CYPD3172-24LQXQT [INFINEON]

PG-VQFN-24  tape and reel packing PD controller with NFET gate driver with optocoupler-feedback and fixed functions for USB PD charger and adapters;
CYPD3172-24LQXQT
型号: CYPD3172-24LQXQT
厂家: Infineon    Infineon
描述:

PG-VQFN-24  tape and reel packing PD controller with NFET gate driver with optocoupler-feedback and fixed functions for USB PD charger and adapters

光电二极管
文件: 总25页 (文件大小:399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
CCG3PA-NFET  
USB Type-C Port Controller  
CCG3PA-NFET, USB Type-C Port Controller  
General Description  
EZ-PD™ CCG3PA-NFET is Cypress’ highly integrated USB Type-C port controller with NFET-Gate driver that complies with the latest  
USB Type-C and PD standards and is targeted for Power adapters. CCG3PA-NFET provides additional functionalities and BOM  
integration advantages. CCG3PA-NFET uses Cypress’ proprietary M0S8 technology with a complete Type-C USB-PD transceiver, all  
termination resistors required for a Type-C port, VBUS NFET gate driver and an integrated feedback control circuitry for voltage  
(VBUS) regulation. It is available in 24-pin QFN package.  
Integrates all termination on DP/DM lines, low-side current  
sense amplifier (LSCSA), 2 x VBUS discharge FETs, and a  
NFET gate driver to drive the load switch  
Applications  
USB PD 3.0 PPS Power Adapter[1]  
Analog regulation of secondary side feedback node (direct  
feedback or opto coupler)  
Quick Charge 4.0 Power Adapter  
Power adapters supporting both USB PD and legacy charging  
Supports independent constant current (CC) and constant  
voltage (CV) modes of operation  
Features  
Protects against accidental VBUS to CC short  
6 GPIOs for independent functionality  
Supports one USB Type-C port  
Supports USB PD2.0, PD3.0 with PPS, QC4+, QC4.0, QC3.0,  
QC2.0, Samsung AFC, Apple charging and BC v1.2 charging  
protocols  
24-QFN package with –40 °C to +105 °C extended industrial  
temperature range  
Configurable overvoltage protection (OVP), undervoltage  
protection (UVP), overcurrent protection (OCP), short circuit  
protection (SCP), and over-temperature protection (OTP)  
Functional Block Diagram  
VDDD VCCD  
VBUS_C  
VBUS_IN  
VBUS_CTRL  
OV, UV  
OV, UV  
Slew Rate  
Controlled NFET  
Gate Driver  
VBUS_IN  
Discharge  
VBUS_C  
Discharge  
LDO  
MCU Subsystem  
HV  
Regulator  
Advanced High- Performance Bus  
(AHB)  
Flash  
(64KB)  
SRAM  
(4KB)  
Cortex-M0  
CC1  
CC2  
BMC  
PHY  
Protocol Engine  
ADC  
DP_GPIO5  
DM_GPIO4  
CC  
Reference  
Charger  
Detect  
VBUS_IN  
CV  
Reference  
Error  
Amplifier  
(CV)  
Error  
Amplifier  
(CC)  
LSCSA  
SCP  
FB  
POR/  
RESET  
XRES  
GPIOs  
IDACs  
EA_OUT  
CC_COMP_GPIO2  
VSS  
Type-C  
GPIO3  
CSN  
CSP  
GPIO0  
GPIO1  
Connector  
Ground  
Rs  
Note  
1. PPS supported for Opto-based feedback architecture.  
Cypress Semiconductor Corporation  
Document Number: 002-30172 Rev. *A  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised October 16, 2020  
CCG3PA-NFET  
Contents  
Pinout ................................................................................3  
Pin Description ............................................................5  
Application Diagram .........................................................6  
Functional Description .....................................................8  
MCU Subsystem .........................................................8  
Fault Protection ...........................................................8  
Power Modes ..............................................................8  
CCG3PA-NFET Programming and Bootloading ............9  
Programming the Device Flash over SWD Interface  
(Programmable Version) ..............................................9  
Application Firmware Update over CC Interface  
(Programmable Version) ............................................10  
Electrical Specifications ................................................11  
Absolute Maximum Ratings .......................................11  
Device-Level Specifications ......................................11  
Functional Block Specifications .................................12  
I/O Specifications ......................................................15  
System Resources Specifications .............................16  
Ordering Information ......................................................18  
Ordering Code Definitions .........................................18  
Packaging ........................................................................19  
Acronyms ........................................................................21  
Document Conventions .................................................22  
Units of Measure .............................................................22  
Document History Page .................................................23  
Sales, Solutions, and Legal Information ......................24  
Worldwide Sales and Design Support .......................24  
Products ....................................................................24  
PSoC® Solutions .......................................................24  
Cypress Developer Community .................................24  
Technical Support .....................................................24  
Document Number: 002-30172 Rev. *A  
Page 2 of 24  
CCG3PA-NFET  
Pinout  
Figure 1. 24-Pin QFN Pin Map  
1
2
18  
17  
16  
15  
14  
13  
NC  
VSS  
VBUS_C  
DP_GPIO5  
DM_GPIO4  
VSS  
3
NC  
EPAD  
4
5
6
XRES  
GPIO0  
GPIO1  
CC1  
CC2  
Document Number: 002-30172 Rev. *A  
Page 3 of 24  
CCG3PA-NFET  
Table 1. CCG3PA-NFET Pin Description  
Pin Number  
Pin Name  
NC  
Description  
1
No Connect  
Ground  
2
VSS  
3
NC  
No Connect  
External reset input  
GPIO P0.0  
4
XRES  
5
GPIO0  
GPIO1  
CC_COMP_GPIO2  
EA_OUT  
FB  
6
GPIO P0.1  
7
Pin for constant current mode compensation capacitor/GPIO P0.2  
Error amplifier output  
8
9
Error amplifier feedback  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
CSN  
Low-side current sense amplifier negative input  
Low-side current sense amplifier positive input  
GPIO P0.3  
CSP  
GPIO3  
CC2  
Power delivery Communication Channel 2  
Power delivery Communication Channel 1  
Ground  
CC1  
VSS  
DM_GPIO4  
DP_GPIO5  
VBUS_C  
VBUS_CTRL  
VBUS_IN  
VCCD  
USB D-/SWD_DATA/GPIO P0.4  
USB D+/SWD_CLK/GPIO P0.5  
USB Type-C VBUS monitor input  
Load switch NFET gate control  
Power source input  
1.8-V core voltage LDO output  
3.0 V–5.5 V internal LDO Output  
No Connect  
VDDD  
NC  
NC  
No Connect  
EPAD  
EPAD for ground  
Document Number: 002-30172 Rev. *A  
Page 4 of 24  
CCG3PA-NFET  
Pin Description  
FB, EA_OUT, CC_COMP_GPIO2  
CCG3PA-NFET integrates two error amplifier blocks which handles secondary output sensing and regulation for CV and CC modes.  
This block is responsible for both constant voltage and constant current operations. The output of the error amplifier is routed to the  
EA_OUT pin. EA_OUT can further drive an opto-isolator to provide feedback to the primary controller. The negative input of the error  
amplifier is the feedback (FB) pin and the positive input is internal reference of 0.744 V. The FB pin has internal resistor divider of  
200 kΩ and 35 kΩ, this divider sets a default voltage of 0.744 V at FB pin when VBUS_IN is at 5 V. Based on the desired VBUS_C  
output, the voltage at the FB pin will be varied using internal current source/sink IDACs. An external compensation network is required  
between FB pin and EA_OUT pin, as shown in Figure 2.  
Constant current operation makes use of an internal LSCSA, the output of which feeds into an independent error amplifier as shown  
in Figure 2. CCG3PA-NFET error amplifier can ensure constant voltage regulation over 3.3 V to 21 V range and constant current  
regulation over 1 A to 3 A as required by the USB-PD PPS specification.  
CC1, CC2  
CC1 and CC2 are the communication channels for USB PD protocol. CCG3PA-NFET integrates a USB PD transceiver consisting of  
a transmitter and receiver that communicate Biphase Mark Code (BMC) encoded data over the Configuration Channel (CC) channels  
as per the USB-PD standard. All communication is half-duplex. The physical layer implements collision avoidance to minimize commu-  
nication errors on the channel. This block includes all termination resistors (Rp) and their switches as required by the USB-PD  
specification. An external 390-pF capacitor is required on both the CC1 and CC2 pins.  
DP_GPIO4, DM_GPIO5  
The DP and DM lines are the standard USB D+ and D- lines. CCG3PA-NFET integrates a charge detect block, which handles legacy  
charging protocols such as BC 1.2, Quick Charge, Apple charging, and Samsung AFC. This block integrates all the terminations  
required for these charging protocols and no external components are required. When legacy charging is not required in the system,  
the same DP and DM lines can be reused as standard GPIOs.  
VBUS_IN, VDDD, VCCD  
CCG3PA-NFET integrates a high-voltage regulator, which is powered from the VBUS_IN rail, the output of the regulator powers the  
VDDD rail. The input to the regulator can range from 3.3 V minimum to 21.5 V maximum. When the input is between 5.5 V to 21.5 V,  
the typical output of the regulator is 5 V. For inputs from 3.3 V to 5.5 V, the regulator output is VBUS_IN – 300 mV.  
The regulator can drive a maximum load current of 50 mA, which includes the chip current consumption. This regulator is not expected  
to drive any external loads or ICs. CCG3PA-NFET also has an internal configurable discharge path for the VBUS_IN rail, which is  
used to discharge the VBUS rail during negative voltage transitions.  
The regulated supply VDDD, is either used to directly power some internal analog blocks or further regulated down to 1.8 V VCCD,  
which powers majority of the core. VDDD and VCCD is brought out on to pins to connect external capacitors for regulator stability,  
these are not meant to be used as power supplies.  
VBUS_C, VBUS_CTRL  
VBUS_C is used to monitor the voltage at the Type-C connector. VBUS_C has an internal configurable discharge path, which is used  
to discharge the VBUS_C rail during negative voltage transitions.  
The load switch is between VBUS_IN and VBUS_C. CCG3PA-NFET integrates a NFET gate driver to control this load switch.  
VBUS_CTRL is the output of this gate driver. To turn off the external NFET, the gate driver drives low. To turn on the external NFET,  
it drives the gate to VBUS_IN + 8 V. In addition, there is a clamp circuit to limit the gate to VBUS_IN + 8 V.  
CSP, CSN  
CCG3PA-NFET integrates a LSCSA to monitor the load current. CSP is the positive input pin for the LSCSA and CSN is the negative  
input. LSCSA offers wide gain options ranging from 5 to 150. Suggested Rsense for LSCSA is 5 mΩ. LSCSA has an active offset  
cancellation mechanism to improve accuracy.  
GPIO0, GPIO1, and GPIO3  
CCG3PA-NFET has six GPIOs, out of which three are dedicated GPIOs and the rest are multiplexed with other functionalities. During  
power-on and reset, the I/O pins (except GPIO1) are forced to the tristate so as not to crowbar any inputs and/or cause excess turn-on  
current. GPIO1 is driven to zero at power-up.  
XRES  
The XRES pin can be used to initiate a reset, this pin is internally pulled high and needs to be pulled low externally to trigger reset.  
Document Number: 002-30172 Rev. *A  
Page 5 of 24  
CCG3PA-NFET  
Application Diagram  
Figure 2 shows the application diagram of CCG3PA-NFET-based Power Adapter with Opto-Coupler Feedback control using 24-pin  
QFN device. In an opto-feedback power adapter, CCG3PA-NFET implements an independent error amplifier for constant voltage (CV)  
mode and an independent error amplifier for constant current (CC) mode. The feedback to the primary controller is through an  
opto-coupler. The current drawn through the EA_OUT pin is proportional to the potential difference between FB pin and the internal  
CV reference voltage for CV mode and between CC_COMP pin and the internal CC reference voltage for CC mode.  
For CV mode, if VBUS needs to be changed from default 5 V, using internal IDACs and an CV error amplifier, CCG3PA-NFET draws  
a proportional current through the EA_OUT pin. This in turn gets coupled to the primary controller through the opto-coupler.  
For CC mode, in order to keep current at the certain level, using internal IDACs and an CC error amplifier, CCG3PA-NFET draws a  
proportional current through the EA_OUT pin to change the voltage output. This in turn gets coupled to the primary controller through  
the opto-coupler.  
Figure 2. CCG3PA-NFET Based PowerAdapterApplication Diagramwith Opto Coupler Feedback Control (24-pin QFN Device)  
Full-bridge  
Snubber  
VBUS_TypeC  
VBUS_IN  
Rectifier  
EMI  
Filter  
SR Controller  
CC_COMP_GPIO2  
GD  
CS  
CC1  
CC2  
VDD700  
EA_OUT  
Primary Flyback  
Controller  
DP_GPIO5  
DM_GPIO4  
CCG3PA-NFET  
FB  
FB  
GPIO1  
GPIO3  
GND  
Temperature  
Sensor  
Primary Side  
Secondary Side  
Document Number: 002-30172 Rev. *A  
Page 6 of 24  
CCG3PA-NFET  
Figure 3 shows the application diagram of CCG3PA-NFET based power adapter with Direct Feedback control. In this application,  
VBUS is maintained at a constant voltage. The default value of VBUS upon power up (which is usually at 5 V) is set up by choosing  
the appropriate resistor divider that will set the FB node at a voltage expected by the secondary controller.  
Feedback node is regulated using internal IDACs. Whenever a change in VBUS voltage is needed, CCG3PA-NFET will either source  
or sink a proportional current at feedback node, based on the amount of voltage change needed.  
Figure 3. CCG3PA-NFET Based Power Adapter Application Diagram with Direct Feedback Control  
VBUS_TypeC  
VBUS_IN  
CC_COMP_GPIO2  
EA_OUT  
CC1  
CC2  
R1  
Secondary  
or  
Integrated  
Controller  
CCG3PA-NFET  
DP_GPIO5  
DM_GPIO4  
FB  
R2  
GPIO1  
GPIO3  
Temperature  
Sensor  
Secondary Side  
Document Number: 002-30172 Rev. *A  
Page 7 of 24  
CCG3PA-NFET  
Functional Description  
MCU Subsystem  
CPU  
The Cortex-M0 CPU in EZ-PD CCG3PA-NFET is part of the 32-bit MCU subsystem, which is optimized for low-power operation with  
extensive clock gating. The CPU also includes a serial wire debug (SWD) interface, which is a 2-wire form of JTAG. The debug  
configuration used for EZ-PD CCG3PA-NFET has four break-point (address) comparators and two watchpoint (data) comparators.  
Flash  
The EZ-PD CCG3PA-NFET device has a flash module with one bank of 64 KB flash, a flash accelerator, tightly coupled to the CPU  
to improve average access times from the flash block.  
SROM  
A supervisory ROM that contains boot and configuration routines  
Fault Protection  
VBUS UVP and OVP  
VBUS undervoltage and overvoltage faults are monitored using internal VBUS_IN/VBUS_C resistor dividers. The fault thresholds and  
response times are configurable in CCG3PA-NFET. Configurability includes choosing between auto-restart or latch-off options for  
each fault.  
VBUS OCP and SCP  
VBUS overcurrent and short-circuit faults are monitored using internal current sense amplifiers. Same as OVP and UVP, the OCP and  
SCP fault thresholds and response times are configurable as well. Configurability includes choosing between auto-restart or latch-off  
options for each fault.  
OTP  
Over temperature monitoring is done using an external thermistor and internal ADC. The thermistor can be connected to GPIO3. Once  
the temperature exceeds the configured Over temperature limit, the USB-C port is disabled and the device waits for the temperature  
to drop below the set limit to re-enable the port. The corresponding temperature limits to report the error as well as recover from the  
error are user configurable. The user also has an option to enable or disable the Over temperature protection functionality.  
ESD Protection  
CCG3PA-NFET offers ESD protection on all the pins. The ESD protection level is 2.2 kV HBM and 500 V CDM.  
VBUS to CC Short Protection  
CCG3PA-NFET offers protection against accidental short from VBUS_C pin short to CC.  
Power Modes  
CCG3PA-NFET supports three power modes - Active, Sleep, and Deep Sleep. Transitions between these modes is handled by the  
device depending on the operating conditions.  
Document Number: 002-30172 Rev. *A  
Page 8 of 24  
CCG3PA-NFET  
CCG3PA-NFET Programming and Bootloading  
CCG3PA-NFET is offered in two combinations:  
1. A programmable version where the base Firmware for the device is available in EZ-PD CCGx Power Software Development  
2. A preprogrammed version where the device is already programmed with a base Firmware. The customer however can configure  
selected parameters using EZ-PD™ Configuration Utility  
There are two ways to program application firmware into a CCG3PA-NFET device:  
1. Programming the Device Flash over SWD Interface (Programmable Version)  
2. Application Firmware Update over CC Interface (Programmable Version)  
The CCG3PA-NFET programmable devices are programmed over SWD interface during development or during the manufacturing  
process of the end product. Once the end product is manufactured, the application firmware can be updated via the CC bootloader  
interface.  
Programming the Device Flash over SWD Interface (Programmable Version)  
CCG3PA-NFET family of devices can be programmed using the SWD interface. Cypress provides a programming kit (CY8CKIT-002  
MiniProg3 Kit) called MiniProg3 and PSoC Programmer Software which can be used to program the flash as well as debug firmware.  
The flash is programmed by downloading the information from a hex file. This hex file is a binary file generated as an output of building  
the firmware project in PSoC Creator Software. Click here for more information on how to use the MiniProg3 programmer. There are  
many third party programmers that support mass programming in a manufacturing environment.  
As shown in the block diagram in Figure 4, the SWD_0_DAT and SWD_0_CLK pins are connected to the host programmer’s SWDIO  
(data) and SWDCLK (clock) pins respectively. During SWD programming, the CCG3PA-NFET device has to be powered by the host  
programmer by connecting its VTARG (power supply to the target device) to VDDD pin of CCG3PA-NFET device.  
The CCG3PA-NFET device family has the XRES pin. it can programmed using Reset Mode if XRES is used. It can be programmed  
using Power Cycle mode if XRES is not used. Contact Cypress for further details on CYPD3XXX Programming Specifications.  
Figure 4. Connecting the Programmer to CYPD317X CCG3PA-NFET Device  
CCG3PA-NFET  
Programming Hardware  
VTARG  
SWDCLK  
SWDIO  
XRES  
VDDD  
VCCD  
SWD_0_CLK  
SWD_0_DAT  
XRES  
C2  
C1  
GND  
VGND  
GND  
Document Number: 002-30172 Rev. *A  
Page 9 of 24  
CCG3PA-NFET  
Application Firmware Update over CC Interface (Programmable Version)  
For bootloading CCG3PA-NFET applications, the CY4532 CCG3PA EVK can be used to send programming and configuration data  
as Cypress specific Vendor Defined Messages (VDMs) over the CC line. The CY4532 CCG3PA EVK’s Power Board is connected to  
the system containing CCG3PA-NFET device on one end and a Windows PC running the EZ-PDConfiguration Utility as shown in  
Figure 5 on the other end to bootload the CCG3PA-NFET device.  
Figure 5. Application Firmware Update over CC Interface  
USB-Serial interface  
USB Mini-B  
I2C  
PC running  
EZ-PD  
configuration utility  
CYPD317x  
device to be  
bootloaded  
CC line  
cable  
CC interface  
Type-C  
receptacle  
Cypress CY4532 kit power board  
Mini-B  
receptacle  
Application Firmware (FW) update feature over CC interface is intended for use during development and manufacturing. Cypress  
strongly recommends customers to use the EZ-PD Configuration Utility to turn off the Application FW Update over CC interface in the  
firmware that is updated into CCG3PA-NFET’s flash before mass production. This prevents unauthorized firmware from being updated  
over CC-interface in the field. Refer to the knowledge base article KBA230192 on how to configure this in EZ-PD Configuration Utility.  
If you desire to retain the Application Firmware update over CC interface feature post-production for on-field firmware updates, contact  
Cypress Sales for further guidelines.  
Document Number: 002-30172 Rev. *A  
Page 10 of 24  
CCG3PA-NFET  
Electrical Specifications  
Absolute Maximum Ratings  
Table 2. Absolute Maximum Ratings[2]  
Parameter  
VBUS_IN_MAX  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
Maximum input supply voltage  
Maximum supply voltage  
24  
VDDD_MAX  
VGPIO_ABS  
VCC_PIN_ABS  
IGPIO_ABS  
ESD_HBM  
ESD_CDM  
I_LU  
6
V
GPIO voltage  
–0.5  
VDDD + 0.5  
Maximum voltage on CC1, CC2 voltage  
Current per GPIO  
24  
25  
mA  
V
Electrostatic discharge human body model  
Electrostatic discharge charged device model  
Pin current for latch-up  
2200  
500  
–100  
100  
mA  
Device-Level Specifications  
Table 3. DC Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ Max Unit  
Details/Conditions  
VDDD output for 5.5 V VBUS_IN  
21.5 V  
SID.PWR.1  
VDDD_REG  
4.6  
5.0 5.4  
ILOAD = 0-50 mA  
VDDD output for 3.3 V VBUS_IN VBUS_IN  
5.5 V  
SID.PWR.2  
VDDD_MIN  
V
- 0.3  
3.3  
SID.PWR.4  
SID.PWR.6  
SID.PWR.8  
SID.PWR.9  
VBUS_IN  
VCCD  
Cefc  
Power supply input voltage  
Output voltage for core logic  
Bypass capacitor for VCCD  
Decoupling capacitor for VDDD  
1.8  
1
21.5  
0.8  
1.8  
1.2  
4.7  
X5R ceramic or better  
Cexc  
µF  
Decoupling capacitor for  
VBUS_IN  
Decoupling capacitor required near  
the IC pin.  
SID.PWR.10  
Cexv  
1
VBUS_IN = 5 V, TA = 25 °C,  
CC1/CC2 in TX or RX (USB-PD  
communication is active)  
Active current from VBUS_IN in  
Type-C attached state  
SID.PWR.15  
IDD_A  
6.5  
VBUS_IN = 5 V, TA = 25 °C,  
Type-C attached, CPU OFF,  
PWM/EA/ADC/UVOVblocksON.CC,  
Watchdog Timer (WDT) Wakeup ON  
Sleep current from VBUS_IN in  
Type-C attached state  
SID.PWR.16  
IDD_S_UA  
2.5  
mA  
VBUS_IN = 5 V, TA = 25 °C,  
Type-C unattached, CPU OFF, UVOV  
block ON, WDT Wakeup ON  
Deep Sleep current from  
SID.PWR#16_A I_DS_UA  
0.75  
VBUS_IN (Type-C unattached)  
Table 4. AC Specifications  
Spec ID  
SID.PWR.14  
SID.PWR.14A  
Parameter  
Description  
Min Typ Max Unit  
Details/Conditions  
Tsleep  
Wakeup from Sleep mode  
0
µs  
µs  
Tdeepsleep Wakeup from Deep Sleep mode  
35  
Note  
2. Usage of the absolute maximum conditions listed in Table 2 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended  
periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature  
Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.  
Document Number: 002-30172 Rev. *A  
Page 11 of 24  
CCG3PA-NFET  
Functional Block Specifications  
Table 5. ADC Specifications  
Spec ID  
DC Specifications  
SID.ADC.1  
Parameter  
Description  
Min  
Typ  
Max  
Unit Details/Conditions  
Resolution  
ADC resolution  
8
Bits  
Reference voltage =  
VREF_ADC1  
SID.ADC.2  
SYS.ADC.3  
SYS.ADC.4  
INL  
INL  
DNL  
–2.5  
2.5  
Integral nonlinearity  
Reference voltage =  
VREF_ADC2  
–1.5  
–2.5  
1.5  
2.5  
LSB Reference voltage =  
VREF_ADC1  
Differential nonlinearity  
Gain error  
Reference voltage =  
VREF_ADC2  
SYS.ADC.5  
SYS.ADC.6  
DNL  
–1.5  
–1.5  
1.5  
1.5  
Gain Error  
Reference voltage  
generated from  
VDDD  
SYS.ADC.7  
SYS.ADC.8  
VREF_ADC1  
VREF_ADC2  
VDDDmin  
VDDDmax  
ADC reference voltage  
V
Reference voltage  
generate from  
bandgap  
1.96  
2.0  
2.04  
AC Specifications  
Rate of change of sampled voltage  
signal  
Guaranteed by  
design  
SID.ADC.9  
Slew_Max  
3
V/ms  
Table 6. Error Amplifier  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit Details/Conditions  
DC Specifications  
SID.DC.VR.1  
VR  
VBUS voltage regulation accuracy  
Off-state EA_OUT current  
± 3  
2.2  
± 5  
10  
%
SID.DC.VR.2  
Ika_off  
µA  
Current through EA_OUT pin when  
in Sink mode for optocoupler appli-  
cation  
SID.DC.VR.3  
Ika_on  
5
mA  
Differential nonlinearity of NMOS  
DAC  
SID.DC.VR.4  
DNL_ndac  
INL_ndac  
–1  
1
LSB  
%
SID.DC.VR.5  
SID.DC.VR.6  
Integral nonlinearity of NMOS DAC  
–1.5  
–8  
1.5  
8
Gain_error_ndac Gain error of NMOS DAC  
Differential nonlinearity of PMOS  
SID.DC.VR.7  
DNL_pdac  
DAC  
–0.5  
0.5  
LSB  
%
SID.DC.VR.8  
SID.DC.VR.9  
INL_pdac  
Integral nonlinearity of PMOS DAC  
–1  
–8  
1
8
Gain_error_pdac Gain error of PMOS DAC  
Document Number: 002-30172 Rev. *A  
Page 12 of 24  
CCG3PA-NFET  
Table 7. LSCSA, SCP  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
DC Specifications  
SID.LSCSA.1  
Cin_inp  
CSP input capacitance  
10  
15  
pF  
CSA accuracy with  
5 mV < Vsense < 10 mV  
SID.LSCSA.2  
SID.LSCSA.3  
SID.LSCSA.4  
SID.LSCSA.5  
SID.LSCSA.6  
Csa_Acc1  
–15  
CSA accuracy with  
10 mV < Vsense < 15 mV  
Csa_Acc2  
Csa_Acc3  
SCP_6A  
SCP_10A  
Av  
–10  
–5  
5.4  
9
10  
5
%
A
CSA accuracy with  
15 mV < Vsense  
Short circuit trip point with  
threshold set to 6A  
6
6.6  
11  
Rsense = 5 mΩ  
Short circuit trip point with  
threshold set to 10A  
10  
CSA gain values supported:  
5,10, 20, 35, 50, 75, 125, 150  
SID.LSCSA.8  
5
150  
AC Specifications  
DelayfromOCPthresholdtripto  
external NFET gate turn off  
SID.LSCSA.AC.1 Tocp_gate  
SID.LSCSA.AC.2 Tscp_gate  
4
20  
Delay from SCPthreshold trip to  
external NFET gate turn off  
1 nF NFET gate  
capacitance  
3.1  
µs  
Delay from SCPthreshold trip to  
SID.LSCSA.AC.3 Tscp_gate_1 external NFET power gate turn  
3 nF NFET gate  
capacitance  
7.5  
off  
Table 8. VBUS UV, OV  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
DC Specifications  
Over-Voltage threshold  
Accuracy, 4 V to 11 V  
SID.UVOV.1  
SID.UVOV.2  
SID.UVOV.3  
SID.UVOV.4  
SID.UVOV.5  
VTHOV1  
VTHOV2  
VTHUV1  
VTHUV2  
VTHUV3  
VTHUV4  
–3  
–3.2  
–4  
3
3.2  
4
Over-Voltage threshold  
Accuracy, 11 V to 21.5 V  
Under-Voltage threshold  
Accuracy, 3 V to 3.3 V  
%
Under-Voltage threshold  
Accuracy, 3.3 V to 4.0 V  
–3.5  
–3  
3.5  
3
Under-Voltage threshold  
Accuracy, 4.0 V to 11 V  
Under-Voltage threshold  
Accuracy, 11 V to 21.5 V  
SID.UVOV.6  
–2.9  
2.9  
AC Specifications  
Delay from OV threshold trip to  
external NFET Power Gate Turn  
off  
SID.UVOV.AC.1 Tov_gate  
50  
µs  
Document Number: 002-30172 Rev. *A  
Page 13 of 24  
CCG3PA-NFET  
Table 9. PD Transceiver  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
DC Specifications  
Downstream facing port (DFP)  
CC termination for default USB  
power  
SID.PD.1  
Rp_std  
64  
80  
96  
DFP CC termination for 1.5 A  
USB power  
µA  
SID.PD.2  
SID.PD.3  
SID.PD.4  
Rp_1.5A  
Rp_3.0A  
Vgndoffset  
166  
304  
180  
330  
194  
356  
500  
DFP CC termination for 3.0 A  
USB power  
Ground offset tolerated by  
BMC receiver  
Relative to remote BMC  
transmitter  
–500  
mV  
Table 10. VBUS Discharge  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
DC Specifications  
20 V NMOS ON resistance  
for discharge strength = 1  
SID.VBUS.DISC.1 R1  
SID.VBUS.DISC.2 R2  
SID.VBUS.DISC.3 R4  
SID.VBUS.DISC.4 R8  
SID.VBUS.DISC.5 R16  
500  
250  
125  
62.5  
31.25  
2000  
1000  
500  
250  
125  
10  
20 V NMOS ON resistance  
for discharge strength = 2  
20 V NMOS ON resistance  
for discharge strength = 4  
Ω
Measured at 0.5 V  
20 V NMOS ON resistance  
for discharge strength = 8  
20 V NMOS ON resistance  
for discharge strength = 16  
Error percentage of final  
VBUS value  
When VBUS is discharged to  
5 V  
SID.VBUS.DISC.6 Vbus_stop_error  
%
Table 11. VBUS NFET Gate Driver  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
DC Specifications  
Gate to Source overdrive  
during NFET ON condition  
SID.GD.1  
GD_VGS  
4.5  
5.75  
0.57  
10  
2
V
Vbus_in = 21.5 V  
Resistance when pull-down  
is enabled to turn off  
external NFET  
SID.GD.2  
GD_Rpd  
kΩ  
AC Specifications  
AC.GD.1  
V
BUS_ctrl Low to High (1 V to  
Ton  
Toff  
VBUS + 1 V) with 3nF  
external capacitance  
2
5
7
10  
ms VBUS_IN = 5 V  
VBUS_ctrl High to Low (90%  
to 10%) with 3nF external  
capacitance  
AC.GD.2  
µs  
VBUS_IN = 21.5 V  
Document Number: 002-30172 Rev. *A  
Page 14 of 24  
CCG3PA-NFET  
Table 12. High-Voltage Regulator  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
DC Specifications  
VBUS_INvoltagedetect  
threshold  
SID.VREG.1  
SID.VREG.2  
VOLTAGE_DETECT  
Tstart  
1.7  
2.1  
50  
2.4  
V
Total start-up time for  
the regulator supply  
outputs  
From VBUS reaching  
Voltage_detect level to 95%  
of final value  
200  
µs  
I/O Specifications  
Table 13. I/O Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
DC Specifications  
SID.GIO.1  
SID.GIO.2  
SID.GIO.3  
SID.GIO.4  
SID.GIO.5  
I_LU  
Latch-up current limits  
Pull-up resistor value  
Pull-down resistor value  
Input leakage current  
–140  
3.5  
3.5  
140  
8.5  
8.5  
2
mA  
kΩ  
nA  
RPU  
RPD  
IIL  
5.6  
5.6  
CPIN_A  
7.8  
3
22  
Capacitance on DP/DM lines  
Max pin capacitance  
pF  
Capacitance on all GPIOs,  
except DP/DM lines  
SID.GIO.6  
CPIN  
7
VDDD  
0.6  
SID.GIO.7  
SID.GIO.8  
SID.GIO.9  
Voh_3V  
Output voltage high level  
Output voltage low level  
Input voltage high threshold  
0.6  
Ioh = –4 mA  
Iol = 10 mA  
Vol_3V  
0.7 *  
VDDD  
Vih_CMOS  
V
0.3 *  
VDDD  
SID.GIO.10 Vil_CMOS  
SID.GIO.11 Vih_TTL  
Input voltage low threshold  
LVTTL input  
2
SID.GIO.12 Vil_TTL  
SID.GIO.13 Vhysttl  
0.8  
Input hysteresis LVTTL  
Input hysteresis CMOS  
100  
mV  
µA  
0.05 *  
VDDD  
SID.GIO.14 Vhyscmos  
SID.GIO.15 IDIODE  
Current through protection  
diode to VDDD/VSS  
100  
Document Number: 002-30172 Rev. *A  
Page 15 of 24  
CCG3PA-NFET  
Table 13. I/O Specifications (continued)  
Spec ID Parameter  
Description  
Min  
2
Typ  
Max  
12  
Unit  
Details/Conditions  
SID.GIO.16 TriseF  
SID.GIO.17 TfallF  
SID.GIO.18 TriseS  
SID.GIO.19 TfallS  
Rise time in fast strong mode  
Fall time in fast strong mode  
Risetimeinslowstrongmode  
Fall time in slow strong mode  
2
12  
ns  
10  
10  
60  
60  
Cload = 25 pF  
GPIO Fout;  
SID.GIO.20 FGPIO_OUT1  
SID.GIO.21 FGPIO_OUT2  
SID.GIO.22 FGPIO_IN  
3 V VDDD 5.5 V;  
7
16  
Fast strong mode.  
GPIO Fout;  
3V VDDD 5.5 V;  
Slow strong mode.  
MHz  
GPIO input operating  
frequency;  
3 V VDDD 5.5 V  
16  
System Resources Specifications  
Table 14. Power-On Reset (POR) Specifications  
Spec ID  
SID.POR.1  
SID.POR.2  
Parameter  
VRISEIPOR  
VFALLIPOR  
Description  
POR rising trip voltage  
POR falling trip voltage  
Min  
Typ  
Max  
Unit  
Details/Conditions  
0.8  
0.7  
1.5  
1.4  
V
Brown-out-detect (BOD) trip  
voltage active/ sleep modes  
SID.POR.3  
VFALLPPOR  
1.48  
1.62  
Table 15. Flash Macro Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/Conditions  
SID.MEM#1  
FLASH_ERASE Row erase time  
15.5  
-40 °C to +85 °C TA,  
ALL VDDD  
SID.MEM#2  
SID.MEM#5  
FLASH_WRITE Row (Block) write time  
(erase & program)  
20  
7
-40 °C to +85 °C TA,  
ALL VDDD  
ms  
FLASH_ROW_ Row program time after  
25 °C to 55 °C,  
ALL VDDD  
PGM  
erase  
SID178  
SID180  
TBULKERASE Bulk erase time (32k Bytes)  
35  
TDEVPROG  
FRET1  
Total device program time  
7.5  
secs  
SID182  
Flash retention, TA ≤ 55 °C,  
100 K P/E cycles  
20  
SID182A  
SID182A  
FRET2  
Flash retention, TA ≤ 85 °C,  
10 K P/E cycles  
10  
3
years  
FRET3  
Flash retention, TA ≤  
105 °C, 10 K P/E cycles  
Document Number: 002-30172 Rev. *A  
Page 16 of 24  
CCG3PA-NFET  
Table 16. SWD Specifications  
Spec ID  
SID.SWD#1  
SID.SWD#2  
SID.SWD#3  
SID.SWD#4  
SID.SWD#5  
Parameter  
F_swdclk1  
Description  
3 V <= VDDD <= 5.5 V  
T = 1/f SWDCLK  
T = 1/f SWDCLK  
T = 1/f SWDCLK  
T = 1/f SWDCLK  
Min  
Typ  
Max  
Unit  
Details/Conditions  
0.25*T  
0.25*T  
14  
MHz  
T_swdi_setup  
T_swdi_hold  
T_swdo_valid  
T_swdo_hold  
0.50*T  
ns  
1
Document Number: 002-30172 Rev. *A  
Page 17 of 24  
CCG3PA-NFET  
Ordering Information  
Table 17. CCG3PA-NFET Ordering Information  
MPN  
Application  
Package Type  
Si ID  
2B02  
2B03  
2B04  
2B05  
CYPD3172-24LQXQ  
CYPD3172P-24LQXQ  
CYPD3173-24LQXQ  
CYPD3173P-24LQXQ  
Power Adapter based on Opto Coupler Feedback (Pre programmed)  
Power Adapter based on Opto Coupler Feedback (Programmable)  
Power Adapter based on Direct Feedback (Pre programmed)  
Power Adapter based on Direct Feedback (Programmable)  
24-Pin QFN  
Ordering Code Definitions  
XX  
X
CY PD  
X
XX XX  
X
X
XX  
X
X
T = Tape and Reel  
ES (Optional Field) = Pre-production Engineering samples only.  
Non orderable.  
Temperature Range: Q = Extended Industrial (-40 ºC to +105 ºC)  
X = Pb-free  
Package Type: LQ = QFN  
Number of pins in the package  
P = Programmable  
Application and Feature Combination Designation  
Number of Type-C Ports: 1 = 1 Port  
Product Type: 3 = Third Generation  
Marketing Code: PD = Power Delivery product family  
Company ID: CY = Cypress  
Document Number: 002-30172 Rev. *A  
Page 18 of 24  
CCG3PA-NFET  
Packaging  
Table 18. Package Characteristics  
Parameter  
TA  
Description  
Conditions  
Min  
–40  
–40  
Typ  
25  
25  
Max  
105  
Unit  
Operating ambient temperature  
Operating junction temperature  
Package θJA  
Extended Industrial  
°C  
TJ  
120  
TJA  
TJC  
19.98  
4.78  
°C/W  
Package θJC  
Table 19. Solder Reflow Peak Temperature  
Maximum Time within 5 °C  
of Peak Temperature  
Package  
Maximum Peak Temperature  
24-pin QFN  
260 °C  
30 seconds  
Table 20. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2  
Package  
MSL  
24-pin QFN  
MSL 3  
Document Number: 002-30172 Rev. *A  
Page 19 of 24  
CCG3PA-NFET  
Figure 6. 24-pin QFN Package Outline  
002-16934 *C  
Document Number: 002-30172 Rev. *A  
Page 20 of 24  
CCG3PA-NFET  
Table 21. Acronyms Used in this Document (continued)  
Acronyms  
Acronym  
NMOS  
NVIC  
opamp  
OCP  
OVP  
OTP  
Description  
N-type metal-oxide-semiconductor  
nested vectored interrupt controller  
operational amplifier  
Table 21. Acronyms Used in this Document  
Acronym  
ADC  
API  
Description  
analog-to-digital converter  
application programming interface  
advanced RISC machine, a CPU architecture  
constant current  
overcurrent protection  
overvoltage protection  
over-temperature protection  
printed circuit board  
Arm®  
CC  
CC  
configuration channel  
PCB  
CV  
constant voltage  
PD  
power delivery  
BOD  
BMC  
CPU  
Brown out Detect  
PGA  
PHY  
programmable gain amplifier  
physical layer  
biphase mark code  
central processing unit  
PMOS  
POR  
PPS  
P-type metal-oxide-semiconductor  
power-on reset  
cyclic redundancy check, an error-checking  
protocol  
CRC  
CrCM  
CS  
critical conduction mode  
current sense  
programmable power supply  
precise power-on reset  
Programmable System-on-Chip™  
pulse-width modulator  
random-access memory  
reduced-instruction-set computing  
root-mean-square  
PRES  
PSoC®  
PWM  
RAM  
RISC  
RMS  
RTC  
DCM  
DFP  
discontinuous conduction mode  
downstream facing port  
digital input/output, GPIO with only digital  
capabilities, no analog. See GPIO.  
DIO  
DRP  
dual role port  
electrically erasable programmable read-only  
memory  
EEPROM  
real-time clock  
RX  
receive  
a USB cable that includes an IC that reports cable  
characteristics (e.g., current rating) to the Type-C  
ports  
EMCA  
SAR  
successive approximation register  
I2C serial clock  
SCL  
EMI  
ESD  
FPB  
FS  
electromagnetic interference  
electrostatic discharge  
flash patch and breakpoint  
full-speed  
SCP  
short circuit protection  
I2C serial data  
SDA  
S/H  
sample and hold  
Serial Peripheral Interface, a communications  
protocol  
SPI  
GPIO  
IC  
general-purpose input/output  
integrated circuit  
SR  
synchronous rectifier  
static random access memory  
serial wire debug, a test protocol  
transmit  
IDE  
integrated development environment  
SRAM  
SWD  
TX  
I2C, or IIC Inter-Integrated Circuit, a communications protocol  
ILO  
internal low-speed oscillator, see also IMO  
internal main oscillator, see also ILO  
input/output, see also GPIO  
low-side current sense amplifier  
low-voltage detect  
IMO  
I/O  
a new standard with a slimmer USB connector and  
a reversible cable, capable of sourcing up to 100 W  
of power  
Type-C  
LSCSA  
LVD  
LVTTL  
MCU  
NC  
Universal Asynchronous Transmitter Receiver, a  
communications protocol  
UART  
USB  
low-voltage transistor-transistor logic  
microcontroller unit  
Universal Serial Bus  
USB input/output, CCG5 pins used to connect to a  
USB port  
USBIO  
UVP  
no connect  
undervoltage protection  
NMI  
nonmaskable interrupt  
Document Number: 002-30172 Rev. *A  
Page 21 of 24  
CCG3PA-NFET  
Table 21. Acronyms Used in this Document (continued)  
Document Conventions  
Acronym  
Description  
Units of Measure  
WDT  
watchdog timer  
Table 22. Units of Measure  
USB input/output, CCG5 pins used to connect to a  
USB port  
USBIO  
Symbol  
°C  
Unit of Measure  
XRES  
ZCD  
external reset I/O pin  
zero crossing detect  
degrees Celsius  
hertz  
Hz  
KB  
kHz  
kΩ  
Mbps  
MHz  
MΩ  
Msps  
µA  
1024 bytes  
kilohertz  
kilo ohm  
megabits per second  
megahertz  
mega-ohm  
megasamples per second  
microampere  
microfarad  
microsecond  
microvolt  
µF  
µs  
µV  
µW  
mA  
ms  
mV  
nA  
microwatt  
milliampere  
millisecond  
millivolt  
nanoampere  
nanosecond  
ohm  
ns  
Ω
pF  
picofarad  
ppm  
ps  
parts per million  
picosecond  
second  
s
sps  
V
samples per second  
volt  
Document Number: 002-30172 Rev. *A  
Page 22 of 24  
CCG3PA-NFET  
Document History Page  
Document Title: CCG3PA-NFET, USB Type-C Port Controller  
Document Number: 002-30172  
Revision  
ECN  
Submission Date  
Description of Change  
**  
6890477  
06/01/2020  
Initial release.  
Updated datasheet status from Advance to Final.  
Added Note [1] for USB PD 3.0 PPS Power Adapter in Applications.  
Updated text in OTP.  
Updated error amplifier constant voltage regulation from 21.5 V to 21 V in FB, EA_OUT,  
CC_COMP_GPIO2.  
*A  
6960049  
10/16/2020  
Added text in Application Firmware Update over CC Interface (Programmable Version).  
Updated text in CCG3PA-NFET Programming and Bootloading.  
Updated Typ values and details/conditions for SID.PWR.15, SID.PWR.16, and  
SID.PWR#16_A in Table 3.  
Document Number: 002-30172 Rev. *A  
Page 23 of 24  
CCG3PA-NFET  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Code Examples | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
Notice regarding compliance with Universal Serial Bus specification. Cypress offers firmware and hardware solutions that are certified to comply with the Universal Serial Bus specification, USB  
Type-C™ Cable and Connector Specification, and other specifications of USB Implementers Forum, Inc (USB-IF). You may use Cypress or third party software tools, including sample code, to modify  
the firmware for Cypress USB products. Modification of such firmware could cause the firmware/hardware combination to no longer comply with the relevant USB-IF specification. You are solely  
responsible ensuring the compliance of any modifications you make, and you must follow the compliance requirements of USB-IF before using any USB-IF trademarks or logos in connection with any  
modifications you make. In addition, if Cypress modifies firmware based on your specifications, then you are responsible for ensuring compliance with any desired standard or specifications as if you  
had made the modification. CYPRESS IS NOT RESPONSIBLE IN THE EVENT THAT YOU MODIFY OR HAVE MODIFIED A CERTIFIED CYPRESS PRODUCT AND SUCH MODIFIED PRODUCT  
NO LONGER COMPLIES WITH THE RELEVANT USB-IF SPECIFICATIONS.  
© Cypress Semiconductor Corporation, 2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”). This document, including any software or firmware  
included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all  
rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the  
Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal,  
non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software  
solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through  
resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified)  
to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing  
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such  
as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING  
CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively,  
“Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security  
Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the  
extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of  
any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes.  
It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. “High-Risk  
Device” means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and  
other medical devices. “Critical Component” means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk  
Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of  
a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from  
and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress  
product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i)  
Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to  
use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-30172 Rev. *A  
Revised October 16, 2020  
Page 24 of 24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY