory Interface  
In addition, a backup domain adds an “always on” functionality  
using a separate power domain supplied by a backup supply  
(VBACKUP) such as a battery or supercapacitor. It includes a  
real-time clock (RTC) with alarm feature, supported by a  
0x6000 0000 – 0x9FFF FFFF  
0xA000 0000 – 0xDFFF FFFF  
RAM  
(SMIF) section). Code  
can be executed from  
this region.  
External  
Device  
Not used.  
32.768-kHz  
watch  
crystal  
oscillator  
(WCO),  
and  
power-management IC (PMIC) control. Pin 5 of Port 0 (P0.5) can  
be assigned as an enable signal for an external PMIC.  
Private  
Provides access to  
0xE000 0000 – 0xE00F FFFF Peripheral peripheral registers  
Bus  
within the CPU core.  
RTC alarms can be used as a trigger for the PMIC enable signal.  
The backup domain can generate a wake-up interrupt to the chip  
via the RTC timers or an external input.  
Device-specific system  
registers.  
0xE010 A000 – 0xFFFF FFFF  
Device  
The device memory map shown in Table 4 applies to both CPUs.  
That is, the CPUs share access to all PSoC 6 MCU memory and  
peripheral registers.  
Power Modes  
PSoC 6 MCUcan operate in four system and three CPU power  
modes. These modes are intended to minimize the average  
power consumption in an application. For more details on power  
modes and other power-saving configuration options, see the  
application note, AN219528: PSoC 6 MCU Low-Power Modes  
and Power Reduction Techniques and the Architecture TRM,  
Power Modes chapter.  
Table 4. Internal Memory Address Map for CM4 and CM0+  
Address Range  
Memory Type  
Size  
0x0000 0000 – 0x0000 FFFF  
ROM  
64 KB  
Up to  
0x0800 0000 –0x0801 FFFF  
0x1000 0000 –0x1003 FFFF  
SRAM  
128 KB  
Power modes supported by PSoC 6 MCUs, in the order of  
decreasing power consumption, are:  
Up to  
256 KB  
Application flash  
System Low Power (LP) – All peripherals and CPU power  
modes are available at maximum speed  
0x1600 0000 – 0x1600 7FFF Supervisory flash 32 KB  
System Ultra Low Power (ULP) – All peripherals and CPU  
power modes are available, but with limited speed  
Note that the PSoC 6 SRAM is located in the Arm Code region  
for both CPUs (see Table 3). There is no physical memory  
located in the CPUs’ Arm SRAM regions.  
CPUActive – CPU is executing code in system LPor ULPmode  
CPU Sleep – CPU code execution is halted in system LP or  
ULP mode  
CPU Deep Sleep – CPU code execution is halted and system  
Deep Sleep is requested in system LP or ULP mode  
System Deep Sleep – Only low-frequency peripherals are  
available after both CPUs enter CPU Deep Sleep mode  
System Hibernate – Device and I/O states are frozen and the  
device resets on wakeup  
Document Number: 002-33480 Rev. *E  
Page 11 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
CPU Active, Sleep, and Deep Sleep are standard Arm-defined  
power modes supported by the Arm CPU instruction set  
architecture (ISA). LP, ULP, Deep Sleep and Hibernate modes  
are additional low-power modes supported by PSoC 6 MCU.  
Clocks may be buffered and brought out to a pin on a smart I/O  
port.  
The default clocking when the application starts is CLK_HF[0]  
being driven by the IMO and the FLL. CLK_HF[0], clk_fast,  
clk_peri, and clk_slow are all either 50 MHz (LP mode) or 25 MHz  
(ULP mode). All other clocks, including all peripheral clocks, are  
off.  
Clock System  
Figure 3 shows that the clock system of this product line consists  
of the following:  
Internal Main Oscillator (IMO)  
Internal main oscillator (IMO)  
Internal low-speed oscillator (ILO)  
Watch crystal oscillator (WCO)  
External MHz crystal oscillator (ECO)  
External clock input  
The IMO is the primary source of internal clocking. It is trimmed  
at the factory to achieve the specified accuracy. The IMO  
frequency is 8 MHz and tolerance is ±2%.  
Internal Low-speed Oscillator (ILO)  
The ILO is a very low power oscillator, nominally 32 kHz, which  
operates in all power modes. The ILO can be calibrated against  
a higher accuracy clock for better accuracy.  
One phase-locked loop (PLL)  
One frequency locked loop (FLL)  
Figure 3. Clocking Diagram  
Yellow multiplexers  
are glitch safe  
Path Mux  
Root mux  
(FLL/PLL)  
FLL  
clk_fast  
Divider  
Divider  
CM4  
CLK_HF[0]  
CLK_HF[1]  
Predivider  
(1/2/4/8)  
Peripheral  
clocks  
IMO  
clk_peri  
Divider  
Peripheral  
Clock Dividers  
TCPWM  
SCB  
EXTCLK  
clk_slow  
Predivider  
(1/2/4/8)  
PLL  
clk_ext  
CM0+  
AHB  
ECO  
CapSense  
CLK_PATH2  
CLK_HF[2]  
CLK_HF[3]  
Analog  
Subsystem  
Predivider  
(1/2/4/8)  
QSPI/SMIF  
USB  
DMA  
CLK_PATH3  
CLK_PATH4  
Smart I/O  
eFuse  
MMIO  
PPU  
Predivider  
(1/2/4/8)  
System LP/ULP Domain  
System Deep Sleep /  
Hibernate Domain  
Crypto  
ILO  
clk_peri  
CLK_LF  
CLK_LF  
clk_mf  
LCD  
Predivider  
(1/2/3...256)  
WCO  
IMO/4  
Document Number: 002-33480 Rev. *E  
Page 12 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
External Crystal Oscillators  
The crystal oscillator can be sensitive to GPIO switching noise  
and requires the following constraints for reliable operation with  
a broad range of crystals over the range of 16 to 35 MHz:  
Figure 4 shows all of the external crystal oscillator circuits for this  
product line. The component values shown are typical; check the  
ECO Specifications for the crystal values, and the crystal  
datasheet for the load capacitor values. The ECO and WCO  
require balanced external load capacitors. For more information,  
see the TRM and AN218241, PSoC 6 MCU Hardware Design  
Considerations.  
1. Port 12 must be used in low slew rate (slow) mode which limits  
switching frequency to 2.5 MHz.  
2. Port 11, which includes the QSPI interface, must be limited to  
60-MHz operation with the QSPI and in Drive Mode 2; please  
see the TRM for details.  
For more information, see Table 5 and the GPIO section.  
Figure 4. Oscillator Circuits  
PSoC 6 MCU  
MHz XTAL  
32.768 kHz XTAL  
CL / 2  
CL / 2  
CL / 2  
CL / 2  
Watchdog Timers (WDT, MCWDT)  
Reset  
PSoC 6 MCU has one WDT and two multi-counter WDTs  
(MCWDT). The WDT has a 16-bit free-running counter. Each  
MCWDT has two 16-bit counters and one 32-bit counter, with  
multiple operating modes. All of the 16-bit counters can generate  
a watchdog device reset. All of the counters can generate an  
interrupt on a match event.  
PSoC 6 MCU can be reset from a variety of sources:  
Power-on reset (POR) to hold the device in reset while the  
power supply ramps up to the level required for the device to  
function properly. POR activates automatically at power-up.  
Brown-out detect (BOD) reset to monitor the digital voltage  
supply VDDD and generate a reset if VDDD falls below the  
minimum required logic operating voltage.  
The WDT is clocked by the ILO. It can do interrupt/wakeup  
generation in LP/ULP, Deep Sleep, and Hibernate power modes.  
The MCWDTs are clocked by LFCLK (ILO or WCO). It can do  
periodic interrupt / wakeup generation in LP/ULP and Deep  
Sleep power modes.  
External reset dedicated pin (XRES) to reset the device using  
an external source. The XRES pin is active low. It can be  
connected either to a pull-up resistor to VDDD, or to an active  
drive circuit, as Figure 5 shows. If a pull-up resistor is used,  
select its value to minimize current draw when the pin is pulled  
low; 4.7 kΩ to 100 kΩ is typical.  
Clock Dividers  
Integer and fractional clock dividers are provided for peripheral  
use and timing purposes. There are:  
Figure 5. XRES Connection Diagram  
Four 8-bit clock dividers  
1.7 to 3.6 V  
PSoC 6  
Eight 16-bit integer clock dividers  
Two 16.5-bit fractional clock dividers  
One 24.5-bit fractional clock divider  
VDDD  
Trigger Routing  
4.7 kΩ typ.  
PSoC 6 MCU contains a trigger multiplexer block. This is a  
collection of digital multiplexers and switches that are used for  
routing trigger signals between peripheral blocks and between  
GPIOs and peripheral blocks.  
XRES  
XRES  
drive  
Watchdog timer (WDT or MCWDT) to reset the device if  
firmware fails to service it within a specified timeout period.  
Software-initiated reset to reset the device on demand using  
firmware.  
There are two types of trigger routing. Trigger multiplexers have  
reconfigurability in the source and destination. There are also  
hardwired switches called “one-to-one triggers”, which connect  
a specific source to a destination. The user can enable or disable  
the route.  
Document Number: 002-33480 Rev. *E  
Page 13 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Logic-protectionfaultcantrigger aninterruptorresetthedevice  
if unauthorized operating conditions occur; for example,  
reaching a debug breakpoint while executing privileged code.  
The ADCs have synchronous sampling, for applications such as  
power supply monitoring and motor control. A SAR ADC may be  
operated in Deep Sleep mode using a clock of either 2 MHz or  
8 MHz (LPOSC).  
Hibernate wakeup reset to bring the device out of the system  
Hibernate low-power mode.  
Temperature Sensor  
Reset events are asynchronous and guarantee reversion to a  
known state. Some of the reset sources are recorded in a  
register, which is retained through reset and allows software to  
determine the cause of the reset.  
Each SAR ADC block contains a temperature sensor. The  
sensor consists of a diode biased by a current source. It can be  
disabled to save power. The temperature sensor may be  
connected directly to a SAR ADC as one of the measurement  
channels. The ADC digitizes the temperature sensor’s output,  
and a Cypress-supplied software function may be used to  
convert the reading to a temperature, with calibration and  
linearization.  
Programmable Analog Subsystems  
12-bit SAR ADC  
The two 12-bit, 2-Msps SAR ADCs can operate at a maximum  
clock rate of 36 MHz and require a minimum of 18 clocks at that  
frequency to do a 12-bit conversion. One of three internal  
12-bit Digital-Analog Converter  
There is a 12-bit voltage mode DAC on the chip, which can settle  
in less than 2 µs. The DAC may be driven by the DMA controllers  
to generate user-defined waveforms. The DAC output from the  
chip can either be the resistive ladder output (highly linear near  
ground) or a buffered output using an opamp in the CTBm block.  
references may be used for an ADC reference voltage: VDDA  
,
V
DDA/2, and an analog reference (AREF). AREF is nominally  
1.2 V, trimmed to ±1%; see Table 22). An external reference may  
also be used, by driving a VREF pin. When using VDDA/2 or AREF  
as a reference, an external bypass capacitor may be connected  
to a VREF pin to improve performance in noisy conditions. These  
reference options allow ratio-metric readings or absolute  
readings at the accuracy of the reference used. The input range  
of the ADCs is the full supply voltage between VSS and  
Continuous Time Block mini (CTBm) with Two Opamps  
This block consists of two opamps, which have their inputs and  
outputs connected to pins and other analog blocks, as Figure 6  
shows. They have three power modes (high, medium, and low)  
and a comparator mode. The opamps can be used to buffer SAR  
inputs and DAC outputs. The non-inverting inputs of these  
opamps can be connected to either of two pins, thus allowing  
independent sensors to be used at different times. The pin  
selection can be made via firmware.  
V
DDA/VDDIOA. The ADCs may be configured with a mix of single  
ended and differential signals in the same configuration.  
The ADCs' sample-and-hold (S/H) aperture is programmable to  
allow sufficient time for signals with a high impedance to settle,  
if required. System performance is 65 dB for true 12-bit precision  
provided appropriate references are used and system noise  
levels permit it.  
The opamps also support operation in system Deep Sleep mode,  
with lower performance and reduced power consumption.  
The ADCs are connected to fixed sets of pins through input  
sequencers. A sequencer cycles through the selected channels  
autonomously (sequencer scan) and does so with zero switching  
overhead (that is, the aggregate sampling bandwidth is equal to  
2 Msps whether it is for a single channel or distributed over  
several channels). The result of each channel is buffered, so that  
an interrupt may be triggered only when a full scan of all channels  
is complete. Also, a pair of range registers can be set to detect  
and cause an interrupt if an input exceeds a minimum and/or  
maximum value. This allows fast detection of out-of-range  
values without having to wait for a sequencer scan to be  
completed and the CPU to read the values and check for  
out-of-range values in software. An ADC can also be connected,  
under firmware control, to most other GPIO pins via the analog  
multiplexer bus (AMUXBUS). The ADCs are not available in  
Hibernate mode. The ADC operating range is 1.71 to 3.6 V.  
Low-Power Comparators  
Two low-power comparators are provided, which can operate in  
all power modes. This allows other analog system resources to  
be disabled while retaining the ability to monitor external voltage  
levels during system Deep Sleep and Hibernate modes. The  
comparator outputs are normally synchronized to avoid  
metastability unless operating in an asynchronous power mode  
(Hibernate) where the system wake-up circuit is activated by a  
comparator-switch event.  
Document Number: 002-33480 Rev. *E  
Page 14 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Figure 6 shows an overview of the analog subsystem. This diagram is a high-level abstraction. See the TRM for detailed connectivity  
information.  
Figure 6. Analog Subsystem  
AMUXBUSA  
AMUXBUSB  
CSD  
shield_pad  
LPCOMP0  
vref_ext  
inp  
inn  
csh  
cmod  
P6.2  
P6.3  
amuxbusa  
amuxbusb  
LPCOMP1  
P5.6  
P5.7  
inp  
inn  
CTDAC  
VDDA  
vref vout  
S/H  
Red dots indicate  
AMUXBUS splitter  
switches  
P9.3  
P9.5  
P9.4  
OA1  
10x  
Bold lines indicate  
+
-
comp out  
direct connections  
from the opamp 10x  
ouputs to port pins.  
1x  
OA0  
P9.0  
P9.1  
10x  
+
-
comp out  
1x  
P9.2  
AREF, 1.2 V  
(2)  
This product line has two  
SAR ADCs; each includes  
a SARMUX, SARREF,  
temperature sensor, and  
multiplexers.  
P10.0  
P10.1  
P10.2  
P10.3  
P10.4  
P10.5  
P10.6  
P10.7  
SAR ADC  
vplus  
vminus  
vref  
SARREF  
VDDA  
VDDA / 2  
TEMP (2)  
temp  
VSS  
To VREF pins, for bypass capacitors  
Document Number: 002-33480 Rev. *E  
Page 15 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Selectable start, reload, stop, count, and capture event signals  
for each TCPWM; with rising edge, falling edge, both edges,  
and level trigger options. The TCPWM has a Kill input to force  
outputs to a predetermined state.  
Programmable Digital  
Smart I/O  
Smart I/O™ is a programmable logic fabric that enables Boolean  
operations on signals traveling from device internal resources to  
the GPIO pins or on signals traveling into the device from  
external sources. The Smart I/O block sits between the GPIO  
pins and the high-speed I/O matrix (HSIOM) and is dedicated to  
a single port.  
In this device there are:  
Four 32-bit TCPWMs  
Eight 16-bit TCPWMs  
Serial Communication Blocks (SCB)  
This product line has six SCBs:  
Five can implement either I2C, UART, or SPI.  
This product line has one Smart I/O block, on Port 9.When the  
Smart I/O is not enabled, all signals on Port 9 bypass the Smart  
I/O hardware.  
One SCB (SCB #6) can operate in Deep Sleep mode with an  
Smart I/O supports:  
external clock, this SCB can be either SPI slave or I2C slave.  
System Deep Sleep operation  
I2C Mode: The SCB can implement a full multi-master and slave  
interface (it is capable of multimaster arbitration). This block can  
operate at speeds of up to 1 Mbps (Fast Mode Plus). It also  
supports EZI2C, which creates a mailbox address range and  
effectively reduces I2C communication to reading from and  
writing to an array in memory. The SCB supports a 256-byte  
FIFO for receive and transmit.  
Boolean operations without CPU intervention  
Asynchronous or synchronous (clocked) operation  
The Smart I/O block contains a data unit (DU) and eight look up  
tables (LUTs).  
The DU:  
The SCB is compatible with I2C standard-mode, Fast Mode, and  
Fast Mode Plus devices as defined in the NXP I2C-bus  
specification and user manual (UM10204). The I2C bus I/O is  
implemented with GPIOs in open-drain mode.  
Performs unique functions based on a selectable opcode.  
Can source input signals from internal resources, the GPIO  
port, or a value in the DU register.  
Each LUT:  
UART Mode: This is a full-feature UART operating at up to  
8 Mbps. It supports automotive single-wire interface (LIN),  
infrared interface (IrDA), and SmartCard (ISO7816) protocols, all  
of which are minor variants of the basic UART protocol. In  
addition, it supports the 9-bit multiprocessor mode that allows the  
addressing of peripherals connected over common RX and TX  
lines. Common UART functions such as parity error, break  
detect, and frame error are supported. A 256-byte FIFO allows  
much greater CPU service latencies to be tolerated.  
Has four selectable input sources. The input signals may be  
sourced from another LUT, an internal resource, an external  
signal from a GPIO pin, or from the DU.  
Acts as a programmable Boolean logic table.  
Can be synchronous or asynchronous.  
Fixed-Function Digital  
Timer/Counter/Pulse-width Modulator (TCPWM)  
SPI Mode: The SPI mode supports full Motorola SPI, TI Secure  
Simple Pairing (SSP) (essentially adds a start pulse that is used  
to synchronize SPI Codecs), and National Microwire (half-duplex  
form of SPI). The SPI block supports an EZSPI mode in which  
the data interchange is reduced to reading and writing an array  
in device SRAM. The SPI interface operates with a 25-MHz  
clock.  
The TCPWM supports the following operational modes:  
Timer-counter with compare  
Timer-counter with capture  
Quadrature decoding  
Pulse width modulation (PWM)  
Pseudo-random PWM  
USB Full-Speed Device Interface  
PWM with dead time  
PSoC 6 has a full-speed USB device interface. The device can  
have up to eight endpoints. A 512-byte SRAM buffer is provided  
and DMA is supported.  
Up, down, and up/down counting modes.  
Clock prescaling (division by 1, 2, 4, ... 64, 128)  
Double buffering of compare/capture and period values  
Underflow, overflow, and capture/compare output signals  
Supports interrupt on:  
Note: In this product line USB is available only in the 68-QFN  
package.  
Note: If the USB pins are not used, connect VDDUSB to ground  
and leave the P14.0/USBDP and P14.1/USBDM pins  
unconnected.  
Terminal count – Depends on the mode; typically occurs on  
overflow or underflow  
Capture/compare – The count is captured to the capture reg-  
ister or the counter value equals the value in the compare  
register  
CAN FD Block  
This device has one CAN FD block, for industrial and automotive  
applications. The block includes time-stamp support and has a  
4-KB message RAM. FD Data rates of up to 5 Mbps are  
supported. DMA transfers are supported.  
Complementary output for PWMs  
Document Number: 002-33480 Rev. *E  
Page 16 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Quad-SPI/Serial Memory Interface (SMIF)  
Open drain with strong pull-down  
Open drain with strong pull-up  
Strong pull-up with strong pull-down  
Weak pull-up with weak pull-down  
A serial memory interface is provided, running at up to 80 MHz.  
It supports single, dual, and quad SPI configurations, and  
supports up to four external memory devices. It supports two  
modes of operation:  
Input threshold select (CMOS or LVTTL)  
Memory-mapped I/O (MMIO), a command mode interface that  
provides data access via the SMIF registers and FIFOs  
Hold mode for latching previous state (used for retaining the  
I/O state in system Hibernate mode)  
Execute in Place (XIP), in which AHB reads and writes are  
directly translated to SPI read and write transfers.  
Selectable slew rates for dV/dt-related noise control to improve  
EMI  
In XIP mode, the external memory is mapped into the CPU  
internal address space, enabling code execution directly from  
the external memory. To improve performance, a 4-KB cache is  
included. XIP mode also supports AES-128 on-the-fly encryption  
and decryption, enabling secured storage and access of code  
and data in the external memory.  
The pins are organized in logical entities called ports, which are  
up to 8 pins in width. Data output and pin state registers store,  
respectively, the values to be driven on the pins and the input  
states of the pins.  
Every pin can generate an interrupt if enabled; each port has an  
interrupt request (IRQ) associated with it.  
LCD  
The port 3 pins are capable of overvoltage-tolerant (OVT)  
This block drives LCD commons and segments; routing is  
available to most of the GPIOs. One to eight of the GPIOs must  
be used for commons, the rest can be used for segments.  
operation, where the input voltage may be higher than VDDD.  
OVT pins are commonly used with I2C, to allow powering the  
chip OFF while maintaining a physical connection to an  
operating I2C bus without affecting its functionality.  
The LCD block has two modes of operation: high speed (8 MHz)  
and low speed (32 kHz). Both modes operate in system LP, ULP,  
and Deep Sleep modes, however the low-speed mode operates  
with reduced contrast in system Deep Sleep mode. The 8-MHz  
IMO is available in system Deep Sleep mode, and can be used  
to generate a clock for the LCD block. Review the number of  
common and segment lines, viewing angle requirements, and  
prototype performance, and then select the appropriate LCD  
clock frequency before using system Deep Sleep mode.  
GPIO pins can be ganged to source or sink higher values of  
current. GPIO pins, including OVT pins, may not be pulled up  
higher than the absolute maximum; see Electrical Specifications.  
During power-on and reset, the pins are forced to the analog  
input drive mode, with input and output buffers disabled, so as  
not to crowbar any inputs and/or cause excess turn-on current.  
A multiplexing network known as the high-speed I/O matrix  
(HSIOM) is used to multiplex between various peripheral and  
analog signals that may connect to an I/O pin.  
GPIO  
Analog performance is affected by GPIO switching noise. In  
order to get the best Analog performance, the following  
frequency and drive mode constraints must be applied. The  
DRIVE_SEL values (see Table 5) represent drive strengths  
(please see the CY8C61x4 Architecture and Register TRMs for  
further detail).  
This device has up to 62 GPIOs. The GPIO block implements the  
following:  
Eight drive strength modes:  
Analog input mode (input and output buffers disabled)  
Input only  
Weak pull-up with strong pull-down  
Strong pull-up with weak pull-down  
Table 5. DRIVE_SEL Values  
Ports  
Ports 0, 1  
Max Frequency  
8 MHz  
Drive Strength for VDDD ≤ 2.7 V Drive Strength for VDDD > 2.7 V  
DRIVE_SEL 2  
DRIVE_SEL 1  
DRIVE_SEL 2  
DRIVE_SEL 1  
No restrictions  
DRIVE_SEL 3  
DRIVE_SEL 2  
DRIVE_SEL 3  
DRIVE_SEL 2  
No restrictions  
Port 2  
50 MHz  
Ports 3 to 10  
Ports 11 to 12  
Ports 9 and 10  
16 MHz; 25 MHz for SPI  
80 MHz for SMIF (QSPI)  
Slow slew rate setting for TQFP  
Packages for ADC performance  
Document Number: 002-33480 Rev. *E  
Page 17 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
IDAC  
CapSense Subsystem  
The CSD block has two programmable current sources, which  
offer the following features:  
CapSense is supported in PSoC 6 MCU through a CapSense  
sigma-delta (CSD) hardware block. It is designed for  
high-sensitivity self-capacitance and mutual-capacitance  
measurements, and is specifically built for user interface  
solutions.  
7-bit resolution  
Sink and source current modes  
A current source programmable from 37.5 nA to 609 A  
In addition to CapSense, the CSD hardware block supports three  
general-purpose functions. These are available when CapSense  
is not being used. Alternatively, two or more functions can be  
time-multiplexed in an application under firmware control. The  
four functions supported by the CSD hardware block are:  
Two IDACs that can be used in parallel to form one 8-bit IDAC  
Comparator  
The CapSense subsystem comparator operates in the system  
Low Power and Ultra-Low Power modes. The inverting input is  
connected to an internal programmable reference voltage and  
the non-inverting input can be connected to any GPIO via the  
AMUXBUS.  
CapSense  
10-bit ADC  
Programmable current sources (IDAC)  
CapSense Hardware Subsystem  
Comparator  
Figure 7 shows the high-level hardware overview of the  
CapSense subsystem, which includes a delta sigma converter,  
internal clock dividers, a shield driver, and two programmable  
current sources.  
CapSense  
Capacitive touch sensors are designed for user interfaces that  
rely on human body capacitance to detect the presence of a  
finger on or near a sensor. Cypress CapSense solutions bring  
elegant, reliable, and simple capacitive touch sensing functions  
to applications including IoT, industrial, automotive, and home  
appliances.  
The inputs are managed through analog multiplexed buses  
(AMUXBUS A/B). The input and output of all functions offered by  
the CSD block can be provided on any GPIO or on a group of  
GPIOs under software control, with the exception of the  
comparator output and external capacitors that use dedicated  
GPIOs.  
The Cypress-proprietary CapSense technology offers the  
following features:  
Best-in-class signal-to-noise ratio (SNR) and robust sensing  
under harsh and noisy conditions  
Self-capacitance is supported by the CSD block using  
AMUXBUS A, an external modulator capacitor, and a GPIO for  
each sensor. There is a shield electrode (optional) for  
self-capacitance sensing. This is supported using AMUXBUS B  
and an optional external shield tank capacitor (to increase the  
drive capability of the shield driver) should this be required.  
Mutual-capacitance is supported by the CSD block using  
AMUXBUS A, two external integrated capacitors, and a GPIO for  
transmit and receive electrodes.  
Self-capacitance (CSD) and mutual-capacitance (CSX)  
sensing methods  
Support for various widgets, including buttons, matrix buttons,  
sliders, touchpads, and proximity sensors  
High-performance sensing across a variety of materials  
Best-in-class liquid tolerance  
The ADC does not require an external component. Any GPIO  
that can be connected to AMUXBUS A can be an input to the  
ADC under software control. The ADC can accept VDDA as an  
input without needing GPIOs (for applications such as battery  
voltage measurement).  
SmartSense auto-tuning technology that helps avoid complex  
manual tuning processes  
Superior immunity against external noise  
Spread-spectrum clocks for low radiated emissions  
Gesture and built-in self-test libraries  
Ultra-low power consumption  
The two programmable current sources (IDACs) in  
general-purpose mode can be connected to AMUXBUS A or B.  
They can therefore connect to any GPIO pin. The comparator  
resides in the delta-sigma converter. The comparator inverting  
input can be connected to the reference. Both comparator inputs  
can be connected to any GPIO using AMUXBUS B; see  
Figure 6. The reference has a direct connection to a dedicated  
GPIO; see Table 8.  
An integrated graphical CapSense tuner for real-time tuning,  
testing, and debugging  
ADC  
The CSD block can operate in active and sleep CPU power  
modes, and seamlessly transition between LP and ULP system  
modes. It can be powered down in system Deep Sleep and  
Hibernate modes. Upon wakeup from Hibernate mode, the CSD  
block requires re-initialization. However, operation can be  
resumed without re-initialization upon exit from Deep Sleep  
mode, under firmware control.  
The CapSense subsystem slope ADC offers the following  
features:  
Selectable 8- or 10-bit resolution  
Selectable input range: GND to VREF and GND to VDDA on any  
GPIO input  
MeasurementofVDDA against aninternal referencewithoutthe  
use of GPIO or external components  
Document Number: 002-33480 Rev. *E  
Page 18 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Figure 7. CapSense Hardware Subsystem  
AMUXBUS  
A
B
GPIO Pin  
GPIO  
Cell  
CSD Sensor 1  
CS1  
Clock Input  
GPIO Pin  
CMOD Pin  
GPIO  
Cell  
CSD Sensor 2  
CS2  
CSD Hardware Block  
CMOD  
Sense clock  
Clock  
Generator  
CSH_TANK  
(optional)  
GPIO Pin  
GPIO Pin  
Shield Drive  
Circuit  
Modulator  
Clock  
GPIO  
Cell  
Compensation  
IDAC  
CSHIELD  
Shield Electrode  
Modulator  
IDAC  
GPIO Pin  
IDAC control  
Tx  
GPIO  
Cell  
CSX Sensor 3  
CS3  
Raw  
Count  
Sigma Delta  
Converter  
GPIO Pin  
Rx  
GPIO  
Cell  
VREF  
CINTA Pin  
GPIO  
Cell  
CINTA  
CINTB  
CINTB Pin  
GPIO  
Cell  
ADC Input  
IDAC Outputs  
Comp Input  
Document Number: 002-33480 Rev. *E  
Page 19 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Figure 8 shows the high-level software overview. Cypress  
provides middleware libraries for CapSense, ADC, and IDAC on  
GitHub to enable quick integration. The Board Support Package  
for any kit with CapSense capabilities automatically includes the  
CapSense library in any application that uses the BSP.  
CapSense and ADC middleware use the CSD interrupt to  
implement non-blocking sensing and A-to-D conversion.  
Therefore, interrupt service routines are a defined part of the  
middleware, which must be initialized by the application.  
Middleware and drivers can operate on either CPU. Cypress  
recommends using the middleware only in one CPU. If both  
CPUs must access the CSD driver, memory access should be  
managed in the application.  
User applications interact only with middleware to implement  
functions of the CSD block. The middleware interacts with  
underlying drivers to access hardware as necessary. The CSD  
driver facilitates time-multiplexing of the CSD hardware if more  
than one piece of CSD-related middleware is present in a project.  
It prevents access conflicts in this case.  
Refer to AN85951: PSoC 4 and PSoC 6 MCU CapSense Design  
Guide for more details on CSX sensing, CSD sensing, shield  
electrode usage and its benefits, and capacitive system design  
guidelines.  
ModusToolbox Software provides a CapSense configurator to  
enable fast library configuration. It also provides a tuner for  
performance evaluation and real-time tuning of the system. The  
tuner requires an EZI2C communication interface in the  
application to enable real-time tuning capability. The tuner can  
update configuration parameters directly in the device as well as  
in the configurator.  
Refer to theAPI reference guides for CapSense, ADC, and IDAC  
available on GitHub.  
Figure 8. CapSense Software/Firmware Subsystem  
Application Program  
Middleware  
Software  
Configurator  
Tuner  
SCB Driver (EZI2C)  
SCB  
CSD Driver  
GPIO / Clock Drivers  
CSD Block  
GPIOs/ Clock  
Hardware and Drivers  
Document Number: 002-33480 Rev. *E  
Page 20 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Pinouts  
GPIO ports are powered by VDDx pins as follows:  
P0: VBACKUP  
P1, P2, P3: VDDIO2. Port 3 pins are overvoltage tolerant (OVT).  
P5, P6, P7, P8: VDDIO1  
P9, P10: VDDIOA, VDDA (VDDIOA, when present, and VDDA must be connected together on the PCB)  
P11, P12: VDDIO0  
P14: VDDUSB  
Table 6. Packages and Pin Information  
Package  
Pin  
80-TQFP  
64-TQFP  
68-QFN  
VDDD  
VCCD  
VDDA  
VDDIOA  
VDDIO0  
VDDIO1  
VDDIO2  
VBACKUP  
VDDUSB  
VSS  
1
2
68  
80  
1
67  
59  
46  
48  
40  
-
36  
76  
62  
64  
39  
32  
35  
23  
19  
22  
3
3
1
-
-
11  
2, 11, 24, 38, 41, 58, 77  
GND PAD  
GND PAD  
VDD_NS  
VIND1  
XRES  
VREF  
P0.0  
-
-
-
-
9
10  
8
10  
57, 60  
4
10  
45, 47  
4
49  
2
P0.1  
5
5
3
P0.2  
6
6
4
P0.3  
7
7
5
P0.4  
8
8
6
P0.5  
9
9
7
P1.0  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
-
-
P1.1  
-
-
P1.2  
-
-
P2.0  
11  
12  
13  
14  
15  
16  
17  
18  
14  
15  
16  
17  
18  
19  
20  
21  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
Document Number: 002-33480 Rev. *E  
Page 21 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 6. Packages and Pin Information (continued)  
Package  
64-TQFP  
Pin  
80-TQFP  
68-QFN  
P3.0  
P3.1  
P5.0  
P5.1  
P5.2  
P5.6  
P5.7  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
P6.7  
P7.0  
P7.1  
P7.2  
P7.3  
P7.4  
P7.5  
P7.7  
P8.0  
P8.1  
P9.0  
P9.1  
P9.2  
P9.3  
P9.4  
P9.5  
P10.0  
P10.1  
P10.2  
P10.3  
P10.4  
P10.5  
P10.6  
P10.7  
P11.1  
P11.2  
P11.3  
P11.4  
P11.5  
P11.6  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
20  
21  
22  
23  
-
23  
24  
25  
26  
-
24  
25  
26  
27  
28  
29  
30  
31  
33  
34  
35  
36  
-
27  
28  
29  
30  
31  
32  
33  
34  
37  
38  
39  
40  
-
-
-
-
41  
42  
43  
44  
45  
46  
47  
-
37  
38  
39  
40  
41  
42  
43  
44  
48  
49  
50  
51  
52  
53  
54  
55  
-
-
50  
51  
52  
53  
54  
55  
56  
57  
-
56  
57  
58  
59  
60  
58  
59  
60  
61  
62  
Document Number: 002-33480 Rev. *E  
Page 22 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 6. Packages and Pin Information (continued)  
Package  
64-TQFP  
Pin  
80-TQFP  
68-QFN  
P11.7  
P12.6  
75  
78  
79  
61  
63  
64  
63  
65  
66  
13  
12  
P12.7  
P14.0 / USBDP  
P14.1 / USBDM  
Note: If the USB pins are not used, connect VDDUSB to ground and leave the P14.0/USBDP and P14.1/USBDM pins unconnected.  
Figure 9. Device Pinout for 80-TQFP Package  
VDDD  
VSS  
VBACKUP  
P0.0  
1
2
3
4
5
6
60  
59  
VREF 0  
VDDA  
58  
57  
56  
55  
VSS  
VREF 1  
P9.5  
P9.4  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
XRES  
VSS  
54  
53  
52  
51  
50  
49  
P9.3  
P9.2  
7
8
9
10  
11  
12  
13  
14  
15  
P9.1  
P9.0  
P8.1  
P8.0  
TQFP  
P1.0  
P1.1  
P1.2  
P2.0  
P2.1  
P2.2  
48  
47  
P7.7  
P7.5  
P7.4  
P7.3  
P7.2  
P7.1  
P7.0  
46  
45  
44  
43  
16  
17  
P2.3  
P2.4  
P2.5  
18  
19  
20  
42  
41  
VSS  
Document Number: 002-33480 Rev. *E  
Page 23 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Figure 10. Device Pinout for 64-TQFP Package  
VCCD  
VDDD  
VBACKUP  
P0.0  
1
2
48  
47  
46  
45  
44  
43  
42  
P10.0  
VREF 0  
VDDA  
VREF 1  
P9.5  
P9.4  
P9.3  
3
4
5
6
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
7
8
9
41  
40  
39  
P9.2  
P9.1  
TQFP  
10  
XRES  
P2.0  
P2.1  
P2.2  
P9.0  
P8.1  
P8.0  
P7.3  
P7.2  
11  
12  
13  
14  
15  
16  
38  
37  
36  
35  
34  
33  
P2.3  
P2.4  
P2.5  
P7.1  
P7.0  
Figure 11. Device Pinout for 68-QFN Package  
VBACKUP  
P10.1  
51  
1
2
3
4
5
6
P0.0  
P0.1  
50  
P10.0  
VREF 0  
VDDA  
49  
48  
47  
P0.2  
P0.3  
P0.4  
P9.3  
P9.2  
46  
P0.5  
XRES  
45  
44  
43  
42  
P9.1  
P9.0  
P8.1  
7
8
9
QFN  
(TOP VIEW)  
VDD_NS  
P8.0  
10  
VIND1  
VDDUSB  
P14.1 / USBDM  
P7.7  
P7.3  
11  
12  
13  
41  
40  
39  
P14.0 / USBDP  
P7.2  
P7.1  
P2.0 14  
38  
37  
36  
35  
P2.1  
P2.2  
P2.3  
15  
16  
17  
P7.0  
VDDIOA  
VDDIO 1  
Document Number: 002-33480 Rev. *E  
Page 24 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Each port pin has multiple alternate functions. These are defined in Table 7. The columns ACT #x and DS #y denote active (System LP/ULP) and Deep Sleep mode signals  
respectively.  
The notation for a signal is of the form IPName[x].signal_name[u]:y.  
IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there is more than one signal for  
a particular signal name, y = Designates copies of the signal name.  
For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the  
fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize use of on-chip resources.  
Table 7. Multiple Alternate Functions  
Port/  
Pin  
ACT ACT ACT  
ACT  
#7  
ACT ACT  
ACT  
#10  
ACT  
#12  
ACT  
#13  
ACT  
#14  
ACT  
#15  
ACT #0 ACT #1 ACT #2 ACT #3 DS #2 DS #3  
DS #5 DS #6  
#4  
#5  
#6  
#8  
#9  
P0.0  
tcpwm[0].l  
ine[0]:0  
tcpwm[25  
6].line[0]:  
0
csd.csd  
_tx:0  
csd.csd_  
tx_n:0  
srss.e  
xt_clk:  
0
scb[0].  
spi_se  
lect1:0  
peri.tr  
_io_in  
put[0]:  
0
P0.1  
tcpwm[0].l  
ine_comp  
l[0]:0  
tcpwm[25  
6].line_co  
mpl[0]:0  
csd.csd  
_tx:1  
csd.csd_  
tx_n:1  
scb[0].  
spi_se  
lect2:0  
peri.tr  
_io_in  
put[1]:  
0
cpuss.  
swj_tr  
stn  
P0.2  
P0.3  
P0.4  
tcpwm[25  
7].line[1]:  
0
tcpwm[25  
7].line[1]:  
0
csd.csd  
_tx:2  
csd.csd_  
tx_n:2  
scb[0]  
.uart_r  
x:0  
scb[0].  
i2c_scl  
:0  
scb[0].  
spi_m  
osi:0  
tcpwm[0].l  
ine_comp  
l[1]:0  
tcpwm[25  
7].line_co  
mpl[1]:0  
csd.csd  
_tx:3  
csd.csd_  
tx_n:3  
scb[0]  
.uart_t  
x:0  
scb[0].  
i2c_sd  
a:0  
scb[0].  
spi_mi  
so:0  
tcpwm[0].l  
ine[2]:0  
tcpwm[25  
8].line[2]:  
0
csd.csd  
_tx:4  
csd.csd_  
tx_n:4  
scb[0]  
.uart_r  
ts:0  
scb[0].  
spi_cl  
k:0  
peri.tr  
_io_in  
put[2]:  
0
peri.tr_io  
_output[  
0]:2  
P0.5  
tcpwm[0].l  
ine_comp  
l[2]:0  
tcpwm[25  
8].line_co  
mpl[2]:0  
csd.csd  
_tx:5  
csd.csd_  
tx_n:5  
srss.e  
xt_clk:  
1
scb[0]  
.uart_  
cts:0  
scb[0].  
spi_se  
lect0:0  
peri.tr  
_io_in  
put[3]:  
0
peri.tr_io  
_output[  
1]:2  
P1.0  
P1.1  
P1.2  
P2.0  
csd.csd  
_tx:6  
csd.csd_  
tx_n:6  
csd.csd  
_tx:7  
csd.csd_  
tx_n:7  
csd.csd  
_tx:8  
csd.csd_  
tx_n:8  
tcpwm[0].l  
ine[3]:0  
tcpwm[0].l  
ine[259]:0  
csd.csd  
_tx:9  
csd.csd_  
tx_n:9  
scb[1]  
.uart_r  
x:1  
scb[1].  
i2c_scl  
:1  
scb[1].  
spi_m  
osi:1  
peri.tr  
_io_in  
put[4]:  
0
Document Number: 002-33480 Rev. *E  
Page 25 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 7. Multiple Alternate Functions (continued)  
Port/  
ACT ACT ACT  
ACT  
#7  
ACT ACT  
ACT  
#10  
ACT  
#12  
ACT  
#13  
ACT  
#14  
ACT  
#15  
ACT #0 ACT #1 ACT #2 ACT #3 DS #2 DS #3  
Pin  
DS #5 DS #6  
#4  
#5  
#6  
#8  
#9  
P2.1  
tcpwm[0].l  
ine_comp  
l[3]:0  
tcpwm[0].l  
ine_compl  
[259]:0  
csd.csd  
_tx:10  
csd.csd_  
tx_n:10  
scb[1]  
.uart_t  
x:1  
scb[1].  
i2c_sd  
a:1  
scb[1].  
spi_mi  
so:1  
peri.tr  
_io_in  
put[5]:  
0
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
tcpwm[0].l  
ine[0]:1  
tcpwm[0].l  
ine[260]:0  
csd.csd  
_tx:11  
csd.csd_  
tx_n:11  
scb[1]  
.uart_r  
ts:1  
scb[1].  
spi_cl  
k:1  
tcpwm[0].l  
ine_comp  
l[0]:1  
tcpwm[0].l  
ine_compl  
[260]:0  
csd.csd  
_tx:12  
csd.csd_  
tx_n:12  
scb[1]  
.uart_  
cts:1  
scb[1].  
spi_se  
lect0:1  
tcpwm[0].l  
ine[1]:1  
tcpwm[0].l  
ine[261]:0  
csd.csd  
_tx:13  
csd.csd_  
tx_n:13  
scb[1].  
spi_se  
lect1:1  
tcpwm[0].l  
ine_comp  
l[1]:1  
tcpwm[0].l  
ine_compl  
[261]:0  
csd.csd  
_tx:14  
csd.csd_  
tx_n:14  
scb[1].  
spi_se  
lect2:1  
tcpwm[0].l  
ine[1]:5  
tcpwm[1].l  
ine[262]:1  
csd.csd  
_tx:15  
csd.csd_  
tx_n:15  
lpcom  
p.dsi_  
comp  
0:0  
scb[1].  
spi_se  
lect3:1  
peri.tr  
_io_in  
put[8]:  
0
P2.7  
P3.0  
tcpwm[0].l  
ine_comp  
l[2]:1  
tcpwm[0].l  
ine_compl  
[262]:0  
csd.csd  
_tx:16  
csd.csd_  
tx_n:16  
lpco  
mp.ds  
i_com  
p1:0  
peri.tr  
_io_in  
put[9]:  
0
tcpwm[0].l  
ine[3]:1  
tcpwm[0].l  
ine[263]:0  
csd.csd  
_tx:17  
csd.csd_  
tx_n:17  
scb[2]  
.uart_r  
x:1  
scb[2].  
i2c_scl  
:1  
peri.tr  
_io_in  
put[6]:  
0
P3.1  
P5.0  
P5.1  
tcpwm[0].l  
ine_comp  
l[3]:1  
tcpwm[0].l  
ine_compl  
[263]:0  
csd.csd  
_tx:18  
csd.csd_  
tx_n:18  
scb[2]  
.uart_t  
x:1  
scb[2].  
i2c_sd  
a:1  
peri.tr  
_io_in  
put[7]:  
0
tcpwm[0].l  
ine[0]:2  
tcpwm[0].l  
ine[256]:1  
csd.csd  
_tx:19  
csd.csd_  
tx_n:19  
scb[5]  
.uart_r  
x:0  
scb[5].  
i2c_scl  
:0  
scb[5].  
spi_m  
osi:0  
peri.tr  
_io_in  
put[10  
]:0  
canfd[0]  
.ttcan_r  
x[0]  
tcpwm[0].l  
ine_comp  
l[0]:2  
tcpwm[0].l  
ine_compl  
[256]:1  
csd.csd  
_tx:20  
csd.csd_  
tx_n:20  
scb[5]  
.uart_t  
x:0  
scb[5].  
i2c_sd  
a:0  
scb[5].  
spi_mi  
so:0  
peri.tr  
_io_in  
put[11  
]:0  
canfd[0]  
.ttcan_t  
x[0]  
P5.2  
P5.6  
P5.7  
csd.csd  
_tx:21  
csd.csd_  
tx_n:21  
tcpwm[0].l  
ine[1]:2  
tcpwm[0].l  
ine[257]:1  
csd.csd  
_tx:22  
csd.csd_  
tx_n:22  
tcpwm[0].l  
ine_comp  
l[1]:2  
tcpwm[0].l  
ine_compl  
[257]:1  
csd.csd  
_tx:23  
csd.csd_  
tx_n:23  
Document Number: 002-33480 Rev. *E  
Page 26 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 7. Multiple Alternate Functions (continued)  
Port/  
ACT ACT ACT  
ACT  
#7  
ACT ACT  
ACT  
#10  
ACT  
#12  
ACT  
#13  
ACT  
#14  
ACT  
#15  
ACT #0 ACT #1 ACT #2 ACT #3 DS #2 DS #3  
Pin  
DS #5 DS #6  
#4  
#5  
#6  
#8  
#9  
P6.2  
P6.3  
P6.4  
tcpwm[0].l  
ine[3]:2  
tcpwm[0].l  
ine[259]:1  
csd.csd  
_tx:24  
csd.csd_  
tx_n:24  
cpuss.f  
ault_out[  
0]  
tcpwm[0].l  
ine_comp  
l[3]:2  
tcpwm[0].l  
ine_compl  
[259]:1  
csd.csd  
_tx:25  
csd.csd_  
tx_n:25  
cpuss.f  
ault_out[  
1]  
tcpwm[0].l  
ine[0]:3  
tcpwm[0].l  
ine[260]:1  
csd.csd  
_tx:26  
csd.csd_  
tx_n:26  
scb[6].  
i2c_scl  
:0  
peri.tr  
_io_in  
put[12  
]:0  
peri.tr_io  
_output[  
0]:1  
cpuss.  
swj_s  
wo_td  
o
scb[6]  
.spi_  
mosi:  
0
P6.5  
P6.6  
P6.7  
P7.0  
P7.1  
tcpwm[0].l  
ine_comp  
l[0]:3  
tcpwm[1].l  
ine_compl  
[260]:1  
csd.csd  
_tx:27  
csd.csd_  
tx_n:27  
scb[6].  
i2c_sd  
a:0  
peri.tr  
_io_in  
put[13  
]:0  
peri.tr_io  
_output[  
1]:1  
cpuss.  
swj_s  
wdoe_  
tdi  
scb[6]  
.spi_  
miso:  
0
tcpwm[0].l  
ine[1]:3  
tcpwm[0].l  
ine[261]:1  
csd.csd  
_tx:28  
csd.csd_  
tx_n:28  
cpuss.  
swj_s  
wdio_t  
ms  
scb[6]  
.spi_c  
lk:0  
tcpwm[0].l  
ine_comp  
l[1]:3  
tcpwm[0].l  
ine_compl  
[261]:1  
csd.csd  
_tx:29  
csd.csd_  
tx_n:29  
cpuss.  
swj_s  
wclk_t  
clk  
scb[6]  
.spi_s  
elect0  
:0  
tcpwm[0].l  
ine[2]:2  
tcpwm[0].l  
ine[262]:1  
csd.csd  
_tx:30  
csd.csd_  
tx_n:30  
scb[4]  
.uart_r  
x:0  
scb[4].  
i2c_scl  
:0  
scb[4].  
spi_m  
osi:0  
peri.tr  
_io_in  
put[14  
]:0  
cpuss.tr  
ace_clo  
ck  
tcpwm[0].l  
ine_comp  
l[2]:2  
tcpwm[0].l  
ine_compl  
[262]:1  
csd.csd  
_tx:31  
csd.csd_  
tx_n:31  
scb[4]  
.uart_t  
x:0  
scb[4].  
i2c_sd  
a:0  
scb[4].  
spi_mi  
so:0  
peri.tr  
_io_in  
put[15  
]:0  
P7.2  
P7.3  
P7.4  
P7.5  
P7.7  
tcpwm[0].l  
ine[3]:3  
tcpwm[0].l  
ine[263]:1  
csd.csd  
_tx:32  
csd.csd_  
tx_n:32  
scb[4]  
.uart_r  
ts:0  
scb[4].  
spi_cl  
k:0  
tcpwm[0].l  
ine_comp  
l[3]:3  
tcpwm[0].l  
ine_compl  
[263]:1  
csd.csd  
_tx:33  
csd.csd_  
tx_n:33  
scb[4]  
.uart_  
cts:0  
scb[4].  
spi_se  
lect0:0  
csd.csd  
_tx:34  
csd.csd_  
tx_n:34  
scb[4].  
spi_se  
lect1:0  
csd.csd  
_tx:35  
csd.csd_  
tx_n:35  
scb[4].  
spi_se  
lect2:0  
csd.csd  
_tx:36  
csd.csd_  
tx_n:36  
cpuss.  
clk_fm  
_pum  
p
Document Number: 002-33480 Rev. *E  
Page 27 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 7. Multiple Alternate Functions (continued)  
Port/  
ACT ACT ACT  
ACT  
#7  
ACT ACT  
ACT  
#10  
ACT  
#12  
ACT  
#13  
ACT  
#14  
ACT  
#15  
ACT #0 ACT #1 ACT #2 ACT #3 DS #2 DS #3  
Pin  
DS #5 DS #6  
#4  
#5  
#6  
#8  
#9  
P8.0  
P8.1  
P9.0  
P9.1  
tcpwm[0].l  
ine[2]:3  
tcpwm[0].l  
ine[258]:1  
csd.csd  
_tx:37  
csd.csd_  
tx_n:37  
scb[4]  
.uart_r  
x:1  
scb[4].  
i2c_scl  
:1  
scb[4].  
spi_m  
osi:1  
peri.tr  
_io_in  
put[16  
]:0  
tcpwm[0].l  
ine_comp  
l[2]:3  
tcpwm[0].l  
ine_compl  
[258]:1  
csd.csd  
_tx:38  
csd.csd_  
tx_n:38  
scb[4]  
.uart_t  
x:1  
scb[4].  
i2c_sd  
a:1  
scb[4].  
spi_mi  
so:1  
peri.tr  
_io_in  
put[17  
]:0  
tcpwm[0].l  
ine[0]:4  
tcpwm[0].l  
ine[260]:2  
csd.csd  
_tx:39  
csd.csd_  
tx_n:39  
scb[2]  
.uart_r  
x:0  
scb[2].  
i2c_scl  
:0  
scb[2].  
spi_m  
osi:0  
peri.tr  
_io_in  
put[18  
]:0  
cpuss.tr  
ace_da  
ta[3]:1  
tcpwm[0].l  
ine_comp  
l[0]:4  
tcpwm[0].l  
ine_compl  
[260]:2  
csd.csd  
_tx:40  
csd.csd_  
tx_n:40  
scb[2]  
.uart_t  
x:0  
scb[2].  
i2c_sd  
a:0  
scb[2].  
spi_mi  
so:0  
peri.tr  
_io_in  
put[19  
]:0  
cpuss.tr  
ace_da  
ta[2]:1  
P9.2  
P9.3  
P9.4  
P9.5  
P10.0  
tcpwm[0].l  
ine[1]:4  
tcpwm[0].l  
ine[261]:2  
csd.csd  
_tx:41  
csd.csd_  
tx_n:41  
scb[2]  
.uart_r  
ts:0  
scb[2].  
spi_cl  
k:0  
cpuss.tr  
ace_da  
ta[1]:1  
pass.ds  
i_ctb_c  
mp0:1  
tcpwm[0].l  
ine_comp  
l[1]:4  
tcpwm[0].l  
ine_compl  
[261]:3  
csd.csd  
_tx:42  
csd.csd_  
tx_n:42  
scb[2]  
.uart_  
cts:0  
scb[2].  
spi_se  
lect0:0  
cpuss.tr  
ace_da  
ta[0]:1  
pass.ds  
i_ctb_c  
mp1:1  
csd.csd  
_tx:43  
csd.csd_  
tx_n:43  
scb[2].  
spi_se  
lect1:0  
csd.csd  
_tx:44  
csd.csd_  
tx_n:44  
scb[2].  
spi_se  
lect2:0  
tcpwm[0].l  
ine[2]:4  
tcpwm[0].l  
ine[262]:2  
csd.csd  
_tx:45  
csd.csd_  
tx_n:45  
scb[1]  
.uart_r  
x:0  
scb[1].  
i2c_scl  
:0  
scb[1].  
spi_m  
osi:0  
peri.tr  
_io_in  
put[20  
]:0  
cpuss.tr  
ace_da  
ta[3]:0  
P10.1  
tcpwm[0].l  
ine_comp  
l[2]:4  
tcpwm[0].l  
ine_compl  
[262]:2  
csd.csd  
_tx:46  
csd.csd_  
tx_n:46  
scb[1]  
.uart_t  
x:0  
scb[1].  
i2c_sd  
a:0  
scb[1].  
spi_mi  
so:0  
peri.tr  
_io_in  
put[21  
]:0  
cpuss.tr  
ace_da  
ta[2]:0  
P10.2  
P10.3  
tcpwm[0].l  
ine[3]:4  
tcpwm[0].l  
ine[263]:2  
csd.csd  
_tx:47  
csd.csd_  
tx_n:47  
scb[1]  
.uart_r  
ts:0  
scb[1].  
spi_cl  
k:0  
cpuss.tr  
ace_da  
ta[1]:0  
tcpwm[0].l  
ine_comp  
l[3]:4  
tcpwm[0].l  
ine_compl  
[263]:2  
csd.csd  
_tx:48  
csd.csd_  
tx_n:48  
scb[1]  
.uart_  
cts:0  
scb[1].  
spi_se  
lect0:0  
cpuss.tr  
ace_da  
ta[0]:0  
Document Number: 002-33480 Rev. *E  
Page 28 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 7. Multiple Alternate Functions (continued)  
Port/  
ACT ACT ACT  
ACT  
#7  
ACT ACT  
ACT  
#10  
ACT  
#12  
ACT  
#13  
ACT  
#14  
ACT  
#15  
ACT #0 ACT #1 ACT #2 ACT #3 DS #2 DS #3  
Pin  
DS #5 DS #6  
#4  
#5  
#6  
#8  
#9  
P10.4  
tcpwm[0].l  
ine[0]:5  
tcpwm[0].l  
ine[256]:2  
csd.csd  
_tx:49  
csd.csd_  
tx_n:49  
scb[1].  
spi_se  
lect1:0  
audios  
s[0].p  
dm_cl  
k:0  
P10.5  
tcpwm[0].l  
ine_comp  
l[0]:5  
tcpwm[0].l  
ine_compl  
[256]:2  
csd.csd  
_tx:50  
csd.csd_  
tx_n:50  
scb[1].  
spi_se  
lect2:0  
audios  
s[0].p  
dm_d  
ata:0  
P10.6  
P10.7  
tcpwm[0].l  
ine[1]:5  
tcpwm[0].l  
ine[257]:2  
csd.csd  
_tx:51  
csd.csd_  
tx_n:51  
scb[1].  
spi_se  
lect3:0  
peri.tr  
_io_in  
put[22  
]:0  
tcpwm[0].l  
ine_comp  
l[1]:5  
tcpwm[0].l  
ine_compl  
[257]:2  
csd.csd  
_tx:52  
csd.csd_  
tx_n:52  
smif.  
spi_s  
elect  
2
peri.tr  
_io_in  
put[23  
]:0  
P11.1  
P11.2  
P11.3  
P11.4  
P11.5  
P11.6  
P11.7  
csd.csd  
_tx:53  
csd.csd_  
tx_n:53  
smif.s  
pi_sel  
ect1  
tcpwm[0].l  
ine[3]:5  
tcpwm[0].l  
ine[259]:2  
csd.csd  
_tx:54  
csd.csd_  
tx_n:54  
smif.s  
pi_sel  
ect0  
scb[5]  
.uart_r  
ts:0  
scb[5].  
spi_cl  
k:0  
tcpwm[0].l  
ine_comp  
l[3]:5  
tcpwm[0].l  
ine_compl  
[259]:2  
csd.csd  
_tx:55  
csd.csd_  
tx_n:55  
smif.s  
pi_da  
ta3  
scb[5]  
.uart_  
cts:0  
scb[5].  
spi_se  
lect0:0  
peri.tr_io  
_output[  
0]:0  
tcpwm[0].l  
ine[0]:6  
tcpwm[0].l  
ine[260]:3  
csd.csd  
_tx:56  
csd.csd_  
tx_n:56  
smif.s  
pi_da  
ta2  
scb[5].  
spi_se  
lect1:0  
peri.tr_io  
_output[  
1]:0  
tcpwm[0].l  
ine_comp  
l[0]:6  
tcpwm[0].l  
ine_compl  
[260]:3  
csd.csd  
_tx:57  
csd.csd_  
tx_n:57  
smif.s  
pi_da  
ta1  
scb[5].  
spi_se  
lect2:0  
tcpwm[0]  
.line[1]:6  
tcpwm[0].  
line[261]:  
3
csd.csd  
_tx:58  
csd.csd_  
tx_n:58  
smif.s  
pi_da  
ta0  
scb[5].  
spi_se  
lect3:0  
tcpwm[0]  
.line_com  
pl[1]:6  
tcpwm[0].  
line_comp  
l[261]:2  
csd.csd  
_tx:59  
csd.csd_  
tx_n:59  
smif.s  
pi_clk  
P12.6  
P12.7  
tcpwm[0].l  
ine[3]:6  
tcpwm[0].l  
ine[263]:3  
csd.csd  
_tx:60  
csd.csd_  
tx_n:60  
tcpwm[0].l  
ine_comp  
l[3]:6  
tcpwm[0].l  
ine_compl  
[263]:3  
csd.csd  
_tx:61  
csd.csd_  
tx_n:61  
Document Number: 002-33480 Rev. *E  
Page 29 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Analog and Smart I/O alternate port pin functionality is provided in Table 8.  
Table 8. Port Pin Analog, Digital, and Smart I/O Functions  
Table 8. Port Pin Analog, Digital, and Smart I/O Functions  
Port/Pin  
Analog  
Port/Pin  
P0.0  
Analog  
P10.6  
P10.7  
P12.6  
sarmux_pads[6]  
sarmux_pads[7]  
eco_in  
wco_in  
P0.1  
wco_out  
P5.6  
lpcomp.inp_comp0  
lpcomp.inn_comp0  
lpcomp.inp_comp1  
lpcomp.inn_comp1  
P12.7  
eco_out  
P5.7  
Port/Pin  
Digital  
P6.2  
P0.4  
pmic_wakeup_in  
hibernate_wakeup[1]  
pmic_wakeup_out  
hibernate_wakeup[0]  
SMARTIO  
P6.3  
P6.6  
P6.7  
P7.2  
P7.3  
P7.7  
swd_data  
swd_clk  
csd.csh_tank  
csd.vref_ext  
P0.5  
P8.1  
Port/Pin  
P9.0  
P9.1  
P9.2  
P9.3  
P9.4  
P9.5  
smartio[9].io[0]  
smartio[9].io[1]  
smartio[9].io[2]  
smartio[9].io[3]  
smartio[9].io[4]  
smartio[9].io[5]  
csd.shield  
P9.5  
aref_ext_vref  
sarmux_pads[0]  
sarmux_pads[1]  
sarmux_pads[2]  
sarmux_pads[3]  
sarmux_pads[4]  
sarmux_pads[5]  
P10.0  
P10.1  
P10.2  
P10.3  
P10.4  
P10.5  
Document Number: 002-33480 Rev. *E  
Page 30 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Power Supply Considerations  
The following power system diagrams show typical connections for power pins for all supported packages, and with and without usage  
of the buck regulator.  
In these diagrams, the package pin is shown with the pin name, for example "VDDA, 59". For VDDx pins, the I/O port that is powered  
by that pin is also shown, for example “VBACKUP, 3; I/O port P0”.  
Figure 12. 80-TQFP Power Connection Diagram  
1.7 to 3.6 V  
CY8C61x4, 80-TQFP package  
1 KΩ at  
100 MHz  
VCCD, 80  
VDDD, 1  
BACKUP, 3; I/O port P0  
4.7 µF  
10 µF  
1 µF  
1 µF  
1 µF  
1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
V
VDDIO0, 76; I/O ports P11, P12  
VDDIO1, 39; I/O ports P5, P6, P7, P8  
VDDIO2, 23; I/O ports P1, P2, P3  
1 KΩ at  
100 MHz  
VDDA, 59  
10 µF  
0.1 µF  
VDDIOA, 40; I/O ports P9, P10  
2, 11, 24, 38, 41, 58, 77  
VSS  
Document Number: 002-33480 Rev. *E  
Page 31 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Figure 13. 64-TQFP Power Connection Diagram  
1.7 to 3.6 V  
CY8C61x4, 64-TQFP package  
1 KΩ at  
100 MHz  
VCCD, 1  
VDDD, 2  
VBACKUP, 3; I/O port P0  
4.7 µF  
10 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
1 µF  
V
V
DDIO0, 62; I/O ports P11, P12  
1 µF  
1 µF  
1 µF  
DDIO1, 32; I/O ports P5, P6, P7, P8  
VDDIO2, 19; I/O ports P2, P3  
VDDA, 46; I/O ports P9, P10  
1 KΩ at  
100 MHz  
10 µF  
0.1 µF  
GND PAD  
VSS  
Document Number: 002-33480 Rev. *E  
Page 32 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Figure 14. 68-QFN Power Connection Diagram  
1.7 to 3.6 V  
CY8C61x4, 68-QFN package  
1 KΩ at  
100 MHz  
1 KΩ at  
100 MHz  
VDDD, 68  
VDD_NS, 9  
10 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
10 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
10 µF  
VBACKUP, 1; I/O port P0  
VDDIO0, 64; I/O ports P11, P12  
VDDIO1, 35; I/O ports P5, P6, P7, P8  
VDDIO2, 22; I/O ports P2, P3  
VDDUSB, 11; I/O port P14  
VIND1, 10  
VCCD, 67  
2.2 µH  
4.7 µF  
1 KΩ at  
100 MHz  
VDDA, 48  
VDDIOA, 36; I/O ports P9, P10  
GND PAD  
VSS  
Document Number: 002-33480 Rev. *E  
Page 33 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Figure 15. 68-QFN (No Buck) Power Connection Diagram  
1.7 to 3.6 V  
CY8C61x4, 68-QFN package  
1 KΩ at  
100 MHz  
VDDD, 68  
VDD_NS, 9  
VIND1, 10  
10 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
10 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
VBACKUP, 1; I/O port P0  
VDDIO0, 64; I/O ports P11, P12  
VDDIO1, 35; I/O ports P5, P6, P7, P8  
VCCD, 67  
4.7 µF  
VDDIO2, 22; I/O ports P2, P3  
VDDUSB, 11; I/O port P14  
VDDA, 48  
1 KΩ at  
100 MHz  
VDDIOA, 36; I/O ports P9, P10  
GND PAD  
VSS  
There are as many as eight VDDx supply pins, depending on the  
package, and multiple VSS ground pins. The power pins are:  
VBACKUP: the supply for the backup domain, which includes the  
32-kHz WCO and the RTC. It can be a separate supply as low  
as 1.4 V, for battery or supercapacitor backup, as Figure 16  
shows. otherwise it is connected to VDDD. It powers I/O port 0.  
VDDD: the main digital supply.  
VCCD: the main LDO output. It requires a 4.7-µF capacitor for  
regulation. The LDO can be turned off when VCCD is driven  
from the switching regulator (see below). For more information,  
see the power system block diagram in the device technical  
reference manual (TRM).  
Figure 16. Separate Battery Connection to VBACKUP  
1.7 to 3.6 V  
VDDA: the supply for the analog peripherals. Voltage must be  
applied to this pin for correct device initialization and boot up.  
VDDD  
10 µF  
1 µF  
0.1 µF  
0.1 µF  
VDDIOA: the supply for I/O ports 9 and 10. If it is present in the  
device package, it must be connected to VDDA  
VDDIO0: the supply for I/O ports 11 and 12.  
VDDIO1: the supply for I/O ports 5, 6, 7, and 8.  
VDDIO2: the supply for I/O ports 1, 2, and 3.  
.
VBACKUP  
1.4 to 3.6 V  
Document Number: 002-33480 Rev. *E  
Page 34 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
VDDUSB: the supply for the USB peripheral and the USBDPand  
USBDM pins. It must be 2.85 V to 3.6 V for USB operation. If  
USB is not used, it can be 1.7 V to 3.6 V, and the USB pins can  
be used as limited-capability GPIOs on I/O port 14.  
There are no power pin sequencing requirements; power  
supplies may be brought up in any order. The power  
management system holds the device in reset until all power pins  
are at the voltage levels required for proper operation.  
Table 9 shows a summary of the I/O port supplies:  
Note: If a battery is installed on the PCB first, VDDD must be  
cycled for at least 50 µs. This prevents premature drain of the  
battery during product manufacture and storage.  
Table 9. I/O Port Supplies  
Port  
0
Supply  
VBACKUP  
VDDIO2  
VDDIO1  
VDDIOA  
VDDIO0  
VDDUSB  
Alternate Supply  
Bypass capacitors must be connected to a common ground from  
the VDDx and other pins, as indicated in the diagrams. Typical  
practice for systems in this frequency range is to use a 10-µF or  
1-µF capacitor in parallel with a smaller capacitor (0.1 µF, for  
example). Note that these are simply rules of thumb and that, for  
critical applications, the PCB layout, lead inductance, and the  
bypass capacitor parasitic should be simulated for optimal  
bypassing.  
VDDD  
1,2, 3  
5, 6, 7, 8  
9, 10  
11, 12  
14  
-
-
VDDA  
-
-
All capacitors and inductors should be ±20% or better. The  
recommended inductor value is 2.2 µH ±20% (for example, TDK  
MLP2012H2R2MT0S1).  
Note: If the USB pins are not used, connect VDDUSB to ground  
and leave the P14.0/USBDP and P14.1/USBDM pins unconnect-  
ed.  
It is good practice to check the datasheets for your bypass  
capacitors, specifically the working voltage and the DC bias  
specifications. With some capacitors, the actual capacitance can  
decrease considerably when the applied voltage is a significant  
percentage of the rated working voltage.  
Voltage must be applied to the VDDD pin, and the VDDA pin as  
noted above, for correct device initialization and operation. If an  
I/O port is not being used, applying voltage to the corresponding  
V
DDx pin is optional.  
For more information on pad layout, refer to PSoC 6 CAD  
libraries.  
VSS: ground pins for the above supplies.All ground pins should  
be connected together to a common ground.  
In addition to the LDO regulator, a switching regulator is  
included. The regulator pins are:  
VDD_NS: the regulator supply.  
VIND1: the regulator output. It is typically used to drive VCCD  
through an inductor.  
The VDD power pins are not connected together on chip. They  
can be connected off chip, in one or more separate nets. If  
separate power nets are used, they can be isolated from noise  
from the other nets using optional ferrite beads, as indicated in  
the diagrams.  
No external load should be placed on VCCD, or VIND1, whether  
or not these pins are used.  
Document Number: 002-33480 Rev. *E  
Page 35 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Electrical Specifications  
All specifications are valid for –40 °C TA 85 °C and for 1.71 V to 3.6 V except where noted.  
Note: These are preliminary and subject to change.  
Absolute Maximum Ratings  
Table 10. Absolute Maximum Ratings[1]  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
Analog or digital supply relative to Vss  
SID1  
V
V
–0.5  
4
V
DD_ABS  
(V  
= V  
)
SSD  
SSA  
Direct digital core voltage input relative  
to Vssd  
SID2  
–0.5  
1.2  
V
CCD_ABS  
GPIO_ABS  
SID3  
SID4  
SID5  
V
I
GPIO voltage; V  
or V  
–0.5  
–25  
VDD+0.5  
25  
V
DDD  
DDA  
Current per GPIO  
mA  
mA  
GPIO_ABS  
I
GPIO injection current per pin  
–0.5  
0.5  
GPIO_injection  
Electrostatic discharge Human Body  
Model  
SID3A  
ESD_HBM  
2200  
V
Electrostatic discharge Charged  
Device Model  
SID4A  
SID5A  
ESD_CDM  
LU  
500  
V
Pin current for latchup-free operation  
–100  
100  
mA  
Device-Level Specifications  
Table 13 provides detailed specifications of CPU current. Table 11 summarizes these specifications, for rapid review of CPU currents  
under common conditions. Note that the max frequency for CM4 is 150 MHz, and for CM0+ is 100 MHz. IMO and FLL are used to  
generate the CPU clocks; FLL is not used when the CPU clock frequency is 8 MHz.  
Table 11. CPU Current Specifications Summary  
Condition  
= 3.3 V, V  
Range  
Typ Range  
Max Range  
LP Mode, V  
= 1.1 V, with buck regulator  
CCD  
DDD  
CM4 active, CM0+ sleep  
CM0+ active, CM4 sleep  
CM4 sleep, CM0+ sleep  
CM0+ sleep, CM4 off  
0.9–6.9 mA  
0.8–3.8 mA  
0.7–1.5 mA  
0.7–1.3 mA  
0.6–0.7 mA  
1.5–8.6 mA  
1.3–4.5 mA  
1.3–2.2 mA  
1.3–2 mA  
Across CPUs clock ranges: 8–150/100 MHz; Dhrystone  
with flash cache enabled  
Minimum regulator current mode  
ULP Mode, V = 3.3 V, V  
Across CM4/CM0+ CPU active/sleep modes  
1.1–1.1 mA  
= 0.9 V, with buck regulator  
CCD  
DDD  
CM4 active, CM0+ sleep  
CM0+ active, CM4 sleep  
CM4 sleep, CM0+ sleep  
CM0+ sleep, CM4 off  
0.65–1.6 mA  
0.51–0.91 mA  
0.42–0.76 mA  
0.41–0.62 mA  
0.39–0.54 mA  
7–9 µA  
0.8–2.2mA  
0.72–1.25 mA  
0.65–1.1 mA  
0.6–0.9 mA  
0.6–0.76 mA  
-
Across CPUs clock ranges: 8 – 50/25 MHz; Dhrystone  
with flash cache enabled  
Minimum regulator current mode  
Deep Sleep  
Across CM4/CM0+ CPU active/sleep modes  
Across SRAM retention  
Hibernate  
Across V  
300–800 nA  
-
DDD  
Note  
1. Usage above the absolute maximum conditions listed in Table 10 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended  
periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature  
Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.  
Document Number: 002-33480 Rev. *E  
Page 36 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Figure 17. Typical Device Currents vs. CPU Frequency; System Low Power (LP) Mode[2]  
8
CM4 Active, CM0+ Sleep 1/2 CM4  
CM4 Active, CM0+ Sleep same as CM4  
CM0+ Active, CM4 Sleep  
7
6
5
4
3
2
1
0
0
25  
50  
75  
100  
125  
150  
CPU Clock, MHz  
Power Supplies  
Table 12. Power Supply DC Specifications  
Spec ID#  
Parameter  
Description  
Internal regulator  
Analog power supply voltage. Shorted to  
on PCB  
Min  
Typ  
Max  
Units  
Details / Conditions  
SID6  
V
V
1.7  
3.6  
V
DDD  
SID7  
1.7  
3.6  
V
DDA  
V
DDIOA  
Must be VDDA if the  
CapSense (CSD) block is  
used in the application  
GPIO supply for Ports 5 to 8 when  
present  
SID7A  
V
1.7  
3.6  
V
DDIO1  
SID7B  
SID7E  
SID7EI  
V
V
I
GPIO supply for Ports 11 and 12  
Supply when programming E-Fuse  
eFuse programming current  
eFuse programming time  
1.7  
2.38  
2.5  
3.6  
2.62  
14  
V
V
DDIO0  
DDIO0  
eFuse programming voltage  
mA  
µs  
DDEFUSE  
SID7EP EFUSETIME  
5
GPIO supply for Ports 1 to 3 when  
present  
SID7C  
SID7D  
SID7F  
V
V
V
1.7  
1.7  
1.7  
3.6  
3.6  
3.6  
V
V
V
DDIO2  
GPIO supply for Ports 9 and 10 when  
present. Must be connected to V  
PCB.  
on  
DDIOA  
DDA  
Supply for Port 14 (USB or GPIO) when  
present  
Min supply is 2.85 V for USB  
DDUSB  
SID6B  
SID8  
V
V
Backup Power; normally shorted to V  
1.7  
3.6  
V
V
Min is 1.4 V in Backup mode  
System LP mode  
BACKUP  
DDD  
(LP)  
Output voltage (for core logic bypass)  
1.1  
CCD  
CCD  
ULP mode. Valid for 20 to  
85 °C.  
SID9  
V
(ULP)  
Output voltage (for core logic bypass)  
0.9  
External Regulator voltage (V  
bypass  
)
X5R ceramic or better. Value  
for 0.8 to 1.2 V.  
CCD  
SID10  
SID11  
C
C
3.8  
4.7  
10  
5.6  
µF  
µF  
EFC  
EXC  
Power supply decoupling capacitor  
X5R ceramic or better  
Note  
2. CM4 Active, CM0+ Sleep 1/2 CM4 trace values are higher because above 100 MHz, the PLL must be used instead of the FLL.  
Document Number: 002-33480 Rev. *E  
Page 37 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
CPU Current and Transition Times  
Table 13. CPU Current and Transition Specifications  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Units  
Details / Conditions  
LP Range Power Specifications (for VCCD = 1.1 Vwith Buck and LDO)  
Cortex M4. Active Mode  
Execute with Cache Disabled (Flash)  
2.3  
3.2  
3.6  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
Execute from Flash; CM4 Active  
50 MHz, CM0+ Sleep 25 MHz. With  
IMO & FLL. While(1).  
3.1  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
SIDF1  
SIDF2  
IDD1  
mA  
mA  
VDDD = 1.8 to 3.3 V, LDO, max at  
85 °C  
5.7  
6.5  
0.9  
1.2  
1.5  
1.6  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
Execute from Flash; CM4 Active  
8 MHz, CM0+ Sleep 8 MHz.With  
IMO. While(1)  
V
DDD = 1.8 V, Buck ON, Max at 60 °C  
DDD = 1.8 to 3.3 V, LDO, max at  
IDD2  
V
2.8  
3.5  
85 °C  
Execute with Cache Enabled  
Execute from Cache;CM4 Active  
6.9  
8.6  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
10.9  
13.7  
V
DDD = 1.8 V, Buck ON, Max at 60 °C  
DDD = 1.8 to 3.3 V, LDO, max at  
SIDC1  
SIDC2  
SIDC3  
SIDC4  
IDD3  
IDD4  
IDD5  
IDD6  
150 MHz, CM0+ Sleep 75 MHz. IMO  
& PLL. Dhrystone.  
mA  
mA  
mA  
mA  
V
13.7  
15.5  
85 °C  
4.8  
7.4  
5.8  
8.4  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
Execute from Cache;CM4  
Active100 MHz, CM0+ Sleep  
100 MHz. IMO & FLL. Dhrystone.  
VDDD = 1.8 to 3.3 V, LDO, max at  
85 °C  
11.3  
12  
2.4  
3.7  
3.4  
4.1  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
Execute from Cache;CM4 Active  
50 MHz, CM0+ Sleep 25MHz. IMO &  
FLL. Dhrystone  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
VDDD = 1.8 to 3.3 V, LDO, max at  
6.3  
7.2  
85 °C  
0.9  
1.3  
1.5  
1.8  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
Execute from Cache;CM4 Active  
8 MHz, CM0+ Sleep 8 MHz. IMO.  
Dhrystone  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
VDDD = 1.8 to 3.3 V, LDO, max at  
85 °C  
3
3.8  
Cortex M0+. Active Mode  
Execute with Cache Disabled (Flash)  
2.4  
3.2  
3.3  
3.7  
V
V
V
DDD = 3.3 V, Buck ON, max at 60 °C  
DDD = 1.8 V, Buck ON, Max at 60 °C  
DDD = 1.8 to 3.3 V, LDO, max at  
Execute from Flash;CM4 Off, CM0+  
Active 50 MHz. With IMO & FLL.  
While (1).  
SIDF3  
SIDF4  
IDD7  
IDD8  
mA  
mA  
5.6  
6.3  
85 °C  
0.8  
1.1  
1.5  
1.6  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
Execute from Flash;CM4 Off, CM0+  
Active 8 MHz. With IMO. While (1)  
VDDD = 1.8 to 3.3 V, LDO, max at  
85 °C  
2.6  
3.4  
Document Number: 002-33480 Rev. *E  
Page 38 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 13. CPU Current and Transition Specifications (continued)  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Units  
Details / Conditions  
Execute with Cache Enabled  
3.8  
5.9  
4.5  
6.5  
V
DDD = 3.3 V, Buck ON, Max at 60 °C  
Execute from Cache;CM4 Off, CM0+  
Active 100 MHz. With IMO & FLL.  
Dhrystone.  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
SIDC5  
SIDC6  
IDD9  
mA  
mA  
VDDD = 1.8 to 3.3 V, LDO, max at  
85 °C  
9
9.7  
0.8  
1.2  
1.3  
1.7  
V
DDD = 3.3 V, Buck ON, Max at 60 °C  
DDD = 1.8 V, Buck ON, Max at 60 °C  
Execute from Cache;CM4 Off, CM0+  
Active 8 MHz. With IMO. Dhrystone  
V
IDD10  
VDDD = 1.8 to 3.3 V, LDO, max at  
85 °C  
2.60  
3.4  
Cortex M4. Sleep Mode  
1.5  
2.2  
2.2  
2.7  
V
DDD = 3.3 V, Buck ON, Max at 60 °C  
DDD =1.8 V, Buck ON, Max at 60 °C  
CM4 Sleep 100 MHz, CM0+ Sleep  
25 MHz. With IMO & FLL.  
V
SIDS1  
SIDS2  
SIDS3  
IDD11  
IDD12  
IDD13  
mA  
mA  
mA  
VDDD = 1.8 to 3.3 V, LDO, max at  
85 °C  
4
4.6  
1.2  
1.7  
1.9  
2.2  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
VDDD = 1.8 to 3.3 V, LDO, max at  
CM4 Sleep 50 MHz, CM0+ Sleep  
25 MHz. With IMO & FLL  
3.4  
4.3  
85 °C  
0.7  
1
1.3  
1.5  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
CM4 Sleep 8 MHz, CM0+ Sleep  
8 MHz. With IMO.  
VDDD = 1.8 to 3.3 V, LDO, max at  
85 °C  
2.4  
3.3  
Cortex M0+. Sleep Mode  
1.30  
1.9  
2
V
DDD = 3.3 V, Buck ON, Max at 60 °C  
DDD = 1.8 V, Buck ON, Max at 60 °C  
CM4 Off, CM0+ Sleep 50 MHz. With  
IMO & FLL.  
2.4  
V
SIDS4  
SIDS5  
IDD14  
IDD15  
mA  
mA  
VDDD = 1.8 to 3.3 V, LDO, max at  
85 °C  
3.8  
4.6  
0.70  
1
1.3  
1.5  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
VDDD = 1.8 to 3.3 V, LDO, max at  
CM4 Off, CM0+ Sleep 8 MHz. With  
IMO.  
2.4  
3.3  
85 °C  
Cortex M4. Minimum Regulator Current Mode  
Execute from Flash; CM4 Active  
0.9  
1.2  
1.5  
1.7  
V
V
V
DDD = 3.3 V, Buck ON, Max at 60 °C  
DDD = 1.8 V, Buck ON, Max at 60 °C  
SIDLPA1 IDD16  
8 MHz, CM0+ Sleep 8 MHz. With  
IMO. While (1).  
mA  
mA  
DDD = 1.8 to 3.3 V, LDO, max at  
2.8  
3.5  
85 °C  
0.9  
1.3  
1.5  
1.8  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
Execute from Cache; CM4 Active  
8 MHz, CM0+ Sleep 8 MHz. With  
IMO. Dhrystone.  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
SIDLPA2 IDD17  
VDDD = 1.8 to 3.3 V, LDO, max at  
85 °C  
2.9  
3.7  
Document Number: 002-33480 Rev. *E  
Page 39 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 13. CPU Current and Transition Specifications (continued)  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Units  
Details / Conditions  
Cortex M0+. Minimum Regulator Current Mode  
0.8  
1.1  
1.4  
1.6  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
Execute from Flash; CM4 Off, CM0+  
Active 8 MHz. With IMO. While (1)  
SIDLPA3 IDD18  
SIDLPA4 IDD19  
mA  
mA  
VDDD = 1.8 to 3.3 V, LDO, max at  
85 °C  
2.7  
3.6  
0.8  
1.2  
1.4  
1.7  
V
DDD = 3.3 V, Buck ON, Max at 60 °C  
DDD = 1.8 V, Buck ON, Max at 60 °C  
ExecutefromCache;CM4Off, CM0+  
Active 8 MHz. With IMO. Dhrystone.  
V
VDDD = 1.8 to 3.3 V, LDO, max at  
85 °C  
2.7  
3.6  
Cortex M4. Minimum Regulator Current Mode  
0.7  
1
1.1  
1.5  
V
DDD = 3.3 V, Buck ON, Max at 60 °C  
DDD = 1.8 V, Buck ON, Max at 60 °C  
CM4 Sleep 8 MHz, CM0+ Sleep  
8 MHz. With IMO.  
V
SIDLPS1 IDD20  
mA  
VDDD = 1.8 to 3.3 V, LDO, max at  
85 °C  
2.4  
3.3  
Cortex M0+. Minimum Regulator Current Mode  
0.6  
0.9  
1.1  
1.5  
V
DDD = 3.3 V, Buck ON, Max at 60 °C  
DDD = 1.8 V, Buck ON, Max at 60 °C  
CM4 Off, CM0+ Sleep 8 MHz. With  
IMO.  
V
SIDLPS3 IDD22  
mA  
VDDD = 1.8 to 3.3 V, LDO, max at  
85 °C  
2.4  
3.3  
ULP Range Power Specifications (for VCCD = 0.9 V using the Buck). ULP mode is valid from -20 to +85 °C.  
Cortex M4. Active Mode  
Execute with Cache Disabled (Flash)  
Execute from Flash; CM4 Active  
50 MHz, CM0+ Sleep 25 MHz. With  
IMO & FLL. While(1).  
1.7  
2.1  
2.2  
2.4  
0.8  
1
VDDD = 3.3V, Buck ON, Max at 60 °C  
SIDF5  
SIDF6  
IDD3  
IDD4  
mA  
mA  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
Execute from Flash; CM4 Active 8  
MHz, CM0+ Sleep 8 MHz. With IMO.  
While (1)  
0.56  
0.75  
Execute with Cache Enabled  
Execute from Cache; CM4 Active  
50 MHz, CM0+ Sleep 25 MHz. With  
IMO & FLL. Dhrystone.  
1.6  
2.4  
2.2  
2.7  
0.8  
1.1  
V
DDD = 3.3 V, Buck ON, Max at 60 °C  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
DDD = 3.3 V, Buck ON, Max at 60 °C  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
SIDC8  
SIDC9  
IDD10  
IDD11  
mA  
mA  
Execute from Cache; CM4 Active 8  
MHz, CM0+ Sleep 8 MHz. With IMO.  
Dhrystone.  
0.65  
0.8  
V
Cortex M0+. Active Mode  
Execute with Cache Disabled (Flash)  
Execute from Flash; CM4 Off, CM0+  
Active 25 MHz. With IMO & FLL.  
While(1).  
1
1.4  
1.6  
V
DDD = 3.3 V, Buck ON, Max at 60 °C  
SIDF7  
SIDF8  
IDD16  
IDD17  
mA  
mA  
1.34  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
0.54  
0.73  
0.75  
1
V
DDD = 3.3 V, Buck ON, Max at 60 °C  
DDD = 1.8 V, Buck ON, Max at 60 °C  
Execute from Flash; CM4 Off, CM0+  
Active 8 MHz. With IMO. While(1)  
V
Document Number: 002-33480 Rev. *E  
Page 40 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 13. CPU Current and Transition Specifications (continued)  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Units  
Details / Conditions  
Execute with Cache Enabled  
ExecutefromCache;CM4Off, CM0+  
Active 25 MHz. With IMO & FLL.  
Dhrystone.  
0.91  
1.34  
1.25  
1.6  
V
DDD = 3.3 V, Buck ON, Max at 60 °C  
SIDC10  
SIDC11  
IDD18  
IDD19  
mA  
mA  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
0.51  
0.73  
0.72  
0.95  
ExecutefromCache;CM4Off, CM0+  
Active 8 MHz. With IMO. Dhrystone.  
V
DDD = 1.8 V, Buck ON, Max at 60 °C  
Cortex M4. Sleep Mode  
0.76  
1.1  
1.1  
1.4  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
CM4 Sleep 50 MHz, CM0+ Sleep  
25 MHz. With IMO & FLL  
SIDS7  
SIDS8  
IDD21  
IDD22  
mA  
mA  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
0.42  
0.59  
0.65  
0.8  
CM4 Sleep 8 MHz, CM0+ Sleep  
8 MHz. With IMO  
Cortex M0+. Sleep Mode  
0.62  
0.88  
0.41  
0.58  
0.9  
1.1  
0.6  
0.8  
V
V
V
DDD = 3.3 V, Buck ON, Max at 60 °C  
DDD = 1.8 V, Buck ON, Max at 60 °C  
DDD = 3.3 V, Buck ON, Max at 60 °C  
CM4 Off, CM0+ Sleep 25 MHz. With  
IMO & FLL.  
SIDS9  
IDD23  
IDD24  
mA  
mA  
CM4 Off, CM0+ Sleep 8 MHz. With  
IMO.  
SIDS10  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
Cortex M4. Minimum Regulator Current Mode  
Execute from Flash. CM4 Active  
0.52  
0.76  
0.54  
0.78  
0.75  
1
V
DDD = 3.3 V, Buck ON, Max at 60 °C  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
DDD = 3.3 V, Buck ON, Max at 60 °C  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
SIDLPA5 IDD25  
8 MHz, CM0+ Sleep 8 MHz. With  
IMO. While(1).  
mA  
mA  
Execute from Cache. CM4 Active  
8 MHz, CM0+ Sleep 8 MHz. With  
IMO. Dhrystone.  
0.76  
1
V
SIDLPA6 IDD26  
Cortex M0+. Minimum Regulator Current Mode  
0.51  
0.75  
0.48  
0.7  
0.75  
1
mA VDDD = 3.3 V, Buck ON, Max at 60 °C  
Execute from Flash. CM4 Off, CM0+  
Active 8 MHz. With IMO. While (1).  
SIDLPA7 IDD27  
SIDLPA8 IDD28  
V
DDD = 1.8 V, Buck ON, Max at 60 °C  
DDD = 3.3 V, Buck ON, Max at 60 °C  
0.7  
0.95  
V
ExecutefromCache. CM4Off, CM0+  
Active 8 MHz. With IMO. Dhrystone.  
mA  
mA  
mA  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
Cortex M4. Minimum Regulator Current Mode  
0.4  
0.6  
0.8  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
CM4 Sleep 8 MHz, CM0 Sleep  
SIDLPS5 IDD29  
8 MHz. With IMO.  
0.57  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
Cortex M0+. Minimum Regulator Current Mode  
0.39  
0.56  
0.6  
0.8  
VDDD = 3.3 V, Buck ON, Max at 60 °C  
CM4 Off, CM0+ Sleep 8 MHz. With  
SIDLPS7 IDD31  
IMO.  
VDDD = 1.8 V, Buck ON, Max at 60 °C  
Deep Sleep Mode  
With internal Buck enabled and 64K  
SRAM retention  
SIDDS1  
IDD33A  
7
7
9
9
µA  
µA  
µA  
µA  
Max value is at 85 °C  
Max value is at 60 °C  
Max value is at 85 °C  
Max value is at 60 °C  
With internal Buck enabled and 64K  
SRAM retention  
SIDDS1_B IDD33A_B  
With internal Buck enabled and 128K  
SRAM retention  
SIDDS2  
IDD33B  
With internal Buck enabled and 128K  
SRAM retention  
SIDDS2_B IDD33B_B  
Document Number: 002-33480 Rev. *E  
Page 41 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 13. CPU Current and Transition Specifications (continued)  
Spec ID# Parameter  
Hibernate Mode  
Description  
Min  
Typ  
Max Units  
Details / Conditions  
SIDHIB1 IDD34  
SIDHIB2 IDD34A  
V
DDD = 1.8 V  
300  
nA  
nA  
No clocks running  
VDDD = 3.3 V  
1400  
No clocks running  
Power Mode Transition Times  
Minimum Regulator Current to LP  
transition time  
SID12  
SID13  
SID14  
TLPACT_ACT  
35  
17  
µs  
µs  
µs  
Including PLL lock time  
Guaranteed by Design  
Including PLL lock time  
TDS_LPACT Deep Sleep to LP transition time.  
Hibernate to Active transition time  
THIB_ACT  
900  
including Boot process.  
XRES  
Table 14. XRES DC Specifications  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
SID17  
SID17A  
SID77  
SID78  
SID80  
SID81  
T
T
I
I
when XRES asserted  
when XRES asserted  
300  
nA VDDD = 1.8 V  
nA VDDD = 3.3 V  
XRES_IDD  
DD  
DD  
1400  
XRES_IDD_1  
V
V
Input voltage HIGH threshold  
Input voltage LOW threshold  
Input capacitance  
0.7 * VDD  
V
V
CMOS input  
IH  
IL  
0.3 * VDD  
CMOS input  
C
V
3
pF  
mV  
µA  
IN  
Input voltage hysteresis  
100  
HYSXRES  
DIODE  
Current through protection diode to  
V
100  
SID82  
I
/V  
DD SS  
Table 15. XRES AC Specifications  
Spec ID# Parameter  
Description  
Min  
Typ  
900  
Max  
Units  
Details / Conditions  
µs Not minimum regulator current  
mode; Cortex-M0+ executing at  
50 MHz  
Time from XRES release to Active  
mode including Boot process  
SID15  
TXRES_ACT  
TXRES_PW  
SID16  
XRES pulse width  
5
µs  
GPIO  
Table 16. GPIO DC Specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
V
Details / Conditions  
CMOS Input  
SID57  
V
Input voltage HIGH threshold  
0.7 * VDD  
IH  
Input current when Pad > V  
OVT inputs  
for  
10  
µA  
2
DDIO  
SID57A  
I
Per I C Spec  
IHS  
SID58  
V
V
V
V
V
V
V
Input voltage LOW threshold  
0.3 * VDD  
V
V
CMOS Input  
IL  
SID241  
SID242  
SID243  
SID244  
SID59  
LVTTL input, V < 2.7 V  
0.7 * VDD  
IH  
IL  
DD  
LVTTL input, V < 2.7 V  
0.3 * VDD  
V
DD  
LVTTL input, V ≥ 2.7 V  
2.0  
V
IH  
IL  
DD  
LVTTL input, V ≥ 2.7 V  
VDD – 0.5  
0.8  
V
DD  
Output voltage HIGH level  
Output voltage LOW level  
Pull-up resistor  
V
I
I
= 8 mA  
= 8 mA  
OH  
OL  
OH  
OL  
SID62A  
SID63  
0.4  
8.5  
V
R
3.5  
5.6  
kΩ  
PULLUP  
Document Number: 002-33480 Rev. *E  
Page 42 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 16. GPIO DC Specifications (continued)  
Spec ID#  
Parameter  
Description  
Pull-down resistor  
Min  
3.5  
Typ  
5.6  
Max  
8.5  
2
Units  
kΩ  
Details / Conditions  
SID64  
R
PULLDOWN  
Input leakage current (absolute  
value)  
nA  
SID65  
I
I
25 °C, V = 3.0 V  
IL  
DD  
SID65A  
SID66  
SID67  
SID68  
Input leakage on CTBm input pins  
Input capacitance  
0
4
5
nA  
pF  
IL_CTBM  
C
V
100  
IN  
Input hysteresis LVTTL V > 2.7 V  
mV  
mV  
µA  
HYSTTL  
DD  
V
Input hysteresis CMOS  
0.05*VDD  
HYSCMOS  
Current through protection diode to  
100  
SID69  
I
I
DIODE  
V
/V  
DD SS  
Maximum total source or sink chip  
current  
200  
mA  
SID69A  
TOT_GPIO  
Table 17. GPIO AC Specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
Rise time in Fast Strong Mode. 10%  
Cload = 15 pF, 8-mA drive  
strength  
2.5  
2.5  
142  
102  
211  
93  
ns  
SID70  
T
T
T
T
T
T
T
F
F
F
F
F
RISEF  
to 90% of V  
.
DD  
Fall time in Fast Strong Mode. 10%  
to 90% of V  
Cload = 15 pF, 8-mA drive  
strength  
ns  
ns  
SID71  
FALLF  
.
DD  
RisetimeinSlowStrongMode. 10%  
to 90% of V  
Cload = 15 pF, 8-mA drive  
52  
48  
44  
42  
SID72  
RISES_1  
RISES_2  
FALLS_1  
FALLS_2  
FALL_I2C  
GPIOUT1  
GPIOUT2  
GPIOUT3  
GPIOUT4  
GPIOIN  
.
strength, V 2.7 V  
DD  
DD  
RisetimeinSlowStrongMode. 10%  
to 90% of V  
Cload = 15 pF, 8-mA drive  
ns  
SID72A  
SID73  
.
strength, 2.7 V < V 3.6 V  
DD  
DD  
Fall time in Slow Strong Mode. 10%  
to 90% of V  
Cload = 15 pF, 8-mA drive  
ns  
.
strength, V 2.7 V  
DD  
DD  
Fall time in Slow Strong Mode. 10%  
to 90% of V  
Cload = 15 pF, 8-mA drive  
ns  
SID73A  
SID73G  
SID74  
.
strength, 2.7 V < V 3.6 V  
DD  
DD  
Fall time (30% to 70% of V ) in  
Cload = 10 pF to 400 pF, 8-mA  
drive strength  
20 * VDDIO  
/ 5.5  
250  
100  
16.7  
7
ns  
DD  
Slow Strong mode.  
90/10%, 15-pF load, 60/40 duty  
cycle  
MHz  
MHz  
MHz  
MHz  
MHz  
GPIO Fout. Fast Strong mode.  
90/10%, 15-pF load, 60/40 duty  
cycle  
SID75  
GPIO Fout; Slow Strong mode.  
GPIO Fout; Fast Strong mode.  
90/10%, 25-pF load, 60/40 duty  
cycle  
SID76  
90/10%, 25-pF load, 60/40 duty  
cycle  
3.5  
100  
SID245  
SID246  
GPIO Fout; Slow Strong mode.  
GPIO input operating frequency;  
90/10% V  
IO  
1.71 V V 3.6 V  
DD  
Document Number: 002-33480 Rev. *E  
Page 43 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Analog Peripherals  
Opamp  
Table 18. Opamp Specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
Overvoltage and temp  
(–40/105 °C) unless  
stated otherwise  
I
Opamp block current. No load.  
DD  
SID269  
I
I
I
power = hi  
power = med  
power = lo  
1300  
1500  
uA  
uA  
uA  
DD_HI  
SID270  
SID271  
450  
250  
600  
350  
DD_MED  
DD_LOW  
GBW  
Load = 20 pF, 0.1mA. V  
power = hi  
= 2.7 V  
DDA  
SID272  
SID273  
SID274  
GBW_HI  
GBW_MED  
GBW_LO  
6
MHz  
MHz  
MHz  
power = med  
2
power = lo  
1
I
V
≥ 2.7 V, 500 mV from rail  
OUT_MAX  
DDA  
SID275  
SID276  
SID277  
I
power = hi  
power = med  
power = lo  
10  
10  
mA  
mA  
mA  
OUT_MAX_HI  
I
OUT_MAX_MID  
I
5
OUT_MAX_LO  
I
I
I
I
V
= 1.7 V, 500 mV from rail  
OUT  
DDA  
SID278  
SID279  
SID280  
SID281  
power = hi  
4
4
0
2
mA  
mA  
mA  
V
OUT_MAX_HI  
OUT_MAX_MID  
OUT_MAX_LO  
power = med  
power = lo  
V
Input voltage range  
VDDA-0.2  
Charge pump ON  
Charge pump OFF,  
IN  
SID282  
V
Input common mode voltage  
0
VDDA-0.2  
V
CM  
V
≥ 2.7 V  
DDA  
V
V
V
V
V
V
≥ 2.7 V  
OUT  
DDA  
SID283  
SID284  
SID285  
SID286  
power = hi, Iload = 10 mA  
power = hi, Iload = 1 mA  
power = med, Iload = 1 mA  
power = lo, Iload = 0.1 mA  
0.5  
0.2  
0.2  
0.2  
VDDA -0.5  
VDDA -0.2  
VDDA -0.2  
VDDA -0.2  
V
V
V
V
OUT_1  
OUT_2  
OUT_3  
OUT_4  
Offset voltage. Closed loop configu-  
ration.  
High mode, 0.2 to  
DDA 0.2  
SID288  
V
-1  
+/-0.5  
1
mV  
OS  
V
SID288A  
SID288B  
V
V
Offset voltage  
Offset voltage  
-
-
+/-1  
+/-2  
-
-
mV Medium mode  
mV Low mode  
OS  
OS  
High mode, 0.2 to  
µV/°C  
SID290  
V
Offset voltage drift  
-10  
+/-3  
10  
OS_DR  
V
-0.2  
DDA  
SID290A  
SID290B  
V
V
Offset voltage drift  
Offset voltage drift  
-
-
+/10  
µV/°C Medium mode  
µV/C Low mode  
OS_DR  
OS_DR  
+/-10  
V
V
= 3.3 V. Vin = 0.2 to  
DDA 0.2.  
DDD  
SID291  
SID292  
CMRR  
PSRR  
DC Common mode rejection ratio  
67  
70  
80  
85  
dB  
dB  
Power supply rejection ratio at 1 kHz,  
10mV ripple  
V = 3.3 V. Vin =  
DDD  
V
.
DDA/2  
Noise  
SID293  
VN1  
VN2  
Input-referred, 1 Hz - 1 GHz, power = hi  
Input-referred, 1 kHz, power = hi  
100  
180  
µVrms Guaranteed by design  
nV/  
SID294  
Guaranteed by design  
rtHz  
Document Number: 002-33480 Rev. *E  
Page 44 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 18. Opamp Specifications (continued)  
Spec ID#  
SID295  
Parameter  
VN3  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
nV/  
rtHz  
Input-referred, 10 kHz, power = hi  
70  
Guaranteed by design  
nV/  
rtHz  
SID296  
SID297  
VN4  
Input-referred, 100 kHz, power = hi  
38  
Guaranteed by design  
Stable up to max load. Performance  
specs at 50 pF.  
CLOAD  
125  
pF High and m  
Cload = 50pF,  
Power = High, V  
V
≥ 2.7  
DDA  
SID298  
SID299  
SLEW_RATE  
T_OP_WAKE  
Output slew rate  
4
V/µs  
Refer to Figure 18 and  
Figure 19  
From disable to enable, no external RC  
dominating  
10  
µs For V  
≥ 2.7 V  
DDA  
COMP_MODE Comparator mode; 50mV overdrive.  
SID300  
SID301  
SID302  
SID303  
TPD1  
TPD2  
TPD3  
V
Response time; power = hi  
Response time; power = med  
Response time; power = lo  
Hysteresis  
150  
400  
2000  
10  
ns  
ns  
ns  
mV  
HYST_OP  
Deep Sleep mode  
operation: V ≥ 2.7 V.  
Mode 2 is lowest current range. Mode 1  
has higher GBW.  
Deep Sleep Mode  
DDA  
V
is 0.2 to V  
- 1.5 V  
IN  
DDA  
SID_DS_1  
SID_DS_2  
SID_DS_3  
SID_DS_4  
SID_DS_5  
SID_DS_6  
SID_DS_7  
SID_DS_8  
SID_DS_9  
IDD_HI_M1  
Mode 1, High current  
1300  
460  
230  
100  
40  
1500  
600  
350  
µA Typ at 25 °C  
µA Typ at 25 °C  
µA Typ at 25 °C  
µA 25 °C  
IDD_MED_M1 Mode 1, Medium current  
IDD_LOW_M1 Mode 1, Low current  
IDD_HI_M2 Mode 2, High current  
IDD_MED_M2 Mode 2, Medium current  
IDD_LOW_M2 Mode 2, Low current  
µA 25 °C  
15  
µA 25 °C  
GBW_HI_M1  
Mode 1, High current  
4
MHz 25 °C  
GBW_MED_M1 Mode 1, Medium current  
GBW_LOW_M1 Mode 1, Low current  
2
MHz 25 °C  
0.5  
MHz 25 °C  
20-pF load, no DC load  
SID_DS_10  
SID_DS_11  
SID_DS_12  
GBW_HI_M2  
Mode 2, High current  
0.5  
0.2  
0.1  
MHz  
MHz  
MHz  
0.2V to V  
-1.5 V  
DDA  
20-pF load, no DC load  
0.2 V to V -1.5 V  
GBW_MED_M2 Mode 2, Medium current  
GBW_LOW_M2 Mode 2, Low current  
DDA  
20-pF load, no DC load  
0.2 V to V  
-1.5 V  
-1.5 V  
-1.5 V  
-1.5 V  
-1.5 V  
-1.5 V  
-1.5 V  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
SID_DS_13  
SID_DS_14  
SID_DS_15  
SID_DS_16  
SID_DS_17  
SID_DS_18  
VOS_HI_M1  
Mode 1, High current  
5
5
5
5
5
5
mV 0.2 V to V  
mV 0.2 V to V  
mV 0.2 V to V  
mV 0.2 V to V  
mV 0.2 V to V  
mV 0.2 V to V  
VOS_MED_M1 Mode 1, Medium current  
VOS_LOW_M1 Mode 1, Low current  
VOS_HI_M2  
Mode 2, High current  
VOS_MED_M2 Mode 2, Medium current  
VOS_LOW_M2 Mode 2, Low current  
Output is 0.5 V to  
-0.5 V  
SID_DS_19  
SID_DS_20  
IOUT_HI_M1  
Mode 1, High current  
10  
10  
mA  
mA  
V
DDA  
Output is 0.5 V to  
-0.5 V  
IOUT_MED_M1 Mode 1, Medium current  
V
DDA  
Document Number: 002-33480 Rev. *E  
Page 45 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 18. Opamp Specifications (continued)  
Spec ID#  
Parameter  
IOUT_LOW_M1 Mode 1, Low current  
IOUT_HI_M2 Mode 2, High current  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
Output is 0.5 V to  
SID_DS_21  
4
mA  
V
-0.5 V  
DDA  
Output is 0.5 V to  
-0.5 V  
SID_DS_22  
SID_DS_23  
SID_DS_24  
1
1
mA  
mA  
mA  
V
DDA  
Output is 0.5 V to  
-0.5 V  
IOU_MED_M2 Mode 2, Medium current  
IOU_LOW_M2 Mode 2, Low current  
V
DDA  
Output is 0.5 V to  
-0.5 V  
0.5  
V
DDA  
Figure 18. Opamp Step Response, Rising  
Figure 19. Opamp Step Response, Falling  
1.4  
1.4  
Input  
Output, Power = Hi  
Output, Power = Med  
1.2  
1
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
Input  
Output, Power = Hi  
Output, Power = Med  
0.4  
0.2  
0
-0.25  
0
0.25  
Time, µs  
0.5  
0.75  
1
-0.25  
0
0.25  
0.5  
0.75  
1
Time. µs  
Low-Power (LP) Comparator  
Table 19. LP Comparator DC Specifications  
Spec ID#  
Parameter  
Description  
Min Typ  
–10  
Max  
Units  
Details/Conditions  
Input offset voltage for COMP.  
Normal power mode.  
SID84  
V
V
V
V
V
V
V
V
10  
mV  
OFFSET1  
Input offset voltage. Low-power  
mode.  
SID85A  
SID85B  
SID86  
–25 ±12  
–25 ±12  
25  
mV  
mV  
mV  
mV  
V
OFFSET2  
OFFSET3  
HYST1  
HYST2  
ICM1  
Input offset voltage. Ultra  
low-power mode.  
25  
Hysteresis when enabled in  
Normal mode  
60  
80  
Hysteresis when enabled in  
Low-power mode  
SID86A  
SID87  
Input common mode voltage in  
Normal mode  
0
VDDIO1 – 0.1  
VDDIO1 – 0.1  
VDDIO1 – 0.1  
InputcommonmodevoltageinLow  
power mode  
SID247  
SID247A  
SID88  
0
V
ICM2  
Input common mode voltage in  
Ultra low power mode  
0
V
ICM3  
Common mode rejection ratio in  
Normal power mode  
CMRR  
50  
dB  
SID89  
I
Block current, Normal mode  
150  
10  
µA  
µA  
CMP1  
SID248  
I
Block current, Low-power mode  
CMP2  
Document Number: 002-33480 Rev. *E  
Page 46 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 19. LP Comparator DC Specifications (continued)  
Spec ID#  
SID259  
Parameter  
Description  
Min Typ  
Max  
0.85  
Units  
µA  
Details/Conditions  
Block current in Ultra low-power  
mode  
I
0.3  
CMP3  
SID90  
ZCMP  
DC input impedance of comparator 35  
MΩ  
Table 20. LP Comparator AC Specifications  
Spec ID#  
Parameter  
Description  
Min Typ  
Max  
Units  
Details/Conditions  
Response time, Normal mode, 100  
mV overdrive  
SID91  
T
T
T
100  
ns  
RESP1  
Response time, Low power mode,  
100 mV overdrive  
SID258  
SID92  
1000  
20  
ns  
µs  
RESP2  
RESP3  
Response time, Ultra-low power  
mode, 100 mV overdrive  
SID92E  
SID92F  
T_CMP_EN1  
T_CMP_EN2  
Time from Enabling to operation  
Time from Enabling to operation  
10  
50  
µs Normal and low-power modes  
µs Ultra-low-power mode  
Temperature Sensor  
Table 21. Temperature Sensor Specifications  
Spec ID  
SID93  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
T
Temperature sensor accuracy  
–5  
±1  
5
°C –40 to +105 °C  
SENSACC  
Internal Reference  
Table 22. Internal Reference Specification  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
SID93R  
V
1.188  
1.2  
1.212  
V
REFBG  
SAR ADC  
Table 23. SAR ADC DC Specifications  
Spec ID# Parameter Description  
SAR ADC resolution  
Min Typ Max Units  
Details / Conditions  
SID94  
SID95  
SID96  
SID97  
SID98  
SID99  
A_RES  
12  
16  
8
bits  
A_CHNLS_S Number of channels - single-ended  
A-CHNKS_D Number of channels - differential  
8 full speed.  
Diff inputs use neighboring I/O  
Yes  
A-MONO  
A_GAINERR Gain error  
A_OFFSET Input offset voltage  
Monotonicity  
-
±0.2  
2
%
With external reference.  
mV Measured with 1-V reference  
At 1 Msps. External reference  
mode  
SID100 A_ISAR_1  
SID100A A_ISAR_2  
SID1002 A_ISAR_3  
Current consumption at 1 Msps  
Current consumption at 1 Msps  
Current consumption at 2 Msps  
1.05 mA  
1.3  
mA At 1 Msps. Internal reference mode  
At 2 Msps. External reference  
mode  
2.15 mA At 2 Msps. Internal reference mode  
1.65 mA  
SID1003 A_ISAR_4  
SID101 A_VINS  
SID102 A_VIND  
SID103 A_INRES  
SID104 A_INCAP  
Current consumption at 2 Msps  
Input voltage range - single-ended  
Input voltage range - differential  
Input resistance  
VSS  
VSS  
1
5
VDDA  
VDDA  
V
V
kΩ  
pF  
Input capacitance  
Document Number: 002-33480 Rev. *E  
Page 47 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 23. SAR ADC DC Specifications (continued)  
SAR in Deep Sleep Mode VDDA = 2.7 V. 2-MHz LPOSC and duty-cycled.  
Chip current consumption for 12 bits,  
100 ksps Deep Sleep Mode  
SIDP121 IDD_CHIP_1  
SIDP122 IDD_CHIP_2  
320  
16  
µA  
µA  
Chip current consumption for 12 bits,  
500 sps, duty cycle in Deep Sleep Mode  
Chip Current Consumption for 10Bits  
SIDP123 IDD_CHIP_3 (10% power mode), 16 ksps Deep Sleep  
Mode  
150  
µA  
Integral non-linearity for 10 bits (10%  
SIDP124 INL_10bits  
–2  
–1  
–2  
2
1
2
LSB  
LSB  
LSB  
power mode) mode (VDDA ≥ 2.7 V)  
Differential non-linearity for 10Bits (10%  
SIDP125 DNL_10bits  
power mode) mode (VDDA ≥ 2.7 V)  
Offset for 10 bits (10% power mode)  
SIDP126 Vos_10bits  
mode (VDDA ≥ 2.7 V)  
Gain Error for 10 bits (10% power mode)  
SIDP127 GE_10bits  
mode (VDDA ≥ 2.7 V, VREF = 1.2 V  
bypassed with external cap)  
–1  
1
LSB  
Table 24. SAR ADC AC Specifications  
Spec ID# Parameter  
Description  
Min Typ Max Units  
Details / Conditions  
SID106  
SID107  
A_PSRR  
A_CMRR  
Power supply rejection ratio  
Common mode rejection ratio  
70  
66  
1
dB  
dB Measured at 1 V  
SID107A EXT_REF_1 External reference range  
VDDA  
VDDA  
V
V
1 Msps sample rate and below  
SDI107B Ext_REF_2  
External reference range  
Sample rate with external reference  
With bypass cap  
2
>1 and up to 2 Msps sample rates  
SID1081 A_SAMP_1  
2
1
2
1
1
Msps VDDA 2.7–3.6 V  
Msps VDDA 1.7–3.6 V  
Msps VDDA 2.7–3.6 V  
Msps VDDA 1.7–3.6 V  
Msps  
Sample rate with external reference  
With bypass cap  
SID1082 A_SAMP_1  
SID108A1 A_SAMP_2  
SID108A2 A_SAMP_2  
SID108B A_SAMP_3  
SID108C A_SAMP_4  
Sample rate with VDD Reference;  
No bypass cap  
Sample rate with VDD Reference;  
No bypass cap  
Sample rate with Internal reference;  
With bypass cap  
Sample rate with internal reference.  
No bypass cap  
200 ksps  
Signal-to-noise and distortion ratio  
(SINAD).  
SID109  
A_SINAD  
64  
– 2  
2
dB Fin = 10 kHz  
Integral non-linearity.  
Up to 1 Msps  
SID111A A_INL  
SID111B A_INL  
SID112A A_DNL  
LSB All reference mode  
External reference or VDDA  
LSB Reference Mode, VREF ≥ 2 V.  
VDDA = 2.7–3.6 V  
Integral non-linearity.  
2 Msps.  
–2.5  
– 1  
2.5  
1.5  
Differential non-linearity.  
Up to 1 Msps  
LSB All Reference Mode  
Document Number: 002-33480 Rev. *E  
Page 48 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 24. SAR ADC AC Specifications (continued)  
Spec ID# Parameter  
Description  
Min Typ Max Units  
Details / Conditions  
External Reference or VDDA  
Reference Mode, VREF ≥ 2 V.  
LSB  
Differential non-linearity.  
2 Msps.  
SID112B A_DNL  
–1  
1.6  
VDDA = 2.7–3.6 V  
SID113  
A_THD  
Total harmonic distortion. 1 Msps.  
–65  
dB Fin = 10 kHz. VDDA = 2.7–3.6 V.  
Both SARs with simultaneous sampling. Fclk = 18 MHz, Data Rate = 1 Msps; VDDA ≥ 2.7 V; Internal Ref. with Bypass Cap.  
Simultaneous sampling spec assume the same clock source is used for both SAR ADCs.  
SIDP131 INL  
SIDP132 DNL  
SIDP133 Vos  
Integral Non Linearity (VDDA ≥ 2.7 V)  
–2  
2
1
2
LSB  
LSB  
LSB  
Differential Non Linearity (VDDA ≥ 2.7V) –1  
Offset (VDDA ≥ 2.7V)  
–2  
-1  
Gain Error (VDDA ≥ 2.7V, VREF = 1.2V  
bypassed with external Cap)  
SIDP134 GE  
1
LSB  
Both SARs internal op amp buffered with simultaneous sampling VDDA reference. Fclk = 18 MHz, Data Rate = 1 Msps;  
VDDA ≥ 2.7 V; VREF ≥ 2 V. Simultaneous sampling spec assume the same clock source is used for both SAR ADCs.  
SIDP141 INL  
SIDP142 DNL  
SIDP143 Vos  
Integral Non Linearity (VDDA ≥ 2.7 V)  
–3  
3
2
3
LSB  
LSB  
LSB  
Differential Non Linearity (VDDA ≥ 2.7 V) –1  
Offset (VDDA ≥ 2.7 V)  
–3  
–1  
Gain Error (VDDA ≥ 2.7V, VREF = 1.2 V  
bypassed with external Cap)  
SIDP144 GE  
1
LSB  
Document Number: 002-33480 Rev. *E  
Page 49 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
DAC  
Table 25. 12-bit DAC DC Specifications  
Spec ID#  
SID108D  
Parameter  
DAC_RES  
Description  
DAC resolution  
Min  
Typ  
Max  
12  
4
Units  
bits  
LSB  
LSB  
mV  
kΩ  
Details / Conditions  
SID111D  
SID112D  
SID99D  
DAC_INL  
Integral Non-Linearity  
–4  
–2  
–10  
DAC_DNL  
Differential Non Linearity  
Output Voltage zero offset error  
2
Monotonic to 11 bits.  
For 000 (hex)  
DAC_OFFSET  
10  
SID103D  
SID100D  
SID101D  
DAC_OUT_RES DAC Output Resistance  
15  
DAC_IDD  
DAC Current  
125  
1
µA  
DAC_QIDD  
DAC Current when DAC stopped  
µA  
Table 26. 12-bit DAC AC Specifications  
Spec ID#  
SID109D  
Parameter  
Description  
DAC Settling time  
Min  
Typ  
Max  
Units  
Details / Conditions  
Driving through CTBM buffer;  
25 pF load  
DAC_CONV  
2
µs  
Time from Enabling to ready for  
conversion  
SID110D  
DAC_Wakeup  
10  
µs  
CSD  
Table 27. CSD V2 Specifications  
Spec ID# Parameter  
CSD V2 Specifications  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
V
> 2 V (with ripple),  
DDA  
Maxallowedrippleonpowersupply,  
DC to 10 MHz  
25 °C T ,  
SYS.PER#3  
V
±50  
±25  
mV  
mV  
A
DD_RIPPLE  
Sensitivity = 0.1 pF  
V
> 1.75 V (with ripple),  
DDA  
25 ° C T ,  
Maxallowedrippleonpowersupply,  
DC to 10 MHz  
A
SYS.PER#16  
V
I
DD_RIPPLE_1.8  
Parasitic Capacitance (C )  
P
< 20 pF, Sensitivity ≥ 0.4 pF  
SID.CSD.BLK  
SID.CSD#15  
Maximum block current  
4500  
µA  
V
CSD  
Voltage reference for CSD and  
Comparator  
V
0.6  
1.2  
VDDA – 0.6  
V
V
– VREF 0.6 V  
REF  
DDA  
DDA  
External Voltage reference for CSD  
and Comparator  
SID.CSD#15A  
V
I
0.6  
VDDA – 0.6  
V
– V  
≥ 0.6 V  
REF_EXT  
REF  
SID.CSD#16  
SID.CSD#17  
SID308  
IDAC1 (7-bits) block current  
IDAC2 (7-bits) block current  
Voltage range of operation  
Voltage compliance range of IDAC  
DNL  
1900  
1900  
3.6  
µA  
µA  
V
DAC1IDD  
DAC2IDD  
I
V
V
I
1.7  
0.6  
–1  
1.71 to 3.6 V  
CSD  
SID308A  
VDDA –0.6  
1
V
V
– V  
DDA REF  
≥ 0.6 V  
COMPIDAC  
SID309  
LSB  
DAC1DNL  
DAC1INL  
DAC2DNL  
DAC2INL  
If V  
< 2 V then for LSB  
DDA  
SID310  
SID311  
SID312  
I
I
I
INL  
DNL  
INL  
–3  
–1  
–3  
3
1
3
LSB  
LSB  
LSB  
of 2.4 µA or less  
If V  
< 2 V then for LSB  
DDA  
of 2.4 µA or less  
SNRC of the following is Ratio of counts of finger to noise. Guaranteed by characterization.  
SRSS Reference. IMO + FLL Clock  
Source. 0.1-pF sensitivity.  
SID313_1A  
SNRC_1  
5
Ratio 9.5-pF max. capacitance  
Page 50 of 73  
Document Number: 002-33480 Rev. *E  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 27. CSD V2 Specifications (continued)  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
SRSS Reference. IMO + FLL Clock  
Source. 0.3-pF sensitivity.  
SID313_1B  
SNRC_2  
5
Ratio 31-pF max. capacitance  
Ratio 61-pF max. capacitance  
Ratio 12-pF max. capacitance  
Ratio 47-pF max. capacitance  
Ratio 86-pF max. capacitance  
Ratio 25-pF max. capacitance  
Ratio 86-pF max. capacitance  
Ratio 168-pF Max. capacitance  
SRSS Reference. IMO + FLL Clock  
Source. 0.6-pF sensitivity.  
SID313_1C  
SID313_2A  
SID313_2B  
SID313_2C  
SID313_3A  
SID313_3B  
SID313_3C  
SID314  
SNRC_3  
SNRC_4  
SNRC_5  
SNRC_6  
SNRC_7  
SNRC_8  
SNRC_9  
5
5
PASS Reference. IMO + FLL Clock  
Source. 0.1-pF sensitivity.  
PASS Reference. IMO + FLL Clock  
Source. 0.3-pF sensitivity.  
5
PASS Reference. IMO + FLL Clock  
Source. 0.6-pF sensitivity.  
5
PASS Reference. IMO + PLL Clock  
Source. 0.1-pF sensitivity.  
5
PASS Reference. IMO + PLL Clock  
Source. 0.3-pF sensitivity.  
5
PASS Reference. IMO + PLL Clock  
Source. 0.6-pF sensitivity.  
5
Output current of IDAC1 (7 bits) in  
low range  
IDAC  
4.2  
33.7  
270  
8
5.7  
45.6  
365  
11.4  
91  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
LSB  
LSB = 37.5-nA typ.  
LSB = 300-nA typ.  
LSB = 2.4-µA typ.  
1CRT1  
Output current of IDAC1 (7 bits) in  
medium range  
SID314A  
SID314B  
SID314C  
SID314D  
SID314E  
SID315  
IDAC  
1CRT2  
Output current of IDAC1 (7 bits) in  
high range  
IDAC  
1CRT3  
Output current of IDAC1 (7 bits) in  
low range, 2X mode  
LSB = 37.5-nA typ. 2X  
output stage  
IDAC  
1CRT12  
Output current of IDAC1 (7 bits) in  
medium range, 2X mode  
LSB = 300-nA typ. 2X  
output stage  
IDAC  
67  
540  
4.2  
33.7  
270  
8
1CRT22  
Output current of IDAC1 (7 bits) in  
LSB = 2.4-µAtyp. 2X output  
stage  
IDAC  
730  
5.7  
45.6  
365  
11.4  
91  
1CRT32  
high range, 2X mode. V  
> 2 V  
DDA  
Output current of IDAC2 (7 bits) in  
low range  
IDAC  
LSB = 37.5-nA typ.  
LSB = 300-nA typ.  
LSB = 2.4-µA typ.  
2CRT1  
Output current of IDAC2 (7 bits) in  
medium range  
SID315A  
SID315B  
SID315C  
SID315D  
SID315E  
SID315F  
SID315G  
SID315H  
SID320  
IDAC  
2CRT2  
Output current of IDAC2 (7 bits) in  
high range  
IDAC  
2CRT3  
Output current of IDAC2 (7 bits) in  
low range, 2X mode  
LSB = 37.5-nA typ. 2X  
output stage  
IDAC  
2CRT12  
Output current of IDAC2 (7 bits) in  
medium range, 2X mode  
LSB = 300-nA typ. 2X  
output stage  
IDAC  
67  
540  
8
2CRT22  
Output current of IDAC2 (7 bits) in  
LSB = 2.4-µAtyp. 2X output  
stage  
IDAC  
730  
11.4  
91  
2CRT32  
high range, 2X mode. V  
> 2V  
DDA  
Output current of IDAC in 8-bit  
mode in low range  
IDAC  
LSB = 37.5-nA typ.  
LSB = 300-nA typ.  
LSB = 2.4-µA typ.  
3CRT13  
Output current of IDAC in 8-bit  
mode in medium range  
IDAC  
67  
540  
3CRT23  
Output current of IDAC in 8-bit  
IDAC  
730  
1
3CRT33  
mode in high range. V  
> 2V  
DDA  
Polarity set by Source or  
Sink  
IDAC  
All zeroes input  
OFFSET  
Document Number: 002-33480 Rev. *E  
Page 51 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 27. CSD V2 Specifications (continued)  
Spec ID#  
SID321  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
IDAC  
Full-scale error less offset  
±15  
%
LSB = 2.4-µA typ.  
GAIN  
IDAC  
Mismatch between IDAC1 and  
IDAC2 in Low mode  
MIS-  
SID322  
9.2  
6
LSB LSB = 37.5-nA typ.  
LSB LSB = 300-nA typ.  
LSB LSB = 2.4-µA typ.  
MATCH1  
IDAC  
Mismatch between IDAC1 and  
IDAC2 in Medium mode  
MIS-  
MATCH2  
SID322A  
SID322B  
SID323  
IDAC  
Mismatch between IDAC1 and  
IDAC2 in High mode  
MIS-  
5.8  
10  
MATCH3  
Settling time to 0.5 LSB for 8-bit  
IDAC  
Full-scale transition. No  
IDAC  
µs  
SET8  
external load.  
Settling time to 0.5 LSB for 7-bit  
IDAC  
Full-scale transition. No  
external load.  
SID324  
SID325  
IDAC  
10  
µs  
SET7  
CMOD  
External modulator capacitor.  
2.2  
nF  
5-V rating, X7R or NP0 cap.  
Table 28. CSDv2 ADC Specifications  
Spec ID# Parameter  
CSDv2 ADC Specifications  
Description  
Min Typ Max Units  
Details / Conditions  
Auto-zeroing is required every milli-  
second  
10  
bits  
SIDA94  
A_RES  
Resolution  
SID95  
A_CHNLS_S  
A-MONO  
Number of channels - single ended  
Monotonicity  
Yes  
16  
SIDA97  
V
mode  
REF  
Reference Source: SRSS  
0.6  
%
(V  
(V  
= 1.20 V, V  
= 1.6 V, 2.2 V < V  
< 2.2 V),  
DDA  
REF  
SIDA98  
A_GAINERR_VREF Gain error  
< 2.7  
REF  
DDA  
V), (V  
= 2.13 V, V  
> 2.7 V)  
REF  
DDA  
Reference Source: SRSS  
0.2  
0.5  
%
(V  
(V  
= 1.20 V, V  
= 1.6 V,  
< 2.2V),  
DDA  
REF  
SIDA98A A_GAINERR_VDDA Gain error  
REF  
2.2 V < V  
< 2.7 V),  
DDA  
(V  
= 2.13 V, V  
> 2.7 V)  
REF  
DDA  
After ADC calibration, Ref. Src =  
LSB  
SRSS, (V  
2.2 V),  
= 1.20 V, V  
<
REF  
DDA  
SIDA99  
A_OFFSET_VREF  
Input offset voltage  
Input offset voltage  
(V  
= 1.6 V, 2.2 V < V  
<
DDA  
REF  
2.7 V),  
(V = 2.13 V, V  
> 2.7 V)  
DDA  
REF  
After ADC calibration, Ref. Src =  
SRSS, (V  
2.2 V),  
0.5  
LSB  
= 1.20 V, V  
<
REF  
DDA  
SIDA99A A_OFFSET_VDDA  
(V  
= 1.6 V, 2.2 V < V  
<
DDA  
REF  
2.7 V),  
(V = 2.13 V, V  
> 2.7 V)  
DDA  
REF  
SIDA100 A_ISAR_VREF  
SIDA100A A_ISAR_VDDA  
Current consumption  
Current consumption  
0.3  
0.3  
mA CSD ADC Block current  
mA CSD ADC Block current  
(V  
(V  
= 1.20 V, V  
< 2.2 V),  
DDA  
VSSA  
VREF  
V
REF  
= 1.6 V, 2.2 V < V  
<
REF  
DDA  
SIDA101 A_VINS_VREF  
Input voltage range - single ended  
2.7 V),  
(V = 2.13 V, V  
> 2.7 V)  
DDA  
REF  
Document Number: 002-33480 Rev. *E  
Page 52 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 28. CSDv2 ADC Specifications (continued)  
Spec ID#  
Parameter  
Description  
Min Typ Max Units  
Details / Conditions  
= 1.20 V, V < 2.2 V),  
(V  
(V  
VSSA  
VDDA  
V
REF  
DDA  
= 1.6 V, 2.2 V < V  
<
DDA  
RE F  
SIDA101A A_VINS_VDDA  
Input voltage range - single ended  
2.7 V),  
(V  
= 2.13 V, V  
> 2.7 V)  
DDA  
REF  
SIDA103 A_INRES  
SIDA104 A_INCAP  
SIDA106 A_PSRR  
Input charging resistance  
Input capacitance  
15  
41  
60  
10  
kΩ  
pF  
dB  
µs  
Power supply rejection ratio (DC)  
Measured with 50-Ω source  
impedance. 10 µs is default  
software driver acquisition time  
setting. Settling to within 0.05%.  
SIDA107 A_TACQ  
Sample acquisition time  
Conversion time for 8-bit resolution at  
conversion rate = Fhclk / (2"(N + 2)).  
Clock frequency = 50 MHz.  
25  
60  
µs  
µs  
SIDA108 A_CONV8  
SIDA108A A_CONV10  
Does not include acquisition time.  
Does not include acquisition time.  
Conversion time for 10-bit resolution at  
conversion rate = Fhclk / (2"(N + 2)).  
Clock frequency = 50 MHz.  
Signal-to-noise and Distortion ratio  
(SINAD)  
Measured with 50-Ω source  
impedance  
57  
52  
2
2
1
1
dB  
SIDA109 A_SND_VRE  
SIDA109A A_SND_VDDA  
Signal-to-noise and Distortion ratio  
(SINAD)  
Measured with 50-Ω source  
impedance  
dB  
Measured with 50-Ω source  
impedance  
LSB  
LSB  
LSB  
LSB  
SIDA111  
SIDA111A A_INL_VDDA  
SIDA112 A_DNL_VREF  
SIDA112A A_DNL_VDDA  
A_INL_VREF  
Integral non-linearity. 11.6 ksps  
Integral non-linearity. 11.6 ksps  
Differential non-linearity. 11.6 ksps  
Differential non-linearity. 11.6 ksps  
Measured with 50-Ω source  
impedance  
Measured with 50-Ω source  
impedance  
Measured with 50-Ω source  
impedance  
Document Number: 002-33480 Rev. *E  
Page 53 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Digital Peripherals  
Timer/Counter/PWM (TCPWM)  
Table 29. TCPWM Specifications  
Spec ID#  
SID.TCPWM.1  
SID.TCPWM.2  
SID.TCPWM.2A  
Parameter  
Description  
Min Typ Max Units  
Details/Conditions  
µA All modes (TCPWM)  
µA All modes (TCPWM)  
µA All modes (TCPWM)  
I
I
I
Block current consumption at 8 MHz  
Block current consumption at 24 MHz  
Block current consumption at 50 MHz  
70  
TCPWM1  
TCPWM2  
TCPWM3  
180  
270  
SID.TCPWM.2B  
SID.TCPWM.3  
I
Block current consumption at 100 MHz  
Operating frequency  
540  
µA All modes (TCPWM)  
TCPWM4  
TCPWM  
100 MHz Maximum = 100 MHz  
FREQ  
Trigger Events can be Stop,  
Start, Reload, Count, Capture,  
or Kill depending on which  
mode of operation is selected.  
FC is counter operating  
frequency.  
Input trigger pulse width for all trigger  
events  
SID.TCPWM.4  
SID.TCPWM.5  
TPWM  
2/Fc  
ns  
ENEXT  
Minimum possible width of  
Overflow, Underflow, and CC  
ns (Counter equals Compare  
value) trigger outputs. FC is  
counter operating frequency.  
TPWM  
Output trigger pulse widths  
1.5/Fc  
EXT  
Minimum time between  
ns successive counts. FC is  
counter operating frequency.  
SID.TCPWM.5A TC  
Resolution of counter  
PWM resolution  
1/Fc  
1/Fc  
RES  
Minimum pulse width of PWM  
ns output. FCiscounteroperating  
frequency.  
SID.TCPWM.5B PWM  
RES  
Minimum pulse width between  
Quadrature phase inputs.  
ns Delays from pins should be  
similar. FC is counter  
SID.TCPWM.5C  
Q
Quadrature inputs resolution  
2/Fc  
RES  
operating frequency.  
Document Number: 002-33480 Rev. *E  
Page 54 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Serial Communication Block (SCB)  
Table 30. Serial Communication Block (SCB) Specifications  
Spec ID#  
Parameter  
Description  
Min Typ  
Max  
Units  
Details / Conditions  
2
Fixed I C DC Specifications  
SID149  
SID150  
SID151  
SID152  
I
I
I
I
Block current consumption at 100 kHz  
Block current consumption at 400 kHz  
Block current consumption at 1 Mbps  
30  
80  
µA  
µA  
µA  
I2C1  
I2C2  
I2C3  
I2C4  
180  
1.7  
2
I C enabled in Deep Sleep mode  
µA At 60 °C.  
2
Fixed I C AC Specifications  
SID153  
Fixed UART DC Specifications  
F
Bit Rate  
1
Mbps –  
I2C1  
Block current consumption at  
100 kbps  
30  
µA  
SID160  
SID161  
I
UART1  
UART2  
Block current consumption at  
1000 kbps  
180  
µA  
I
Fixed UART AC Specifications  
SID162A  
SID162B  
F
F
3
8
Mbps ULP Mode  
LP Mode  
UART1  
UART2  
Bit Rate  
Fixed SPI DC Specifications  
SID163  
SID164  
SID165  
SID165A  
I
I
I
I
Block current consumption at 1 Mbps  
Block current consumption at 4 Mbps  
Block current consumption at 8 Mbps  
Block current consumption at 25 Mbps  
220  
340  
360  
800  
µA  
µA  
µA  
µA  
SPI1  
SPI2  
SPI3  
SP14  
Fixed SPI AC Specifications for LP Mode (1.1 V) unless noted otherwise.  
SPI Operating frequency externally  
clocked slave  
6.25-MHz max for ULP  
(0.9 V) mode  
25  
MHz  
MHz  
SID166  
F
F
F
SPI  
F
max is 100 MHz in LP  
Fscb/4  
scb  
SPI operating frequency master (F  
is SPI clock).  
scb  
SID166B  
(1.1 V) mode, 25 MHz in ULP  
mode.  
SPI_EXT  
5 MHz max for ULP (0.9 V)  
mode  
15  
MHz  
SID166A  
SPI slave internally clocked  
SPI_IC  
Fixed SPI Master mode AC Specifications for LP Mode (1.1 V) unless noted otherwise.  
20 ns max for ULP (0.9 V)  
mode  
12  
ns  
ns  
ns  
ns  
ns  
SID167  
SID168  
SID169  
SID169A  
SID169B  
T
T
T
T
T
MOSI valid after SClock driving edge  
DMO  
MISO valid before SClock capturing  
edge  
Full clock, late MISO  
sampling  
5
DSI  
Referred to Slave capturing  
edge  
0
MOSI data hold time  
HMO  
Referred to Master clock  
edge  
18  
18  
Valid to first SCK Valid edge  
Hold after last SCK Valid edge  
SSELMSCK1SSEL  
SSELMCK2SSEL  
Referred to Master clock  
edge  
Fixed SPI Slave mode AC Specifications for LP Mode (1.1 V) unless noted otherwise.  
MOSI valid before Sclock capturing  
edge  
5
ns  
SID170  
T
DMI  
Document Number: 002-33480 Rev. *E  
Page 55 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 30. Serial Communication Block (SCB) Specifications (continued)  
Spec ID#  
SID171A  
Parameter  
Description  
Min Typ  
Max  
Units  
Details / Conditions  
MISO valid after Sclock driving edge  
in Ext. Clk. mode  
35 ns max. for ULP (0.9 V)  
mode  
20  
ns  
T
T
DSO_EXT  
MISO valid after Sclock driving edge  
in Internally Clk. mode  
Tscb is Serial Comm. Block  
clock period.  
TDSO_EXT ns  
+ 3 * Tscb  
SID171  
DSO  
MISO Valid after Sclock driving edge  
in Internally Clk. Mode with median  
filter enabled.  
TDSO_EXT ns  
+ 4 * Tscb  
Tscb is Serial Comm. Block  
clock period.  
SID171B  
T
T
DSO  
SID172  
Previous MISO data hold time  
5
ns  
ns  
ns  
HSO  
SID172A  
SID172B  
TSSEL  
TSSEL  
SSEL Valid to first SCK valid edge  
65  
SCK1  
SCK2  
SSEL Hold after Last SCK valid edge 65  
LCD Specifications  
Table 31. LCD Direct Drive DC Specifications  
Spec ID# Parameter  
Description  
Min  
Typ Max Units  
Details / Conditions  
32X4 small display. 30 Hz.  
µA PWM mode. Slow slew rate.  
Operating current with 100 kHz LCD block  
clock in ULP mode in Deep Sleep  
SID154  
I
I
90  
50  
LCDLOW1  
460 kseries resistors  
Operating current with 32 kHz LCD block  
clock in ULP mode in Deep Sleep  
SID154A  
µA  
LCDLOW2  
LCD capacitance per segment/common  
driver  
SID155  
SID156  
SID157  
C
500 5000 pF  
LCDCAP  
LCD  
I
Long-term segment offset  
20  
mV  
mA  
OFFSET  
PWM Mode current.  
32 × 4 segments  
50 Hz  
0.6  
LCDOP1  
LCDOP2  
3.3 V bias. 8 MHz IMO. 25°C.  
PWM Mode current.  
32 × 4 segments  
50 Hz  
SID158  
I
0.5  
mA  
3.3 V bias. 8 MHz IMO. 25°C.  
Table 32. LCD Direct Drive AC Specifications  
Spec ID Parameter Description  
SID159 LCD frame rate  
Min  
Typ Max Units  
50 150 Hz  
Details/Conditions  
F
10  
LCD  
Document Number: 002-33480 Rev. *E  
Page 56 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Memory  
Table 33. Flash DC Specifications[3]  
Spec ID  
SID173  
SID173A  
Parameter  
VPE  
IPE  
Description  
Erase and program voltage  
Erase and program current  
Min Typ Max  
Units  
V
Details/Conditions  
Details/Conditions  
1.71  
3.6  
6
mA  
Table 34. Flash AC Specifications[3]  
Spec ID  
SID174  
Parameter  
Description  
Row write time (erase and program)  
Row erase time  
Min Typ Max  
Units  
ms  
T
T
T
T
T
T
16  
11  
5
Row = 512 bytes  
ROWWRITE  
ROWERASE  
ROWPROGRAM  
BULKERASE  
SECTORERASE  
SSERIAE  
SID175  
SID176  
SID178  
SID179  
SID178S  
ms  
Row program time after erase  
Bulk erase time (256 KB)  
Sector erase time (128 KB)  
Subsector erase time  
ms  
11  
11  
11  
ms  
ms  
256 rows per sector  
8 rows per subsector  
ms  
Subsector write time; 1 erase plus 8  
program times  
SID179S  
SID180S  
T
T
51  
ms  
[4]  
SSWRITE  
SWRITE  
Sector write time; 1 erase plus 256 program  
times  
1.3 seconds –  
2.6 seconds –  
SID180  
SID181  
T
F
Total device write time  
Flash endurance  
DEVPROG  
END  
100K  
cycles  
Flash retention. T 25 °C, 100K P/E  
cycles  
A
SID182  
F
10  
years  
RET1  
SID182A  
SID182B  
SID256  
F
F
T
T
Flash retention. T 85 °C, 10K P/E cycles 10  
years  
years  
RET2  
RET3  
WS100  
WS50  
A
Flash retention. T 55 °C, 20K P/E cycles 20  
A
Number of Wait states at 100 MHz  
Number of Wait states at 50 MHz  
3
2
LP mode (1.1 V)  
ULP mode (0.9 V)  
SID257  
Notes  
3. It can take as much as 16 milliseconds to write to flash. During this time, the device should not be reset, or flash operations will be interrupted and cannot be relied  
on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs.  
Make certain that these are not inadvertently activated.  
4. Subsector, sector, and device write times do not include data transfer overhead.  
Document Number: 002-33480 Rev. *E  
Page 57 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
System Resources  
Power-on Reset  
Table 35. Power-On-Reset (POR) with Brown-out Detect (BOD) DC Specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Units  
Details/Conditions  
BOD trip voltage in system LP and ULP  
modes.  
SID190  
V
V
1.54  
1.54  
V
V
FALLPPOR  
ResetguaranteedforV  
below 1.54 V  
levels  
DDD  
BOD trip voltage in system Deep Sleep  
mode.  
SID192  
FALLDPSLP  
Table 36. POR with BOD AC Specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Units  
Details/Conditions  
100 mV/µs System LP mode  
10 mV/µs BOD operation guaranteed  
Maximum power supply ramp rate (any  
supply)  
SID192A  
V
V
DDRAMP  
Maximum power supply ramp rate (any  
supply) in system Deep Sleep mode  
SID194A  
DDRAMP_DS  
Voltage Monitors  
Table 37. Voltage Monitors DC Specifications  
Parameter Description  
Spec ID  
SID195R  
SID195  
SID196  
SID197  
SID198  
SID199  
SID200  
SID201  
SID202  
SID203  
SID204  
SID205  
SID206  
SID207  
SID208  
SID209  
SID211  
Min Typ Max Units  
Details/Conditions  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
1.18 1.23 1.27  
1.38 1.43 1.47  
1.57 1.63 1.68  
1.76 1.83 1.89  
1.95 2.03 2.1  
2.05 2.13 2.2  
2.15 2.23 2.3  
2.24 2.33 2.41  
2.34 2.43 2.51  
2.44 2.53 2.61  
2.53 2.63 2.72  
2.63 2.73 2.82  
2.73 2.83 2.92  
2.82 2.93 3.03  
2.92 3.03 3.13  
3.02 3.13 3.23  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
µA  
HVD0  
HVDI1  
HVDI2  
HVDI3  
HVDI4  
HVDI5  
HVDI6  
HVDI7  
HVDI8  
HVDI9  
HVDI10  
HVDI11  
HVDI12  
HVDI13  
HVDI14  
HVDI15  
LVI_IDD  
Block current  
5
15  
Table 38. Voltage Monitors AC Specification  
Spec ID  
Parameter  
Description  
Min Typ Max Units  
170 ns  
Details/Conditions  
SID212  
T
Voltage monitor trip time  
MONTRIP  
Document Number: 002-33480 Rev. *E  
Page 58 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
SWD Interface  
Table 39. SWD and Trace Specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units Details / Conditions  
SWD and Trace Interface  
LP Mode.  
MHz  
SID214  
F_SWDCLK2  
F_SWDCLK2L  
1.7 V V  
1.7 VV  
3.6 V  
25  
12  
DDD  
V
= 1.1 V.  
CCD  
ULP Mode.  
SID214L  
3.6 V  
MHz  
DDD  
V
= 0.9 V.  
CCD  
SID215  
SID216  
SID217  
SID217A  
T_SWDI_SETUP T = 1/f SWDCLK  
T_SWDI_HOLD T = 1/f SWDCLK  
T_SWDO_VALID T = 1/f SWDCLK  
T_SWDO_HOLD T = 1/f SWDCLK  
0.25 * T  
ns  
ns  
ns  
ns  
0.25 * T  
0.5 * T  
1
With Trace Data setup/hold times of  
2/1 ns respectively  
SID214T  
SID215T  
SID216T  
F_TRCLK_LP1  
F_TRCLK_LP2  
F_TRCLK_ULP  
50  
50  
20  
MHz LP Mode. V = 1.1 V.  
DD  
With Trace Data setup/hold times of  
3/2 ns respectively  
MHz LP Mode. V = 1.1 V.  
DD  
With Trace Data setup/hold times of  
3/2 ns respectively  
MHz ULP Mode. V = 0.9 V.  
DD  
Internal Main Oscillator  
Table 40. IMO DC Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
SID218  
I
IMO operating current at 8 MHz  
9
15  
µA  
IMO1  
Table 41. IMO AC Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
–40 to + 85 °C  
±1  
%
Frequency variation centered on  
8 MHz  
–40 to + 105 °C  
SID223  
F
T
IMOTOL1  
±1.5  
%
For extended industrial  
temp MPNs  
SID227  
Cycle-to-Cycle and Period jitter  
250  
ps  
JITR  
Internal Low-Speed Oscillator  
Table 42. ILO DC Specification  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
SID231  
I
ILO operating current at 32 kHz  
0.3  
0.7  
µA  
ILO2  
Table 43. ILO AC Specifications  
Spec ID  
Parameter  
Description  
ILO startup time  
Min  
Typ  
Max  
Units  
Details/Conditions  
Startup time to 95% of  
final frequency  
SID234  
T
7
µs  
STARTILO1  
SID236  
SID237  
TLIODUTY  
ILO Duty cycle  
ILO frequency  
45  
50  
32  
55  
%
F
28.8  
35.2  
kHz  
Factory trimmed  
ILOTRIM1  
Document Number: 002-33480 Rev. *E  
Page 59 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
FLL Specifications  
Table 44. Frequency Locked Loop (FLL) Specifications  
Spec ID#  
Parameter  
Description  
Input frequency range.  
Output frequency range.  
Min  
Typ  
Max  
Units  
Details / Conditions  
Lower limit allows lock to  
USB SOF signal (1 kHz).  
Upper limit is for External  
input.  
0.001  
100  
MHz  
SID450  
FLL_RANGE  
Output range of FLL  
divided-by-2 output  
24.00  
24.00  
100.00  
50.00  
MHz  
MHz  
SID451  
FLL_OUT_DIV2  
V
= 1.1 V  
CCD  
Output frequency range.  
= 0.9 V  
Output range of FLL  
divided-by-2 output  
SID451A  
SID452  
FLL_OUT_DIV2  
FLL_DUTY_DIV2  
V
CCD  
Divided-by-2 output; High or Low  
47.00  
53.00  
7.50  
%
With IMO input, less than  
10 °C change in  
temperature while in Deep  
Sleep, and Fout ≥ 50 MHz.  
µs  
Time from stable input clock to 1% of  
final value on Deep Sleep wakeup  
SID454  
FLL_WAKEUP  
50 ps at 48 MHz, 35 ps at  
100 MHz  
35.00  
5.50  
ps  
SID455  
SID456  
FLL_JITTER  
Period jitter (1 sigma) at 100 MHz  
CCO + Logic current  
FLL_CURRENT  
µA/MHz –  
Crystal Oscillator Specifications  
Table 45. ECO Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
MHz ECO DC Specifications  
Max at 35 MHz.  
Typ at 16 MHz.  
Block operating current with Cload up to  
18 pF  
SID316  
MHz ECO AC Specifications  
SID317 F_MHz  
I
800  
1600  
35  
µA  
DD_MHz  
Some restrictions apply.  
Refer to the device TRM  
Crystal frequency range  
16  
MHz  
kHz ECO DC Specifications  
SID318  
I
Block operating current with 32-kHz crystal  
Equivalent series resistance  
Drive level  
0.38  
80  
1
1
µA  
kΩ  
DD_kHz  
SID321E ESR32K  
SID322E PD32K  
µW  
kHz ECO AC Specifications  
SID319  
SID320  
F_kHz  
32-kHz frequency  
Startup time  
32.77  
kHz  
ms  
Ton_kHz  
1000  
May be calibrated to  
sub-10 ppm levels  
SID320E  
F
Frequency tolerance  
50  
250  
ppm  
TOL32K  
External Clock Specifications  
Table 46. External Clock Specifications  
Spec ID  
SID305  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
Min 200 kHz for 32 kHz  
clock operation  
0
100  
MHz  
EXTCLK  
External clock input frequency  
FREQ  
DUTY  
SID306  
EXTCLK  
Duty cycle; measured at V /2  
45  
55  
%
DD  
Document Number: 002-33480 Rev. *E  
Page 60 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
PLL Specifications  
Table 47. PLL Specifications  
Spec ID  
Parameter  
Description  
Input frequency to PLL block  
Time to achieve PLL lock  
Output frequency from PLL block  
PLL current  
Min  
Typ  
Max  
64  
Units  
MHz  
µs  
Details/Conditions  
SID304P PLL_IN  
4
SID305P PLL_LOCK  
SID306P PLL_OUT  
SID307P PLL_IDD  
16  
35  
10.625  
150  
1.1  
150  
MHz  
0.55  
mA Typ at 100 MHz out.  
ps  
100-MHz output  
frequency  
SID308P PLL_JTR  
Period jitter  
Clock Source Switching Times  
Table 48. Clock Source Switching Time Specifications  
Spec ID  
Parameter  
TCLK  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
Clock switching from clk1 to clk2 in clock  
4 clk1 +  
3 clk2  
SID262  
periods –  
[5]  
SWITCH  
periods  
USB  
Table 49. USB Specifications (USB requires LP Mode 1.1-V internal supply)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
USB Block Specifications  
USB Configured, USB  
Reg. bypassed  
SID322U  
Vusb_3.3  
Device supply for USB operation  
3.15  
3.6  
V
Device supply for USB operation  
(functional operation only)  
USB Configured, USB  
Reg. bypassed  
SID323U  
SID325U  
SID328  
Vusb_3  
2.85  
8
3.6  
V
Iusb_config  
Iusb_suspend  
Block supply current in Active mode  
mA  
mA  
V
V
= 3.3 V  
DDD  
= 3.3 V, Device  
DDD  
Block supply current in suspend mode  
0.5  
connected  
V
= 3.3 V, Device  
DDD  
SID329  
Iusb_suspend  
Block supply current in suspend mode  
0.3  
mA  
disconnected  
Series resistors are on  
chip  
SID330U  
SID332U  
SID333U  
USB_Drive_Res  
USB_Pullup_Idle  
USB_Pullup  
USB driver impedance  
Idle mode range  
Active mode  
28  
44  
900  
1575  
3090  
Bus idle  
Upstream device trans-  
mitting  
1425  
QSPI  
Table 50. QSPI Specifications  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units Details / Conditions  
SMIF QSPI Specifications. All specs with 15-pF load.  
SID390Q  
SID390QU  
SID399Q  
SID397Q  
SID398Q  
Fsmifclock  
Fsmifclocku  
Clk_dutycycle  
Idd_qspi  
SMIF QSPI output clock frequency  
SMIF QSPI output clock frequency  
Clock duty cycle (high or low time)  
Block current in LP mode (1.1 V)  
Block current in ULP mode (0.9 V)  
80  
50  
MHz LP mode (1.1 V)  
MHz ULP mode (0.9 V)  
%
45  
55  
1900  
590  
µA  
µA  
LP mode (1.1 V)  
ULP mode (0.9 V)  
Idd_qspi_u  
Note  
5. As an example, if the clk_path[1] source is changed from the IMO to the FLL (see Figure 4) then clk1 is the IMO and clk2 is the FLL.  
Document Number: 002-33480 Rev. *E  
Page 61 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Table 50. QSPI Specifications (continued)  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units Details / Conditions  
Input data set-up time with respect to  
clock capturing edge  
SID391Q  
Tsetup  
4.5  
ns  
Input data hold time with respect to clock  
capturing edge  
SID392Q  
SID393Q  
SID394Q  
SID395Q  
SID396Q  
Tdatahold  
0
3.7  
ns  
ns  
ns  
ns  
ns  
Output data valid time with respect to  
clock falling edge  
7.5-ns max for ULP  
mode (0.9 V)  
Tdataoutvalid  
Tholdtime  
Output data hold time with respect to  
clock rising edge  
3
Output Select valid time with respect to  
clock rising edge  
15-ns max for ULP  
mode (0.9 V)  
Tseloutvalid  
Tselouthold  
7.5  
Tsclk = Fsmifclk cycle  
time  
Output Select hold time with respect to  
clock rising edge  
Tsclk  
Smart I/O  
Table 51. Smart I/O Subsystem Specifications  
Spec ID#  
SID420  
SID421  
Parameter  
SMIO_BYP  
SMIO_LUT  
Description  
Smart I/O bypass delay  
Min  
Typ  
Max  
2
Units  
ns  
Details/Conditions  
Smart I/O LUT prop delay  
8
ns  
JTAG Boundary Scan  
Table 52. JTAG Boundary Scan  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
JTAG Boundary Scan Parameters for 1.1 V (LP) Mode Operation:  
SID468  
SID469  
SID470  
SID471  
SID472  
T
TCK LOW  
52  
10  
ns  
ns  
ns  
ns  
ns  
ns  
CKLOW  
TCKHIGH  
TCK_TDO  
TSU_TCK  
TCk_THD  
TCK HIGH  
TCK falling edge to output valid  
Input valid to TCK rising edge  
Input hold time to TCK rising edge  
40  
12  
10  
40  
TCK falling edge to output valid (High-Z  
to Active).  
SID473  
SID474  
TCK_TDOV  
TCK_TDOZ  
TCK falling edge to output valid (Active to  
High-Z).  
40  
ns  
JTAG Boundary Scan Parameters for 0.9 V (ULP) Mode Operation:  
SID468A  
SID469A  
SID470A  
SID471A  
SID472A  
TCKLOW  
TCKHIGH  
TCK_TDO  
TSU_TCK  
TCk_THD  
TCK low  
102  
20  
ns  
ns  
ns  
ns  
ns  
ns  
TCK high  
TCK falling edge to output valid  
Input valid to TCK rising edge  
Input hold time to TCK rising edge  
80  
22  
20  
80  
TCK falling edge to output valid (high-Z to  
active).  
SID473A  
SID474A  
TCK_TDOV  
TCK_TDOZ  
TCK falling edge to output valid (active to  
high-Z).  
80  
ns  
Document Number: 002-33480 Rev. *E  
Page 62 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Ordering Information  
Table 53 lists the CY8C61x4 part numbers and features. All devices include dual CPU, DMA, DC-DC converter, QSPI SMIF, DAC,  
LPCOMP, 6 SCBs, and 12 TCPWMs. See also the product selector guide.  
Table 53. Ordering Information  
Arm CM4,  
5x SCBs, 1x  
DS-SCB, 1x  
FS-USB, 1x  
Q-SPI, 2x  
CY8C6144AZI-S4F92  
CY8C6144LQI-S4F92  
CY8C6144AZI-S4F93  
CY8C6144AZI-S4F82  
CY8C6144LQI-S4F82  
CY8C6144AZI-S4F83  
CY8C6144AZI-S4F62  
CY8C6144LQI-S4F62  
CY8C6144AZI-S4F12  
CY8C6144LQI-S4F12  
CY8C6144AZQ-S4F92  
CY8C6144LQQ-S4F92  
CY8C6144AZQ-S4F93  
150/50 FLEX 256 128 2x 12-bit  
150/50 FLEX 256 128 2x 12-bit  
150/50 FLEX 256 128 2x 12-bit  
150/50 FLEX 256 128 2x 12-bit  
150/50 FLEX 256 128 2x 12-bit  
150/50 FLEX 256 128 2x 12-bit  
150/50 FLEX 256 128 1x 12-bit  
150/50 FLEX 256 128 1x 12-bit  
150/50 FLEX 256 128 1x 12-bit  
150/50 FLEX 256 128 1x 12-bit  
150/50 FLEX 256 128 2x 12-bit  
150/50 FLEX 256 128 2x 12-bit  
150/50 FLEX 256 128 2x 12-bit  
2
2
2
2
2
2
-
Y
Y
Y
Y
Y
Y
-
-
Y
-
1
1
1
-
Y 54 64-TQFP A2  
Y 52 68-QFN A2  
Y 62 80-TQFP A2  
Y 54 64-TQFP A2  
Y 52 68-QFN A2  
Y 62 80-TQFP A2  
- 54 64-TQFP A2  
- 52 68-QFN A2  
- 54 64-TQFP A2  
- 52 68-QFN A2  
Y 54 64-TQFP A2  
Y 52 68-QFN A2  
Y 62 80-TQFP A2  
-
Comp, LCD  
Y
-
-
-
-
1
1
-
-
-
Y
-
-
Y
Y
Y
Y
Y
-
Y
-
-
2
2
2
1
1
1
Y
-
Note: In PSoC 61 the Cortex M0+ is reserved for system functions, and is not available for applications. In LP and ULP modes, the  
maximum CM0+ CPU operating frequency is restricted to 100 MHz and 25 MHz respectively.  
PSoC 6 MPN Decoder  
CY XX 6 A B C DD E - FF G H I JJ K L  
Field  
Description  
Values  
Meaning  
CY  
Cypress  
CY  
8C  
B0  
S0  
6
Cypress  
Standard  
XX  
6
Firmware  
“Secure Boot” v1  
“Standard Secure” - AWS  
PSoC 6  
Architecture  
0
Value  
1
Programmable  
Performance  
Connectivity  
Security  
A
Line  
2
3
4
Document Number: 002-33480 Rev. *E  
Page 63 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Field  
Description  
Values  
Meaning  
2
100 MHz  
150 MHz  
150/50 MHz  
RFU  
B
Speed  
3
4
0-3  
4
256K/128K  
512K/256K  
512K/128K  
1024K/288K  
1024K/512K  
RFU  
5
6
7
Memory Size  
(Flash/SRAM)  
C
8
9
A
2048K/1024K  
TQFP  
AZ, AX  
LQ  
BZ  
FM  
QFN  
DD  
Package  
BGA  
M-CSP  
FN, FD, FT WLCSP  
C
I
Consumer  
Industrial  
E
Temperature Range  
Feature Code  
Q
Extended Industrial  
Cypress internal  
FF  
S2-S6  
BL  
F
Integrated Bluetooth Low Energy  
Single Core  
Dual Core  
Feature set  
31-50  
G
H
CPU Core  
D
Attributes Code  
0–9  
1
2
51-70  
I
GPIO count  
3
71-90  
4
91-110  
Engineering sample  
(optional)  
JJ  
K
ES  
Engineering samples or not  
Base  
Die Revision (optional)  
A1-A9  
T
Die revision  
Tape/Reel Shipment  
(optional)  
L
Tape and Reel shipment  
Document Number: 002-33480 Rev. *E  
Page 64 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Packaging  
This product line is offered in 80-TQFP, 64-E-TQFP, and 68-QFN packages.  
Table 54. Package Dimensions  
Spec ID#  
PKG_1  
PKG_2  
PKG_3  
Package  
Description  
Package Dwg #  
002-29467  
80-TQFP  
80-TQFP, 12 × 12 × 1.6 mm  
64-E-TQFP 64-E-TQFP, 10 × 10 × 1.6 mm  
68-QFN  
68 QFN 8 × 8 × 1 mm  
002-29202  
001-96836  
Table 55. Package Characteristics  
Parameter Description  
Conditions  
Min  
–40  
–40  
–40  
–40  
Typ  
25  
25  
Max  
85  
105  
100  
120  
Units  
°C  
T
T
T
T
T
T
T
T
T
T
Operating ambient temperature  
Extended Industrial temperature  
Operating junction temperature  
Extended Industrial temperature  
A
°C  
A
°C  
J
°C  
J
Package (80-TQFP)  
35  
6
°C/watt  
°C/watt  
°C/watt  
°C/watt  
°C/watt  
°C/watt  
JA  
JC  
JA  
JC  
JA  
JC  
JA  
Package (80-TQFP)  
JC  
Package (64-E-TQFP)  
26  
7
JA  
Package (64-E-TQFP)  
JC  
Package (68-QFN)  
21  
6
JA  
Package (68-QFN)  
JC  
Table 56. Solder Reflow Peak Temperature  
Package  
Maximum Peak Temperature  
Maximum Time at Peak Temperature  
All packages  
260 °C  
30 seconds  
Table 57. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2  
Package  
MSL  
All packages  
MSL3  
Document Number: 002-33480 Rev. *E  
Page 65 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Figure 20. 68 QFN 8 × 8 × 1 mm  
001-96836 *A  
Document Number: 002-33480 Rev. *E  
Page 66 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Figure 21. 80-TQFP 12.0 × 12.0 × 1.6 mm  
002-29467 **  
Document Number: 002-33480 Rev. *E  
Page 67 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Figure 22. 64-TQFP 10.0 × 10.0 × 1.6 mm  
002-29202 **  
Document Number: 002-33480 Rev. *E  
Page 68 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Acronyms  
Acronym  
EMI  
Description  
electromagnetic interference  
embedded MultiMediaCard  
electrostatic discharge  
embedded trace macrocell  
first-in, first-out  
Acronym  
3DES  
Description  
triple DES (data encryption standard)  
analog-to-digital converter  
eMMC  
ESD  
ETM  
FIFO  
FLL  
ADC  
advanced DMA version 3, a Secured Digital data  
transfer mode  
ADMA3  
AES  
advanced encryption standard  
frequency locked loop  
floating-point unit  
AMBA(advanced microcontroller bus architecture)  
high-performance bus, an Arm data transfer bus  
AHB  
FPU  
FS  
full-speed  
AMUX  
AMUXBUS  
API  
analog multiplexer  
GND  
Ground  
analog multiplexer bus  
general-purpose input/output, applies to a PSoC  
pin  
application programming interface  
advanced RISC machine, a CPU architecture  
ball grid array  
GPIO  
®
Arm  
HMAC  
HSIOM  
I/O  
Hash-based message authentication code  
high-speed I/O matrix  
BGA  
BOD  
brown-out detect  
input/output, see also GPIO, DIO, SIO, USBIO  
Inter-Integrated Circuit, a communications protocol  
inter-IC sound  
BREG  
BWC  
CAD  
backup registers  
2
I C, or IIC  
backward compatibility (eMMC data transfer mode)  
computer aided design  
2
I S  
IC  
integrated circuit  
CCO  
current controlled oscillator  
a stream cipher  
IDAC  
IDE  
ILO  
current DAC, see also DAC, VDAC  
integrated development environment  
internal low-speed oscillator, see also IMO  
internal main oscillator, see also ILO  
integral nonlinearity, see also DNL  
input output subsystem  
ChaCha  
CM0+  
CM4  
Cortex-M0+, an Arm CPU  
Cortex-M4, an Arm CPU  
IMO  
INL  
CMAC  
cypher-based message authentication code  
complementary metal-oxide-semiconductor, a  
process technology for IC fabrication  
CMOS  
IOSS  
IoT  
internet of things  
CMRR  
CPU  
common-mode rejection ratio  
central processing unit  
IPC  
IRQ  
ISR  
ITM  
JTAG  
LCD  
inter-processor communication  
interrupt request  
cyclic redundancy check, an error-checking  
protocol  
CRC  
interrupt service routine  
CSD  
CSV  
CapSense Sigma-Delta  
clock supervisor  
instrumentation trace macrocell  
Joint Test Action Group  
Cypress mutual capacitance sensing method. See  
also CSD  
liquid crystal display  
CSX  
Local Interconnect Network, a communications  
protocol  
LIN  
CTI  
cross trigger interface  
DAC  
DAP  
DDR  
DES  
DFT  
DMA  
DNL  
DSI  
digital-to-analog converter, see also IDAC, VDAC  
debug access port  
LP  
low power  
LS  
low-speed  
double data rate  
LUT  
lookup table  
data encryption standard  
design for test  
LVD  
low-voltage detect, see also LVI  
low-voltage interrupt  
low-voltage transistor-transistor logic  
multiply-accumulate  
LVI  
direct memory access, see also TD  
differential nonlinearity, see also INL  
digital system interconnect  
data unit  
LVTTL  
MAC  
MCU  
MCWDT  
MISO  
MMIO  
MOSI  
MPU  
MSL  
Msps  
microcontroller unit  
DU  
multi-counter watchdog timer  
master-in slave-out  
DW  
data wire, a DMA implementation  
error correcting code  
ECC  
ECC  
ECO  
memory-mapped input output  
master-out slave-in  
elliptic curve cryptography  
external crystal oscillator  
memory protection unit  
moisture sensitivity level  
million samples per second  
electrically erasable programmable read-only  
memory  
EEPROM  
Document Number: 002-33480 Rev. *E  
Page 69 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Acronym  
MTB  
Description  
Acronym  
SMPU  
Description  
shared memory protection unit  
signal-to-noise ration  
micro trace buffer  
multiplier  
MUL  
NC  
SNR  
SOF  
no connect  
start of frame  
silicon-oxide-nitride-oxide-silicon, a flash memory  
technology  
NMI  
nonmaskable interrupt  
SONOS  
SPI  
NVIC  
NVL  
nested vectored interrupt controller  
nonvolatile latch, see also WOL  
one-time programmable  
over voltage protection  
overvoltage tolerant  
Serial Peripheral Interface, a communications  
protocol  
OTP  
OVP  
OVT  
PASS  
PCB  
PCM  
PDM  
PHY  
PICU  
PLL  
SRAM  
SROM  
SRSS  
SWD  
SWJ  
static random access memory  
supervisory read-only memory  
system resources subsystem  
serial wire debug, a test protocol  
serial wire JTAG  
programmable analog subsystem  
printed circuit board  
pulse code modulation  
SWO  
SWV  
TCPWM  
TDM  
single wire output  
pulse density modulation  
physical layer  
single-wire viewer  
timer, counter, pulse-width modulator  
time division multiplexed  
total harmonic distortion  
thin quad flat package  
port interrupt control unit  
phase-locked loop  
THD  
PMIC  
POR  
PPU  
PRNG  
power management integrated circuit  
power-on reset  
TQFP  
TRM  
technical reference manual  
true random number generator  
transmit  
peripheral protection unit  
pseudo random number generator  
Programmable System-on-Chip™  
power supply rejection ratio  
pulse-width modulator  
TRNG  
TX  
®
PSoC  
PSRR  
PWM  
QD  
universal asynchronous transmitter receiver, a  
communications protocol  
UART  
UDB  
ULP  
universal digital block  
ultra-low power  
quadrature decoder  
QSPI  
RAM  
RISC  
RMS  
ROM  
quad serial peripheral interface  
random-access memory  
reduced-instruction-set computing  
root-mean-square  
USB  
Universal Serial Bus  
watch crystal oscillator  
watchdog timer  
WCO  
WDT  
WIC  
wakeup interrupt controller  
wafer level chip scale package  
execute-in-place  
read-only memory  
WLCSP  
XIP  
Rivest–Shamir–Adleman, a public-key cryptog-  
raphy algorithm  
RSA  
XRES  
external reset input pin  
RTC  
real-time clock  
RWW  
RX  
read-while-write  
receive  
S/H  
sample and hold  
SAR  
successive approximation register  
SAR ADC multiplexer bus  
switched capacitor/continuous time  
serial communication block  
SARMUX  
SC/CT  
SCB  
2
SCL  
I C serial clock  
SD  
Secured Digital  
2
SDA  
I C serial data  
SDHC  
SDR  
Secured Digital host controller  
single data rate  
Sflash  
SHA  
supervisory flash  
secure hash algorithm  
signal to noise and distortion ratio  
SINAD  
Document Number: 002-33480 Rev. *E  
Page 70 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Document Conventions  
Table 58. Units of Measure (continued)  
Symbol Unit of Measure  
µH  
Units of Measure  
Table 58. Units of Measure  
microhenry  
microsecond  
microvolt  
Symbol  
°C  
Unit of Measure  
µs  
degrees Celsius  
decibel  
µV  
µW  
mA  
ms  
mV  
nA  
ns  
dB  
microwatt  
milliampere  
millisecond  
millivolt  
fF  
femto farad  
Hz  
hertz  
KB  
1024 bytes  
kbps  
khr  
kilobits per second  
kilohour  
nanoampere  
nanosecond  
nanovolt  
kHz  
k  
kilohertz  
nV  
W
kilo ohm  
ohm  
ksps  
LSB  
Mbps  
MHz  
M  
Msps  
µA  
kilosamples per second  
least significant bit  
megabits per second  
megahertz  
pF  
picofarad  
ppm  
ps  
parts per million  
picosecond  
second  
s
mega-ohm  
sps  
sqrtHz  
V
samples per second  
square root of hertz  
volt  
megasamples per second  
microampere  
microfarad  
µF  
Document Number: 002-33480 Rev. *E  
Page 71 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Revision History  
Description Title: PSoC 6 MCU: CY8C61x4 Datasheet  
Document Number: 002-33480  
Submission  
Revision  
ECN  
Description of Change  
Date  
**  
7167054  
06/22/2021 New datasheet.  
Removed the errata section.  
*A  
*B  
7209916  
7269159  
08/04/2021 Updated values for SIDHIB2, SID13, SID14, SID17A, SID15, SIDP122, SIDP123, and  
SID313_3A.  
Added extended industrial temperature specs in Opamp Specifications, Temperature  
Sensor Specifications, and IMO AC Specifications.  
Added extended industrial temperature MPNs in Ordering Information  
Updated the analog subsystem diagram.  
09/01/2021  
11/26/2021  
Updated CPU current values in Features.  
Added note regarding unused USB pins in USB Full-Speed Device Interface, Power Supply  
Considerations, and Pinouts.  
*C  
7452981  
Updated SIDC1 description.  
Updated details/conditions for SID7A.  
Updated SID325U, SID328, and SID329 description.  
Updated Figure 17.  
*D  
*E  
7750278  
7789060  
04/12/2022 Updated eFuse description in the Memory section.  
Added device identification and revision information in Features.  
Added spec SID304P.  
10/18/2022  
Updated PLL Specifications and Clock System.  
Updated Protection Units.  
Document Number: 002-33480 Rev. *E  
Page 72 of 73  
PSoC 6 MCU: CY8C61x4  
Datasheet  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Code Examples | Projects | Video | Blogs | Training  
| Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
© Cypress Semiconductor Corporation,2021-2022. This document is the property of Cypress Semiconductor Corporation, an Infineon Technologies company, and its affiliates ("Cypress"). This  
document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other  
countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks,  
or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software,  
then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source  
code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally  
to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the  
Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation,  
or compilation of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing  
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such  
as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING  
CYPRESS PRODUCTS, WILLBE FREE FROM CORRUPTION,ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITYINTRUSION (collectively, "Security  
Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In  
addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted  
by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or  
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the  
responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device"  
means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other  
medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk  
Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of  
a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, including its affiliates, and its directors, officers, employees, agents, distributors, and assigns  
harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use  
of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited  
extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written  
authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.  
Cypress, the Cypress logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, Traveo, WICED, and ModusToolbox are trademarks or registered trademarks of Cypress or a subsidiary of  
Cypress in the United States or in other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-33480 Rev. *E  
Revised October 18, 2022  
Page 73 of 73  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY